Sample records for nanoparticle suspensions titanium

  1. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    PubMed

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  2. Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process

    NASA Astrophysics Data System (ADS)

    Du, Lingzhong; Coyle, Thomas W.; Chien, Ken; Pershin, Larry; Li, Tiegang; Golozar, Mehdi

    2015-08-01

    Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO2. The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO2 nanoparticles.

  3. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation and toxicity

    PubMed Central

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O.

    2012-01-01

    Aquatic stability and impact of titanium dioxide nanoparticles (TiO2 NPs, 10-30 nm) was investigated using Artemia salina. Acute exposure was conducted on nauplii (larvae) and adults in seawater in a concentration range from 10 to 100 mg/L TiO2 NPs for 24 h and 96 h. Rapid aggregation occurred in all suspensions of TiO2 NPs to form micrometer size particles. Yet, both nauplii and adults accumulated the aggregates significantly. Average TiO2 content in nauplii ranged from 0.47 to 3.19 mg/g and from 1.29 to 4.43 mg/g in 24 h and 96 h, respectively. Accumulation in adults was higher ranging from 2.30 to 4.19 mg/g and from 4.38 to 6.20 mg/g in 24 h and 96 h, respectively. Phase contrast microscopy images revealed that Artemia were unable to excrete the particles. Thus, the TiO2 aggregates filled inside the guts. No significant mortality or toxicity occurred within 24 h at any dose. Lipid peroxidation levels characterized with malondialdehyde (MDA) concentrations were not statistically different from those of the controls (p>0.05). These results suggested that suspensions of the TiO2 NPs were nontoxic to Artemia, most likely due to the formation of benign TiO2 aggregates in water. In contrast, both mortality and lipid peroxidation increased in extended exposure to 96 h. Highest mortality occurred in 100 mg/L TiO2 NP suspensions; 18% for nauplii and 14% for adults (LC50 > 100 mg/L). These effects were attributed to the particle loading inside the guts leading to oxidative stress as a result of impaired food uptake for a long period of time. PMID:22810381

  4. The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide

    NASA Astrophysics Data System (ADS)

    Mehrpouya, Fahimeh; Tavanai, Hossein; Morshed, Mohammad; Ghiaci, Mehran

    2012-08-01

    Activated carbon (AC) can act as an important carrier for TiO2 nanoparticles. TiO2 nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO2 nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO2 crystallite size lies in the range of 7.3-11.3 nm. The dispersion of TiO2 nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO2 nanoparticles in the original electrospinning solution.

  5. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-08-01

    Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.

  6. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research

  7. Interactions between suspension characteristics and physicochemical properties of silver and copper oxide nanoparticles: a case study for optimizing nanoparticle stock suspensions using a central composite design.

    PubMed

    Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery

    2015-04-01

    The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  9. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  10. An Investigation on the Thermophysical Properties of a Binary Molten Salt System Containing Both Aluminum Oxide and Titanium Oxide Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Giridhar, Kunal

    Molten salts are showing great potential to replace current heat transfer and thermal energy storage fluids in concentrated solar plants because of their capability to maximize thermal energy storage, greater stability, cost effectiveness and significant thermal properties. However one of the major drawbacks of using molten salt as heat transfer fluid is that they are in solid state at room temperature and they have a high freezing point. Hence, significant resources would be required to maintain it in liquid form. If molten salt freezes while in operation, it would eventually damage piping network due to its volume shrinkage along with rendering the entire plant inoperable. It is long known that addition of nanoparticle suspensions has led to significant changes in thermal properties of fluids. In this investigation, aluminum oxide and titanium oxide nanoparticles of varying concentrations are added to molten salt/solar salt system consisting of 60% sodium nitrate and 40% potassium nitrate. Using differential scanning calorimeter, an attempt will be made to investigate changes in heat capacity of system, depression in freezing point and changes in latent heat of fusion. Scanning electron microscope will be used to take images of samples to study changes in micro-structure of mixture, ensure uniform distribution of nanoparticle in system and verify authenticity of materials used for experimentation. Due to enormous magnitude of CSP plant, actual implementation of molten salt system is on a large scale. With this investigation, even microscopic enhancement in heat capacity and slight lowering of freezing point will lead to greater benefits in terms of efficiency and cost of operation of plant. These results will further the argument for viability of molten salt as a heat transfer fluid and thermal storage system in CSP. One of the objective of this experimentation is to also collect experimental data which can be used for establishing relation between concentration

  11. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-03-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  12. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    PubMed

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  13. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-07

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  14. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions.

    PubMed

    Cupi, Denisa; Hartmann, Nanna B; Baun, Anders

    2016-05-01

    In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cytotoxicity of titanium and silicon dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagner, Stefanie; Münzer, Simon; Behrens, Peter; Scheper, Thomas; Bahnemann, Detlef; Kasper, Cornelia

    2009-05-01

    Different TiO2 and SiO2 nanoparticles have been tested concerning their toxicity on selected mammalian cell lines. Various powders and suspensions, all of which consist of titanium or silicon dioxide nanoparticles have been examined. These particles differ in the crystal structure, the size and the BET-surface area. There was also a classification in fixed particles and in particles easily accessible in solution. With focus on the possible adsorption of the nanoparticles into the human organism, via skin and via respiratory tract, the effects on fibroblasts (NIH-3T3) and on a human lung adenocarcinoma epithelial cell line were examined. Additionally, the particles were tested with HEP-G2 cells, which are often used as model cell line for biocompatibility tests, and PC-12 cells, a rat adrenal pheochromocytoma cell line. The viability of the cells was examined by the MTT-test. The viability results were found to partly depend on the type of cells used. The experimental results show that the adhesion of the cells on the different powders strongly depends on the type of cell lines as well as on the type of powder. It was found that the lower viability of some cells on the powder coatings is not only caused by a cytotoxicity effect of the powders, but is also due to a lower adhesion of the cells on the particle surfaces. Furthermore, it could be shown that the physical properties of the powders cannot be easily correlated to any observed biological effect. While some powders show a significant suppression of the cell growth, others with similar physical properties indicate no toxic effect.

  16. Standardisation of magnetic nanoparticles in liquid suspension

    NASA Astrophysics Data System (ADS)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-09-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.

  17. Smectite clay--inorganic nanoparticle mixed suspensions: phase behaviour and rheology.

    PubMed

    Bailey, Louise; Lekkerkerker, Henk N W; Maitland, Geoffrey C

    2015-01-14

    Smectite clay minerals and their suspensions have long been of both great scientific and applications interest and continue to display a remarkable range of new and interesting behaviour. Recently there has been an increasing interest in the properties of mixed suspensions of such clays with nanoparticles of different size, shape and charge. This review aims to summarize the current status of research in this area focusing on phase behaviour and rheological properties. We will emphasize the rich range of data that has emerged for these systems and the challenges they present for future investigations. The review starts with a brief overview of the behaviour and current understanding of pure smectite clays and their suspensions. We then cover the work on smectite clay-inorganic nanoparticle mixed suspensions according to the shape and charge of the nanoparticles - spheres, rods and plates either positively or negatively charged. We conclude with a summary of the overarching trends that emerge from these studies and indicate where gaps in our understanding need further research for better understanding the underlying chemistry and physics.

  18. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    PubMed Central

    Bagheri, Samira; Abd Hamid, Sharifah Bee

    2014-01-01

    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis. PMID:25126547

  19. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    EPA Science Inventory

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  20. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    PubMed

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions.

    PubMed

    Fries, Elke; Crouzet, Catherine; Michel, Caroline; Togola, Anne

    2016-09-01

    The aim of the present study was to investigate interactions of the antibiotic ciprofloxacin (CIP), titanium dioxide nanoparticles (TiO2 NP) and natural organic matter (NOM) in aqueous suspensions. The mean hydrodynamic diameter of particles of TiO2 NP and NOM in the suspensions ranged from 113 to 255nm. During batch experiments the radioactivity resulting from (14)CIP was determined in the filtrate (filter pore size 100nm) by scintillation measurements. Up to 72h, no significant sorption of NOM to TiO2 NP was observed at a TiO2 NP concentration of 5mg/L. When the concentration of TiO2 NP was increased to 500mg/L, a small amount of NOM of 9.5%±0.6% was sorbed at 72h. The low sorption affinity of NOM on TiO2 NP surfaces could be explained by the negative charge of both components in alkaline media or by the low hydrophobicity of the NOM contents. At a TiO2 NP concentration of 5mgL(-1), the sorption of CIP on TiO2 NP was insignificant (TiO2 NP/CIP ratio: 10). When the TiO2 NP/CIP ratio was increased to 1000, a significant amount of 53.6%±7.2% of CIP was sorbed on TiO2 NP under equilibrium conditions at 64h. In alkaline media, CIP is present mainly as zwitterions which have an affinity to sorb on negatively charged TiO2 NP surfaces. The sorption of CIP on TiO2 NP in the range of TiO2 NP concentrations currently estimated for municipal wastewater treatment plants is estimated to be rather low. The Freundlich sorption coefficients (KF) in the presence of NOM of 2167L(n)mgmg(-n)kg(-1) was about 10 times lower than in the absence of NOM. This is an indication that the particle fraction of NOM<100nm could play a role as a carrier for ionic organic micro-pollutants as CIP. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A single-step aerosol process for in-situ surface modification of nanoparticles: Preparation of stable aqueous nanoparticle suspensions.

    PubMed

    Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra

    2016-02-15

    Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    NASA Astrophysics Data System (ADS)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  4. Thermal transport phenomena in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  5. Potential for metal contamination by direct sonication of nanoparticle suspensions

    EPA Science Inventory

    There is a growing need to examine the potential toxicity of engineered nanoparticles (ENPs) to establish regulations protective of environmental health and safety. During a series of experiments to evaluate the toxicity of titanium dioxide (TiO2) nanoparticles on terrestrial pla...

  6. Bronchiolitis obliterans organizing pneumonia due to titanium nanoparticles in paint.

    PubMed

    Cheng, Tong-Hong; Ko, Fu-Chang; Chang, Junn-Liang; Wu, Kuo-An

    2012-02-01

    We present a case of a 58-year-old man who experienced Bronchiolitis obliterans organizing pneumonia after a 3-month exposure to polyester powder paint. Mineralogical analysis by transmission electron microscopy of a pulmonary sample and the polyester powder paint he was exposed to showed the presence of titanium dioxide nanoparticles in both. We suggest that exposure to titanium dioxide nanoparticles should be added to the etiology of Bronchiolitis obliterans organizing pneumonia. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray.

    PubMed

    Adán, C; Marugán, J; van Grieken, R; Chien, K; Pershin, L; Coyle, T; Mostaghimi, J

    2015-09-01

    Titanium dioxide coatings were deposited on the surface of titanium foils by Thermal Plasma Spray (TPS) process. Three different TiO2 coatings were prepared using the commercial TiO2-P25 nanopowder and titanium isopropoxide precursor solution as feed-stocks. Structure and morphology of the TiO2-P25 powder and the plasma sprayed coatings were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, UV-visible spectroscopy and Scanning Electron Microscopy (SEM). XRD and Raman results indicate that the TiO2 coatings were composed of an anatase/rutile mixture that is conditioned by the suspension composition used to be sprayed. Coatings prepared from TiO2-P25 nanoparticles in water suspension (NW-P25) and titanium isopropoxide solution suspension (NSP-P25) are incorporated into the coatings without phase transformation and their anatase/rutile ratio percentage remains very similar to the starting TiO2-P25 powder. On the contrary, when titanium isopropoxide solution is used for spraying (SP), the amount of rutile increases in the final TiO2 coating. SEM analysis also reveals different microstructure morphology, coating thickness, density and porosity of the three TiO2 films that depend significantly on the type of feed-stock employed. Interestingly, we have observed the role of titanium isopropoxide in the formation of more porous and cohesive layers of TiO2. The NSP-P25 coating, prepared with a mix of titanium isopropoxide solution based on TiO2 nanoparticles, presents higher deposition efficiencies and higher coating thickness than the film prepared with nanoparticles suspended in water (NW-P25) or with titanium isopropoxide solutions (SP). This is due to the precursor solution is acting as the cement between TiO2 nanoparticles, improving the cohesive strength of the coating. In sum, NSP-P25 and NW-P25 coatings display a good photocatalytic potential, based on their light absorption properties and mechanical stability. Band gap of

  8. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.

    PubMed

    Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M

    2010-02-15

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.

  9. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to

  10. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  11. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  12. Dose-dependent biodistribution of prenatal exposure to rutile-type titanium dioxide nanoparticles on mouse testis

    NASA Astrophysics Data System (ADS)

    Kubo-Irie, Miyoko; Uchida, Hiroki; Mastuzawa, Shotaro; Yoshida, Yasuko; Shinkai, Yusuke; Suzuki, Kenichiro; Yokota, Satoshi; Oshio, Shigeru; Takeda, Ken

    2014-02-01

    Titanium dioxide nanoparticles (nano-TiO2), believed to be inert and safe, are used in many products especially rutile-type in cosmetics. Detection, localization, and count of nanoparticles in tissue sections are of considerable current interest. Here, we evaluate the dose-dependent biodistribution of rutile-type nano-TiO2 exposure during pregnancy on offspring testes. Pregnant mice were subcutaneously injected five times with 0.1 ml of sequentially diluted of nano-TiO2 powder, 35 nm with primary diameter, suspensions (1, 10, 100, or 1,000 μg/ml), and received total doses of 0.5, 5, 50, and 500 μg, respectively. Prior to injection, the size distribution of nano-TiO2 was analyzed by dynamic light scattering measurement. The average diameter was increased in a dose-dependent manner. The most diluted concentration, 1 μg/ml suspension, contained small agglomerates averaging 193.3 ± 5.4 nm in diameter. The offspring testes were examined at 12 weeks postpartum. Individual particle analysis in testicular sections under scanning and transmission electron microscopy enabled us to understand the biodistribution. The correlation between nano-TiO2 doses injected to pregnant mice, and the number of agglomerates in the offspring testes was demonstrated to be dose-dependent by semiquantitative evaluation. However, the agglomerate size was below 200 nm in the testicular sections of all recipient groups, independent from the injected dose during pregnancy.

  13. Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide.

    PubMed

    Prabakar, Sujay; Collins, Sean; Northover, Bryan; Tilley, Richard D

    2011-01-07

    The synthesis of inorganic fullerene (IF) nanoparticles and IF hollow spheres of titanium disulfide by a simple colloidal route is reported. The injection temperature of the titanium precursor into the solvent mixture was found to be important in controlling the morphology.

  14. Friction factors of colloidal suspension containing silicon dioxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Tang, Clement; Pant, Sarbottam; Sharif, Md. Tanveer

    2015-11-01

    The purpose of this study is to experimentally characterize the friction factor of a colloidal suspension flow in circular and square tubes. The suspension contained silicon dioxide nanoparticles dispersed in distilled water at 9.58% volume concentration. Rheological measurements indicated that the suspension exhibits non-Newtonian behavior, and could be modelled as a power-law generalized Newtonian fluid. The experimental study showed that, with proper characterization of the consistency and flow behavior indices, the suspension flow friction factors in circular and square tubes exhibit similarities with those of Newtonian fluid flow. In the laminar fully-developed flow region, the Poiseuille numbers are similar to those established for Newtonian fluid flow. In the turbulent region, the Dodge and Metzner relation between the friction factor and a generalized Reynolds number can adequately describe the flow. The onsets of transition to turbulent flow for the suspension vary with the shape of the tube and differ from those of Newtonian fluid flow. The deviations suggest that the flow passage shape and the presence of nanoparticles affect the onset of transition to turbulent flow. Supported by North Dakota NASA EPSCoR.

  15. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  16. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    PubMed Central

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function. PMID:28400730

  17. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle

  18. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.

    PubMed

    Mansfield, C M; Alloy, M M; Hamilton, J; Verbeck, G F; Newton, K; Klaine, S J; Roberts, A P

    2015-02-01

    Titanium dioxide nanoparticles (TiO2 NP) are one of the most abundantly utilized nanoparticles in the world. Studies have demonstrated the ability of the anatase crystal of TiO2 NP to produce reactive oxygen species (ROS) in the presence of ultraviolet radiation (UVR), a co-exposure likely to occur in aquatic ecosystems. The goal of this study was to examine the photo-induced toxicity of anatase TiO2 NP under natural sunlight to Daphnia magna. D. magna were exposed to a range of UVR intensities and anatase TiO2 concentrations in an outdoor exposure system using the sun as the source of UVR. Different UVR intensities were achieved using UVR opaque and transparent plastics. AnataseTiO2-NP demonstrated the reciprocal relationship seen in other phototoxic compounds such as polycyclic aromatic hydrocarbons (PAHs) at higher UVR treatments. The calculated 8h LC50 of anatase TiO2 NP was 139 ppb under full intensity ambient natural sunlight, 778 ppb under 50% natural sunlight, and >500 ppm under 10% natural sunlight. Mortality was also compared between animals allowed to accumulate a body burden of anatase TiO2 for 1h and organisms whose first exposure to anatase TiO2 aqueous suspensions occurred under UVR. A significantly greater toxic effect was observed in aqueous, low body burden suspensions than that of TiO2 1h body burdens, which is dissimilar from the model presented in PAHs. Anatase TiO2 presents a unique photo-induced toxic model that is different than that of established phototoxic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    PubMed Central

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634

  20. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    EPA Science Inventory

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  1. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  2. Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films

    NASA Astrophysics Data System (ADS)

    Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha

    2013-02-01

    Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.

  3. Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Patterson, Cody; Syed, Maarij; Takemura, Yasushi

    2018-04-01

    Magnetic nanoparticles (MNPs) are widely used in biomedical applications. Characterizing dilute suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) in bio-relevant media is particularly valuable for magnetic particle imaging, hyperthermia, drug delivery, etc. Here, we study dilute aqueous suspensions of single-domain magnetite nanoparticles using an AC Faraday rotation (FR) setup. The setup uses an oscillating magnetic field (800 Hz) which generates a multi-harmonic response. Each harmonic is collected and analyzed using the Fourier components of the theoretical signal determined by a Langevin-like magnetization. With this procedure, we determine the average magnetic moment per particle μ , particle number density n, and Verdet constant of the sample. The fitted values of μ and n are shown to be consistent across each harmonic. Additionally, we present the results of these parameters as n is varied. The large values of μ reveal the possibility of clustering as reported in other literature. This suggests that μ is representative of the average magnetic moment per cluster of nanoparticles. Multiple factors, including the external magnetic field, surfactant degradation, and laser absorption, can contribute to dynamic and long-term aggregation leading to FR signals that represent space- and time-averaged sample parameters. Using this powerful analysis procedure, future studies are aimed at determining the clustering mechanisms in this AC system and characterizing SPION suspensions at different frequencies and viscosities.

  4. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    PubMed

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  5. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    NASA Astrophysics Data System (ADS)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  6. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    PubMed

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  7. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes

    PubMed Central

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. PMID:24920902

  8. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    PubMed Central

    Krystofova, Olga; Sochor, Jiri; Zitka, Ondrej; Babula, Petr; Kudrle, Vit; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis—total protein content, thiols—reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The

  9. Evaluation of the tracing effect of carbon nanoparticle and carbon nanoparticle-epirubicin suspension in axillary lymph node dissection for breast cancer treatment.

    PubMed

    Du, Junze; Zhang, Yongsong; Ming, Jia; Liu, Jing; Zhong, Ling; Liang, Quankun; Fan, Linjun; Jiang, Jun

    2016-06-22

    Carbon nanoparticle suspension, using smooth carbon particles at a diameter of 21 nm added with suspending agents, is a stable suspension of carbon pellets of 150 nm in diameter. It is obviously inclined to the lymphatic system. There were some studies reporting that carbon nanoparticles are considered as superior tracers for sentinel lymph nodes because of their stability and operational feasibility. However, there were few study concerns about the potential treatment effect including tracing and local chemotherapeutic effect of carbon nanoparticle-epirubicin suspension on breast cancer with axillary metastasis. In the current study, a randomized controlled analysis was performed to investigate the potential treatment effect of carbon nanoparticle-epirubicin suspension on breast cancer with axillary metastasis. A total of 90 breast cancer patients were randomly divided into three equal groups: control, tracer, and drug-load groups. The control group patients did not receive any lymphatic tracers, the tracer group patients were subcutaneously injected with 1 ml carbon nanoparticle suspension, and the drug-load group patients were injected with 3 ml carbon nanoparticle-epirubicin suspension at four separate sites around the areola 24 h before surgery. Modified radical mastectomy, endoscopic subcutaneous mammary resection plus axillary lymph node dissection, and immediate reconstruction with implants or breast-conserving surgery were performed. The mean number of the dissected lymph nodes per patient was significantly higher in the tracer (21.3 ± 6.1) and drug-load (19.5 ± 3.7) groups than in the control group (16.7 ± 3.4) (P < 0.05). Most lymph nodes in the former two groups were stained black (75.7 and 73.3 %, respectively), but with no significant difference between the groups. Most metastatic lymph nodes were also stained black in the tracer group (68.6 %) and drug-load group (78.1 %) and with no significant difference between the

  10. Stimulated low-frequency Raman scattering in aqueous suspension of nanoparticles

    NASA Astrophysics Data System (ADS)

    Averyushkin, Anatolii S.; Baranov, Anatoly N.; Bulychev, Nikolay A.; Kazaryan, Mishik A.; Kudryavtseva, Anna D.; Shevchenko, Mikhail A.; Strokov, Maxim A.; Tcherniega, Nikolay V.; Zemskov, Konstantin I.

    2018-04-01

    The low-frequency acoustic mode in nanoparticles of different nature in aqueous suspension has been studied by stimulated low-frequency Raman scattering (SLFRS). Nanoparticles investigated (CuO, Ag, Au, ZnS) had different dimensions and different vibrational properties. Synthesis of cupric oxide nanoparticles in acoustoplasma discharge is described in details. SLFRS has been excited by nanosecond pulses of ruby laser. Spectra of the scattered light had been registered with the help of Fabry-Perot interferometer. SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  11. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection

    PubMed Central

    Leng, Yuankui

    2017-01-01

    Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602

  12. Suspension characterization as important key for toxicological investigations

    NASA Astrophysics Data System (ADS)

    Meißner, Tobias; Potthoff, Annegret; Richter, Volkmar

    2009-05-01

    To assess potential health risks of nanoparticles by means of in vitro or in vivo assays and to determine dose-action curves a defined and reproducible method of particle administration is required. The interpretation of the toxicological results should be based on a comprehensive chemical-physical characterization of the particles used. Therefore, we developed a method to suspend nanoparticles stably and homogenously in physiological media. Our approach consist of three steps: (1) physical-chemical characterisation of the powders as delivered, (2) preparation and characterization of a non-physiological electro-statically stabilized nanoparticle suspension and (3) assessment of the nanoparticles behaviour in physiological media with or without proteins. This approach is demonstrated on a titanium dioxide and a tungsten carbide nanopowder. Results showed that particles agglomerate in protein-free medium within minutes, whereas in the presence of bovine serum albumin or foetal bovine serum an agglomeration is hindered.

  13. Flow and Fracture in Drying Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Dufresne, E. R.; Corwin, E. I.; Greenblatt, N. A.; Ashmore, J.; Wang, D. Y.; Dinsmore, A. D.; Cheng, J. X.; Xie, X. S.; Hutchinson, J. W.; Weitz, D. A.

    2003-11-01

    Drying aqueous suspensions of monodisperse silica nanoparticles can fracture in remarkable patterns. As the material solidifies, evenly spaced cracks invade from the drying surface, with individual cracks undergoing intermittent motion. We show that the growth of cracks is limited by the advancement of the compaction front, which is governed by a balance of evaporation and flow of fluid at the drying surface. Surprisingly, the macroscopic dynamics of drying show signatures of molecular-scale fluid effects.

  14. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  15. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  16. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem

    PubMed Central

    Hussain, Muzammal; Khan, Muzaffar

    2017-01-01

    Although nanoparticles (NPs) have made incredible progress in the field of nanotechnology and biomedical research and their applications are demanded throughout industrial world particularly over the past decades, little is known about the fate of nanoparticles in ecosystem. Concerning the biosafety of nanotechnology, nanotoxicity is going to be the second most priority of nanotechnology that needs to be properly addressed. This review covers the chemical as well as the biological concerns about nanoparticles particularly titanium dioxide (TiO2) NPs and emphasizes the toxicological profile of TiO2 at the molecular level in both in vitro and in vivo systems. In addition, the challenges and future prospects of nanotoxicology are discussed that may provide better understanding and new insights into ongoing and future research in this field. PMID:28373829

  17. Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension

    NASA Astrophysics Data System (ADS)

    Koralewski, Marceli; Pochylski, Mikołaj; Gierszewski, Jacek

    2013-09-01

    We have studied the magnetically induced optical birefringence Δ n of horse spleen ferritin (HSF) and aqueous suspensions of several different-sized iron oxyhydroxide nanoparticles coated with different polysaccharides mimicking ferritin. The structure and dimensions of the akaganeite mineral core were characterized by XRD and TEM, respectively. The stability of the suspensions in the measurement temperature range from 278 to 358 K was confirmed by UV-Vis absorption spectroscopy. The values of optical polarizability anisotropy Δ α, magnetic susceptibility anisotropy Δ χ, and permanent magnetic dipole moment μ m of the akaganeite nanoparticles have been estimated on the basis of the temperature dependence of the Cotton-Mouton (C-M) constant. The magnetic birefringence of Fe-sucrose has been described tentatively by different types of Langevin function allowing another estimation of Δ χ and μ m. The obtained permanent magnetic dipole moment μ m of the studied akaganeite nanoparticles proves small and comparable to that of HSF. The value of μ m is found to increase with decreasing nanoparticle diameter. Observed in a range spanning more than five orders of magnitude, the linear relation between the C-M constant and the iron concentration provides a basis for possible analytical application of the C-M effect in biomedicine. The established relation between the C-M constant and the nanoparticle diameter confirms that the dominant contribution to the measured magnetic birefringence comes from the magnetic susceptibility anisotropy Δ χ. A comparison of the C-M constants of the studied akaganeite nanoparticles with the data obtained for HSF provides evidence that the ferritin core behaves as a non-Euclidian solid.

  18. Considering the formation of hematite spherules on Mars by freezing aqueous hematite nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sexton, M. R.; Elwood Madden, M. E.; Swindle, A. L.; Hamilton, V. E.; Bickmore, B. R.; Elwood Madden, A. S.

    2017-04-01

    The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of "seed" silicates, a matrix of sand grains, various concentrations of NaCl and CaCl2, and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.

  19. The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain

    PubMed Central

    Kubo-Irie, Miyoko; Yokoyama, Masaaki; Shinkai, Yusuke; Niki, Rikio; Takeda, Ken; Irie, Masaru

    2016-01-01

    This study aimed to examine the transfer of nanoparticles within a terrestrial food chain. Oviposited eggs of the swallowtail butterfly (Atrophaneura alcinous) were hatched on the leaves of the host plant (Aristolochia debilis), and the root stock and root hairs were submerged in a suspension of 10 μg/ml titanium dioxide nanoparticles (TiO2-NPs) in a 100 ml bottle. The presence of TiO2-NPs in the veins of the leaves was confirmed by X-ray analytical microscopy (X-ray AM). The hatched 1st instar larvae fed on the leaves to moult into 2nd instar larvae. Small agglomerates of TiO2-NPs less than 150 nm in diameter were identified in the vascular tissue of the exposed plant, the midgut and the excreta of the larvae by transmission electron microscopy. The image of Ti elemental mapping by X-ray AM was analysed with the quantitative spatial information mapping (QSIM) technique. The results demonstrated that TiO2-NPs were transferred from the plant to the larvae and they were disseminated throughout the environment via larval excreta. PMID:27030539

  20. Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG

    NASA Astrophysics Data System (ADS)

    Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar

    2018-03-01

    The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.

  1. Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaban, Yasser A.; El Sayed, Mohamed A.; El Maradny, Amr A.; Al Farawati, Radwan Kh.; Al Zobidi, Mosa I.; Khan, Shahed U. M.

    2016-03-01

    In this work, the sonicated sol-gel method was used for synthesizing carbon-modified titanium oxide nanoparticles. Carbon incorporation was achieved by using titanium (IV) isopropoxide as a titanium and carbon-containing precursor. The photocatalytic efficiency of the synthesized photocatalyst was assessed by examining the photocatalytic removal of polychlorinated biphenyls (PCBs) from aqueous solution. For comparison, unmodified (regular) titanium dioxide (n-TiO2) was used as a reference catalyst. To confirm the carbon incorporation in CM-n-TiO2 nanoparticles, energy dispersive spectroscopy (EDS) analysis was used. Significantly, the bandgap energy was found to be reduced from 2.99 eV for n-TiO2 to 1.8 eV for CM-n-TiO2, which in turn improved the performance of CM-n-TiO2 toward the photocatalytic removal of PCBs. The effects of CM-n-TiO2 loading, PCBs concentration, and pH of the solution on the photodegradation rate of PCBs were investigated. The highest removal rate was found to be at pH 5 and CM-n-TiO2 loading of 0.5 g L-1. According to Langmuir-Hinshelwood model, the photodegradation of PCBs using CM-n-TiO2 followed a pseudo-first order reaction kinetics.

  2. Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1.

    PubMed

    Kreyling, Wolfgang G; Holzwarth, Uwe; Haberl, Nadine; Kozempel, Ján; Hirn, Stephanie; Wenk, Alexander; Schleh, Carsten; Schäffler, Martin; Lipka, Jens; Semmler-Behnke, Manuela; Gibson, Neil

    2017-05-01

    Submicrometer TiO 2 particles, including nanoparticulate fractions, are used in an increasing variety of consumer products, as food additives and also drug delivery applications are envisaged. Beyond exposure of occupational groups, this entails an exposure risk to the public. However, nanoparticle translocation from the organ of intake and potential accumulation in secondary organs are poorly understood and in many investigations excessive doses are applied. The present study investigates the biokinetics and clearance of a low single dose (typically 40-400 μg/kg BW) of 48 V-radiolabeled, pure TiO 2 anatase nanoparticles ([ 48 V]TiO 2 NP) with a median aggregate/agglomerate size of 70 nm in aqueous suspension after intravenous (IV) injection into female Wistar rats. Biokinetics and clearance were followed from one-hour to 4-weeks. The use of radiolabeled nanoparticles allowed a quantitative [ 48 V]TiO 2 NP balancing of all organs, tissues, carcass and excretions of each rat without having to account for chemical background levels possibly caused by dietary or environmental titanium exposure. Highest [ 48 V]TiO 2 NP accumulations were found in liver (95.5%ID after one day), followed by spleen (2.5%), carcass (1%), skeleton (0.7%) and blood (0.4%). Detectable nanoparticle levels were found in all other organs. The [ 48 V]TiO 2 NP content in blood decreased rapidly after 24 h while the distribution in other organs and tissues remained rather constant until day-28. The present biokinetics study is part 1 of a series of studies comparing biokinetics after three classical routes of intake (IV injection (part 1), ingestion (part 2), intratracheal instillation (part 3)) under identical laboratory conditions, in order to test the common hypothesis that IV-injection is a suitable predictor for the biokinetics fate of nanoparticles administered by different routes. This hypothesis is disproved by this series of studies.

  3. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  4. Viscous properties of aluminum oxide nanotubes and aluminium oxide nanoparticles - silicone oil suspensions

    NASA Astrophysics Data System (ADS)

    Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen

    2010-03-01

    Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.

  5. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    PubMed

    Hatipoglu, Manolya Kukut; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  6. Behavior of engineered nanoparticles in aqueous solutions and porous media: Connecting experimentation to probabilistic analysis

    NASA Astrophysics Data System (ADS)

    Contreras, Carolina

    2011-12-01

    Engineered nanoparticles have enhanced products and services in the fields of medicine, energy, engineering, communications, personal care, environmental treatment, and many others. The increased use of engineered nanoparticles in consumer products will lead to these materials in natural systems, inevitably becoming a potential source of pollution. The study of the stability and mobility of these materials is fundamental to understand their behavior in natural systems and predict possible health and environmental implications. In addition, the use of probabilistic methods such as sensitivity analysis applied to the parameters controlling their behavior is useful in providing support in performing a risk assessment. This research investigated the stability and mobility of two types of metal oxide nanoparticles (aluminum oxide and titanium dioxide). The stability studies tested the effect of sand, pH 4, 7, and 10, and the NaCl in concentrations of 10mM, 25mM, 50mM, and 75mM. The mobility was tested using saturated quartz sand columns and nanoparticles suspension at pH 4 and 7 and in the presence of NaCl and CaCl2 in concentrations of 0.1mM, 1mM, and 10mM. Additionally, this work performed a sensitivity analysis of physical parameters used in mobility experiment performed for titanium dioxide and in mobility experiments taken from the literature for zero valent iron nanoparticles and fluorescent colloids to determine their effect on the value C/Co of by applying qualitative and quantitative methods. The results from the stability studies showed that titanium dioxide nanoparticles (TiO2) could remain suspended in solution for up to seven days at pH 10 and pH 7 even after settling of the sand; while for pH 4 solutions titanium settled along with the sand and after seven days no particles were observed in suspension. Other stability studies showed that nanoparticle aluminum oxide (Al2O3) and titanium dioxide (TiO2) size increased with increasing ionic strength (10 to 75

  7. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  8. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    PubMed Central

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2014-01-01

    To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147

  9. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2013-12-01

    To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.

  10. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  11. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skubal, L. R.; Meshkov, N. K.; Rajh, T.

    2002-05-31

    This study investigated the use of titanium dioxide (TiO{sub 2}) nanoparticles to remove aqueous cadmium from simulated wastewaters. Nanosized (45 A) colloids of anatase TiO{sub 2} were synthesized through the controlled hydrolysis of TiCl4 and their surfaces modified with the bidental chelating agent thiolactic acid (TLA). Colloids were introduced into 65 ppm cadmium-laden waters, and the suspensions were purged aerobically, anoxically with an inert gas, or by a sequential aerobic/anoxic purge. Suspensions were illuminated with 253.7 nm light. In each experiment, samples were taken from the reactor, filtered, and the filtrates analyzed by atomic absorption spectroscopy for residual cadmium. Resultsmore » from the aerobic experiments exhibited minimal (approximately 10%) removal of the cadmium from solution and no reduction of the metal on either the modified or the unmodified colloid. Anoxic results were more promising, showing no cadmium reduction on the unmodified colloid but a 40% adsorption and reduction (from a +2 valence state to elemental cadmium as determined by methyl viologen tests) of cadmium on TLA-modified colloid in the presence of light. Results from the mixed atmospheric conditions fared the best and demonstrated that in the absence of light, approximately 20% of aqueous cadmium was sorbed to the modified colloid via a Freundlich adsorption isotherm. Upon illumination, greater than 90% of cadmium was removed by both adsorption and reduction processes onto the TLA-modified TiO{sub 2}. These removal and reduction processes were catalytic in nature. Results from this study are significant because to date, no other research in the literature has been able to accomplish cadmium removal and reduction using TiO{sub 2}.« less

  12. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.

    PubMed

    Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H

    2017-04-25

    The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.

  13. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  14. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma.

    PubMed

    Moosavi Nejad, S; Takahashi, Hiromasa; Hosseini, Hamid; Watanabe, Akiko; Endo, Hitomi; Narihira, Kyoichi; Kikuta, Toshihiro; Tachibana, Katsuro

    2016-09-01

    Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3s of HIFU irradiation with 20, 32, 55 and 73Wcm(-2) intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3s, 73Wcm(-2)) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU+TiO2in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU+TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU+TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-Current knowledge and suggestions for future research.

    PubMed

    Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G

    2017-04-01

    Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO 2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Mohan Rao, G.

    2018-04-01

    Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.

  17. Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

    PubMed Central

    Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto

    2016-01-01

    Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914

  18. NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid

    NASA Astrophysics Data System (ADS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2014-10-01

    Gd2O3 nanoparticles and their agglomerates from approximately 10 to 80 nm in size suspended in an organic liquid were synthesized via polyol route. The reaction between diethylene glycol and added acetic acid, which occurred simultaneously with the synthesis of Gd2O3 nanoparticles, was catalyzed by sodium bisulfate to transform as much as possible diethylene glycol in corresponding ester at the end of complete reaction. The produced nanosized material of gadolinium oxide was investigated by TEM, DLS, FTIR spectroscopy, and NMR relaxometry. Biological evaluation of this material was done by MTT and crystal violet assays to determine the cell viability. Longitudinal and transverse relaxivities of water-diluted Gd2O3 nanoparticle suspensions estimated to be r 1 = 13.6 and r 2 = 14.7 s-1 mM-1 are about three times higher compared to the relaxivities obtained for standard contrast agent Gd-DTPA (Magnevist). Good MRI signal intensities of the water-diluted Gd2O3 nanoparticle suspensions were recorded in the Gd concentration range 0.2-0.3 mM for which the suspensions were not toxic exhibiting simultaneously higher signal intensities than those for Magnevist in the Gd concentration range 0.4-1 mM for which this standard contrast agent was not toxic. These properties make the produced Gd2O3 nanoparticle material promising for potential application as MRI contrast agent.

  19. Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics

    NASA Astrophysics Data System (ADS)

    Carvalho, Karina Penedo; Martins, Nathalia Balthazar; Ribeiro, Ana Rosa Lopes Pereira; Lopes, Taliria Silva; de Sena, Rodrigo Caciano; Sommer, Pascal; Granjeiro, José Mauro

    2016-08-01

    Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions' nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30-150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco's modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2-NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.

  20. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  1. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Youngsang; Ha, Jeonghong; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-09-21

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of themore » clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.« less

  2. Contribution of Surface Chemistry to the Shear Thickening of Silica Nanoparticle Suspensions.

    PubMed

    Yang, Wufang; Wu, Yang; Pei, Xiaowei; Zhou, Feng; Xue, Qunji

    2017-01-31

    Shear thickening is a general process crucial for many processed products ranging from food and personal care to pharmaceuticals. Theoretical calculations and mathematical simulations of hydrodynamic interactions and granular-like contacts have proved that contact forces between suspended particles dominate the rheological characteristic of colloidal suspensions. However, relevant experimental studies are very rare. This study was conducted to reveal the influence of nanoparticle (NP) interactions on the rheological behavior of shear-thickening fluids (STFs) by changing the colloidal surface chemistries. Silica NPs with various surface chemical compositions are fabricated and used to prepare dense suspensions. Rheological experiments are conducted to determine the influence of NP interactions on corresponding dense suspension systems. The results suggest that the surface chemistries of silica NPs determine the rheological behavior of dense suspensions, including shear-thickening behavior, onset stress, critical volume fraction, and jamming volume fraction. This study provides useful reference for designing effective STFs and regulating their characteristics.

  3. Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Li, Ling; Sillanpää, Markus; Schultz, Eija

    2017-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have attracted considerable concerns due to the increasing production and widespread applications, while their influences on other co-existing pollutants in real environment are not well studied. In this paper, the colloidal stability of TiO2 NPs in the exposure medium was first evaluated, and then, the medium was modified so that TiO2 NP suspension remained stable over the exposure period. Finally, using the optimized exposure medium, the effects of cadmium (Cd) and lead (Pb) on Daphnia magna both in the absence and presence of TiO2 NPs were investigated. Results showed that 2 mg L-1 of TiO2 NPs was well dispersed in 1:20 diluted Elendt M7 medium without EDTA, and no immobility was observed. The presence of the nanoparticles increased the bioaccumulation and toxicity of Cd to the daphnias. On the contrary, while Pb bioaccumulation was enhanced by three to four times, toxicity of Pb was reduced in the presence of TiO2 NPs. The decreased toxicity of Pb was more likely attributed to the decreased bioavailability of free Pb ion due to adsorption and speciation change of Pb in the presence of TiO2 NPs. Additionally, surface-attached TiO2 NPs combined with adsorbed heavy metals caused adverse effects on daphnia swimming and molting behavior, which is supposed to lead to chronic toxicity.

  4. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    NASA Astrophysics Data System (ADS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  5. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  6. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    PubMed

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    NASA Astrophysics Data System (ADS)

    Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo

    2015-06-01

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.

  8. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  9. Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method

    NASA Astrophysics Data System (ADS)

    Clement, Sandhya; Gardner, Brint; Razali, Wan Aizuddin W.; Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Goldys, Ewa M.; Herrmann, Jan; Zvyagin, Andrei

    2017-11-01

    The estimation of nanoparticle number concentration in colloidal suspensions is a prerequisite in many procedures, and in particular in multi-stage, low-yield reactions. Here, we describe a rapid, non-destructive method based on optical extinction and dynamic light scattering (DLS), which combines measurements using common bench-top instrumentation with a numerical algorithm to calculate the particle size distribution (PSD) and concentration. These quantities were derived from Mie theory applied to measurements of the optical extinction spectrum of homogeneous, non-absorbing nanoparticles, and the relative PSD of a colloidal suspension. The work presents an approach to account for PSDs achieved by DLS which, due to the underlying model, may not be representative of the true sample PSD. The presented approach estimates the absolute particle number concentration of samples with mono-, bi-modal and broad size distributions with <50% precision. This provides a convenient and practical solution for number concentration estimation required during many applications of colloidal nanomaterials.

  10. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  11. Monitoring the growth of polyoxomolybdate nanoparticles in suspension by flow field-flow fractionation.

    PubMed

    Chen, Bailin; Jiang, Huijian; Zhu, Yan; Cammers, Arthur; Selegue, John P

    2005-03-30

    We follow the evolution of polyoxomolybdate nanoparticles in suspensions derived from the keplerate (NH4)42[MoVI72MoV60O372(CH3CO2)30(H2O)72].ca..300H2O.ca..10CH3CO2NH4 ({Mo132}) by flow field-flow fractionation (FlFFF) to monitor the particle-size distribution in situ, atomic force and high-resolution transmission electron microscopy (AFM, SEM, and HRTEM) to confirm particle sizes, inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the Mo content of the FlFFF-separated fractions, and UV/visible spectroscopy to confirm the identity of the species in suspension. We observe the formation of 3-75-nm polyoxomolybdate particles in suspension and the dynamic growth of {Mo132} crystals.

  12. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    EPA Science Inventory

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM)...

  13. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?

    PubMed

    Zou, Xiaoyan; Shi, Junpeng; Zhang, Hongwu

    2014-09-01

    Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The

  15. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  16. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  17. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells

    PubMed Central

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2015-01-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO2) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO2 nanoparticles are not cytotoxic or clastogenic to human skin cells. PMID:26568896

  18. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells.

    PubMed

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2014-11-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO 2 ) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO 2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO 2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm 2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO 2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm 2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO 2 nanoparticles are not cytotoxic or clastogenic to human skin cells.

  19. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations

    PubMed Central

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    2016-01-01

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20–30 nm) were synthesized with and without nitrogen doping using a sol–gel method. Ultraviolet–Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations. PMID:27980404

  20. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations.

    PubMed

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.

  1. In vivo assessment of impact of titanium oxide nanoparticle on zebrafish embryo

    NASA Astrophysics Data System (ADS)

    Verma, Suresh K.; Mishra, Anurag K.; Suar, M.; Parashar, S. K. S.

    2017-05-01

    Technologies and innovations have attended a new height with recent development in nanotechnology in last few decades. With these developments there has a great raise in demand of metal oxides like TiO2, ZnO having versatile physical, chemical and biological application. However the great rise has raised concern over the effect of these nanoparticles in biological system. In this study, we have assessed the impact of titanium oxide nanoparticles synthesized by high energy ball milling (HEBM) by milling bulk TiO2 particles for 15h. The synthesized particles were characterized with XRD, UV-Visible spectroscopy and DLS for their physiochemical properties. Biological impact of these nanoparticles was then studied on zebrafish embryo as invivo model. Mortality and hatching rate were calculated for 48hpf and 96hpf treatment. To determine the mechanism of mortality effect, Reactive oxygen species (ROS) was determined with the help of flow cytometry. 15h nanoparticles were found to have a LC50 of ( ) for zebrafish embryo. However TiO2 nanoparticles were found to be a ROS scavenger for the treated Zebrafish cells.

  2. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.

    PubMed

    Venkatasubbu, G Devanand; Baskar, R; Anusuya, T; Seshan, C Arun; Chelliah, Ramachandran

    2016-12-01

    Food preservation is an important field of research. It extends the shelf life of major food products. Our current study is based on food preservation through TiO 2 and ZnO nanoparticles. TiO 2 and ZnO are biocompatible nanomaterial. The biocompatibility of the materials were established through toxicity studies on cell lines. Titanium dioxide and Zinc Oxide nanoparticle were synthesized by wet chemical process. They are characterized by X-Ray diffraction and TEM. The antibacterial activities of both the materials were analysed to ensure their effectiveness as food preservative against Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri. The results indicates that TiO 2 and ZnO nanoparticle inhibits Salmonella, Klebsiella and Shigella. The mode of action is by the generation of ROS in cases of Salmonella, Klebsiella. Mode of action in Shigella is still unclear. It was also proved that TiO 2 and ZnO nanoparticle are biocompatible materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration.

    PubMed

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Chen, Tian; Li, Yang; Zhang, Wenxiao; Gao, Xin; Li, Ping; Wang, Haifang; Jia, Guang

    2015-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) have a broad application prospect in replace with TiO2 used as a food additive, especially used in sweets. Understanding the interaction of TiO2 NPs with sugar is meaningful for health promotion. We used a young animal model to study the toxicological effect of orally administrated TiO2 NPs at doses of 0, 2, 10 and 50 mg/kg per day with or without daily consumption of 1.8 g/kg glucose for 30 days and 90 days. The results showed that oral exposure to TiO2 NPs and TiO2 NPs+glucose both induced liver, kidney, and heart injuries as well as changes in the count of white and red blood cells in a dose, time and gender-dependent manner. The toxicological interactions between orally-administrated TiO2 NPs and glucose were evident, but differed among target organs. These results suggest that it is necessary to limit dietary co-exposure to TiO2 NPs and sugar. Nanotechnology has gained entrance in the food industry, with the presence of nanoparticles now in many food items. Despite this increasing trend, the potential toxic effects of these nanoparticles to human remain unknown. In this article, the authors studied titanium dioxide nanoparticles (TiO2 NPs), which are commonly used as food additive, together with glucose. The findings of possible adverse effects on liver, kidney, and heart might point to a rethink of using glucose and TiO2 NPs combination. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The electrorheological behavior of suspensions based on molten-salt synthesized lithium titanate nanoparticles and their core-shell titanate/urea analogues.

    PubMed

    Plachy, T; Mrlik, M; Kozakova, Z; Suly, P; Sedlacik, M; Pavlinek, V; Kuritka, I

    2015-02-18

    This paper concerns the preparation of novel electrorheological (ER) materials using microwave-assisted synthesis as well as utilizing a suitable shell-providing system with enhanced ER performance. Lithium titanate nanoparticles were successfully synthesized, and their composition was confirmed via X-ray diffraction. Rheological properties were investigated in the absence as well as in the presence of an external electric field. Dielectric properties clarified the response of the particles to the application of an electric field. The urea-coated lithium titanate nanoparticle-based suspension exhibits higher ER performance in comparison to suspensions based on bare particles.

  5. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow

    NASA Astrophysics Data System (ADS)

    Hartman, John; Kirby, Brian

    2017-03-01

    Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.

  6. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

    PubMed Central

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka

    2016-01-01

    Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514

  7. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal.

    PubMed

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco

    2016-01-01

    An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

  8. Surface engineering of nanoparticles in suspension for particle based bio-sensing

    PubMed Central

    Sen, Tapas; Bruce, Ian J.

    2012-01-01

    Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol ‘Tri-phasic Reverse Emulsion’ (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis. PMID:22872809

  9. Dielectric relaxation behavior of colloidal suspensions of palladium nanoparticle chains dispersed in PVP/EG solution.

    PubMed

    Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong

    2007-04-28

    Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.

  10. Photocatalytic Degradation Effect of μ-Dielectric Barrier Discharge Plasma Treated Titanium Dioxide Nanoparticles on Environmental Contaminant.

    PubMed

    Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo

    2018-09-01

    This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.

  11. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers.

    PubMed

    Wang, Lulu; Ma, Yingying; Gu, Yu; Liu, Yangyang; Zhao, Juan; Yan, Beibei; Wang, Yancai

    2018-04-19

    Freeze-drying is an effective way to improve long-term physical stability of nanosuspension in drug delivery applications. Nanosuspension also known as suspension of nanoparticles. In this study, the effect of freeze-drying with different cryoprotectants on the physicochemical characteristics of resveratrol (RSV) nanosuspension and quercetin (QUE) nanosuspension was evaluated. D-α-tocopheryl polyethylene glycol succinate (TPGS) and folate-modified distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) were selected as functional stabilisers formulated nanosuspension which were prepared by anti-solvent precipitation method. RSV nanoparticle size and QUE nanoparticle size were about 210 and 110 nm, respectively. The AFM and TEM results of nanosuspension showed uniform and irregular shape particles. After freeze-drying, the optimal concentration of four cryoprotectants was determined by the particle size of re-dispersed nanoparticles. The dissolution profile of drug nanoparticle significantly showed approximately at a 6-8-fold increase dissolution rate. Moreover, TPGS and DSPE-PEG-FA stabilised RSV nanosuspension and QUE nanosuspension samples showed better effect on long-term physical stability.

  12. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method.

    PubMed

    M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi

    2017-06-01

    In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pharmaceutical suspension containing both immediate/sustained-release amoxicillin-loaded gelatin nanoparticles: preparation and in vitro characterization.

    PubMed

    Harsha, Sree

    2013-01-01

    Pharmaceutical suspension containing oral dosage forms delivering both immediate-release and sustained-release amoxicillin was developed as a new dosage form to eradicate Helicobacter pylori. Amoxicillin-loaded gelatin nanoparticles are able to bind with the mucosal membrane after delivery to the stomach and could escalate the effectiveness of a drug, providing dual release. The objective of this study was to develop amoxicillin nanoparticles using innovative new technology--the Büchi Nano Spray Dryer B-90 - and investigate such features as drug content, particle morphology, yield, in vitro release, flow properties, and stability. The nanoparticles had an average particle size of 571 nm. The drug content and percentage yield was 89.2% ± 0.5% and 93.3% ± 0.6%, respectively. Angle of repose of nanoparticle suspension was 26.3° and bulk density was 0.59 g/cm(3). In vitro drug release of formulations was best fitted by first-order and Peppas models with R (2) of 0.9841 and 0.9837 respectively; release profile was 15.9%, while; for the original drug, amoxicillin, under the same conditions, 90% was released in the first 30 minutes. The nanoparticles used in this study enabled sustained release of amoxicillin over an extended period of time, up to 12 hours, and were stable for 12 months under accelerated storage conditions of 25 °C ± 2 °C and 60% ± 5% relative humidity.

  14. Hydrothermally derived nanoporous titanium dioxide nanorods/nanoparticles and their influence in dye-sensitized solar cell as a photoanode

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Govindaraj; Narendhiran, Santhosh; Muthu, Senthil Pandian; Mukhopadhyay, Sumita; Perumalsamy, Ramasamy

    2017-12-01

    Titanium dioxide is a promising wide band gap semiconducting material for dye-sensitized solar cell. The poor electron transport properties still remain a challenge with conventional nanoparticles. Here, we synthesized TiO2 nanorods/nanoparticles by hydrothermal method to improve the charge transport properties. The structural and morphological information of the prepared nanorods/nanoparticles was analysed with X-ray diffraction and electron microscopy analysis, respectively. A high power conversion efficiency of 7.7% is achieved with nanorods/nanoparticles employed device under 100 mW/cm2. From the electrochemical impedance analysis, superior electron transport properties have been found for synthesized TiO2 nanorods/nanoparticles employed device than commercial P25 nanoparticles based device.

  15. Towards understanding the mechanisms and the kinetics of nanoparticle penetration through protective gloves

    NASA Astrophysics Data System (ADS)

    Vinches, L.; Peyrot, C.; Lemarchand, L.; Boutrigue, N.; Zemzem, M.; Wilkinson, K. J.; Hallé, S.; Tufenkji, N.

    2015-05-01

    Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health & safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling).

  16. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  17. Computational and Experimental Studies of Electrospray Deposition of Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Li, Ao; Brown, Nicholas; Zhao, Mingfei; Zhu, Yaqun; German, Guy; Chiarot, Paul

    2017-11-01

    Electrospray offers unique capabilities for deploying colloidal suspensions to create nanoparticle films and coatings. It can deliver precise quantities of particles in a dry state and overcomes many limitations of other technologies. We integrate simulations and experiments to elucidate the relationship between the key operating parameters and the structure of an electrospray deposit. We investigate the role of the electrospray time, the target substrate properties, and the polydispersity of the colloidal suspensions. The deposition patterns are similar for all spray times and substrates. In particular, the deposited particles segregate to the center and edge of a deposit, leaving a depletion region in between. Using a Lagrangian particle tracking method with convective droplet evaporation, we highlight the critical role of the space charge interactions inside the plume in governing the trajectory of the emitted particles and the ensuing deposit morphology. The microstructure of a deposit is also influenced by the electrical conductivity of the target substrate. The residual charges on the particles deposited on to a dielectric substrate influence the deposition of subsequent in-flight particles.

  18. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    EPA Science Inventory

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  19. Photocatalytic inactivation of bacteria from spoiled raw chicken carcasses in aqueous suspensions by TiO2 nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Bacterial spoilage is a major cause of reduced shelf life of fresh poultry; therefore, decreasing contamination by spoilage bacteria could increase the shelf life of these products. Titanium dioxide (TiO2) nanoparticles in the presence of UVA light possess antibacterial activities towards several ba...

  20. Molecular genetic and biochemical responses in human airway epithelial cell cultures exposed to titanium nanoparticles in vitro.

    PubMed

    Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime

    2017-07-01

    Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.

  1. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    PubMed Central

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-01-01

    Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183

  2. Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    2014-03-01

    Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.

  3. Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles.

    PubMed

    Rico-Oller, Beatriz; Boudjemaa, Amel; Bahruji, Hasliza; Kebir, Mohammed; Prashar, Sanjiv; Bachari, Khaldoun; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2016-09-01

    Novel nanomaterials based on doped TiO2 nanoparticles with different morphological, textural and band-gap properties have been synthesized using scalable methods. The influence of synthetic parameters such as titanium source (titanium(IV) isopropoxide and titanium(IV) butoxide), doping quantity (0%, 2% or 5% Zn), acidic solution for the hydrolysis reaction (ascorbic acid, nitric acid) and calcination temperatures (500°C and 600°C) was simultaneously investigated. The obtained nanomaterials were characterized by different methods and photocatalytic tests of methylene blue (MB) degradation under UV-light were conducted to determine their activity. The results revealed that the synthesized nanomaterials are porous aggregates with very high crystallinity and are mainly composed of the anatase phase; although their physical properties vary depending on the different synthetic parameters employed. These changes are able to modify the apparent rate constant of the degradation of MB up to one order of magnitude, indicating, substantial changes in their photoactivity. Hybrid materials TiO2-Pd nanoparticles have also been prepared, characterized and tested for hydrogen production using photocatalytic methanol reforming where supported palladium nanoparticles acted as co-catalyst. Furthermore, the hybrid materials TiO2-Pd nanoparticles were studied in photocatalytic tests of methylene blue degradation under visible LED-light. The results obtained in the production of hydrogen from the photocatalytic reforming of methanol by hybrid materials suggest that the reported hybrid systems could be suitable photocatalysts for future sustainable hydrogen production upon tuning of the morphological, textural and band gap energy properties to allow processes to be carried out under visible light. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  5. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    USDA-ARS?s Scientific Manuscript database

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  6. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    EPA Science Inventory

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  7. Effect of preoperative injection of carbon nanoparticle suspension on the outcomes of selected patients with mid-low rectal cancer.

    PubMed

    Zhang, Xing-Mao; Liang, Jian-Wei; Wang, Zheng; Kou, Jian-tao; Zhou, Zhi-Xiang

    2016-04-04

    Carbon nanoparticles show significant lymphatic tropism and can be used to identify lymph nodes surrounding mid-low rectal tumors. In this study, we analyzed the effect of trans anal injection of a carbon nanoparticle suspension on the outcomes of patients with mid-low rectal cancer who underwent laparoscopic resection. We collected the data of 87 patients with mid-low rectal cancer who underwent laparoscopic resection between November 2014 and March 2015 at Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College. For 35 patients in the experimental group, the carbon nanoparticle suspension was injected transanally into the submucosa of the rectum around the tumor 30 min before the operation; 52 patients in the control group underwent the operation directly without the injection of carbon nanoparticle suspension. We then compared the operation outcomes between the two groups. In the experimental group, the rate of incomplete mesorectal excision was lower than that in the control group, but no significant difference was found (2.9% vs. 7.7%, P = 0.342). The distance between the tumor and the circumferential resection margin was 5.8 ± 1.4 mm in the experimental group and 4.8 ± 1.1 mm in the control group (P = 0.001). The mean number of lymph nodes removed was 28.2 ± 9.4 in the experimental group and 22.7 ± 7.3 in the control group (P = 0.003); the mean number of lymph nodes smaller than 5 mm in diameter was 10.1 ± 7.5 and 4.5 ± 3.7, respectively (P < 0.001). Three patients in the experimental group received lateral lymph node resection. Among the three patients, we retrieved three nodes (one stained node) from the first patient, three nodes (two stained nodes) from the second patient, and two nodes (no stained nodes) from the third patient. Injecting a carbon nanoparticle suspension improved the outcomes of patients who underwent laparoscopic resection for mid-low rectal cancer; it also improved the accuracy of pathologic staging

  8. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development.

    PubMed

    Rollerova, E; Tulinska, J; Liskova, A; Kuricova, M; Kovriznych, J; Mlynarcikova, A; Kiss, A; Scsukova, S

    2015-04-01

    Nanosized titanium dioxide (TiO2) particles belong to the most widely manufactured nanoparticles (NPs) on a global scale because of their photocatalytic properties and the related surface effects. TiO2 NPs are in the top five NPs used in consumer products. Ultrafine TiO2 is widely used in the number of applications, including white pigment in paint, ceramics, food additive, food packaging material, sunscreens, cosmetic creams, and, component of surgical implants. Data evidencing rapid distribution, slow or ineffective elimination, and potential long-time tissue accumulation are especially important for the human risk assessment of ultrafine TiO2 and represent new challenges to more responsibly investigate potential adverse effects by the action of TiO2 NPs considering their ubiquitous exposure in various doses. Transport of ultrafine TiO2 particles in systemic circulation and further transition through barriers, especially the placental and blood-brain ones, are well documented. Therefore, from the developmental point of view, there is a raising concern in the exposure to TiO2 NPs during critical windows, in the pregnancy or the lactation period, and the fact that human mothers, women and men in fertile age and last but not least children may be exposed to high cumulative doses. In this review, toxicokinetics and particularly toxicity of TiO2 NPs in relation to the developing processes, oriented mainly on the development of the central nervous system, are discussed Keywords: nanoparticles, nanotoxicity, nanomaterials, titanium dioxide, reproductive toxicity, developmental toxicity, blood brain barrier, placental barrier.

  9. Controlled functionalization of nanoparticles & practical applications

    NASA Astrophysics Data System (ADS)

    Rashwan, Khaled

    With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone

  10. Realistic Evaluation of Titanium Dioxide Nanoparticle Exposure in Chewing Gum.

    PubMed

    Fiordaliso, Fabio; Foray, Claudia; Salio, Monica; Salmona, Mario; Diomede, Luisa

    2018-06-20

    There is growing concern about the presence of nanoparticles (NPs) in titanium dioxide (TiO 2 ) as food additive (E171). To realistically estimate the number and the amount of TiO 2 NPs ingested with food, we applied a transmission electron microscopy method combined with inductively coupled plasma optical emission spectrometry. Different percentages of TiO 2 NPs (6-18%) were detected in E171 from various suppliers. In the eight chewing gums analyzed as food prototypes, TiO 2 NPs were absent in one sample and ranged 0.01-0.66 mg/gum, corresponding to 7-568 billion NPs/gum, in the other seven. We estimated that the mass-based TiO 2 NPs ingested with chewing gums by the European population ranged from 0.28 to 112.40 μg/kg b.w./day, and children ingested more nanosized titanium than adolescents and adults. Although this level may appear negligible it corresponds to 0.1-84 billion TiO 2 NPs/kg b.w/day, raising important questions regarding their potential accumulation in the body, possibly causing long-term effects on consumers' health.

  11. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  12. Retraction: Gold nanoparticles immobilized on electrospun titanium dioxide nanofibers for catalytic reduction of 4-nitrophenol.

    PubMed

    Cavusoglu, Halit; Buyukbekar, Burak Zafer; Sakalak, Huseyin; Kohsakowski, Sebastian

    2017-02-13

    This study involves the preparation and catalytic properties of anatase titanium dioxide nanofibers (TiO2 NFs) supported gold nanoparticles (Au NPs) using a model reaction based on the reduction of 4-nitrophenol (NP) into 4-aminophenol (AP) by sodium borohydride (NaBH4). The fabrication of surfactant-free Au NPs was performed using pulsed laser ablation in liquid (PLAL) technique. The TiO2 NFs were fabricated by a combination of electrospinning and calcination process using a solution containing poly(vinyl pyrolidone)(PVP) and titanium isopropoxide. The adsorption efficiency of laser-generated surfactant-free Au NPs to TiO2 NF supports as a function of pH was analyzed. Our results show that the electrostatic interaction mainly controls the adsorption of the nanoparticles. Au NPs/TiO2 NFs composite exhibited good catalytic activity for the reduction of 4-NP to 4-AP. The unique combination of these materials leads to the development of highly efficient catalysts. Our heterostructured nanocatalysts possibly form an efficient path to fabricate various metal NP/metal-oxide supported catalysts. Thus the applications of PLAL-noble metal NPs can widely broaden. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    EPA Science Inventory

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  14. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    PubMed

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  16. Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

    PubMed Central

    Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.

    2015-01-01

    The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434

  17. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach

    NASA Astrophysics Data System (ADS)

    Raliya, Ramesh; Tarafdar, J. C.

    2014-02-01

    In the present study, zinc (Zn), magnesium (Mg) and titanium (Ti) nanoparticles synthesized using fungus by employing various precursor salts of sulfate salts, nitrate salts, chloride salts and oxide salts. To access the nanoparticle production potential, over a hundreds of fungi were isolated from the soil and tested with precursor salts of the Zn, Mg and Ti. Out of which, only 14 fungal isolates were identified, having potential to reduce metal salt into metal nanoparticles. Upon molecular identification, six were identified as Aspergillus flavus, two each as Aspergillus terreus and Aspergillus tubingensis and one each as Aspergillus niger, Rhizoctonia bataticola, Aspergillus fumigatus, and Aspergillus oryzae. Factors responsible for more production of monodispersed Zn, Mg and Ti nanoparticles were optimized. It was concluded that 0.01 mM precursor salt concentration, 72 h of incubation at pH 5.5 and temperature 28 °C resulted smaller nanoparticles obtained. The biosynthesized functional Zn and Ti nanoparticles can be stored up to 90 days and Mg nanoparticles up to 105 days in its nanoform. Bio-transformed products were analyzed using valid characterization technique i.e. dynamic light scattering, transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy to confirm size, shape, surface morphology and elemental composition. It was found that the average size of developed nano Zn was 8.2 nm, with surface charge of -5.70 mV and 98 % particles were of Zn metal only. Similarly, the average size of Mg nanoparticles was 6.4 nm with surface charge of -6.66 and 97.4 % Mg metal yield, whereas, Ti nanoparticles size were found in the ranges between 1.5 and 30 nm with surface charge of -6.25 mV and 98.6 % Ti metal yield.

  18. Immunotoxicology of titanium dioxide and hydroxylated fullerenes engineered nanoparticles in fish models

    NASA Astrophysics Data System (ADS)

    Jovanovic, Boris

    2011-12-01

    Nanoparticles have the potential to cause adverse effects on the fish health, but the understanding of the underlying mechanisms is limited. Major task of this dissertation was to connect gaps in current knowledge with a comprehensive sequence of molecular, cellular and organismal responses toward environmentally relevant concentrations of engineered nanoparticles (titanium dioxide -- TiO2 and hydroxylated fullerenes), outlining the interaction with the innate immune system of fish. The research was divided into following steps: 1) create cDNA libraries for the species of fathead minnow (Pimephales promelas); 2) evaluate whether, and how can nanoparticles modulate neutrophil function in P. promelas; 3) determine the changes in expression of standard biomarker genes as a result of nanoparticle treatment; 4) expose the P. promelas to nanoparticles and appraise their survival rate in a bacterial challenge study; 5) assess the impact of nanoparticles on neuro-immunological interface during the early embryogenesis of zebrafish (Danio rerio). It was hypothesized that engineered nanoparticles can cause measurable changes in fish transcriptome, immune response, and disease resistance. The results of this dissertation are: 1) application of environmentally relevant concentration of nanoparticles changed function of fish neutrophils; 2) fish exposed to nano-TiO2 had significantly increased expression of interleukin 11, macrophage stimulating factor 1, and neutrophil cytosolic factor 2, while expression of interleukin 11 and myeloperoxidase was significantly increased and expression of elastase 2 was significantly decreased in fish exposed to hydroxylated fullerenes; 3) exposure to environmental estimated concentration of nano-TiO2 significantly increased fish mortality during Aeromonas hydrophila challenge. Analysis of nano-TiO 2 distribution in fish organism outlined that the nano-TiO2 is concentrating in the fish kidney and spleen; 4) during the early embryogenesis of D

  19. Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Al-Doaiss, Amin A; Ali, Bahy A; Ahmed, Mukhtar; Al-Khedhairy, Abdulaziz A

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles are among the top five nanoparticles used in consumer products, paints, and pharmaceutical preparations. Given that exposure to such nanoparticles is mainly via the skin and inhalation, the present study was conducted in male Wistar albino rats (Rattus norvegicus). Our aim was to investigate the effect of TiO2 nanoparticles on hepatic tissue in an attempt to understand their toxicity and the potential effect of their therapeutic and diagnostic use. To investigate the effects of TiO2 nanoparticles on liver tissue, 30 healthy male Wistar albino rats were exposed to TiO2 nanoparticles at doses of 63 mg, 126 mg, and 252 mg per animal for 24 and 48 hours. Serum glutamate oxaloacetate transaminase and alkaline phosphatase activity was altered. Changes in hepatocytes can be summarized as hydropic degeneration, cloudy swelling, fatty degeneration, portal and lobular infiltration by chronic inflammatory cells, and congested dilated central veins. The histologic alterations observed might be an indication of hepatocyte injury due to the toxicity of TiO2 nanoparticles, resulting in an inability to deal with accumulated residues from the metabolic and structural disturbances caused by these nanoparticles. The appearance of cytoplasmic degeneration and destruction of nuclei in hepatocytes suggests that TiO2 nanoparticles interact with proteins and enzymes in hepatic tissue, interfering with antioxidant defense mechanisms and leading to generation of reactive oxygen species which, in turn, may induce stress in hepatocytes, promoting atrophy, apoptosis, and necrosis. More immunohistochemical and ultrastructural investigations are needed in relation to TiO2 nanoparticles and their potential effects when used as therapeutic and diagnostic tools. PMID:24143098

  20. Ultrasound assisted deposition of silica coatings on titanium

    NASA Astrophysics Data System (ADS)

    Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür

    2012-10-01

    We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.

  1. Enhanced photocatalytic activity of wool fibers having titanium dioxide nanoparticles formed inside their cortex.

    PubMed

    Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao

    2018-05-01

    A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C-Ti4+(Ti3+), N-Ti4+(Ti3+), O-Ti3+, and S-Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers. © 2018 IOP Publishing Ltd.

  2. Enhanced photocatalytic activity of wool fibers having titanium dioxide nanoparticles formed inside their cortex

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao

    2018-07-01

    A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C‑Ti4+(Ti3+), N‑Ti4+(Ti3+), O‑Ti3+, and S‑Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers.

  3. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  4. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  5. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 °C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  6. Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella 'Ellipsoides Gerneck, 1907).

    PubMed

    Matouke, Moise M; Elewa, Dorcas T; Abdullahi, Karimatu

    2018-05-01

    The wide application of titanium dioxide nanoparticles and phosphorus in the manufacturing of many industrial products mainly used in agricultural sector has resulted in the release of considerable amounts of these compounds into freshwater aquatic ecosystem. These compounds may cause some unexpected effects to aquatic organisms. This study assessed the binary effects of Titanium nanoparticles (nTiO 2 ) and Phosphorus on Chlorella ellipsoides. Toxicological assay test of the compounds nTiO 2 (1.25 μM) alone and the combination of Titanium dioxide (1.25 μM) and Phosphorus (16, 32, 80, 160, 240 μM) was assessed, after 96 h exposures, for optical density (OD 680 ), specific growth rate, chlorophyll levels and lipid peroxidation via Malondialdehyde (MDA) activity. Superoxide dismutase (SOD), peroxidase (POD) and glutathione-s-transferase (GST) activities were also measured. Two-way ANOVA showed a significant interaction (P < 0.05) between binary mixture. Co-exposure showed a decreased phosphorus bioconcentration in the microalgae with significant increase (P < 0.05) in chlorophyll a/b and total chlorophyll contents. A significant decrease (P < 0.05) in specific growth rate and optical density were recorded whereas, antioxidant enzymes (MDA, SOD, POD, GST) activities were significantly (P < 0.05) increased. These results showed that the addition of nTiO 2 to Phosphorus affected the physiology of microalgae and should be of great concern for freshwater biodiversity. Copyright © 2018. Published by Elsevier B.V.

  7. Effects of titanium dioxide (TiO2 ) nanoparticles on caribbean reef-building coral (Montastraea faveolata).

    PubMed

    Jovanović, Boris; Guzmán, Héctor M

    2014-06-01

    Increased use of manufactured titanium dioxide nanoparticles (nano-TiO2 ) is causing a rise in their concentration in the aquatic environment, including coral reef ecosystems. Caribbean mountainous star coral (Montastraea faveolata) has frequently been used as a model species to study gene expression during stress and bleaching events. Specimens of M. faveolata were collected in Panama and exposed for 17 d to nano-TiO2 suspensions (0.1 mg L(-1) and 10 mg L(-1) ). Exposure to nano-TiO2 caused significant zooxanthellae expulsion in all the colonies, without mortality. Induction of the gene for heat-shock protein 70 (HSP70) was observed during an early stage of exposure (day 2), indicating acute stress. However, there was no statistical difference in HSP70 expression on day 7 or 17, indicating possible coral acclimation and recovery from stress. No other genes were significantly upregulated. Inductively coupled plasma mass spectrometry analysis revealed that nano-TiO2 was predominantly trapped and stored within the posterior layer of the coral fragment (burrowing sponges, bacterial and fungal mats). The bioconcentration factor in the posterior layer was close to 600 after exposure to 10 mg L(-1) of nano-TiO2 for 17 d. The transient increase in HSP70, expulsion of zooxanthellae, and bioaccumulation of nano-TiO2 in the microflora of the coral colony indicate the potential of such exposure to induce stress and possibly contribute to an overall decrease in coral populations. © 2014 SETAC.

  8. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  9. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  10. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine

    NASA Astrophysics Data System (ADS)

    Tassinari, Roberta; La Rocca, Cinzia; Stecca, Laura; Tait, Sabrina; De Berardis, Barbara; Ammendolia, Maria Grazia; Iosi, Francesca; Di Virgilio, Antonio; Martinelli, Andrea; Maranghi, Francesca

    2015-06-01

    In European Union, titanium dioxide (TiO2) as bulk material is a food additive (E171) and - as nanoparticle (NP) - is used as a white pigment in several products (e.g. food, cosmetics, drugs). E171 contains approximately 36% of particles less than 100 nm in at least one dimension and TiO2 NP exposure is estimated fairly below 2.5 mg/person/day. The gastrointestinal tract is a route of entry for NPs, thus representing a potential target of effects. In in vivo study, the effects of TiO2 NP in adult rat small intestine have been evaluated by oral administration of 0 (CTRL), 1 and 2 mg/kg body weight per day - relevant to human dietary intake. Detailed quali/quantitative histopathological analyses were performed on CTRL and treated rat samples. Scanning electron microscopy (SEM) analysis was performed on small intestine. An in vitro study on Caco-2 cells was also used in order to evaluate the potential cytotoxic effects directly on enterocytes through the lactate dehydrogenase (LDH) assay. Suspensions of TiO2 NPs for in vitro and in vivo study were characterized by EM. Histomorphometrical data showed treatment-related changes of villus height and widths in male rats. Significantly different from CTRL decreased LDH levels in the medium were detected in vitro at 24h with 2.5, 5, 10 and 20 µg/cm2 levels of TiO2 NPs. SEM analysis showed no damaged areas. Overall the results showed that enterocytes may represent a target of TiO2 NP toxicity by direct exposure both in vivo and in vitro models.

  11. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  12. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.

    PubMed

    Tantra, Ratna; Tompkins, Jordan; Quincey, Paul

    2010-01-01

    This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion.

  13. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration.

    PubMed

    Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok

    2013-03-26

    The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.

  14. Interactions between amino-phosphonates pesticides and titanium dioxide nanoparticle in water: consequences on their mobility

    NASA Astrophysics Data System (ADS)

    Ilina, Svetlana; Baran, Nicole; Slomberg, Danielle; Devau, Nicolas; Pariat, Anne; Sani-Kast, Nicole; Scheringer, Martin; Labille, Jérôme; Ollivier, patrick

    2017-04-01

    Water quality is increasingly monitored worldwide, where various levels of nitrate and pesticide and/or metabolite contamination have been confirmed. Glyphosate [N-(phosphonomethyl)glycine] is probably the most widely used herbicide in the world. AMPA [aminomethylphosphonic acid] is its main degradation product. Although glyphosate mobility in the environment is supposed to be limited because of its high adsorption capacity in soils several studies show that glyphosate may reach both surface and ground-waters either by transport in dissolved form, or particle bonded onto soil colloids. At the same time, in recent years, rapid development of new technologies has resulted in a significant increase in the production and uses of products containing nanoparticles, notably dioxide titanium nanoparticles. This enthusiasm for nanotechnology is however accompanied by awareness about the potential release and impact of the nanoparticles in the environment. The aim of the study is to increase the knowledge on pesticide and nanoparticles interactions that may be present as contaminant cocktail in waters. Thanks to lab-experiments conducted with glyphosate or AMPA and rutile or anatase under different water chemistry conditions (pH, ionic strength, presence and concentrations of mono- and bivalent cations), we were able to describe the colloidal stability of nanoparticles that control their mobility and to characterize the sorption of pesticide on these nanoparticles and their transformation.

  15. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy) interface

    NASA Astrophysics Data System (ADS)

    Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.

    2018-01-01

    In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.

  16. Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles.

    PubMed

    Li, Fanchi; Gu, Zhiya; Wang, Binbin; Xie, Yi; Ma, Lie; Xu, Kaizun; Ni, Min; Zhang, Hua; Shen, Weide; Li, Bing

    2014-08-01

    Silkworm (Bombyx mori), a model Lepidoptera insect, is economically important. Its growth and development are regulated by endogenous hormones. During the process of transition from larvae to pupae, 20-hydroxyecdysone (20E) plays an important role. The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to their unintentional release into the environment. We investigated the effects of exposure to titanium dioxide nanoparticles (TiO2 NPs) on the action of 20E in B. mori. Titanium dioxide nanoparticle treatment shortened the molting duration by 8 hr and prolonged the molting peak period by 10 %. Solexa sequencing profiled the changes in gene expression in the brain of fifth-instar B. mori in response to TiO2NPS exposure for 72 hr, to address the effects on hormone metabolism and regulation. Thirty one genes were differentially expressed. The transcriptional levels of pi3k and P70S6K, which are involved in the target of the rapamycin (TOR) signaling pathway, were up-regulated. Transcriptional levels of four cytochrome P450 genes, which are involved in 20E biosynthesis, at different developmental stages (48, 96, 144, and 192 hr) at 5th instars of all displayed trends of increasing expression. Simultaneously, the ecdysterone receptors, also displayed increasing trends. The 20E titers at four developmental stages during the 5th instar were 1.26, 1.23, 1.72, and 2.16 fold higher, respectively, than the control group. These results indicate that feeding B. mori with TiO2 NPs stimulates 20E biosynthesis, shortens the developmental progression, and reduces the duration of molting. Thus, application of TiO2 NPs is of high significance for saving the labor force in sericulture, and our research provides a reference for the ecological problems in the field of Lepidoptera exposured to titanium dioxide nanoparticles.

  17. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  18. Isotope effect in heavy/light water suspensions of optically active gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.

    2018-04-01

    Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.

  19. Biocompatibility assessment of titanium dioxide nanoparticles in mice fetoplacental unit.

    PubMed

    Naserzadeh, Parvaneh; Ghanbary, Fatemeh; Ashtari, Parviz; Seydi, Enayatollah; Ashtari, Khadijeh; Akbari, Mohsen

    2018-02-01

    As the applications of titanium dioxide nanomaterials (nTiO 2 ) are growing with an ever-increasing speed, the hazardous risks of this material have become a major concern. Several recent studies have reported that nTiO 2 can cross the placental barrier in pregnant mice and cause neurotoxicity in their offspring. However, the influence of these nanoparticles on the fetoplacental unit during the pregnancy is yet to be studied. The present study reports on the effects of nTiO 2 on the anatomical structure of fetal brain and liver in a pregnant mice model. Moreover, changes in the size and weight of the fetus and placenta are investigated as markers of fetal growth. Lastly, the toxicity of nTiO 2 in primary brain and liver is quantified. Animals treated with nTiO 2 showed a disrupted anatomical structure of the fetal brain and liver. Furthermore, the fetus and placental unit in the mice treated with these nanoparticles were smaller compared to untreated controls. Toxicity analyses revealed that nTiO 2 was toxic to the brain and liver cells and the mechanism of cell death was mostly necrosis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 580-589, 2018. © 2017 Wiley Periodicals, Inc.

  20. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  1. The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Gunnarsson, Rickard; Pilch, Iris; Boyd, Robert D.; Brenning, Nils; Helmersson, Ulf

    2016-07-01

    Titanium oxide nanoparticles have been synthesized via sputtering of a hollow cathode in an argon atmosphere. The influence of pressure and gas flow has been studied. Changing the pressure affects the nanoparticle size, increasing approximately proportional to the pressure squared. The influence of gas flow is dependent on the pressure. In the low pressure regime (107 ≤ p ≤ 143 Pa), the nanoparticle size decreases with increasing gas flow; however, at high pressure (p = 215 Pa), the trend is reversed. For low pressures and high gas flows, it was necessary to add oxygen for the particles to nucleate. There is also a morphological transition of the nanoparticle shape that is dependent on the pressure. Shapes such as faceted, cubic, and cauliflower can be obtained.

  2. Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ferreira, Roberta V.; Silva-Caldeira, Priscila P.; Pereira-Maia, Elene C.; Fabris, José D.; Cavalcante, Luis Carlos D.; Ardisson, José D.; Domingues, Rosana Z.

    2016-04-01

    Magnetic fluids, more specifically aqueous colloidal suspensions containing certain magnetic nanoparticles (MNPs), have recently been gaining special interest due to their potential use in clinical treatments of cancerous formations in mammalians. The technological application arises mainly from their hyperthermic behavior, which means that the nanoparticles dissipate heat upon being exposed to an alternating magnetic field (AMF). If the temperature is raised to slightly above 43 °C, cancer cells are functionally inactivated or killed; however, normal cells tend to survive under those same conditions, entirely maintaining their bioactivity. Recent in vitro studies have revealed that under simultaneous exposure to an AMF and magnetic nanoparticles, certain lines of cancer cells are bio-inactivated even without experiencing a significant temperature increase. This non-thermal effect is cell specific, indicating that MNPs, under alternating magnetic fields, may effectively kill cancer cells under conditions that were previously thought to be implausible, considering that the temperature does not increase more than 5 °C, which is also true in cases for which the concentration of MNPs is too low. To experimentally test for this effect, this study focused on the feasibility of inducing K562 cell death using an AMF and aqueous suspensions containing very low concentrations of MNPs. The assay was designed for a ferrofluid containing magnetite nanoparticles, which were obtained through the co-precipitation method and were functionalized with citric acid; the particles had an average diameter of 10 ± 2 nm and a mean hydrodynamic diameter of approximately 40 nm. Experiments were first performed to test for the ability of the ferrofluid to release heat under an AMF. The results show that for concentrations ranging from 2.5 to 1.0 × 103 mg L-1, the maximum temperature increase was actually less than 2 °C. However, the in vitro test results from K562 cells and suspensions

  3. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    PubMed

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    NASA Astrophysics Data System (ADS)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  5. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babitha, S; Korrapati, Purna Sai, E-mail: purnasaik.clri@gmail.com

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolatedmore » from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.« less

  6. Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: The role of degradation in different pH conditions and light exposure.

    PubMed

    De Matteis, Valeria; Cascione, Mariafrancesca; Brunetti, Virgilio; Toma, Chiara Cristina; Rinaldi, Rosaria

    2016-12-01

    Titanium dioxide nanoparticles (TiO 2 NPs), in the two crystalline forms, rutile and anatase, have been widely used in many industrial fields, especially in cosmetics. Therefore, a lot of details about their safety issues have been discussed by the scientific community. Many studies have led to a general agreement about TiO 2 NPs toxicity, in particular for anatase form, but no mechanism details have been proved yet. In this study, data confirm the different toxic potential of rutile and anatase TiO 2 NPs in two cell lines up to 5nM nanoparticles concentration. Moreover, we evaluated the role of titanium ions released by TiO 2 NPs in different conditions, at pH=4.5 (the typical lysosomal compartment pH) and at pH=5.5 (the skin physiological pH) in conditions of darkness and light, to mimic the dermal exposure of cosmetics. Anatase nanoparticles were proner to degradation both in the acidic conditions and at skin pH. Our study demonstrates that pH and sunlight are dominant factors to induce oxidative stress, TiO 2 NPs degradation and toxicity effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. QCM and AFM Study of atomic scale polishing and roughening of surfaces exposed to nanoparticle suspensions of diamond, Al2O3 and SiO2.

    NASA Astrophysics Data System (ADS)

    Krim, Jacqueline; Acharya, Biplav; Chestnut, Melanie; Marek, Antonin; Shendarova, Olga; Smirnov, Alex

    The addition of nanoparticles to conventional automotive lubricants is known in many cases to result in increased energy efficiency, but the atomic scale mechanisms leading to the increased efficiency are yet to be established. To explore this issue, we studied surface uptake and nanotribological properties of nanoparticle suspensions of diamond, Al2O3 and SiO2 dispersed in water and/or oil (PAO6) in real time by means of an in situ Quartz Crystal Microbalance (QCM) technique, with a focus on the impact of the suspension on the surface roughness and texture of the QCM electrode and how the results compared to macroscopic reductions in friction and increased energy efficiency for the same materials' combinations. The frequency and dissipative properties (mechanical resistance) of QCM's with both gold and nickel surface electrodes were first studied for immersed samples upon addition of the nanoparticles. Nanodiamonds resulted in an increased mechanical resistance while the addition of Al2O3 and SiO2 nanoparticles resulted in a decreased resistance, indicating a reduced resistance of the fluid to the motion of the QCM. Atomic Force Microscope (AFM) measurements were then performed on the QCM electrodes after exposure to the suspensions, to explore potential polishing and/or roughening effects. The results are closely linked to the macroscopic friction and wear attributes. Work supported by NSF.

  8. Photocatalytic degradation of methylene blue and inactivation of gram-negative bacteria by TiO2 nanoparticles in aqueous suspension

    USDA-ARS?s Scientific Manuscript database

    The photocatalytic degradation of methylene blue (MB) and inactivation of Gram-negative bacteria E. coli K12 and P. aeruginosa by TiO2 nanoparticles in aqueous suspension were studied. TiO2 resulted in significant reduction in MB absorption and a shift of MB absorption peak from 664 nm to 658 nm aft...

  9. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  10. Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: Part 3.

    PubMed

    Kreyling, Wolfgang G; Holzwarth, Uwe; Haberl, Nadine; Kozempel, Ján; Wenk, Alexander; Hirn, Stephanie; Schleh, Carsten; Schäffler, Martin; Lipka, Jens; Semmler-Behnke, Manuela; Gibson, Neil

    2017-05-01

    The biokinetics of a size-selected fraction (70 nm median size) of commercially available and 48 V-radiolabeled [ 48 V]TiO 2 nanoparticles has been investigated in healthy adult female Wistar-Kyoto rats at retention time-points of 1 h, 4 h, 24 h, 7 d and 28 d after intratracheal instillation of a single dose of an aqueous [ 48 V]TiO 2 -nanoparticle suspension. A completely balanced quantitative biodistribution in all organs and tissues was obtained by applying typical [ 48 V]TiO 2 -nanoparticle doses in the range of 40-240 μg·kg -1 bodyweight and making use of the high sensitivity of the radiotracer technique. The [ 48 V]TiO 2 -nanoparticle content was corrected for residual blood retained in organs and tissues after exsanguination and for 48 V-ions not bound to TiO 2 -nanoparticles. About 4% of the initial peripheral lung dose passed through the air-blood-barrier after 1 h and were retained mainly in the carcass (4%); 0.3% after 28 d. Highest organ fractions of [ 48 V]TiO 2 -nanoparticles present in liver and kidneys remained constant (0.03%). [ 48 V]TiO 2 -nanoparticles which entered across the gut epithelium following fast and long-term clearance from the lungs via larynx increased from 5 to 20% of all translocated/absorbed [ 48 V]TiO 2 -nanoparticles. This contribution may account for 1/5 of the nanoparticle retention in some organs. After normalizing the fractions of retained [ 48 V]TiO 2 -nanoparticles to the fraction that reached systemic circulation, the biodistribution was compared with the biodistributions determined after IV-injection (Part 1) and gavage (GAV) (Part 2). The biokinetics patterns after IT-instillation and GAV were similar but both were distinctly different from the pattern after intravenous injection disproving the latter to be a suitable surrogate of the former applications. Considering that chronic occupational inhalation of relatively biopersistent TiO 2 -particles (including nanoparticles) and accumulation in

  11. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles.

    PubMed

    Veisi, Farzaneh; Zazouli, Mohammad Ali; Ebrahimzadeh, Mohammad Ali; Charati, Jamshid Yazdani; Dezfoli, Amin Shiralizadeh

    2016-11-01

    The photocatalytic degradation of furfural in aqueous solution was investigated using N-doped titanium dioxide nanoparticles under sunlight and ultraviolet radiation (N-TiO 2 /Sun and N-TiO 2 /UV) in a lab-scale batch photoreactor. The N-TiO 2 nanoparticles prepared using a sol-gel method were characterized using XRD, X-ray photoelectron spectroscopy (XPS), and SEM analyses. Using HPLC to monitor the furfural concentration, the effect of catalyst dosage, contact time, initial solution pH, initial furfural concentration, and sunlight or ultraviolet radiation on the degradation efficiency was studied. The efficiency of furfural removal was found to increase with increased reaction time, nanoparticle loading, and pH for both processes, whereas the efficiency decreased with increased furfural concentration. The maximum removal efficiencies for the N-TiO 2 /UV and N-TiO 2 /Sun processes were 97 and 78 %, respectively, whereas the mean removal efficiencies were 80.71 ± 2.08 % and 62.85 ± 2.41 %, respectively. In general, the degradation and elimination rate of furfural using the N-TiO 2 /UV process was higher than that using the N-TiO 2 /Sun process.

  12. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. Copyright © 2015. Published

  13. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    PubMed Central

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  14. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites.

    PubMed

    Cheng, Yan; Chang, Yun; Feng, Yanlin; Liu, Ning; Sun, Xiujuan; Feng, Yuqing; Li, Xi; Zhang, Haiyuan

    2017-05-01

    Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO 2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassinari, Roberta; La Rocca, Cinzia; Tait, Sabrina

    2015-06-23

    In European Union, titanium dioxide (TiO{sub 2}) as bulk material is a food additive (E171) and - as nanoparticle (NP) - is used as a white pigment in several products (e.g. food, cosmetics, drugs). E171 contains approximately 36% of particles less than 100 nm in at least one dimension and TiO{sub 2} NP exposure is estimated fairly below 2.5 mg/person/day. The gastrointestinal tract is a route of entry for NPs, thus representing a potential target of effects. In in vivo study, the effects of TiO{sub 2} NP in adult rat small intestine have been evaluated by oral administration of 0 (CTRL), 1more » and 2 mg/kg body weight per day - relevant to human dietary intake. Detailed quali/quantitative histopathological analyses were performed on CTRL and treated rat samples. Scanning electron microscopy (SEM) analysis was performed on small intestine. An in vitro study on Caco-2 cells was also used in order to evaluate the potential cytotoxic effects directly on enterocytes through the lactate dehydrogenase (LDH) assay. Suspensions of TiO{sub 2} NPs for in vitro and in vivo study were characterized by EM. Histomorphometrical data showed treatment-related changes of villus height and widths in male rats. Significantly different from CTRL decreased LDH levels in the medium were detected in vitro at 24h with 2.5, 5, 10 and 20 µg/cm{sup 2} levels of TiO{sub 2} NPs. SEM analysis showed no damaged areas. Overall the results showed that enterocytes may represent a target of TiO{sub 2} NP toxicity by direct exposure both in vivo and in vitro models.« less

  16. Sorting process of nanoparticles and applications of same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less

  17. Hyoid expansion with titanium plate and screw: a human cadaveric study using computer-assisted airway measurement.

    PubMed

    Toh, Song-Tar; Hsu, Pon-Poh; Tan, Kah Leong Alvin; Lu, Kuo-Sun Peter; Han, Hong-Juan

    2013-08-01

    Hyoid expansion with suspension can potentially increase the upper airway at the hypopharyngeal level, benefitting patients with sleep-related breathing disorder. To document the effect of hyoid expansion using titanium plate and screw on retrolingual hypopharyngeal airway dimension and to compare the airway dimension after isolated hyoid expansion with hyoid expansion + hyomandibular suspension. Anatomical cadaveric dissection study. This study was performed in a laboratory setting using human cadavers. This is an anatomical feasibility study of hyoid expansion using titanium plate and screw on 10 cadaveric human heads and necks. The hyoid bone is trifractured with bony cuts made just medial to the lesser cornu. The freed hyoid body and lateral segments are expanded and stabilized to a titanium adaptation plate. Computer-assisted airway measurement (CAM) was used to measure the airway dimension at the hypopharynx at the level of the tongue base before and after the hyoid expansion. The expanded hyoid bone was then suspended to the mandible, and the airway dimension was measured again with CAM. Airway dimension after isolated hyoid expansion with hyoid expansion with hyomandibular suspension. RESULTS Hyoid expansion with titanium plate and screw resulted in statistical significant increase in the retrolingual hypopharyngeal airway space in all of the 10 human cadavers. The mean (SD) increase in retroglossal area was 33.4 (13.2) mm² (P < .005) (range, 6.0-58.7 mm²). Hyoid expansion with hyomandibular suspension resulted in a greater degree of airway enlargement. The mean (SD) increase in retroglossal area was 99.4 (15.0) mm² (P < .005) (range, 81.9-127.5 mm²). The retrolingual hypopharyngeal airway space increased with hyoid expansion using titanium plate and screw in our human cadaveric study, measured using CAM. The degree of increase is further augmented with hyomandibular suspension.

  18. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine

    PubMed Central

    Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.

    2017-01-01

    Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308

  19. Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2.

    PubMed

    Kreyling, Wolfgang G; Holzwarth, Uwe; Schleh, Carsten; Kozempel, Ján; Wenk, Alexander; Haberl, Nadine; Hirn, Stephanie; Schäffler, Martin; Lipka, Jens; Semmler-Behnke, Manuela; Gibson, Neil

    2017-05-01

    The biokinetics of a size-selected fraction (70 nm median size) of commercially available and 48 V-radiolabeled [ 48 V]TiO 2 nanoparticles has been investigated in female Wistar-Kyoto rats at retention timepoints 1 h, 4 h, 24 h and 7 days after oral application of a single dose of an aqueous [ 48 V]TiO 2 -nanoparticle suspension by intra-esophageal instillation. A completely balanced quantitative body clearance and biokinetics in all organs and tissues was obtained by applying typical [ 48 V]TiO 2 -nanoparticle doses in the range of 30-80 μg•kg -1 bodyweight, making use of the high sensitivity of the radiotracer technique. The [ 48 V]TiO 2 -nanoparticle content was corrected for nanoparticles in the residual blood retained in organs and tissue after exsanguination and for 48 V-ions not bound to TiO 2 -nanoparticles. Beyond predominant fecal excretion about 0.6% of the administered dose passed the gastro-intestinal-barrier after one hour and about 0.05% were still distributed in the body after 7 days, with quantifiable [ 48 V]TiO 2 -nanoparticle organ concentrations present in liver (0.09 ng•g -1 ), lungs (0.10 ng•g -1 ), kidneys (0.29 ng•g -1 ), brain (0.36 ng•g -1 ), spleen (0.45 ng•g -1 ), uterus (0.55 ng•g -1 ) and skeleton (0.98 ng•g -1 ). Since chronic, oral uptake of TiO 2 particles (including a nano-fraction) by consumers has continuously increased in the past decades, the possibility of chronic accumulation of such biopersistent nanoparticles in secondary organs and the skeleton raises questions about the responsiveness of their defense capacities, and whether these could be leading to adverse health effects in the population at large. After normalizing the fractions of retained [ 48 V]TiO 2 -nanoparticles to the fraction that passed the gastro-intestinal-barrier and reached systemic circulation, the biokinetics was compared to the biokinetics determined after IV-injection (Part 1). Since the biokinetics patterns

  20. Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension.

    PubMed

    Silva, Jesús G; Cárdenas, Rey A; Quiróz, Alan R; Sánchez, Virginia; Lozano, Lucila M; Pérez, Nadia M; López, Jaime; Villanueva, Cleva; González, César A

    2014-06-01

    Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10-100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique.

  1. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.

  2. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles.

    PubMed

    Sheikh, Faheem A; Macossay, Javier; Kanjwal, Muzafar A; Abdal-Hay, Abdalla; Tantry, Mudasir A; Kim, Hern

    2012-10-12

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO 2 nanofibers and TiO 2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO 2 nanofibers by the electrospinning process. Similarly, TiO 2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO 2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH 4 , which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems.

  3. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles

    PubMed Central

    Sheikh, Faheem A.; Macossay, Javier; Kanjwal, Muzafar A.; Abdal-hay, Abdalla; Tantry, Mudasir A.; Kim, Hern

    2013-01-01

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO2 nanofibers and TiO2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO2 nanofibers by the electrospinning process. Similarly, TiO2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH4, which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems. PMID:24436780

  4. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions.

    PubMed

    Li, Qian; Li, Ti; Liu, Chengmei; DeLoid, Glen; Pyrgiotakis, Georgios; Demokritou, Philip; Zhang, Ruojie; Xiao, Hang; McClements, David Julian

    Titanium dioxide (TiO 2 ) particles are used in some food products to alter their optical properties, such as whiteness or brightness. These additives typically contain a population of TiO 2 nanoparticles (d < 100 nm), which has led to concern about their potential toxicity. The objective of this study was to examine the impact of TiO 2 particles on the gastrointestinal fate of oil-in-water emulsions using a simulated gastrointestinal tract (GIT) that includes mouth, stomach, and small intestine phases. Theoretical predictions suggested that TiO 2 nanoparticles might inhibit lipid digestion through two physicochemical mechanisms: (i) a fraction of the lipase adsorbs to TiO 2 particle surfaces, thereby reducing the amount available to hydrolyze lipid droplets; (ii) some TiO 2 particles adsorb to the surfaces of lipid droplets, thereby reducing the lipid surface area exposed to lipase. The importance of these mechanisms was tested by passing protein-coated lipid droplets (2%, w/w) through the simulated GIT in the absence and presence of TiO 2 (0.5%, w/w) nanoparticles (18 nm) and fine particles (167 nm). Changes in particle characteristics (size, organization, and charge) and lipid digestion were then measured. Both TiO 2 nanoparticles and fine particles had little impact on the aggregation state and charge of the lipid droplets in the different GIT regions, as well as on the rate and extent of lipid digestion. This suggests that the theoretically predicted impact of particle size on lipid digestion was not seen in practice.

  5. FATE, TRANSFORMATION AND TOXICITY OF MANUFACTURED NANOMATERIALS IN DRINKING WATER

    EPA Science Inventory

    Studies were conducted using several types of commercial metal oxide nanoparticles (two types of titanium dioxide, iron(III) oxide, zinc oxide, nickel oxide, and silica in powder form or liquid suspensions), functionalized quantum dots, lab-synthesized hematite nanoparticles a...

  6. Nanoparticle-Cell Interactions: Relevance for Public Health.

    PubMed

    Runa, Sabiha; Hussey, Michael; Payne, Christine K

    2018-01-25

    Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle-cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle-cell research in which physical chemistry expertise could help to inform the public health community.

  7. Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Chalmers, C.; Smith, R.; Archer, A. J.

    2017-07-01

    We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to correctly choose the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a ‘lid’ above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.

  8. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation.

    PubMed

    Lopes, F S; Oliveira, J R; Milani, J; Oliveira, L D; Machado, J P B; Trava-Airoldi, V J; Lobo, A O; Marciano, F R

    2017-12-01

    Recently, the development of coatings to protect biomedical alloys from oxidation, passivation and to reduce the ability for a bacterial biofilm to form after implantation has emerged. Diamond-like carbon films are commonly used for implanted medical due to their physical and chemical characteristics, showing good interactions with the biological environment. However, these properties can be significantly improved when titanium dioxide nanoparticles are included, especially to enhance the bactericidal properties of the films. So far, the deposition of hydroxyapatite on the film surface has been studied in order to improve biocompatibility and bioactive behavior. Herein, we developed a new route to obtain a homogeneous and crystalline apatite coating on diamond-like carbon films grown on 304 biomedical stainless steel and evaluated its antibacterial effect. For this purpose, films containing two different concentrations of titanium dioxide (0.1 and 0.3g/L) were obtained by chemical vapor deposition. To obtain the apatite layer, the samples were soaked in simulated body fluid solution for up to 21days. The antibacterial activity of the films was evaluated by bacterial eradication tests using Staphylococcus aureus biofilm. Scanning electron microscopy, X-ray diffraction, Raman scattering spectroscopy, and goniometry showed that homogeneous, crystalline, and hydrophilic apatite films were formed independently of the titanium dioxide concentration. Interestingly, the diamond-like films containing titanium dioxide and hydroxyapatite reduced the biofilm formation compared to controls. A synergism between hydroxyapatite and titanium dioxide that provided an antimicrobial effect against opportunistic pathogens was clearly observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sonochemical method for producing titanium metal powder.

    PubMed

    Halalay, Ion C; Balogh, Michael P

    2008-07-01

    We demonstrate a sonochemical method for producing titanium metal powder. The method uses low intensity ultrasound in a hydrocarbon solvent at near-ambient temperatures to first create a colloidal suspension of liquid sodium-potassium alloy in the solvent and then to reduce liquid titanium tetrachloride to titanium metal under cavitation conditions. XRD data collected for the reaction products after the solvent removal show only NaCl and KCl, with no diffraction peaks attributable to titanium metal or other titanium compounds, indicating either the formation of amorphous metal or extremely small crystallite size. TEM micrographs show that hollow spheres formed of halide salts and titanium metal, with diameters with diameters ranging from 100 to 500 nm and a shell thickness of 20 to 40 nm form during the synthesis, suggesting that the sonochemical reaction occurs inside the liquid shell surrounding the cavitation bubbles. Metal particle sizes are estimated to be significantly smaller than 40 nm from TEM data. XRD data of the powder after annealing and prior to removal of the alkali chloride salts provides direct evidence that titanium metal was formed during the sonochemical synthesis.

  10. Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes.

    PubMed

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Kiggans, Jim; Wood, David L

    2013-09-01

    Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Functionalization of γ-alumina cores by polyvinylpirrolidone: properties of the resulting biocompatible nanoparticles in aqueous suspension

    NASA Astrophysics Data System (ADS)

    Fernández, L.; Arranz, G.; Palacio, L.; Soria, C.; Sánchez, M.; Pérez, G.; Lozano, A. E.; Hernández, A.; Prádanos, P.

    2009-02-01

    A biocompatible polymer has been used to functionalize 45-50 nm diameter γ-alumina nanoparticles. Because the target was to use these systems in real applications, polyvinylpirrolidone (PVP) was chosen due to the characteristics of non-toxicity, biocompatibility, and feasibility of this polymer to form complexes with many cations and chemical species. This approach allows the use of these materials in medicine and food, textile, or pharmaceutical industry. The functionalization process required a previous attachment of an active group on the surface of the nanoparticles. Subsequently, a polymer chain was generated in situ, using vinyltrimethoxysilane (VTMS) and 1-vinyl-2-pyrrolidone (VP) as reactives. The morphology and topology of the nanocompound has been characterized in aqueous suspensions, attending to possible applications in this medium. The results obtained from the different techniques show that the polymer chain was successfully grafted to the nanoparticle surface, and allow an estimation of the size of the modified particle. Their electrical and conformational behavior have also been studied in different aqueous chemical environments.

  12. Effects of titanium dioxide nanoparticles on human keratinocytes

    PubMed Central

    Wright, Clayton; Iyer, Anand Krishnan V.; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S.; Rojanasakul, Yon; Azad, Neelam

    2016-01-01

    Titanium dioxide (TiO2) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO2 nanoparticles (H2TiO7) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO2 particles varying in size (Fine, Ultrafine and H2TiO7) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO2; however, there is no consistent effect on cell viability and proliferation with either of these TiO2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO2, we did not observe any significant effect of UV-C exposure combined with TiO2 treatment on HaCaTs. Furthermore, TiO2-treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H2TiO7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO2. PMID:27310834

  13. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    PubMed Central

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816

  14. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    PubMed

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  15. Short-term exposure to gold nanoparticle suspension impairs swimming behavior in a widespread calanoid copepod.

    PubMed

    Michalec, François-Gaël; Holzner, Markus; Barras, Alexandre; Lacoste, Anne-Sophie; Brunet, Loïc; Lee, Jae-Seong; Slomianny, Christian; Boukherroub, Rabah; Souissi, Sami

    2017-09-01

    Calanoid copepods play an important role in the functioning of marine and brackish ecosystems. Information is scarce on the behavioral toxicity of engineered nanoparticles to these abundant planktonic organisms. We assessed the effects of short-term exposure to nonfunctionalized gold nanoparticles on the swimming behavior of the widespread estuarine copepod Eurytemora affinis. By means of three-dimensional particle tracking velocimetry, we reconstructed the trajectories of males, ovigerous and non-ovigerous females. We quantified changes in their swimming activity and in the kinematics and geometrical properties of their motion, three important descriptors of the motility patterns of zooplankters. In females, exposure to gold nanoparticles in suspension (11.4 μg L -1 ) for 30 min caused depressed activity and lower velocity and acceleration, whereas the same exposure caused minimal effects in males. This response differs clearly from the hyperactive behavior that is commonly observed in zooplankters exposed to pollutants, and from the generally lower sensitivity of female copepods to toxicants. Accumulation of gold nanoparticles on the external appendages was not observed, precluding mechanical effects. Only very few nanoparticles appeared sporadically in the inner part of the gut in some samples, either as aggregates or as isolated nanoparticles, which does not suggest systemic toxicity resulting from pronounced ingestion. Hence, the precise mechanisms underlying the behavioral toxicity observed here remain to be elucidated. These results demonstrate that gold nanoparticles can induce marked behavioral alterations at very low concentration and short exposure duration. They illustrate the applicability of swimming behavior as a suitable and sensitive endpoint for investigating the toxicity of nanomaterials present in estuarine and marine environments. Changes in swimming behavior may impair the ability of planktonic copepods to interact with their environment

  16. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  17. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues.

    PubMed

    Gholipour, Yousef; Giudicessi, Silvana L; Nonami, Hiroshi; Erra-Balsells, Rosa

    2010-07-01

    Nanoparticles (NPs) of diamond, titanium dioxide, titanium silicon oxide, barium strontium titanium oxide, and silver (Ag) were examined for their potential as MALDI matrixes for direct laser desorption/ionization of carbohydrates, especially fructans, from plant tissue. Two sample preparation methods including solvent-assisted and solvent-free (dry) NPs deposition were performed and compared. All examined NPs except for Ag could desorb/ionize standard sucrose and fructans in positive and in negative ion mode. Ag NPs yielded good signals only for nonsalt-doped samples that were measured in the negative ion mode. In the case of in vivo studies, except for Ag, all NPs studied could desorb/ionize carbohydrates from tissue in both the positive and negative ion modes. Furthermore, compared to the results obtained with soluble sugars extracted from plant tissues, fructans with higher molecular weight intact molecular ions could be detected when the plant tissues were directly profiled. The limit of detection (LOD) of fructans and the ratios between signal intensities and fructan concentrations were analyzed. NPs had similar LODs for standard fructan triose (1-kestose) in the positive ion mode and better LODs in the negative ion mode when compared with the common crystalline organic MALDI matrixes used for carbohydrates (2,5-dihydroxybenzoic acid and nor-harmane) or carbon nanotubes. Solvent-free NP deposition on tissues partially improves the signal acquisition. Although lower signal-to-noise ratio sugar signals were acquired from the tissues when compared to the solvent-assisted method, the reproducibility averaged over all sample was more uniform.

  18. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli.

    PubMed

    Pagnout, Christophe; Jomini, Stéphane; Dadhwal, Mandeep; Caillet, Céline; Thomas, Fabien; Bauda, Pascale

    2012-04-01

    The increasing production and use of titanium dioxide nanoparticles (NP-TiO(2)) has led to concerns about their possible impact on the environment. Bacteria play crucial roles in ecosystem processes and may be subject to the toxicity of these nanoparticles. In this study, we showed that at low ionic strength, the cell viability of Escherichia coli was more severely affected at pH 5.5 than at pH 7.0 and pH 9.5. At pH 5.5, nanoparticles (positively charged) strongly interacted with the bacterial cells (negatively charged) and accumulated on their surfaces. This phenomenon was observed in a much lower degree at pH 7.0 (NP-TiO(2) neutrally charged and cells negatively charged) and pH 9.5 (both NP-TiO(2) and cells negatively charged). It was also shown that the addition of electrolytes (NaCl, CaCl(2), Na(2)SO(4)) resulted in a gradual reduction of the NP-TiO(2) toxicity at pH 5.5 and an increase in this toxicity at pH 9.5, which was closely related to the reduction of the NP-TiO(2) and bacterial cell electrostatic charges. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles.

    PubMed

    Mercier-Bonin, Muriel; Despax, Bernard; Raynaud, Patrice; Houdeau, Eric; Thomas, Muriel

    2018-04-13

    Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.

  20. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    PubMed

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  1. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    NASA Astrophysics Data System (ADS)

    Larue, C.; Khodja, H.; Herlin-Boime, N.; Brisset, F.; Flank, A. M.; Fayard, B.; Chaillou, S.; Carrière, M.

    2011-07-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO2-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO2-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO2-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO2-NPs. These results show that TiO2-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  2. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm.

    PubMed

    Grassian, Vicki H; O'shaughnessy, Patrick T; Adamcakova-Dodd, Andrea; Pettibone, John M; Thorne, Peter S

    2007-03-01

    Nanotechnology offers great promise in many industrial applications. However, little is known about the health effects of manufactured nanoparticles, the building blocks of nanomaterials. Titanium dioxide (TiO(2)) nanoparticles with a primary size of 2-5 nm have not been studied previously in inhalation exposure models and represent some of the smallest manufactured nanoparticles. The purpose of this study was to assess the toxicity of these nanoparticles using a murine model of lung inflammation and injury. The properties of TiO(2) nanoparticles as well as the characteristics of aerosols of these particles were evaluated. Mice were exposed to TiO(2) nanoparticles in a whole-body exposure chamber acutely (4 hr) or subacutely (4 hr/day for 10 days). Toxicity in exposed mice was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase (LDH) activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Lungs were also evaluated for histopathologic changes Mice exposed acutely to 0.77 or 7.22 mg/m(3) nanoparticles demonstrated minimal lung toxicity or inflammation. Mice exposed subacutely (8.88 mg/m(3)) and necropsied immediately and at week 1 or 2 postexposure had higher counts of total cells and alveolar macrophages in the BAL fluid compared with sentinels. However, mice recovered by week 3 postexposure. Other indicators were negative. Mice subacutely exposed to 2-5 nm TiO(2) nanoparticles showed a significant but moderate inflammatory response among animals at week 0, 1, or 2 after exposure that resolved by week 3 postexposure.

  3. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  4. Conducting metal oxide and metal nitride nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less

  5. The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Srisitthiratkul, Chutima; Pongsorrarith, Voraluck; Intasanta, Narupol

    2011-08-01

    While chemical and biological attacks pose risk to human health, clean air is of scientific, environmental and physiological concerns. In the present contribution, the potential use of nanosilver-decorated titanium dioxide (TiO 2) nanofibers for toxin decomposition with antimicrobial activity and self-cleaning properties was investigated. Titanium dioxide nanofibers were prepared through sol-gel reaction followed by an electrospinning process. Following the Japan Industrial Standard (JIS) protocol, decompositions of nitrogen oxide (NOx) and volatile organic compound (VOC) by the TiO 2 nanofibers suggested that these materials were capable of air treatment. To further enhance their anti-microbial activity, silver nanoparticles were decorated onto the TiO 2 nanofibers' surfaces via photoreduction of silver ion in the presence of the nanofibers suspension. Furthermore, tests of photocatalytic activity of the samples were performed by photodegrading methylene blue in water. The nanofibrous membranes prepared from these nanofibers showed superhydrophilicity under UV. Finally, the possibility of using these hybrid nanofibers in environmental and hygienic nanofiltration was proposed, where the self-cleaning characteristics was expected to be valuable in maintenance processes.

  6. Fabrication and in vitro release behavior of a novel antibacterial coating containing halogenated furanone-loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    PubMed Central

    Cheng, Yicheng; Wu, Jiang; Gao, Bo; Zhao, Xianghui; Yao, Junyan; Mei, Shenglin; Zhang, Liang; Ren, Huifang

    2012-01-01

    Background Dental implants have become increasingly common for the management of missing teeth. However, peri-implant infection remains a problem, is usually difficult to treat, and may lead eventually to dental implant failure. The aim of this study was to fabricate a novel antibacterial coating containing a halogenated furanone compound, ie, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone (BBF)-loaded poly(L-lactic acid) (PLLA) nanoparticles on microarc-oxidized titanium and to evaluate its release behavior in vitro. Methods BBF-loaded PLLA nanoparticles were prepared using the emulsion solvent-evaporation method, and the antibacterial coating was fabricated by cross-linking BBF-loaded PLLA nanoparticles with gelatin on microarc-oxidized titanium. Results The BBF-loaded PLLA nanoparticles had a small particle size (408 ± 14 nm), a low polydispersity index (0.140 ± 0.008), a high encapsulation efficiency (72.44% ± 1.27%), and a fine spherical shape with a smooth surface. The morphology of the fabricated antibacterial coating showed that the BBF-loaded PLLA nanoparticles were well distributed in the pores of the microarc oxidation coating, and were cross-linked with each other and the wall pores by gelatin. The release study indicated that the antibacterial coating could achieve sustained release of BBF for 60 days, with a slight initial burst release during the first 4 hours. Conclusion The novel antibacterial coating fabricated in this study is a potentially promising method for prevention of early peri-implant infection. PMID:23152682

  7. Reusable photocatalytic titanium dioxide-cellulose nanofiber films

    Treesearch

    Alexandra Snyder; Zhenyu Bo; Robert Moon; Jean-Christophe Rochet; Lia Stanciu

    2013-01-01

    Titanium dioxide (TiO2) is a well-studied photocatalyst that is known to break down organic molecules upon ultraviolet (UV) irradiation. Cellulose nanofibers (CNFs) act as an attractive matrix material for the suspension of photocatalytic particles due to their desirable mechanical and optical properties. In this work, TiO2...

  8. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    PubMed Central

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest

  9. Photodeposition of Gold, Platinum, or Silver onto Titanium Dioxide Nanoparticles at Steps of Highly Oriented Pyrolytic Graphite

    NASA Astrophysics Data System (ADS)

    Taing, James

    The photodeposition of gold, platinum, or silver nanoparticles selectively onto isolated titanium dioxide (TiO2) nanoparticles created metal/TiO2 photocatalysts and heterogeneous catalysts, and validated the photocatalytic property of the semiconductor. The isolated and ordered TiO2 nanoparticles permitted clear observations of the stability, and changes in morphology, of the particles in various experimental conditions. The fabrication of TiO2 nanoparticles at the steps of highly oriented pyrolytic graphite (HOPG), utilizing physical vapor deposition, required heating the graphite substrate to a minimum of 800 °C. The production of a photocurrent, and plating of gold nanoparticles, confirmed the photocatalytic property of the TiO2 nanoparticles on HOPG when utilized as a photoelectrode in a two half-cell setup. Employing sodium chloride (1.0 M) as an electrolyte resulted in an increase/decrease of the photocurrent with the addition of gold cations to the half-cell without/with the TiO2 nanoparticles. A poor distribution of gold nanoparticles, roughly 40-45 nm wide, deposited around few of the TiO2 nanoparticles. A lower concentration of sodium chloride (0.1 M) resulted in a coalescence of Au nanoparticles, roughly 10 nm, around many TiO2 nanoparticles. Using sodium nitrate as an electrolyte resulted in a rapid decay in the photocurrent and a growth of an unidentified material on the TiO2 nanoparticles. The unidentified material hindered the reduction of gold cations introduced midway through the experiment. With gold cations present at the onset of the experiment, disperse gold nanoparticles (˜5-10 nm) deposited around the TiO2 nanoparticles. In the absence of additional electrolyte, many disperse gold nanoparticles less than 5 nm deposited onto the TiO2 nanoparticles. More platinum than gold selectively deposited onto the TiO2 nanoparticles. On the contrary, less silver selectively deposited onto the TiO2 nanoparticles. Scanning electron microscopy and atomic

  10. Supercritical fluid processing of drug nanoparticles in stable suspension.

    PubMed

    Pathak, Pankaj; Meziani, Mohammed J; Desai, Tarang; Foster, Charles; Diaz, Julian A; Sun, Ya-Ping

    2007-07-01

    Significant effort has been directed toward the development of drug formulation and delivery techniques, especially for the drug of no or poor aqueous solubility. Among various strategies to address the solubility issue, the reduction of drug particle sizes to the nanoscale has been identified as a potentially effective and broadly applicable approach. Complementary to traditional methods, supercritical fluid techniques have found unique applications in the production and processing of drug particles. Here we report the application of a newly developed supercritical fluid processing technique, Rapid Expansion of a Supercritical Solution into a Liquid Solvent, to the nanosizing of potent antiparasitic drug Amphotericin B particles. A supercritical carbon dioxide-cosolvent system was used for the solubilization and processing of the drug. The process produced well-dispersed nanoscale Amphotericin B particles suspended in an aqueous solution, and the suspension was intrinsically stable or could be further stabilized in the presence of water-soluble polymers. The properties of the drug nanoparticles were found to be dependent on the type of cosolvent used. The results on the use of dimethyl sulfoxide and methanol as cosolvents and their effects on the properties of nanosized Amphotericin B particles are presented and discussed.

  11. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.

    PubMed

    Hu, Yi; Cheng, Xuanhong; Daniel Ou-Yang, H

    2013-01-01

    Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.

  13. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    PubMed Central

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption. PMID:22353282

  14. Integrated dataset of impact of dissolved organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    EPA Pesticide Factsheets

    This dataset is generated to both qualitatively and quantitatively examine the interactions between nano-TiO2 and natural organic matter (NOM). This integrated dataset assemble all data generated in this project through a series of experiments. This dataset is associated with the following publication:Li , S., H. Ma, L. Wallis, M. Etterson , B. Riley , D. Hoff , and S. Diamond. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 542: 324-333, (2016).

  15. nanoparticles but affecting morphology under broader view

    NASA Astrophysics Data System (ADS)

    Karkare, Manasi Manoj

    2014-07-01

    In this study, anatase titanium dioxide nanoparticles were successfully prepared by a sol-gel method using two different precursors, titanium isopropoxide and titanium butoxide. Hydrochloric acid or nitric acid was added to adjust the pH of the solution. The sols obtained were dried at 80 °C and calcined at 450 °C for 3 h. The nanostructures were characterised by scanning electron microscopy, FTIR and ultraviolet-visible spectroscopy. The phase transformations were investigated by an X-ray diffractometer. Highly crystalline anatase titania nanoparticles could be obtained through the controlled hydrolysis reaction rate. The sizes of synthesized particles were in the range 5-13 nm, i.e. 9 nm on an average and with a regular shape. The size of nanoparticles was not affected by the choice of precursor. The broad view of the samples prepared using titanium isopropoxide showed film-like structures, whereas the samples prepared using titanium butoxide showed spherical granules. A red shift of 0.13 eV was observed in the band gap in the case of non-spherical particles compared to spherical ones.

  16. Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles.

    PubMed

    Chen, Feng; Valdovinos, Hector F; Hernandez, Reinier; Goel, Shreya; Barnhart, Todd E; Cai, Weibo

    2017-06-01

    Titanium-45 ( 45 Ti) with a three-hour half-life (t 1/2 =3.08 h), low maximum positron energy and high positron emission branching ratio, is a suitable positron emission tomography (PET) isotope whose potential has not yet been fully explored. Complicated radiochemistry and rapid hydrolysis continue to be major challenges to the development of 45 Ti compounds based on a traditional chelator-based radiolabeling strategy. In this study we introduced an intrinsic (or chelator-free) radiolabeling technique for the successful labeling of 45 Ti using mesoporous silica nanoparticle (MSN). We synthesized uniform MSN with an average particle size of ∼150 nm in diameter. The intrinsic 45 Ti-labeling was accomplished through strong interactions between 45 Ti (hard Lewis acid) and hard oxygen donors (hard Lewis bases), the deprotonated silanol groups (-Si-O-) from the outer surface and inner meso-channels of MSN. In vivo tumor-targeted PET imaging of as-developed PEGylated [ 45 Ti]MSN was further demonstrated in the 4T1 murine breast tumor-bearing mice. This MSN-based intrinsic radiolabeling strategy could open up new possibilities and speed up the biomedical applications of 45 Ti in the future.

  17. Guided self-assembly of nanostructured titanium oxide

    NASA Astrophysics Data System (ADS)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  18. Guided self-assembly of nanostructured titanium oxide.

    PubMed

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu, Yingda

    2012-02-24

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO(x) nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO(x) nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO(x) nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO(x) nanorods with rough surfaces are formed by the self-assembly of TiO(x) nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO(x) nanorods shows stronger ER properties than that of the other nanostructured TiO(x) particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  19. Batch and continuous production of stable dense suspensions of drug nanoparticles in a wet stirred media mill

    NASA Astrophysics Data System (ADS)

    Afolabi, Afola we mi

    One way to improve the bioavailability of poorly water-soluble drugs is to reduce particle size of drug crystals down to nanoscale via wet stirred media milling. An increase in total surface area per mass loading of the drug and specific surface area as well as reduced external mass transfer resistance allow a faster dissolution of the poorly-water soluble drug from nanocrystals. To prevent aggregation of nanoparticles, polymers and surfactants are dissolved in water acting as stabilizers via adsorption onto the drug crystals. In the last two decades, ample experimental data were generated in the area of wet stirred media milling for the production of drug nanoparticle suspensions. However, a fundamental scientific/engineering understanding of various aspects of this process is still lacking. These challenges include elucidation of the governing mechanism(s) during nanoparticle formation and physical stabilization of the nanosuspension with the use of polymers and surfactants (formulation parameters), understanding the impact of process parameters in the context of first-principle-based models, and production of truly nanosized drug particles (10-100 nm) with acceptable physical stability and minimal contamination with the media. Recirculation mode of milling operation, where the drug suspension in a holding tank continuously circulates through the stirred media mill, has been commonly used in lab, pilot, and commercial scales. Although the recirculation is continuous, the recirculation operation mode is overall a batch operation, requiring significant number of batches for a large-volume pharmaceutical product. Hence, development and investigation of a truly continuous process should offer significant advantages. To explain the impact of some of the processing parameters, stress intensity and stress number concepts were widely used in literature, which do not account for the effect of suspension viscosity explicitly. The impact of the processing parameters has not

  20. Stowable Energy-Absorbing Rocker-Bogie Suspensions

    NASA Technical Reports Server (NTRS)

    Harrington, Brian; Voorhees, Christopher

    2007-01-01

    A report discusses the design of the rocker-bogie suspensions of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. Going beyond the basic requirements regarding mobility on uneven terrain, the design had to satisfy requirements (1) to enable each suspension to contort so that the rover could be stowed within limited space in a tetrahedral lander prior to deployment and (2) that the suspension be able to absorb appreciable impact loads, with limited deflection, during egress from the lander and traversal of terrain. For stowability, six joints (three on the right, three on the left) were added to the basic rocker-bogie mechanism. One of the joints on each side was a yoke-and-clevis joint at the suspension/differential interface, one was a motorized twist joint in the forward portion of the rocker, and one was a linear joint created by modifying a fixed-length bogie member into a telescoping member. For absorption of impact, the structural members were in the form of box beams made by electron-beam welding of machined, thin-walled, C-channel, titanium components. The box beams were very lightweight and could withstand high bending and torsional loads.

  1. Observation the Distribution of Titanium Dioxide Nano-particles in an Experimental Tumor Tissue by a Raman Microscope

    NASA Astrophysics Data System (ADS)

    Bibin, Andriana B.; Kume, Kyo; Tsutumi, Kotaro; Fukunaga, Yukihiro; Ito, Shinnji; Imamura, Yoshiaki; Miyoshi, Norio

    2011-12-01

    One of the most important technologies of the 21st century is nanotechnology. Many researchers will have been focusing to employ nanotechnology for medical purpose. Our team was interested in focusing to the application of titanium dioxide (TiO2), as nano-particles, for medical purpose especially drug delivery for the cancer and tumor. The administrations of TiO2 nano-particle via the oral administration of the interface layer particles into the mouse transplanted squamous-cell-carcinoma (SCC) have already conducted. Histology study and Raman spectroscope data were applied to the serial section of frozen tumor tissue in order to observe the distribution of TiO2 nano-particle within the SCC tissue. We used near infrared laser Raman microscopy system, the wavelength is 785 nm. Hematoxyline & eosin stained image and the Raman microscopy system were also used for analyzing the photodynamic therapy (PDT) with 5-ALA and TiO2-particle-sol [TiO2]-ALA-treated tumor samples. As the result, we demonstrated the distribution of TiO2, where TiO2 particles were detected to be distributed in the blood vessel at the bleeding in the SCC tumor tissue. PDT with TiO2 nano-particles that is presented in the SCC-transplanted mouse tumor model can cause the enhancement of photodynamic reaction by nano-particles. Therefore, the combinations of PDT with TiO2 nano-particles may have a possibility to be introduced to the human body in near future for diagnose and PDT treatment of the tumor.

  2. Amine functional magnetic nanoparticles via waterborne thiol-ene suspension photopolymerization for antibody immobilization.

    PubMed

    Muhsir, Pelin; Çakmakçi, Emrah; Demir, Serap; Ogan, Ayşe

    2018-05-28

    The modification of magnetic nanoparticles (MNPs) via different routes for biomolecule binding is an attractive area of research. Waterborne thiol-ene suspension photopolymerization (TESP) can be a useful method for preparing functional MNPs. In this study, for the very first time waterborne TESP was performed in the presence of MNPs. Neat MNPs were coated and in situ functionalized with amine groups by using thiol-ene chemistry. Engrailed-2 (EN2) protein, a potential biomarker for various cancers such as prostate cancer, bladder cancer, breast cancer and ovarian cancer, is known to be a strong binder to a specific DNA sequence (50-TAATTA-30) to regulate transcription. Anti-EN2 antibodies were immobilized onto these MNPs by physical adsorption and covalent bonding methods, respectively. The amount of the physically immobilized antibodies (0.54 mg/g) were found to be lower than the loading of the covalently bonded antibodies (1.775 mg/g). The biomarker level in the artificial solutions prepared was determined by enzyme-linked immunosorbent assay. Coated MNPs were characterized by FTIR, TGA, SEM and STEM. After TESP, the average diameter of the neat magnetite nanoparticles increased from ∼15 nm to ∼32 nm. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension.

    PubMed

    Dai, Ke; Peng, Tianyou; Chen, Hao; Liu, Juan; Zan, Lin

    2009-03-01

    Photocatalytic degradation of commercial phoxim emulsion in aqueous suspension was investigated by using La-doped mesoporous TiO2 nanoparticles (m-TiO2) as the photocatalyst under UV irradiation. Effects of La-doping level, calcination temperature, and additional amount of the photocatalyst on the photocatalytic degradation efficiency were investigated in detail. Experimental results indicate that 20 mg L(-1) phoxim in 0.5 g L(-1) La/m-TiO2 suspension (the initial pH 4.43) can be decomposed as prolonging the irradiation time. Almost 100% phoxim was decomposed after 4 h irradiation according to the spectrophotometric analyses, whereas the mineralization rate of phoxim just reached ca. 80% as checked by ion chromatography (IC) analyses. The elimination of the organic solvent in the phoxim emulsion as well as the formation and decomposition of some degradation intermediates were observed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). On the basis of the analysis results on the photocatalytic degradation intermediates, two possible photocatalytic degradation pathways are proposed under the present experimental conditions, which reveal that both the hydrolysis and adsorption of phoxim under UV light irradiation play important roles during the photocatalytic degradation of phoxim.

  4. Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli

    PubMed Central

    Planchon, Mariane; Léger, Thibaut; Spalla, Olivier

    2017-01-01

    In a previous study, it was demonstrated that the toxic impact of titanium dioxide nanoparticles on Escherichia coli starts at 10 ppm and is closely related to the presence of little aggregates. It was also assumed that only a part of the bacterial population is able to adapt to this stress and attempts to survive. Proteomic analyses, supported by results from metabolomics, reveal that exposure of E. coli to nano-TiO2 induces two main effects on bacterial metabolism: firstly, the up-regulation of proteins and the increase of metabolites related to energy and growth metabolism; secondly, the down-regulation of other proteins resulting in an increase of metabolites, particularly amino acids. Some proteins, e.g. chaperonin 1 or isocitrate dehydrogenase, and some metabolites, e.g. phenylalanine or valine, might be used as biomarkers of nanoparticles stress. Astonishingly, the ATP content gradually rises in relation with the nano-TiO2 concentration in the medium, indicating a dramatic release of ATP by the damaged cells. These apparently contradictory results accredit the thesis of a heterogeneity of the bacterial population. This heterogeneity is also confirmed by SEM images which show that while some bacteria are fully covered by nano-TiO2, the major part of the bacterial population remains free from nanoparticles, resulting in a difference of proteome and metabolome. The use of combined–omics has allowed to better understand the heterogeneous bacterial response to nano-TiO2 stress due to heterogeneous contacts between the protagonists under environmental conditions. PMID:28570583

  5. Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor.

    PubMed

    Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei

    2009-12-15

    Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.

  6. Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.

    PubMed

    Zhang, Rui; Santangelo, Saveria; Fazio, Enza; Neri, Fortunato; D'Arienzo, Massimiliano; Morazzoni, Franca; Zhang, Yihe; Pinna, Nicola; Russo, Patrícia A

    2015-10-12

    TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (RGO), to produce composites with improved properties, for example for photocatalytic applications. It is shown that heating conditions significantly affect the interface and photocatalytic properties of TiO2 @C, and that microwave irradiation can be advantageous for the synthesis of carbon-based materials. Composites of TiO2 with RGO or amorphous carbon were prepared from reaction of titanium isopropoxide with benzyl alcohol. During the synthesis of the TiO2 nanoparticles, the carbon is involved in reactions that lead to the covalent attachment of the oxide, the extent of which depends on the carbon characteristics, heating rate, and mechanism. TiO2 is more efficiently stabilized at the surface of RGO than amorphous carbon. Rapid heating of the reaction mixture results in a stronger coupling between the nanoparticles and carbon, more uniform coatings, and smaller particles with narrower size distributions. The more efficient attachment of the oxide leads to better photocatalytic performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-09-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.

  8. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment.

    PubMed

    Liga, Michael V; Bryant, Erika L; Colvin, Vicki L; Li, Qilin

    2011-01-01

    Photocatalytic inactivation of viruses and other microorganisms is a promising technology that has been increasingly utilized in recent years. In this study, photocatalytic silver doped titanium dioxide nanoparticles (nAg/TiO(2)) were investigated for their capability of inactivating Bacteriophage MS2 in aqueous media. Nano-sized Ag deposits were formed on two commercial TiO(2) nanopowders using a photochemical reduction method. The MS2 inactivation kinetics of nAg/TiO(2) was compared to the base TiO(2) material and silver ions leached from the catalyst. The inactivation rate of MS2 was enhanced by more than 5 fold depending on the base TiO(2) material, and the inactivation efficiency increased with increasing silver content. The increased production of hydroxyl free radicals was found to be responsible for the enhanced viral inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    NASA Astrophysics Data System (ADS)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.

    2012-07-01

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.

  10. Sustainable steric stabilization of colloidal titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  11. Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation.

    PubMed

    Ta, V D; Carter, R M; Esenturk, E; Connaughton, C; Wasley, T J; Li, J; Kay, R W; Stringer, J; Smith, P J; Shephard, J D

    2016-05-18

    Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is investigated using a 2.9 μm high power laser. Under laser radiation a droplet is locally heated and fluid flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter and exposure time. The effect is expected to be universally applicable to aqueous solutions independent of solutes (either particles or molecules) and deposited substrates.

  12. Optical limiting in suspension of detonation nanodiamonds in engine oil

    NASA Astrophysics Data System (ADS)

    Mikheev, Konstantin G.; Krivenkov, Roman Yu.; Mogileva, Tatyana N.; Puzyr, Alexey P.; Bondar, Vladimir S.; Bulatov, Denis L.; Mikheev, Gennady M.

    2017-07-01

    The optical limiting (OL) of detonation nanodiamond (DND) suspensions in engine oil was studied at a temperature range of 20°C to 100°C. Oil suspensions were prepared on the basis of the DNDs with an average nanoparticle cluster size in hydrosols (Daver) of 50 and 110 nm. Raman spectroscopy was used to characterize the samples. The OL investigation was carried out by the z-scan technique. The fundamental (1064 nm) and second (532 nm) harmonic radiations of YAG:Nd3+ laser with passive Q-switching as an excitation source were used. The OL thresholds for both suspensions at 532 and 1064 nm were determined. It is shown that a decrease in the average nanoparticle cluster size as well as an increase of the wavelength of the incident radiation leads to the OL threshold increase. It is established that the OL performance is not influenced by increasing the temperature from 20°C to 100°C. The results obtained show the possibility of using the DNDs suspensions in engine oil as an optical limiter in a wide temperature range.

  13. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    NASA Astrophysics Data System (ADS)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  14. Physical-chemical properties of nanocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Braga, Natália F.; da Silva, Ana Paula; Moraes Arantes, Tatiane; Lemes, Ana Paula; Cristovan, Fernando Henrique

    2018-01-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was reinforced with titanium dioxide (TiO2) in concentrations of 1.0%, 2.5% and 5.0% (m/m) to produce nanocomposites by the solvent casting technique. TiO2 was synthesized by a hydrothermal treatment to produce nanoparticles. The nanostructure of the nanoparticles was studied by x-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The XRD confirmed TiO2 crystalline nanoparticles, with a mixture of anatase and rutile phases. Through TEM analysis, the formation of TiO2 nanorod agglomerates with an average diameter and length of 40 and 12 nm, respectively, was observed. The thermal and mechanical properties of the pure PHBV and nanocomposite films were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis. The DSC analysis showed that the glass transition temperature decreased with the inclusion of TiO2 in the PHBV matrix in relation to pure PHBV. The results of biodegradation assays for the PHBV and nanocomposites in an aqueous medium and in soil showed morphological and structural changes for all samples, indicating a high biodegradation rate for this material. The most important conclusion is that the biodegradation of the PHBV was not affected by the addition of nanoparticles, thus enabling the use of nanocomposites in applications requiring biodegradable materials.

  15. EFFECTS OF TITANIUM DIOXIDE NANOPARTICLE EXPOSURE ON NEUROIMMUNE RESPONSES IN RAT AIRWAYS

    PubMed Central

    Scuri, Mario; Chen, Bean T.; Castranova, Vincent; Reynolds, Jeffrey S.; Johnson, Victor J.; Samsell, Lennie; Walton, Cheryl; Piedimonte, Giovanni

    2013-01-01

    Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension < 100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m13; 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma. PMID:20818535

  16. Anticorrosion efficiency of ultrasonically deposited silica coatings on titanium

    NASA Astrophysics Data System (ADS)

    Ertaş, Fatma Sinem; Kaş, Recep; Mikó, Annamária; Birer, Özgür

    2013-07-01

    We utilized high intensity ultrasound to prepare coatings of silica and organically modified silica composed of multiple layers of densely packed nanoparticles. Ultrasound was used to collide nanoparticles onto an activated titanium surface with high speed. Large areas could be homogeneously coated by this method. These coatings were characterized by spectroscopy and microscopy methods and the anticorrosion efficiency in NaCl solution was evaluated by electrochemical measurements. The results indicated that the composite coatings provided good quality barrier layer on bare titanium and decreased the anodic corrosion rate. It was found that increase in the organic content of the coating shifted the passivation potential towards more positive direction. The comparison of the impedance results recorded at the corrosion potential pointed out that in each case a good quality barrier layer was formed on the titanium surface. The outstanding corrosion resistance of the composite coatings with only ~200 nm thickness shows that ultrasound assisted deposition can be a competitive method to obtain corrosion protective layers.

  17. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    PubMed Central

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  18. Simulation of the effect of photoprotective titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles on the thermal response and optical characteristics of skin

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Popov, A. P.

    2015-04-01

    The thermal response of skin covered with a mixture of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles of optimal sizes and irradiated by sunlight has been calculated. The nanoparticles were rubbed into the skin for maximum protection against the incident radiation. The dependences of the temperature dynamics in different skin layers (corneal layer, epidermis, dermis) have been obtained and analyzed upon skin irradiation with light at a wavelength of 310-800 nm. It has been found that increasing light scattering and absorption due to the nanoparticles introduced into the corneal layer resulted in a decrease in the thermal load and penetration depth of the incident radiation.

  19. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations.

    PubMed

    Heringa, Minne B; Geraets, Liesbeth; van Eijkeren, Jan C H; Vandebriel, Rob J; de Jong, Wim H; Oomen, Agnes G

    2016-12-01

    Titanium dioxide white pigment consists of particles of various sizes, from which a fraction is in the nano range (<100 nm). It is applied in food as additive E 171 as well as in other products, such as food supplements and toothpaste. Here, we assessed whether a human health risk can be expected from oral ingestion of these titanium dioxide nanoparticles (TiO 2 NPs), based on currently available information. Human health risks were assessed using two different approaches: Approach 1, based on intake, i.e. external doses, and Approach 2, based on internal organ concentrations using a kinetic model in order to account for accumulation over time (the preferred approach). Results showed that with Approach 1, a human health risk is not expected for effects in liver and spleen, but a human health risk cannot be excluded for effects on the ovaries. When based on organ concentrations by including the toxicokinetics of TiO 2 NPs (Approach 2), a potential risk for liver, ovaries and testes is found. This difference between the two approaches shows the importance of including toxicokinetic information. The currently estimated risk can be influenced by factors such as absorption, form of TiO 2 , particle fraction, particle size and physico-chemical properties in relation to toxicity, among others. Analysis of actual particle concentrations in human organs, as well as organ concentrations and effects in liver and the reproductive system after chronic exposure to well-characterized TiO 2 (NPs) in animals are recommended to refine this assessment.

  20. Particles induced surface nanoroughness of titanium surface and its influence on adhesion of osteoblast-like MG-63 cells

    NASA Astrophysics Data System (ADS)

    Solař, P.; Kylián, O.; Marek, A.; Vandrovcová, M.; Bačáková, L.; Hanuš, J.; Vyskočil, J.; Slavínská, D.; Biederman, H.

    2015-01-01

    Titanium is one of the most common materials employed for production of implants, which is due to its good biocompatibility. However, the colonization of titanium surface by osteoblast cells may be influenced by its roughness and therefore precise control of roughness of titanium surface as well as identification of its optimal value for growth of cells is of high importance. In this study the nanorough titanium surfaces were prepared on polished disks of TiAlV by two step method of deposition. In the first step TiAlV were coated by nanoparticles generated by gas aggregation sources. Such prepared films of nanoparticles were subsequently covered with a titanium overlayer. Different values of surface roughness in the range 1-100 nm were achieved by variation of the size and number of the nanoparticles. Such prepared surfaces were subsequently used for investigation of influence of roughness of titanium surfaces on the adhesion of human osteoblast-like MG-63 cells. It was found out that 7 days after seeding the highest number of adhering cells was observed for samples with root-mean-square roughness of 30 nm.

  1. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    PubMed

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  2. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    PubMed Central

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  3. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles.

    PubMed

    Ninomiya, Kazuaki; Fukuda, Aya; Ogino, Chiaki; Shimizu, Nobuaki

    2014-09-01

    In this study, we applied sonodynamic therapy to cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with avidin protein, which preferentially discriminated cancerous cells from healthy cells. Subsequently, hydroxyl radicals were generated from the TiO2 NPs after activation by external ultrasound irradiation (TiO2/US treatment). Although 30% of the normal breast cells (human mammary epithelial cells) exhibited the uptake of avidin-modified TiO2 NPs, over 80% of the breast cancer cells (MCF-7) exhibited the uptake of avidin-TiO2 NPs. Next the effect of the TiO2/US treatment on MCF-7 cell growth was examined for up to 96 h after 1-MHz ultrasound was applied (0.1 W/cm(2), 30 s) to cells that incorporated the TiO2 NPs. No apparent cell injury was observed until 24h after the treatment, but the viable cell concentration declined to 68% compared with the control at 96 h. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  5. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption

    PubMed Central

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO2 NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO2 NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO2 (f-TiO2) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO2 (g-TiO2) NPs. The effect of the interactions between the TiO2 NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO2 NPs compared to g-TiO2 NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO2 NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry. PMID:28335354

  6. Integrated titanium dioxide (TiO2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    NASA Astrophysics Data System (ADS)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  7. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    PubMed

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  8. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    NASA Astrophysics Data System (ADS)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  9. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats

    PubMed Central

    2014-01-01

    Objective The aim of this study was to obtain kinetic data that can be used in human risk assessment of titanium dioxide nanomaterials. Methods Tissue distribution and blood kinetics of various titanium dioxide nanoparticles (NM-100, NM-101, NM-102, NM-103, and NM-104), which differ with respect to primary particle size, crystalline form and hydrophobicity, were investigated in rats up to 90 days post-exposure after oral and intravenous administration of a single or five repeated doses. Results For the oral study, liver, spleen and mesenteric lymph nodes were selected as target tissues for titanium (Ti) analysis. Ti-levels in liver and spleen were above the detection limit only in some rats. Titanium could be detected at low levels in mesenteric lymph nodes. These results indicate that some minor absorption occurs in the gastrointestinal tract, but to a very limited extent. Both after single and repeated intravenous (IV) exposure, titanium rapidly distributed from the systemic circulation to all tissues evaluated (i.e. liver, spleen, kidney, lung, heart, brain, thymus, reproductive organs). Liver was identified as the main target tissue, followed by spleen and lung. Total recovery (expressed as % of nominal dose) for all four tested nanomaterials measured 24 h after single or repeated exposure ranged from 64-95% or 59-108% for male or female animals, respectively. During the 90 days post-exposure period, some decrease in Ti-levels was observed (mainly for NM-100 and NM-102) with a maximum relative decrease of 26%. This was also confirmed by the results of the kinetic analysis which revealed that for each of the investigated tissues the half-lifes were considerable (range 28–650 days, depending on the TiO2-particle and tissue investigated). Minor differences in kinetic profile were observed between the various particles, though these could not be clearly related to differences in primary particle size or hydrophobicity. Some indications were observed for an

  10. Method to prepare nanoparticles on porous mediums

    DOEpatents

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  11. Toxicity of Silver Nanoparticles at the Air-Liquid Interface

    PubMed Central

    Holder, Amara L.; Marr, Linsey C.

    2013-01-01

    Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles. PMID:23484109

  12. Mediatorless Impedance Studies with Titanium Dioxide Conjugated Gold Nanoparticles for Hydrogen Peroxide Detection

    PubMed Central

    Abdul Halim, Nur Hamidah; Lee, Yook Heng; Marugan, Radha Swathe Priya Malon; Hashim, Uda

    2017-01-01

    An impedimetric-based biosensor constructed using gold nanoparticles (AuNP) entrapped within titanium dioxide (TiO2) particles for hydrogen peroxide (H2O2) detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS) at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb), which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD) of 1 × 10−5 M without a redox mediator. PMID:28927005

  13. In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila.

    PubMed

    Demir, Eşref; Turna, Fatma; Vales, Gerard; Kaya, Bülent; Creus, Amadeu; Marcos, Ricard

    2013-11-01

    As in vivo system, we propose Drosophila melanogaster as a useful model for study the genotoxic risks associated with nanoparticle exposure. In this study we have carried out a genotoxic evaluation of titanium dioxide (TiO2), zirconium oxide (ZrO2) and aluminium oxide (Al2O3) nanoparticles and their microparticulated forms in D. melanogaster by using the wing somatic mutation and recombination assay. This assay is based on the principle that loss of heterozygosis and the corresponding expression of the suitable recessive markers, multiple wing hairs and flare-3, can lead to the formation of mutant clones in treated larvae, which are expressed as mutant spots on the wings of adult flies. Third instar larvae were feed with TiO2, ZrO2 and Al2O3 nanoparticles, and their microparticulated forms, at concentrations ranging from 0.1 to 10mM. Although a certain level of aggregation/agglomeration was observed in solution, it must be noted than the constant digging activity of larvae ensures that treated medium pass constantly through the digestive tract ensuring exposure. The results showed that no significant increases in the frequency of all spots (e.g. small single, large single, twin, total mwh and total spots) were observed, indicating that these nanoparticles were not able to induce genotoxic activity in the wing spot assay of D. melanogaster. Negative data were also obtained with the microparticulated forms. This indicates that the nanoparticulated form of the selected nanomaterials does not modify the potential genotoxicity of their microparticulated versions. These in vivo results contribute to increase the genotoxicity database on the TiO2, ZrO2 and Al2O3 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. High-yield synthesis of brookite TiO.sub.2 nanoparticles

    DOEpatents

    Huber, Dale L [Albuquerque, NM; Monson, Todd C [Albuquerque, NM

    2011-05-17

    A method for forming non-agglomerated brookite TiO.sub.2 nanoparticles without the use of expensive organic surfactants or high temperature processing. Embodiments of this invention use titanium isopropoxide as the titanium precursor and isopropanol as both the solvent and ligand for ligand-stabilized brookite-phase titania. Isopropanol molecules serve as the ligands interacting with the titania surfaces that stabilize the titania nanoparticles. The isopropanol ligands can be exchanged with other alcohols and other ligands during or after the nanoparticle formation reaction.

  15. The Morphology of Titanium Dioxide Aerogels

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu

    The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.

  16. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  17. Dynamics and yielding of binary self-suspended nanoparticle fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Akanksha; Yu, Hsiu-Yu; Srivastava, Samanvaya

    Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. Wemore » discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.« less

  18. One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution

    NASA Astrophysics Data System (ADS)

    Song, Lixin; Lam, Yeng Ming; Boothroyd, Chris; Teo, Puat Wen

    2007-04-01

    Polymeric films containing titania nanoparticles have potential as dielectric films for flexible electronic applications. For this purpose, the nanoparticles must be homogeneously distributed. Self-assembly is emerging as a neat, elegant method for fabricating such nanostructured hybrid materials with well-distributed nanoparticles. In this work, we report a micellar solution approach for the assembly of copolymer-titanium precursor nanostructures in which titania nanoparticles were synthesized. The ratio of the amount of titanium precursor, titanium isopropoxide, to the blocks forming the micellar core, poly(4-vinylpyridine), was found to play a key role in controlling film morphology. A sphere-to-ribbon transition was observed when the amount of titanium isopropoxide was increased. The thin film morphology can be tuned using the precursor-copolymer interaction rather than just the polymer-polymer interaction or the polymer-solution interaction. This method provides yet another way to control the morphology of nanostructures.

  19. Determination of Histamine in Silages Using Nanomaghemite Core (γ-Fe2O3)-Titanium Dioxide Shell Nanoparticles Off-Line Coupled with Ion Exchange Chromatography

    PubMed Central

    Cernei, Natalia; Lackova, Zuzana; Guran, Roman; Hynek, David; Skladanka, Jiri; Horky, Pavel; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him) separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe2O3) functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles’ (PMP) surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage. PMID:27626434

  20. Titanium Nanoparticle Size Influences Trace Concentration Levels in Skin Appendages.

    PubMed

    Tasat, Deborah R; Domingo, Mariela G; Bruno, Marcos E; Guglielmotti, María B; Olmedo, Daniel G

    2017-07-01

    As a result of biotribocorrosion, the surface of a titanium (Ti) biomedical device can be a potential source of systemic contamination with Ti nanoparticles (NPs). Although NPs can be chemically similar, differences in particle size may lead to different biological responses. The aim of this experimental study was to determine Ti trace levels in skin appendages and plasma and explore the influence of NP size on trace levels using a murine model. Results showed the presence of Ti traces in the nails, hair, and plasma. The concentration of the smallest NPs (5 Nm) was higher than that of 10 Nm NPs in all the studied samples. Irrespective of NP size, Ti levels were always lower in plasma than in skin appendages. Ti levels were higher in nails than in hair. Ti NPs size influenced trace concentration levels in hair/nails, suggesting that 5 Nm Ti particles are more easily eliminated through these skin appendages. Given that the nails showed the highest levels of Ti, and that these skin appendages are not exposed to agents that can leach out Ti, as occurs with hair, we propose the nails as the most suitable and reliable bioindicator for monitoring systemic contamination with Ti.

  1. Water-Based Suspensions of Iron Oxide Nanoparticles with Electrostatic or Steric Stabilization by Chitosan: Fabrication, Characterization and Biocompatibility

    PubMed Central

    Litvinova, Larisa S.; Safronov, Alexander P.; Schupletsova, Valeria V.; Tyukova, Irina S.; Khaziakhmatova, Olga G.; Slepchenko, Galina B.; Yurova, Kristina A.; Cherempey, Elena G.; Kulesh, Nikita A.; Andrade, Ricardo; Beketov, Igor V.; Khlusov, Igor A.

    2017-01-01

    Present day biomedical applications, including magnetic biosensing, demand better understanding of the interactions between living systems and magnetic nanoparticles (MNPs). In this work spherical MNPs of maghemite were obtained by a highly productive laser target evaporation technique. XRD analysis confirmed the inverse spinel structure of the MNPs (space group Fd-3m). The ensemble obeyed a lognormal size distribution with the median value 26.8 nm and dispersion 0.362. Stabilized water-based suspensions were fabricated using electrostatic or steric stabilization by the natural polymer chitosan. The encapsulation of the MNPs by chitosan makes them resistant to the unfavorable factors for colloidal stability typically present in physiological conditions such as pH and high ionic force. Controlled amounts of suspensions were used for in vitro experiments with human blood mononuclear leukocytes (HBMLs) in order to study their morphofunctional response. For sake of comparison the results obtained in the present study were analyzed together with our previous results of the study of similar suspensions with human mesenchymal stem cells. Suspensions with and without chitosan enhanced the secretion of cytokines by a 24-h culture of HBMLs compared to a control without MNPs. At a dose of 2.3, the MTD of chitosan promotes the stimulating effect of MNPs on cells. In the dose range of MNPs 10–1000 MTD, chitosan “inhibits” cellular secretory activity compared to MNPs without chitosan. Both suspensions did not caused cell death by necrosis, hence, the secretion of cytokines is due to the enhancement of the functional activity of HBMLs. Increased accumulation of MNP with chitosan in the cell fraction at 100 MTD for 24 h exposure, may be due to fixation of chitosan on the outer membrane of HBMLs. The discussed results can be used for an addressed design of cell delivery/removal incorporating multiple activities because of cell capability to avoid phagocytosis by immune cells

  2. Synthesis of TiO{sub 2} nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.

    2012-07-23

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less

  3. Lowering of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles for sonodynamic therapy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sviridov, A. P., E-mail: asagittarius89@gmail.com; Osminkina, L. A.; Nikolaev, A. L.

    2015-09-21

    A significant decrease of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles (PSi NPs) with sizes about 100 nm as compared with pure water was observed for ultrasound irradiation (USI) with therapeutic frequency (0.88 MHz) and intensities (about 1 W/cm{sup 2}). This effect is explained by porous morphology of PSi NPs, which promotes the nucleation of cavitation bubbles. In vitro experiments revealed a suppression of the proliferation of cancer cells with the introduced PSi NPs after exposure to USI related to the enhanced cavitation processes, which led to the cell destruction. The obtained results demonstrate that PSi NPs are prospectivemore » for applications as sonosensitizers in mild cancer therapy.« less

  4. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont

    PubMed Central

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; van der Heijden, Marcel G. A.; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  5. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    PubMed

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems.

  6. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less

  7. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    PubMed Central

    Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  8. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  9. Examining the efficiency of muffle furnance-induced alkaline hydrolysis in determining the titanium content of environmental samples containing engineered titanium dioxide particles

    EPA Science Inventory

    A novel muffle furnace (MF)-based potassium hydroxide (KOH) fusion digestion technique was developed and its comparative digestion and dissolution efficacy for different titanium dioxide nanoparticles (TiO2-NPs)/environmental matrices was evaluated. Digestion of different enviro...

  10. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  11. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors.

    PubMed

    Minigalieva, Ilzira A; Katsnelson, Boris A; Privalova, Larisa I; Sutunkova, Marina P; Gurvich, Vladimir B; Shur, Vladimir Y; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H; Panov, Vladimir G; Varaksin, Anatoly N; Bushueva, Tatiana V; Sakhautdinova, Renata R; Klinova, Svetlana V; Solovyeva, Svetlana N; Meshtcheryakova, Ekaterina Y

    2018-03-13

    Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism's status. In many respects, the Al₂O₃-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism's response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al₂O₃-NP + TiO₂-NP + SiO₂-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism's antitoxic resistance.

  12. Enhanced electron transfer and silver-releasing suppression in Ag-AgBr/titanium-doped Al2O3 suspensions with visible-light irradiation.

    PubMed

    Zhou, Xuefeng; Hu, Chun; Hu, Xuexiang; Peng, Tianwei

    2012-06-15

    Ag-AgBr was deposited onto mesoporous alumina (MA) and titanium-doped MA by a deposition-precipitation method. The photocatalytic activity and the dissolution of Ag(+) from different catalysts were investigated during the photodegradation of 2-chlorophenol (2-CP) and phenol in ultrapure water and tap water with visible-light irradiation. With the increase in doped titanium, the Ag(+) dissolution decreased with a decrease in the photocatalytic activity. Ag-AgBr/MA-Ti1 was considered the better catalyst for practical applications because its Ag(+) dissolution was minimal (0.4 mg L(-1) in ultrapure water and 5 μg L(-1) in tap water), although its photoactivity was slightly less than that of Ag-AgBr/MA. The dissolution of Ag(+) was related to a charge-transfer process based on the study of cyclic voltammetry analyses under a variety of experimental conditions. The results suggested that several types of anions in the water, including CO(3)(2-), SO(4)(2-), and Cl(-), could act as electron donors that trap the photogenerated holes on Ag nanoparticles to facilitate electron circulation; this would decrease the release of Ag(+). Our studies indicated that the catalyst had a higher activity and stability in water purification. Copyright © 2012. Published by Elsevier B.V.

  13. Molecular and physiological responses to titanium dioxide ...

    EPA Pesticide Factsheets

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  14. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    PubMed

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  15. Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions

    NASA Astrophysics Data System (ADS)

    Aazadfar, Parvaneh; Solati, Elmira; Dorranian, Davoud

    2018-04-01

    The fundamental wavelength of a Q-switched pulsed Nd:YAG laser was employed to produce Au and copper oxide nanoparticles via pulsed laser ablation method in water. Different volumetric ratio of nanoparticles were mixed and irradiated by the second harmonic pulses of the Nd:YAG laser to prepare Au/Copper oxide nanocomposite. The experimental investigation was dedicated to study the properties of Au/Copper oxide nanocomposite as a function of volumetric ratio of Au nanoparticles and copper oxide nanoparticles. Nanocomposites of Au and copper oxide were found almost spherical in shape. Adhesion of spherical nanostructure in Au/Copper oxide nanocomposites was decreased with increasing the concentration of Au nanoparticles. Crystalline phase of the Au/Copper oxide nanocomposites differs with the change in the volumetric ratio of Au and copper oxide nanoparticles. The intensity of surface plasmon resonance of Au nanoparticles was decreased after irradiation. Au/Copper oxide nanocomposites suspensions have emissions in the visible range. Results reveal that green laser irradiation of nanoparticle suspensions is an appropriate method to synthesize Au based nanocomposites with controlled composition and size.

  16. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability

    NASA Astrophysics Data System (ADS)

    Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.

    2013-05-01

    This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.

  17. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces.

    PubMed

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-04-08

    BACKGROUND The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). MATERIAL AND METHODS This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. RESULTS Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. CONCLUSIONS The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect.

  18. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces

    PubMed Central

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-01-01

    Background The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Material/Methods This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. Results Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. Conclusions The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704

  19. Number of Nanoparticles per Cell through a Spectrophotometric Method - A key parameter to Assess Nanoparticle-based Cellular Assays.

    PubMed

    Unciti-Broceta, Juan D; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Sánchez-Martín, Rosario M

    2015-05-15

    Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection.

  20. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.

    PubMed

    Guo, Peng; Xu, Nan; Li, Duo; Huangfu, Xinxing; Li, Zuling

    2018-08-01

    Crop soil is inevitably contaminated by the excess of phosphate (P) fertilizers. A large amount of nanoparticle titanium dioxide (nTiO 2 ) entered soils as well due to the wide use of engineered nanomaterials. It is of great urgency and a high priority to investigate the mechanisms of nTiO 2 deposition with the presence of P in crop soils. This study investigated the transport behavior of (1.0 g L -1 ) rutile nTiO 2 with two representative clay particles (montmorillonite or diatomite) in the presence of P through the saturated quartz sand. In 10 mM NaCl electrolyte solution at pH 6.0, the recovery percentage of nTiO 2 was 36.3% from sand column. Nevertheless, it was reduced to 18.6% and 11.1% while montmorillonite and diatomite present in suspensions, respectively. Obviously, the improvement of nTiO 2 retention in sand was more pronounced by diatomite than montmorillonite. The likely mechanism for this result was that large aggregates were formed due to the attachment of nTiO 2 to montmorillonite and diatomite. Moreover, the surface of diatomite with the larger hydrodynamic radius was less negatively charged by comparison with montmorillonite. However, this phenomenon disappeared with the addition of P. P adsorption increases the repulsive force between particles and sand and the fast release of attached nTiO 2 -montmorillonite and diatomite from sand. The two-site kinetic retention model and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the combination of k 1/ k 1d , k 2 and secondary minimum energy can be used to accurately describe the attachment of nTiO 2 -montmorillonite and diatomite to sand in the presence of P. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less

  2. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    PubMed

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster.

    PubMed

    Richter, Jonathan W; Shull, Gabriella M; Fountain, John H; Guo, Zhongyuan; Musselman, Laura P; Fiumera, Anthony C; Mahler, Gretchen J

    2018-06-01

    Nanosized titanium dioxide (TiO 2 ) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO 2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO 2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO 2 , a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO 2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO 2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO 2 nanoparticle ingestion may have physiological consequences.

  4. Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles.

    PubMed

    Hull, Matthew S; Chaurand, Perrine; Rose, Jerome; Auffan, Melanie; Bottero, Jean-Yves; Jones, Jason C; Schultz, Irvin R; Vikesland, Peter J

    2011-08-01

    Nanoparticles resistant to salt-induced aggregation are continually being developed for biomedical and industrial applications. Because of their colloidal stability these functionalized nanoparticles are anticipated to be persistent aquatic contaminants. Here, we show that Corbicula fluminea, a globally distributed clam that is a known sentinel of aquatic ecosystem contamination, can uptake and biodeposit bovine serum albumin (BSA) stabilized gold nanoparticles. Nanoparticle clearance rates from suspension were dictated by diameter and concentration, with the largest particles cleared most quickly on a mass basis. Particle capture facilitates size-selective 'biopurification' of particle suspensions with nanoscale resolution. Nanoparticles were retained either within the clam digestive tract or excreted in feces. Our results suggest that biotransformation and biodeposition will play a significant role in the fate and transport of persistent nanoparticles in aquatic systems.

  5. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    PubMed Central

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  6. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    PubMed

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of titanium nanoparticles on self-cleaning and structural features of zinc-magnesium-phosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    Graphical abstract: Water contact angle for sample S2, S3, S4 and S5. The water contact angle increased with increased the titanium NPs content (mol%). - Highlights: • ZnO–MgO–P{sub 2}O{sub 5} embedded TiO{sub 2} NPs prepared by conventional melt-quenching method. • The amorphous nature is confirmed by X-ray diffraction spectroscopy. • The structural characteristics of glasses is investigated using FTIR and Raman. • Wettability of the glasses surface by water contact angle. - Abstract: The loss of glass transparency on surface pollutants contamination unless inhibited not only causes vision obscurity but also responsible for major aesthetic damages of cultural heritage. Itmore » is due to the sticking of fine dirt particles on wetting layers, a complex process with several possible ramifications still to be clarified. We report the influence of titanium dioxide or titania (TiO{sub 2}) nanoparticles (NPs) on the structural and self-cleaning properties of zinc–magnesium–phosphate glasses. Following melt-quenching method glass samples of optimized composition (42 − x)P{sub 2}O{sub 5}–8MgO–50ZnO–xTiO{sub 2} with x = 0, 1, 2, 3 and 4 mol% are prepared. XRD patterns verified their amorphous nature and TEM images revealed the nucleation of TiO{sub 2} NPs of average diameter ≈4.05 ± 0.01 nm. Fourier transform infrared (FTIR) spectra displayed four absorption band centred at 1618–3438 cm{sup −1}, 902– 931 cm{sup −1}, 757–762 cm{sup −1} and 531–560 cm{sup −1}. Raman spectra exhibited four peaks each accompanied by a blue-shift. Water contact angle is found to increase with the increase of titanium NPs concentration into the amorphous matrix. This knowledge can be used to set up strategies and selective treatments to preventing glass transparency loss via the modification of self-cleaning attributes.« less

  8. Titanium dioxide nanoparticles: a review of current toxicological data.

    PubMed

    Shi, Hongbo; Magaye, Ruth; Castranova, Vincent; Zhao, Jinshun

    2013-04-15

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.

  9. Titanium dioxide nanoparticles: a review of current toxicological data

    PubMed Central

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290

  10. Pro-inflammatory Analysis of Macrophages in Contact with Titanium Particles and Porphyromonas gingivalis.

    PubMed

    Dodo, Cindy Goes; Meirelles, Luiz; Aviles-Reyes, Alejandro; Ruiz, Karina Gonzalez Silvério; Abranches, Jacqueline; Cury, Altair Antoninha Del Bel

    2017-01-01

    During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-β after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-β and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.

  11. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.

  12. Cellulose Acetate Modified Titanium Dioxide (TiO2) Nanoparticles Electrospun Composite Membranes: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Das, Chandan; Gebru, Kibrom Alebel

    2017-12-01

    Hybrid membranes from Cellulose Acetate (CA) and titanium oxide (TiO2) nanoparticles were fabricated using electrospinning technique. The electrospun hybrid membranes were characterized using field emission scanning electron microscopy, high energy electrons of the energy dispersive X-ray spectroscopy, X-ray diffraction patterns, atomic force microscopy, zeta potential (ζ), and thermo gravimetric analysis. The impact of TiO2 contents on the electrospun membranes matrix was studied in detail. All these characterization results indicated that TiO2 were uniformly distributed within the CA electrospun membrane's matrix. The addition of TiO2 caused formation of largely interconnected fiber networks which in turn have a positive effect on the enhancement of the membrane pore structures. As the amount of TiO2 addition was raised from 0 to 6.5 wt%, the entanglements of the fibers and the spider-net like network among fibers were increased.

  13. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles

    PubMed Central

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R.; Edwards, Nathan J.; Lee, Sang Bok; Fenselau, Catherine

    2013-01-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins. PMID:23289353

  14. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Mao, Zhilei; Xu, Bo; Ji, Xiaoli; Zhou, Kun; Zhang, Xuemei; Chen, Minjian; Han, Xiumei; Tang, Qiusha; Wang, Xinru; Xia, Yankai

    2015-04-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder

  15. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  16. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles.

    PubMed

    Gilbert, Benjamin; Katz, Jordan E; Huse, Nils; Zhang, Xiaoyi; Frandsen, Cathrine; Falcone, Roger W; Waychunas, Glenn A

    2013-10-28

    An emerging area in chemical science is the study of solid-phase redox reactions using ultrafast time-resolved spectroscopy. We have used molecules of the photoactive dye 2',7'-dichlorofluorescein (DCF) anchored to the surface of iron(III) oxide nanoparticles to create iron(II) surface atoms via photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(III) oxide nanoparticles has not been reported. We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(III)-dye complex. Following light absorption, excited state relaxation times of the dye of 115-310 fs were found for all samples. Comparison between TA dynamics on uncoated and dye-sensitized hematite nanoparticles revealed the dye de-excitation pathway to consist of a competition between electron and energy transfer to the nanoparticles. We analyzed the TA data for hematite nanoparticles using a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye-oxide energy transfer is energetically forbidden) even though the acceptor states are different. Comparison of the alignment of the excited states of the dye and the unoccupied states of these oxides showed that the dye injects into acceptor states of different symmetry (Ti t2gvs. Fe eg).

  17. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors

    PubMed Central

    Minigalieva, Ilzira A.; Katsnelson, Boris A.; Privalova, Larisa I.; Sutunkova, Marina P.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Shishkina, Ekaterina V.; Valamina, Irene E.; Makeyev, Oleg H.; Panov, Vladimir G.; Varaksin, Anatoly N.; Bushueva, Tatiana V.; Sakhautdinova, Renata R.; Klinova, Svetlana V.; Solovyeva, Svetlana N.; Meshtcheryakova, Ekaterina Y.

    2018-01-01

    Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism’s status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism’s response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism’s antitoxic resistance. PMID:29534019

  18. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the

  19. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  20. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ.

    PubMed

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.

  1. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  2. Surface morphology of titanium dioxide (TiO{sub 2}) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.

    2016-07-06

    Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less

  3. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  4. The photocatalytic and cytotoxic effects of titanium dioxide particles used in sunscreen

    NASA Astrophysics Data System (ADS)

    Rampaul, Ashti

    Titanium dioxide nanoparticles are used in sunscreens to reflect UV radiation from the skin. However, titanium dioxide as anatase and rutile crystal forms is a well-known photocatalyst. The nanoparticles are surface coated with inert inorganic oxides such as silica and alumina or organics such as organosilanes or silicone polymers and more recently, have been doped with manganese oxide. These modifications to the titanium dioxide particles are purported to prevent the production of harmful reactive oxygen species. A range of sunscreens was tested with crystal form and modification type identified via XRD, Raman Spectroscopy, XPS and SSNMR. The particle modification and crystal form determined whether the particles were inert or rapidly degraded methylene blue dye, and killed or protected cultured human epithelium cells. Novel solid state Electron Paramagnetic Resonance analysis showed that the greatest amount of superoxide anions was formed during UVA irradiation of the mixed anatase and rutile crystal forms coated with an organosilane. These particles also degraded methylene blue at a similar rate to Degussa P25, a standard uncoated titanium dioxide powder and produced an increase in UVA induced apoptosis of human keratinocytes. Double Stranded Breaks were observed extensively in cells exposed to UVA irradiated mixed anatase and rutile titanium dioxide with organosilane. A new apoptotic-like cell death mechanism may have been recognised during the UVA irradiation of animal and human cells in the presence of titanium dioxide. This research concludes that mixed anatase and rutile crystal forms of titanium dioxide coated with organosilane or dimethicone may not be safe to use in sunscreen lotions. A less harmful alternative for sunscreen formulations is the manganese doped rutile particles or the alumina coated rutile powders, both of which exhibited a protective effect on cultured epithelial cells.

  5. Does titanium in ionic form display a tissue-specific distribution?

    PubMed

    Golasik, Magdalena; Wrobel, Pawel; Olbert, Magdalena; Nowak, Barbara; Czyzycki, Mateusz; Librowski, Tadeusz; Lankosz, Marek; Piekoszewski, Wojciech

    2016-06-01

    Most studies have focused on the biodistribution of titanium(IV) oxide as nanoparticles or crystals in organism. But several reports suggested that titanium is released from implant in ionic form. Therefore, gaining insight into toxicokinetics of Ti ions will give valuable information, which may be useful when assessing the health risks of long-term exposure to titanium alloy implants in patients. A micro synchrotron radiation-induced X-ray fluorescence (µ-SRXRF) was utilized to investigate the titanium distribution in the liver, spleen and kidneys of rats following single intravenous or 30-days oral administration of metal (6 mg Ti/b.w.) in ionic form. Titanium was mainly retained in kidneys after both intravenous and oral dosing, and also its compartmentalization in this organ was observed. Titanium in the liver was non-uniformly distributed-metal accumulated in single aggregates, and some of them were also enriched in calcium. Correlation analysis showed that metal did not displace essential elements, and in liver titanium strongly correlated with calcium. Two-dimensional maps of Ti distribution show that the location of the element is characteristic for the route of administration and time of exposure. We demonstrated that µ-SRXRF can provide information on the distribution of titanium in internal structures of whole organs, which helps in enhancing our understanding of the mechanism of ionic titanium accumulation in the body. This is significant due to the popularity of titanium implants and the potential release of metal ions from them to the organism.

  6. Synergy between hexavalent chromium ions and TiO2 nanoparticles inside TUD-1 in the photocatalytic oxidation of propane, a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hamdy, Mohamed S.

    2016-02-01

    Siliceous TUD-1 mesoporous material was bi-functionalized by titanium dioxide nanoparticles and hexavalent chromium ions. The synthesis was carried out by one-pot procedure based on sol-gel technique. The photocatalytic performance of the prepared material was evaluated in the oxidation of propane under the illumination of ultraviolet light (wavelength = 360 nm) and monitored by in situ Fourier transform infrared spectroscopy. The photocatalytic activity of the prepared material exhibited an extra-ordinary activity than the reference samples that contain either hexavalent chromium ions or titanium dioxide nanoparticles only, confirming the true synergy between hexavalent chromium and tetravalent titanium ions of titanium dioxide nanoparticles.

  7. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes.

    PubMed

    Canesi, Laura; Ciacci, Caterina; Vallotto, Davide; Gallo, Gabriella; Marcomini, Antonio; Pojana, Giulio

    2010-01-31

    As the nanotechnology industries increase production, nanoscale products will enter the aquatic environment, posing a possible threat to aquatic organisms. Suspension-feeding invertebrates may represent a unique target group for nanoparticle (NP) ecotoxicity, since they have highly developed processes for the cellular internalisation of nano- and microscale particles (endocytosis and phagocytosis), which are integral to key physiological functions such as intracellular digestion and cellular immunity. In the marine bivalve Mytilus, short-term exposure to nanosized carbon black (NCB) was shown to significantly affect immune parameters of immune cells, the hemocytes, in vitro. In this work, we further investigated the effects of other types of commercial NPs (C60 fullerene, TiO(2) and SiO(2) at 1, 5, 10 microg/ml) on Mytilus hemocytes. Characterization of NP suspensions in artificial sea water (ASW) was performed, indicating the formation of agglomerates of different sizes for different types of NPs. None of the NP tested significantly affected lysosomal membrane stability, indicating the lack of a major toxic effect. However, all NP suspensions induced a concentration-dependent lysozyme release, extracellular oxyradical and nitric oxide (NO) production, to a different extent and with different time courses depending on the concentration and the NP type. The inflammatory effects of NPs were mediated by rapid activation of the stress-activated p38 MAPK. The results further support the hypothesis that in bivalves the immune system represents a significant target for NPs. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Newly Developed Biocompatible Material: Dispersible Titanium-Doped Hydroxyapatite Nanoparticles Suitable for Antibacterial Coating on Intravascular Catheters.

    PubMed

    Furuzono, Tsutomu; Okazaki, Masatoshi; Azuma, Yoshinao; Iwasaki, Mitsunobu; Kogai, Yasumichi; Sawa, Yoshiki

    2017-01-01

    Thirteen patients with chlorhexidine-silver sulfadiazine-impregnated catheters have experienced serious anaphylactic shock in Japan. These adverse reactions highlight the lack of commercially available catheters impregnated with strong antibacterial chemical agents. A system should be developed that can control both biocompatibility and antibacterial activity. Hydroxyapatite (HAp) is biocompatible with bone and skin tissues. To provide antibacterial activity by using an external physical stimulus, titanium (Ti) ions were doped into the HAp structure. Highly dispersible, Ti-doped HAp (Ti-HAp) nanoparticles suitable as a coating material were developed. In 3 kinds of Ti-HAp [Ti/(Ca + Ti) = 0.05, 0.1, 0.2], the Ti content in the HAp was approximately 70% of that used in the Ti-HAp preparation, as determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). ICP-AES and X-ray diffraction showed Ti ions were well substituted into the HAp lattice. The nanoparticles were almost uniformly coated on a polyethylene (PE) sheet in a near-monolayer with a surface coverage ratio >95%. The antibacterial activity of the Ti-HAp nanoparticles containing 7.3% Ti ions and coating the sheet was evaluated by calculating the survival ratio of Pseudomonas aeruginosa on the coated sheet after ultraviolet (UV) irradiation. The Ti-HAp-coated sheet showed a 50% decrease in the number of P. aeruginosa compared with that on an uncoated control PE sheet after UV irradiation for 30 s. Key Messages: A system of biocompatibility and antibacterial activity with an on/off switch controlled by external UV stimulation was developed. The system is expected to be applicable in long-term implanted intravascular catheters. © 2017 S. Karger AG, Basel.

  10. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration.

    PubMed

    Bai, Long; Liu, Yanlian; Du, Zhibin; Weng, Zeming; Yao, Wei; Zhang, Xiangyu; Huang, Xiaobo; Yao, Xiaohong; Crawford, Ross; Hang, Ruiqiang; Huang, Di; Tang, Bin; Xiao, Yin

    2018-06-15

    Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is

  11. Gold nanoparticles on titanium and interaction with prototype protein.

    PubMed

    Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng

    2010-10-01

    Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  12. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.

    PubMed

    Krogstad, Emily A; Ramanathan, Renuka; Nhan, Christina; Kraft, John C; Blakney, Anna K; Cao, Shijie; Ho, Rodney J Y; Woodrow, Kim A

    2017-11-01

    Current approaches for topical vaginal administration of nanoparticles result in poor retention and extensive leakage. To overcome these challenges, we developed a nanoparticle-releasing nanofiber delivery platform and evaluated its ability to improve nanoparticle retention in a murine model. We individually tailored two components of this drug delivery system for optimal interaction with mucus, designing (1) mucoadhesive fibers for better retention in the vaginal tract, and (2) PEGylated nanoparticles that diffuse quickly through mucus. We hypothesized that this novel dual-functioning (mucoadhesive/mucus-penetrating) composite material would provide enhanced retention of nanoparticles in the vaginal mucosa. Equivalent doses of fluorescent nanoparticles were vaginally administered to mice in either water (aqueous suspension) or fiber composites, and fluorescent content was quantified in cervicovaginal mucus and vaginal tissue at time points from 24 h to 7d. We also fabricated composite fibers containing etravirine-loaded nanoparticles and evaluated the pharmacokinetics over 7d. We found that our composite materials provided approximately 30-fold greater retention of nanoparticles in the reproductive tract at 24 h compared to aqueous suspensions. Compared to nanoparticles in aqueous suspension, the nanoparticles in fiber composites exhibited sustained and higher etravirine concentrations after 24 h and up to 7d, demonstrating the capabilities of this new delivery platform to sustain nanoparticle release out to 3d and drug retention out to one week after a single administration. This is the first report of nanoparticle-releasing fibers for vaginal drug delivery, as well as the first study of a single delivery system that combines two components uniquely engineered for complementary interactions with mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of suspended titanium dioxide nanoparticles on cake layer formation in submerged membrane bioreactor.

    PubMed

    Zhou, Lijie; Zhang, Zhiqiang; Xia, Siqing; Jiang, Wei; Ye, Biao; Xu, Xiaoyin; Gu, Zaoli; Guo, Wenshan; Ngo, Huu-Hao; Meng, Xiangzhou; Fan, Jinhong; Zhao, Jianfu

    2014-01-01

    Effects of the suspended titanium dioxide nanoparticles (TiO2 NPs, 50 mg/L) on the cake layer formation in a submerged MBR were systematically investigated. With nanometer sizes, TiO2 NPs were found to aggravate membrane pore blocking but postpone cake layer fouling. TiO2 NPs showed obvious effects on the structure and the distribution of the organic and the inorganic compounds in cake layer. Concentrations of fatty acids and cholesterol in the cake layer increased due to the acute response of bacteria to the toxicity of TiO2 NPs. Line-analysis and dot map of energy-dispersive X-ray were also carried out. Since TiO2 NPs inhibited the interactions between the inorganic and the organic compounds, the inorganic compounds (especially SiO2) were prevented from depositing onto the membrane surface. Thus, the postponed cake layer fouling was due to the changing features of the complexes on the membrane surface caused by TiO2 NPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Listeria monocytogenes Behaviour in Presence of Non-UV-Irradiated Titanium Dioxide Nanoparticles

    PubMed Central

    Ammendolia, Maria Grazia; Iosi, Francesca; De Berardis, Barbara; Guccione, Giuliana; Superti, Fabiana; Conte, Maria Pia; Longhi, Catia

    2014-01-01

    Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts. PMID:24416327

  16. Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles.

    PubMed

    Ammendolia, Maria Grazia; Iosi, Francesca; De Berardis, Barbara; Guccione, Giuliana; Superti, Fabiana; Conte, Maria Pia; Longhi, Catia

    2014-01-01

    Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.

  17. Palladium nanoparticles formed on titanium silicate ETS-10.

    PubMed

    Lin, Christopher C H; Danaie, Mohsen; Mitlin, David; Kuznicki, Steven M

    2011-03-01

    We report that surface templated and supported palladium nanoparticles self assemble on ETS-10 type molecular sieve surfaces by simple exchange and activation procedures in the absence of a reductant. This procedure is similar to the one previously reported for silver nanoparticle self assembly on ETS-10. We observed a bimodal distribution with particle sizes ranging from 2-5 and 15-30 nm. This simple, economical method generates high concentrations (approximately 12 wt% of total composite) of uniform, metallic palladium nanoparticles that are multiply twinned and thermally stable making them potentially unique for advanced catalytic and electronic applications.

  18. Determination and identification of titanium dioxide nanoparticles in confectionery foods, marketed in South Korea, using inductively coupled plasma optical emission spectrometry and transmission electron microscopy.

    PubMed

    Kim, Namhoon; Kim, Changkyu; Jung, Soyoung; Park, Youngae; Lee, Youngju; Jo, Juyeon; Hong, Misun; Lee, Sangmi; Oh, Younghee; Jung, Kweon

    2018-06-18

    Food-grade titanium dioxide (TiO 2 ) is a common and widespread food additive in many processed foods, personal care products, and other industrial categories as it boosts the brightness and whiteness of colours. Although it is generally recognised as safe for humans, there is a growing interest in the health risks associated with its oral intake. This study quantified and identified TiO 2 nanoparticles present in confectionery foods, which are children's favourite foods, with inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM). A reliable digestion method using hot sulphuric acid and a digestion catalyst (K 2 SO 4 :CuSO 4  = 9:1) was suggested for titanium analysis. Validations of the experimental method were quite acceptable in terms of linearity, recoveries, detection limits, and quantification limits. Of all the 88 analysed foods, TiO 2 was detected in 19 products, all except three declared TiO 2 in their labelling. The mean TiO 2 content of candies, chewing gums, and chocolates were 0.36 mg g -1 , 0.04 mg g -1 , and 0.81 mg g -1 , respectively. Whitish particles isolated from the confectionery foods were confirmed as TiO 2 nanoparticles via TEM and energy dispersive X-ray spectroscopy (EDX), in which nanosized particles (<100 nm) were identified.

  19. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  20. ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells

    PubMed Central

    2014-01-01

    Ordered ZnO nanosheet arrays were grown on weaved titanium wires by a low-temperature hydrothermal method. CdS nanoparticles were deposited onto the ZnO nanosheet arrays using the successive ionic layer adsorption and reaction method to make a photoanode. Nanoparticle-sensitized solar cells were assembled using these CdS/ZnO nanostructured photoanodes, and their photovoltaic performance was studied systematically. The best light-to-electricity conversion efficiency was obtained to be 2.17% under 100 mW/cm2 illumination, and a remarkable short-circuit photocurrent density of approximately 20.1 mA/cm2 was recorded, which could attribute to the relatively direct pathways for transportation of electrons provided by ZnO nanosheet arrays as well as the direct contact between ZnO and weaved titanium wires. These results indicate that CdS/ZnO nanostructures on weaved titanium wires would open a novel possibility for applications of low-cost solar cells. PMID:24618047

  1. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    PubMed

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  2. TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia.

    PubMed

    Prasad, N K; Rathinasamy, K; Panda, D; Bahadur, D

    2008-05-01

    La(1-x)Sr(x)MnO(3), a ferromagnet with high magnetization and Curie temperature T(C) below 70 degrees C, enables its use for magnetic hyperthermia treatment of cancer with a possibility of in vivo temperature control. We found that La(0.73)Sr(0.27)MnO(3) particles of size range 20-100 nm showed saturation magnetization around 38 emu/g at 20 kOe and a T(C) value of 45 degrees C. Aqueous suspension of these nanoparticles was prepared using a polymer, acrypol 934, and the biocompatibility of the suspension was examined using HeLa cells. A good heating ability of the magnetic suspension was obtained in the presence of AC magnetic field, and it was found to increase with the amplitude of field. The suspension having concentration of 0.66 mg/mL (e.g., 0.66 mg of nanoparticles with acropyl per milliliter of culture media) was observed to be biocompatible even after 96 h of treatment, as estimated by sulforhodamine B and trypan blue dye exclusion assays. Further, the treatment with the aforementioned concentration did not alter the microtubule cytoskeleton or the nucleus of the cells. However, the bare particles (concentration of 0.66 mg of nanoparticles per milliliter of culture media, but without acropyl) decreased the viability of cell significantly. Our in vitro studies suggest that the suspension (concentration of 0.66 mg/mL) may further be analyzed for in vivo studies. Copyright 2007 Wiley Periodicals, Inc.

  3. Design and Analysis of the Warm-To Suspension Links for Jefferson Lab's 11 Gev/c Super High Momentum Spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, E.; Brindza, P.; Lassiter, S.; Fowler, M.

    2010-04-01

    This paper describes design and analysis performed for the warm-to-cold suspension links of the warm iron yoke superconducting quadrupole magnets, and superconducting dipole magnet. The results of investigation of titanium Ti-6Al-4V and Nitronic 50 stainless steel for the suspension links to support the cold mass, preloads, forces due to cryogenic temperature, and imbalanced magnetic forces from misalignments are presented. Allowable stresses at normal-case scenarios and worst-case scenarios, space constraints, and heat leak considerations are discussed. Principles of the ASME Pressure Vessel Code were used to determine allowable stresses. Optimal angles of the suspension links were obtained by calculation and finite element methods. The stress levels of suspension links at multiple scenarios are presented, discussed, and compared with the allowable stresses.

  4. Challenges associated with performing environmental research on titanium dioxide nanoparticles in aquatic environments

    EPA Science Inventory

    There are challenges associated with performing research on titanium dioxide NPs in aquatic environments particularly marine systems. A critical focus for current titanium dioxide NP research in aquatic environments needs to be on optimizing methods for differentiating naturally...

  5. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications.

    PubMed

    Sherin, Sainulabdeen; Sheeja, Sathyabhama; Sudha Devi, Rukhmini; Balachandran, Sreedharan; Soumya, Rema Sreenivasan; Abraham, Annie

    2017-09-25

    The present study deals with the preparation of stable Curcumin incorporated Titaniumdioxide Nanoparticles (CTNPs) by coprecipitation method for improving the bioavailability of curcumin and site specific drug delivery. The prepared nanoparticles were characterized by UV visible spectroscopy, FTIR, XRD, DLS, SEM and EDX. The characterization studies showed the interaction of curcumin to titanium dioxide nanoparticles. The average size of the prepared CTNPs was found to be ∼29 nm with zetapotential of-53.790 mV. In vivo and in vitro toxicological evaluations were carried out to determine the biological effect of CTNPs. In vitro parameters like cell viability, Lactate dehydrogenase (LDH) Assay, Neutral red uptake (NRU) assay and uptake of curcumin from CTNPs by the cells had been investigated. In vitro toxicity studies in THP1 and H9c2 cell lines showed that CTNPs are safe even at a dose of 200 ng. The in vivo part of the study was carried out with different doses of Curcumin (1 mg-20 mg/kg body weight), Titaniumdioxide Nanoparticles (TNPs) (1 mg-5 mg/kg Body weight) and CTNPs (5 mg-10 mg/kg Body weight) in Sprague dawley rat models to determine the pharmacokinetics and genotoxicity of the nanoparticle. This was done by analysing the parameters like SGPT, SGOT, LDH, hematological parameters and biodistribution of the nanomaterial at different organ sites. Genotoxicity of samples were done by comet assay on blood cells. No significant toxicity was observed in the parameters in samples treated group compared to controls. The overall results indicated that the CTNPs are nontoxic and is highly stable with improved site specific application compared to native curcumin and are suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A review on potential neurotoxicity of titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  7. Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Liangpeng; Yang, Xu; Huang, Yanqin; Li, Xinjun

    2017-06-01

    Titanium oxide nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution and subsequently calcined. Titanium oxide nanotubes were further decorated by TiO2 nanoparticles through in situ hydrolysis of titanium isopropoxide containing alcohol and ammonia in an aqueous medium to form the composite catalyst (TNP/TiO2NTs). The morphology and structure of TNP/TiO2NTs were characterized by scanning and transmission electron microscopy, X-ray diffraction, UV-Vis, and Raman spectra. The separation efficiency of photo-excited carriers was investigated by photoluminescence technique and photoelectrochemical behavior. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange. Due to the synergy effect caused by the interaction of titanium oxide nanotubes and TiO2 nanoparticles, the TNP/TiO2NTs composite shows efficient photogenerated carriers' separation and the increased light absorption. The photocatalytic activity was enhanced.

  8. Nanostructured medical device coatings based on self-assembled poly(lactic-co-glycolic acid) nanoparticles.

    PubMed

    Dayyoub, Eyas; Hobler, Christian; Nonnweiler, Pierina; Keusgen, Michael; Bakowsky, Udo

    2013-07-01

    Here we present a new method for providing nanostructured drug-loaded polymer films which enable control of film surface morphology and delivery of therapeutic agents. Silicon wafers were employed as models for implanted biomaterials and poly(lactic-co-glycolic acid) (PLGA) nanoparticles were assembled onto the silicon surface by electrostatic interaction. Monolayers of the PLGA particles were deposited onto the silicon surface upon incubation in an aqueous particle suspension. Particle density and surface coverage of the silicon wafers were varied by altering particle concentration, incubation time in nanoparticle suspension and ionic strength of the suspension. Dye loaded nanoparticles were prepared and assembled to silicon surface to form nanoparticle films. Fluorescence intensity measurements showed diffusion-controlled release of the dye over two weeks and atomic force microscopy (AFM) analysis revealed that these particles remained attached to the surface during the incubation time. This work suggests that coating implants with PLGA nanoparticles is a versatile technique which allows drug release from the implant surface and modulation of surface morphology. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Delgado, A. V.; González-Caballero, F.; Ramos-Tejada, M. M.

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles.

  10. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  12. Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    This dissertation provides a fundamental understanding of the process for generating nanoparticles with controlled size distribution and of predicting nanoparticle stability for drug delivery and sustained release. We developed and characterized a novel technology to generate organic and inorganic nanoparticles protected by biocompatible and biodegradable polymers with precisely controlled size and size distribution. Computational fluid mechanics (CFD) together with experimental results provided details of the micromixing in the mixer. The particle size dependence on Reynolds number and supersaturation was illustrated. The study of the fundamental mass transfer phenomena leading to Ostwald ripening enables quantitative prediction of the time evolution of nanoparticles with monodistribution and relatively broader multi-distribution using beta-carotene and polystyrene-b-poly(ethylene oxide) (PS-b-PEO) as a model system. Negatively charged latex particles were used to exam the attachment of the diblock copolymer, PS-b-PEO, on the surface. The stability provided by the Columbic repulsion was replaced by steric stabilization. The attachment of the block copolymers on the surface of the colloids depends on the flow field, i.e. Reynolds number, of the mixing process. The slow degradation of poly(epsilon-caprolactone) (PCL) and poly(gamma-methyl-epsilon-caprolactone) (PMCL) was demonstrated. The slow degradation ensures long-term stability and long-term blood circulation of the polymeric nanoparticles. As a practical application, we formulate the anti-tuberculosis drug, rifampicin, into nanoparticles by conjugation to other hydrophobic molecules (such as vitamin E, PCL and 2-ethylhexyl vinyl ether) by pH sensitive cleavable chemical bonds to increase the drug loading, return stability of the nanoparticle suspension, and control drug release. The in vitro release profiles were provided by using HPLC and E.coli growth inhibition on LB agar plates. The prodrug nanoparticle

  13. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  14. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study.

    PubMed

    Felemban, Nayef H; Ebrahim, Mohamed I

    2017-01-13

    The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3 M Unitek, Monrovia, USA) with different concentrations (0.5% weight nonofiller and 1% weight nanofiller). The size of nanoparticle was 70-80 nm for ZrO2 and less than 50 nm for TiO2. For measuring the shear bond strength of the three groups of orthodontic adhesives [Transbond (control), Transbond mixed with 0.5% weight ZrO2-TiO2, and Transbond mixed with 1% weight ZrO2-TiO2], 30 freshly extracted human first premolars were used and bonded with stainless steel metal brackets (Dentaurum®, Discovery®, Deutschland), using the 3 orthodontic adhesives and 3 M Unitek; Transbond TM Plus Self-Etching Primer (10 samples in each group). The recorded values of compressive strength and tensile strength (measured separately on 10 samples of orthodontic adhesives (add the 3 D size of sample, light cured for 40 s on both sides) of each orthodontic adhesives), as well as the shear bond strength in Mega Pascal unit (MPa) were collected and exposed to one-way analysis of variance (ANOVA) and Tukey's post-hoc tests. orthodontic adhesive with 1% weight ZrO2-TiO2 showed the highest mean compressive (73.42 ± 1.55 MPa, p: 0.003, F: 12.74), tensile strength (8.65 ± 0.74 MPa, p: 0.001, F: 68.20), and shear bond strength (20.05 ± 0.2 MPa, p: 0.001, F: 0.17). Adding ZrO2-TiO2 nanoparticle to orthodontic adhesive increased compressive strength, tensile strength, and shear bond strength in vitro, but in vivo studies and randomized clinical trials are needed to validate the present findings.

  15. Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning

    2016-12-01

    Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.

  16. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.

    PubMed

    Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M

    2017-11-21

    Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.

  17. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  18. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    NASA Astrophysics Data System (ADS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  19. Nonactivated titanium-dioxide nanoparticles promote the growth of Chlamydia trachomatis and decrease the antimicrobial activity of silver nanoparticles.

    PubMed

    Bogdanov, A; Janovák, L; Lantos, I; Endrész, V; Sebők, D; Szabó, T; Dékány, I; Deák, J; Rázga, Z; Burián, K; Virok, D P

    2017-11-01

    Chlamydia trachomatis and herpes simplex virus (HSV) are the most prevalent bacterial and viral sexually transmitted infections. Due to the chronic nature of their infections, they are able to interact with titanium-dioxide (TiO 2 ) nanoparticles (NPs) applied as food additives or drug delivery vehicles. The aim of this study was to describe the interactions of these two prevalent pathogens with the TiO 2 NPs. Chlamydia trachomatis and HSV-2 were treated with nonactivated TiO 2 NPs, silver NPs and silver decorated TiO 2 NPs before infection of HeLa and Vero cells. Their intracellular growth was monitored by quantitative PCR. Unexpectedly, the TiO 2 NPs (100 μg ml -1 ) increased the growth of C. trachomatis by approximately fourfold, while the HSV-2 replication was not affected. Addition of TiO 2 to silver NPs decreased their antimicrobial activity against C. trachomatis up to 27·92-fold. In summary, nonactivated TiO 2 NPs could increase the replication of C. trachomatis and decrease the antimicrobial activity of silver NPs. The food industry or drug delivery use of TiO 2 NPs could enhance the growth of certain intracellular pathogens and potentially worsen disease symptoms, a feature that should be further investigated. © 2017 The Society for Applied Microbiology.

  20. Titanium

    USGS Publications Warehouse

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  1. Fluorometric estimation of amino acids interaction with colloidal suspension of FITC functionalized graphene oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dave, Kashyap; Dhayal, Marshal

    2017-02-01

    A hydrosol approach developed to synthesize fluorescence quenched fluorescein isothiocyanate (FITC) functionalized colloidal suspension of graphene oxide nanoparticles (GONP). UV-vis spectroscopic measurements showed characteristic peak at 236 nm and 300 nm due to pi-pi* interaction in Cdbnd C and n-pi* transition in Cdbnd O bond of GONP, respectively. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra showed reduced intensity of 1429 cm-1 IR band of GONP due to the electrostatic and pi-pi interactions of FITC with GONP in FITC-GONP. ATR-FTIR spectra of different amino acid co-functionalised FITC-GONP showed an increase in the FTIR band intensity at 1429 cm-1 which was significantly reduced due to electrostatic/pi-pi interactions of FITC with GONP in the absence of the amino acids. A peak at 1084 cm-1 in ATR-FTIR spectra appears which confirms the interaction between amine group of amino acids and sbnd COO- groups at GONP surface. The FITC interaction with GONP lead to fluorescence resonance energy transfers (FRET) and resulted in a liner decrease in the FITC fluorescence with an increase of GONP concentration. An increase in the reappearance of FITC fluorescence observed while the amino acid concentration was increased in co-functionalised FITC-GONP. The quantified amount of reappeared fluorescence of FITC in amino acid co-functionalised FITC-GONP depends on the concentration, polar and non-polar nature of amino acids. The reappearance of FITC from the surface of FITC-GONP with the addition of amino acid was found to be consistent with the organic substitute, size of amino acids and their functionalities. Therefore, FRET based method using FITC-GONP colloidal suspension may have potential application in determining the binding nature of biomolecules with GONP for biomedical applications.

  2. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    PubMed Central

    2014-01-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture. PMID:25177222

  3. Medical equipment bio-capability processes using the atmospheric plasma-sprayed titanium coating

    NASA Astrophysics Data System (ADS)

    Rezaei, F.; Saviz, S.; Ghoranneviss, M.

    2017-12-01

    Antibacterial surfaces such as titanium coatings are able to have capability in the human body environment. In this study, titanium coatings are deposited on the 316 stainless steel substrates by a handmade plasma spray system. Some mechanical, chemical properties and microstructure of the created titanium layer are determined to evaluate the quality of coating. The XRD, SEM, adhesion tests from cross cut and corrosion test by potentiodynamic are used. During the different stages, some of the parameters are changed in different samples to achieve the best quality in the coating. It is shown that by increasing the spray time, the production of nanoparticles begins. On the other hand, the best layers are created when the spray main gas flow rate has a certain amount.

  4. Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems.

    PubMed

    Giovanni, Marcella; Tay, Chor Yong; Setyawati, Magdiel Inggrid; Xie, Jianping; Ong, Choon Nam; Fan, Rongli; Yue, Junqi; Zhang, Lifeng; Leong, David Tai

    2015-12-01

    Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by-products contained within the effluent of domestic and industrial run-off. The partial recycling of water laden with ENPs, albeit at ultra-low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water-relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico-predicted water-relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc.

  5. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  6. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    PubMed

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to

  7. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    NASA Astrophysics Data System (ADS)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  8. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  9. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.

    PubMed

    Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2015-05-19

    Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.

  10. High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube

    NASA Astrophysics Data System (ADS)

    Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood

    2017-11-01

    Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.

  11. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants.

    PubMed

    Zhao, Pengkun; Liu, Hongyu; Deng, Hongbing; Xiao, Ling; Qin, Caiqin; Du, Yumin; Shi, Xiaowen

    2014-11-01

    In this study, the complex pH and electro responsive system made of chitosan hydrogel with embedded mesoporous silica nanoparticles (MSNs) was evaluated as a tunable drug release system. As a model drug, ibuprofen (IB) was used; its adsorption in MSNs was evidenced by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). In order to prepare the complex drug release system, the loaded particles IB-MSNs were dispersed in chitosan solution and then the complex IB-MSNs/chitosan film of 2mm thickness was deposited as a hydrogel on the titanium electrode. The codeposition of components was performed under a negative biasing of the titanium electrode at -0.75 mA/cm2 current density during 30 min. The IB release from the IB-MSNs/chitosan hydrogel film was studied as dependent on pH of the release media and electrical conditions applied to the titanium plate. When incubating the complex hydrogel film in buffers with different pH, the IB release followed a near zero-order profile, though its kinetics varied. Compared to the spontaneous IB release from the hydrogel in 0.9% NaCl solution (at 0 V), the application of negative biases to the coated titanium plate had profound effluences on the release behavior. The release was retarded when -1.0 V was applied, but a faster kinetics was observed at -5.0 V. These results imply that a rapid, mild and facile electrical process for covering titanium implants by complex IB-MSNs/chitosan hydrogel films can be used for controlled drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Depositing nanoparticles on a silicon substrate using a freeze drying technique.

    PubMed

    Sigehuzi, Tomoo

    2017-08-28

    For the microscopic observation of nanoparticles, an adequate sample preparation is an essential part of this task. Much research has been performed for usable preparation methods that will yield aggregate-free samples. A freeze drying technique, which only requires a -80  ° C freezer and a freeze dryer, is shown to provide an on-substrate dispersion of mostly isolated nanoparticles. The particle density could be made sufficiently high for efficient observations using atomic force microscopy. Since this sandwich method is purely physical, it could be applied to deposit various nanoparticles independent of their surface chemical properties. Suspension film thickness, or the dimensionality of the suspension film, was shown to be crucial for the isolation of the particles. Silica nanoparticles were dispersed on a silicon substrate using this method and the sample properties were examined using atomic force microscopy.

  13. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study

    NASA Astrophysics Data System (ADS)

    Shaikh, S.; Lafdi, K.; Ponnappan, R.

    2007-03-01

    The present work involves a study on the thermal conductivity of nanoparticle-oil suspensions for three types of nanoparticles, namely, carbon nanotubes (CNTs), exfoliated graphite (EXG), and heat treated nanofibers (HTT) with PAO oil as the base fluid. To accomplish the above task, an experimental analysis is performed using a modern light flash technique (LFA 447) for measuring the thermal conductivity of the three types of nanofluids, for different loading of nanoparticles. The experimental results show a similar trend as observed in literature for nanofluids with a maximum enhancement of approximately 161% obtained for the CNT-PAO oil suspension. The overall percent enhancements for different volume fractions of the nanoparticles are highest for the CNT-based nanofluid, followed by the EXG and the HTT. The findings from this study for the three different types of carbon nanoparticles can have great potential in the field of thermal management.

  14. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive

    PubMed Central

    Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana

    2016-01-01

    Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887

  15. De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials

    NASA Astrophysics Data System (ADS)

    Gubernat, Maciej; Tomala, Janusz; Frohs, Wilhelm; Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw

    2016-03-01

    The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

  16. In Vitro Therapeutic Potential of Tio2 Nanoparticles Against Human Cervical Carcinoma Cells.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Young, Jung A; Hoon, Hur Ji; Lee, Hannah; Lee, SooBin; Kim, Doo Hwan

    2016-06-01

    Cellular and physiological responses to the degradation products of titanium implants are key indicators to determine the quality of biocompatibility of implant devices. The present study investigated titanium dioxide (TiO2) nanoparticle-induced cytotoxicity, apoptotic morphological modification, and apoptotic-related gene expressions in the human cervical carcinoma cells. TiO2 nanoparticle-induced cytotoxicity on cancer cells was determined by the sulphorhodamine-B assay. Apoptotic morphological modification such as nuclear fragmentation, rounding, cytoplasm shrinkage, loss of adhesion, and reduced cell volume were observed by an inverted, fluorescence, and confocal laser scanning microscope (CLSM). The DNA fragmentation study showed the occurrence of necrosis and apoptosis in nanoparticle-treated cells. The qPCR study showed the increased p53 and bax mRNA expression in the nanoparticle-treated cells compared to control. In addition, caspase 3 activity was increased in nanoparticle-treated cells, which indicates the increased auto-catalysis. Taking all these data together, it may suggest that TiO2 nanoparticle could inhibit the growth of HeLa cells.

  17. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions.

    PubMed

    Dauda, Suleiman; Chia, Mathias Ahii; Bako, Sunday Paul

    2017-06-01

    The broad application of titanium dioxide nanoparticles (n-TiO 2 ) in many consumer products has resulted in the release of substantial quantities into aquatic systems. While n-TiO 2 have been shown to induce some unexpected toxic effects on aquatic organisms such as microalgae, the influence of changing nutrient conditions on the toxicity of the metal has not been investigated. We evaluated the toxicity of n-TiO 2 to Chlorella vulgaris under varying nitrogen conditions. Limited nitrogen (2.2μM) decreased growth and biomass (dry weight and pigment content), while lipid peroxidation (malondialdehyde content), glutathione S-transferase activity (GST) and peroxidase (POD) activity were increased. Similarly, exposure to n-TiO 2 under replete nitrogen condition resulted in a general decrease in growth and biomass, while GST and POD activities were significantly increased. The combination of limited nitrogen with n-TiO 2 exposure further decreased growth and biomass, and increased GST and POD activities of the microalga. These results suggest that in addition to the individual effects of each investigated condition, nitrogen limitation makes C. vulgaris more susceptible to the effects of n-TiO 2 with regard to some physiological parameters. This implies that the exposure of C. vulgaris and possibly other green algae to this nanoparticle under limited or low nitrogen conditions may negatively affect their contribution to primary production in oligotrophic aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells

    PubMed Central

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242

  19. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  20. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats.

    PubMed

    Pujalté, Igor; Dieme, Denis; Haddad, Sami; Serventi, Alessandra Maria; Bouchard, Michèle

    2017-01-04

    This study focused on the generation of aerosols of titanium dioxide (TiO 2 ) nanoparticles (NPs) and their disposition kinetics in rats. Male Sprague-Dawley rats were exposed by inhalation to 15mg/m 3 of anatase TiO 2 NPs (∼20nm) during 6h. Rats were sacrificed at different time points over 14days following the onset of inhalation. Ti levels were quantified by ICP-MS in blood, tissues, and excreta. Oxidative damages were also monitored (MDA). Highest tissue levels of Ti were found in lungs; peak values were reached only at 48h followed by a progressive decrease over 14days, suggesting a persistence of NPs at the site-of-entry. Levels reached in blood, lymph nodes and other internal organs (including liver, kidney, spleen) were circa one order of magnitude lower than in lungs, but the profiles were indicative of a certain translocation to the systemic circulation. Large amounts were recovered in feces compared to urine, suggesting that inhaled NPs were eliminated mainly by mucociliary clearance and ingested. TiO 2 NPs also appeared to be partly transferred to olfactory bulbs and brain. MDA levels indicative of oxidative damage were significantly increased in lungs and blood at 24h but this was not clearly reflected at later times. Translocation and clearance rates of inhaled NPs under different realistic exposure conditions should be further documented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Facile synthesis of titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles for highly specific enrichment and analysis of intact phosphoproteins.

    PubMed

    Wang, Hao; Tian, Zhixin

    2018-06-06

    Analysis of phosphoproteins always faces the challenge of low stoichiometry, which demands highly selective and efficient enrichment in the initial sample preparation. Here we report our synthesis of the novel titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles (Ti 4+ -ATP-NPs) for efficient enrichment of intact phosphoproteins. The average diameter of Ti 4+ -ATP-NPs was about 128 nm with good dispersibility and the saturated adsorption capacity for β-casein was 1046.5 mg/g. In addition, Ti 4+ -ATP-NPs exhibited high specificity and selectivity in enriching phosphoproteins from both standard protein mixtures and complex biological samples (non-fat milk, chicken egg white and mouse heart tissue extract) as demonstrated by SDS-PAGE. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    PubMed

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Distribution of iron oxide core-titanium dioxide shell nanoparticles in VX2 tumor bearing rabbits introduced by two different delivery modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Refaat, Tamer; West, Derek; El Achy, Samar

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less

  4. Distribution of iron oxide core-titanium dioxide shell nanoparticles in VX2 tumor bearing rabbits introduced by two different delivery modalities

    DOE PAGES

    Refaat, Tamer; West, Derek; El Achy, Samar; ...

    2016-08-03

    This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Bothmore » IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. Furthermore, this difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.« less

  5. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    PubMed Central

    Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268

  6. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  7. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  8. Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS.

    PubMed

    Taboada-López, María Vanesa; Iglesias-López, Sara; Herbello-Hermelo, Paloma; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-08-14

    Applicability of single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) using dwell times equal to or shorter than 100 μs has been tested for assessing titanium dioxide nanoparticles (TiO 2 NPs) in bivalve mollusks. TiO 2 NPs isolation from fresh mollusk tissues was achieved by ultrasound assisted enzymatic hydrolysis procedure using a pancreatin/lipase mixture. Optimum extraction conditions imply ultrasonication (60% amplitude) for 10 min, and 7.5 mL of a solution containing 3.0 g L -1 of pancreatin and lipase (pH 7.4). The developed method was found to be repeatable (repeatability of 17% for the over-all procedure, TiO 2 NPs concentration of 5.33 × 10 7  ± 8.89 × 10 6 , n = 11), showing a limit of detection of 5.28 × 10 6 NPs g -1 , and a limit of detection in size of 24.4-30.4 nm, based on the 3σ criteria, and on the 3σ/5 σ criteria, respectively. The analytical recovery within the 90-99% range (use of TiO 2 NPs standards of 50 nm at 7 and 14 μg L -1 as Ti). Several bivalve mollusks (clams, cockles, mussels, razor clams, oysters and variegated scallops) were analyzed for total titanium (ICP-MS after microwave assisted acid digestion), and for TiO 2 NPs by the proposed method. TiO 2 NPs concentrations were within the 2.36 × 10 7 -1.25 × 10 8 NPs g -1 range, and the most frequent sizes were from 50 to 70 nm. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.

  10. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays

    PubMed Central

    Besinis, Alexandros; De Peralta, Tracy

    2014-01-01

    Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties. This study investigated the toxicity of silver (Ag), titanium dioxide and silica nanoparticles (NPs) against the oral pathogenic species of Streptococcus mutans, compared to the routine disinfectant, chlorhexidine. The bacteria were assessed using the minimum inhibitory concentration assay for growth, fluorescent staining for live/dead cells, and measurements of lactate. All the assays showed that Ag NPs had the strongest antibacterial activity of the NPs tested, with bacterial growth also being 25-fold lower than that in chlorhexidine. The survival rate of bacteria under the effect of 100 mg l−1 Ag NPs in the media was 2% compared to 60% with chlorhexidine, while the lactate concentration was 0.6 and 4.0 mM, respectively. Silica and titanium dioxide NPs had limited effects. Dialysis experiments showed negligible silver dissolution. Overall, Ag NPs were the best disinfectant and performed better than chlorhexidine. Improvements to the MIC assay are suggested. PMID:23092443

  11. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection.

    PubMed

    Sharma, Atul; Hayat, Akhtar; Mishra, Rupesh K; Catanante, Gaëlle; Bhand, Sunil; Marty, Jean Louis

    2015-09-22

    We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO₂) quenching based aptasensing platform for detection of target molecules. TiO₂ quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO₂ surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO₂, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%-99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte.

  12. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    PubMed

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  13. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    NASA Astrophysics Data System (ADS)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  14. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    DOE PAGES

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.; ...

    2016-01-01

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutionsmore » was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.« less

  15. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutionsmore » was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.« less

  16. Comparative study of Eyring and Carreau fluids in a suspension of dust and nickel nanoparticles with variable conductivity

    NASA Astrophysics Data System (ADS)

    Mamatha Upadhya, S.; Mahesha; Raju, C. S. K.

    2018-04-01

    A theoretical analysis is carried out to investigate the magnetohydrodynamic unsteady flow of Eyring-Powell and Carreau non-Newtonian fluids in a suspension of dust and nickel nanoparticles by considering variable thermal conductivity and thermal radiation. Dispersion of nickel nanoparticles in dusty fluids finds applications in heat exchanger systems, rechargeable batteries, chemical catalysts, metallurgy, conducting paints, magnetic recording media, drug delivery, nanofibers, textiles, etc. The initially arising set of physical governing partial differential equations is transformed to ordinary differential equations (ODEs) with the aid of similarity transformations. Consequentially, the nonlinear ODEs are solved numerically through the Runge-Kutta Fehlberg scheme (RKFS). The computational results for non-dimensional temperature and velocity profiles are presented through graphs. Furthermore, the numerical values of friction factor and heat transfer rate are tabulated numerically for the unsteady and steady cases of the Eyring and Carreau fluid cases and of the dusty non-Newtonian (φ=0) and the dusty non-Newtonian nanofluid (φ≠ 0) cases of the unsteady flow. We also validated the present results with previous published studies and found them to be highly satisfactory. The formulated model reveals that the rate of heat transfer is higher in the mixture of the nickel + Eyring-Powell case compared to the nickel + Carreau case. From this we can highlight that, depending on the industrial appliances, we can use heating or cooling processes for Eyring and Carreau fluids, respectively.

  17. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization

  18. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    PubMed

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  20. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  1. Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Sekhar, K. R.; Ibrahim, S. M.; Lorenzini, G.; Viswanatha Reddy, G.; Lorenzini, E.

    2017-05-01

    In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge-Kutta-based Newton's technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.

  2. [TITANIUM NICKELIDE TECHNOLOGIES IN MINIMALLY INVASIVE SURGERY OF KIDNEY AND UPPER URINARY TRACT].

    PubMed

    Feofilov, L V

    2015-01-01

    The most common pathology of the kidney and upper urinary tract includes nephrolithiasis, ureteral strictures and renal cysts. In the treatment of patients with these diseases, the majority of surgeons prefer minimally invasive techniques, including endoscopic surgery. The complication rate of percutaneous surgery is a major factor in encouraging the search for new treatments. We have analyzed the results of 402 x-ray-endoscopic operations performed with the use of technologies based on titanium nickelide materials in patients with nephrolithiasis, ureteral strictures and kidney cysts. The high effectiveness and reliability of porous titanium nickelide cryoapplicator was noted in control of percutaneous channel bleeding and prevention. The proposed suspension nephropexy with fine titanium granules in coexisting nephrolithiasis and nephroptosis demonstrated 1.5 times greater effectiveness compared to the traditional nephropexy, reducing duration of nephrostomy and rehabilitation by almost 3 times. The proposed methods of intubation by permanent and temporary stents with shape memory after percutaneous ureteropelvic junction stricture correction are promising in the treatment of patients with this pathology of the upper urinary tract. Application of titanium nickelide implants in simple renal cyst surgery has led to a significant increase in the effectiveness of these operations, improvement in long-term results and patients' quality of life.

  3. Comparative study on the uptake and bioimpact of metal nanoparticles released into environment

    NASA Astrophysics Data System (ADS)

    Andries, Maria; Pricop, Daniela; Grigoras, Marian; Lupu, Nicoleta; Sacarescu, Liviu; Creanga, Dorina; Iacomi, Felicia

    2015-12-01

    Metallic particles of very small size are ubiquitously released in the air, water and soil from various natural and artificial sources - the last ones with enhanced extent since nanotechnology development accelerated exponentially. In this study we focused on the impact of metal nanoparticles in vegetal species of agroindustrial interest namely the maize (Zea mais L.). Laboratory simulation of environmental pollution was carried out by using engineered nanoparticles of two types: iron oxides with magnetic properties and gold nanoparticles supplied in the form of dilutes stable suspensions in the culture medium of maize seedlings. Magnetic nanoparticle (MNPs) preparation was performed by applying chemical route from iron ferric and ferrous precursor salts in alkali reaction medium at relatively high temperature (over 80 °C). Gold nanoparticles (GNPs) synthesis was accomplished from auric hydrochloride acid in alkali reaction medium in similar temperature conditions. In both types of metallic nanoparticles citrate ions were used as coating shell with role of suspension stabilization. Plantlet response was assessed at the level of assimilatory pigment contents in green tissue of seedlings in early ontogenetic stages.

  4. Atomic insights into nanoparticle formation of hydroxyfluorinated anatase featuring titanium vacancies

    DOE PAGES

    Li, Wei; Body, Monique; Legein, Christophe; ...

    2016-06-28

    Anatase TiO 2 with exposed highly reactive (001) surface is commonly prepared using solution-based synthesis in the presence of a fluorinating agent acting as a structure directing agent. Here, the solvothermal reaction of titanium tetraisopropoxide in the presence of aqueous HF has resulted in the stabilization of an oxyhydroxyfluorinated anatase phase featuring cationic vacancies. In the present work, we have studied its formation mechanism, revealing a solid-state transformation of a highly defective anatase phase having a hydroxyfluoride composition that subsequently evolves through an oxolation reaction into an oxyhydroxyfluoride phase. Importantly, this work confirms that titanium alkoxide precursors can react withmore » HF via a fluorolysis process yielding fluorinated molecular precursors, which further condense to produce new composition and structural features deviating from a well ordered anatase network.« less

  5. Electrospray methodologies for characterization and deposition of nanoparticles

    NASA Astrophysics Data System (ADS)

    Modesto Lopez, Luis Balam

    Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was

  6. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Gardon, M.; Guilemany, J. M.

    2014-04-01

    Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.

  7. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  8. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    DOEpatents

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  9. Core-Shell Photonic Nanoparticles for Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2017-10-11

    photocatalytic activity of semiconducting materials. They synthesized and functionalized titanium dioxide nanoparticles with a partial shell of gold...Their research also characterized the photocatalytic activity . The second area was the tuning the dielectric environment of the nanoparticles with think...successful investigation of bimetallic nanoshells that enhance the photocatalytic activity of semiconducting materials. Our earlier work focused on the

  10. Efficiency of a Photoreactor Packed with Immobilized Titanium Dioxide Nanoparticles in the Removal of Acid Orange 7.

    PubMed

    Sheidaei, Behnaz; Behnajady, Mohammad A

    2016-05-01

    In this paper, the removal efficiency of Color Index Acid Orange 7 (AO7) as a model contaminant was investigated in a batch-recirculated photoreactor packed with immobilized titanium dioxide type P25 nanoparticles on glass beads. The effects of different operational parameters such as the initial concentration of AO7, the volume of solution, the volumetric flowrate, and the light source power in the photoreactor were investigated. The results indicate that the removal percent increased with the rise in volumetric flowrate and power of the light source, but decreased with the rise of the initial concentration of AO7 and the volume of solution. The AO7 degradation was followed through total organic carbon, gas chromatography/mass spectroscopy (GC/MS), and mineralization products analysis. The ammonium and sulfate ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms, respectively. The results of GC/MS revealed the production of 1-indanone, 1-phthalanone, and 2-naphthalenol as intermediate products for the removal of AO7 in this process.

  11. Inorganic nanoparticles as nucleic acid transporters into eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Amirkhanov, R. N.; Zarytova, V. F.; Zenkova, M. A.

    2017-02-01

    The review is concerned with inorganic nanoparticles (gold, titanium dioxide, silica, iron oxides, calcium phosphate) used as nucleic acid transporters into mammalian cells. Methods for the synthesis of nanoparticles and approaches to surface modification through covalent or noncovalent attachment of low- or high-molecular-weight compounds are considered. The data available from the literature on biological action of nucleic acids delivered into the cells by nanoparticles and on the effect of nanoparticles and their conjugates and complexes on the cell survival are summarized. Pathways of cellular internalization of nanoparticles and the mechanism of their excretion, as well as the ways of release of nucleic acids from their complexes with nanoparticles after the cellular uptake are described. The bibliography includes 161 references.

  12. Titanium distribution in swimming pool water is dominated by dissolved species.

    PubMed

    David Holbrook, R; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-10-01

    The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. Published by Elsevier Ltd.

  13. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles.

    PubMed

    Li, Shibin; Ma, Hongbo; Wallis, Lindsay K; Etterson, Matthew A; Riley, Benjamin; Hoff, Dale J; Diamond, Stephen A

    2016-01-15

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM). In this study, a series of experiments was conducted to study the impacts of Suwannee River natural organic matter (SRNOM) on phototoxicity and particle behaviors of nano-TiO2. For Daphnia magna, after the addition of 5mg/L SRNOM, LC50 value decreased significantly from 1.03 (0.89-1.20) mg/L to 0.26 (0.22-0.31) mg/L. For zebrafish larvae, phototoxic LC50 values were 39.9 (95% CI, 25.9-61.2) mg/L and 26.3 (95% CI, 18.3-37.8) mg/L, with or without the presence of 5mg/L SRNOM, respectively. There was no statistically significant change of these LC50 values. The impact of SRNOM on phototoxicity of nano-TiO2 was highly dependent on test species, with D. magna being the more sensitive species. The impact on particle behavior was both qualitatively and quantitatively examined. A global predictive model for particle behavior was developed with a three-way interaction of SRNOM, TiO2 concentration, and time and an additive effect of ionic strength. Based on power analyses, 96-h exposure in bioassays was recommended for nanoparticle-NOM interaction studies. The importance of reactive oxygen species (ROS) quenching of SRNOM was also systematically studied using a novel exposure system that isolates the effects of environmental factors. These experiments were conducted with minimal impacts of other important interaction mechanisms (NOM particle stabilization, NOM UV attenuation, and NOM photosensitization). This study highlighted both the particle stabilization and ROS quenching effects of NOM on nano-TiO2 in an aquatic system. There is an urgent need for representative test materials, together with key environmental factors, for future risk assessment and regulations of nanomaterials. Copyright

  14. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    NASA Astrophysics Data System (ADS)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  15. High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction

    DOE PAGES

    Tian, Xinlong; Tang, Haibo; Luo, Junming; ...

    2017-04-25

    A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less

  16. High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xinlong; Tang, Haibo; Luo, Junming

    A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less

  17. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  18. Comparative evaluation of the three different surface treatments - conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An in vitro study.

    PubMed

    Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S

    2015-04-01

    The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial.

  19. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    PubMed

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p < 0.05), and the threshold decreased to 10 μg L(-1) with prolonged exposure (36 h, p < 0.05). However, AOA were not considerably affected in any of the tested conditions (p > 0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  20. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent

    NASA Astrophysics Data System (ADS)

    Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh

    2015-12-01

    Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.

  1. Titanium dioxide nanoparticle-induced cytotoxicity and the underlying mechanism in mouse myocardial cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yingjun; Hong, Fashui; Wang, Ling

    2017-11-01

    Exposure to fine particulate matter (PM) is known to cause cardiovascular disease. While extensive research has focused on the risk of atmospheric PM to public health, particularly heart disease, limited studies to date have attempted to clarify the molecular mechanisms underlying myocardial cell damage caused by exposure to titanium dioxide nanoparticles (TiO2 NPs). Data from the current investigation showed that TiO2 NPs are deposited in myocardial mitochondria via the blood circulation accompanied by obvious ultrastructural changes and impairment of mitochondrial structure and function in mouse myocardial cells, including reduction in mitochondrial membrane potential and ATP production, aggravation of oxidative stress along with increased levels of reactive oxygen species, malondialdehyde and protein carbonyl, and decreased glutathione content and enzymatic activities, including superoxide dismutase and glutathione peroxidase. Furthermore, TiO2 NPs induced a significant decrease in the activities of complex I, complex II, complex III, complex IV, succinate dehydrogenase, NADH oxidase, Ca2+-ATPase, Na+/K+-ATPase, and Ca2+/Mg2+-ATPase, and upregulation of cytokine expression (including cytochrome c, caspase-3, and p-JNK) in mitochondria-mediated apoptosis while downregulating Bcl-2 expression in mouse myocardial cells. Our results collectively indicate that chronic exposure to TiO2 NPs induces damage in mitochondrial structure and function as well as mitochondria-mediated apoptosis in mouse myocardial cells, which may be closely associated with heart disease in animals and humans.

  2. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  3. In vitro and in vivo toxicity assessment of nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Sharma, Neha; Maitra, S. S.

    2017-11-01

    Nanotechnology has revolutionized gene therapy, diagnostics and environmental remediation. Their bulk production, uses and disposal have posed threat to the environment. With the appearance of these nanoparticles in the environment, their toxicity assessment is an immediate concern. This review is an attempt to summarize the major techniques used in cytotoxity determination. The review also presents a detailed and elaborative discussion on the toxicity imposed by different types of nanoparticles including carbon nanotubes, gold nanoparticles, silver nanoparticles, quantum dots, fullerenes, aluminium nanoparticles, zinc nanoparticles, iron nanoparticles, titanium nanoparticles and silica nanoparticles. It discusses the in vitro and in vivo toxological effects of nanoparticles on bacteria, microalgae, zebrafish, crustacean, fish, rat, mouse, pig, guinea pig, human cell lines and human. It also discusses toxological effects on organs such as liver, kidney, spleen, sperm, neural tissues, liver lysosomes, spleen macrophages, glioblastoma cells, hematoma cells and various mammalian cell lines. It provides information about the effects of nanoparticles on the gene-expression, growth and reproduction of the organisms.

  4. Study of physical properties of metal oxide nanoparticles obtained in acoustoplasma discharge

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Kazaryan, M. A.; Zakharyan, A. R.; Bodryshev, V. V.; Kirichenko, M. N.; Shevchenko, S. N.; Yakunin, V. G.; Timoshenko, V. Y.; Bychenko, A. B.

    2018-04-01

    Nanoparticles of tungsten, copper, iron, and zinc oxides were synthesized in acoustoplasma discharge. Their size distribution was studied by electron microscopy and laser correlation spectroscopy. Ultrasound was found to narrow significantly the size distribution width of zinc oxide nanoparticles. Water suspensions of zinc oxide nanoparticles showed photoluminescence in red and near infrared spectral ranges, which makes them a promising material for luminescent diagnostics of biological systems.

  5. A new route for the synthesis of titanium silicalite-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasile, Aurelia, E-mail: aurelia_vasile@yahoo.com; Busuioc-Tomoiaga, Alina Maria; Catalysis Research Department, ChemPerformance SRL, Iasi 700337

    2012-01-15

    Graphical abstract: Well-prepared TS-1 was synthesized by an innovative procedure using inexpensive reagents such as fumed silica and TPABr as structure-directing agent. This is the first time when highly crystalline TS-1 is obtained in basic medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source has been prevented by titanium complexation with acetylacetone before structuring gel. Highlights: Black-Right-Pointing-Pointer TS-1 was obtained using cheap reagents as fumed silica and tetrapropylammonium bromide. Black-Right-Pointing-Pointer First time NaOH was used as source of OH{sup -} ions required for crystallization process. Black-Right-Pointing-Pointer The hydrolysis Ti alkoxides wasmore » controlled by Ti complexation with 2,4-pentanedione. -- Abstract: A new and efficient route using inexpensive reagents such as fumed silica and tetrapropylammonium bromide is proposed for the synthesis of titanium silicalite-1. High crystalline titanium silicalite-1 was obtained in alkaline medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source with formation of insoluble oxide species was prevented by titanium complexation with before structuring gel. The final solids were fully characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance, Raman and atomic absorption spectroscopies, as well as nitrogen sorption analysis. It was found that a molar ratio Ti:Si of about 0.04 in the initial reaction mixture is the upper limit to which well formed titanium silicalite-1 with channels free of crystalline or amorphous material can be obtained. Above this value, solids with MFI type structure containing both Ti isomorphously substituted in the network and extralattice anatase nanoparticles inside of channels is formed.« less

  6. Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax

    PubMed Central

    Sun, Der-Shan; Kau, Jyh-Hwa; Huang, Hsin-Hsien; Tseng, Yao-Hsuan; Wu, Wen-Shiang; Chang, Hsin-Hou

    2016-01-01

    The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax. PMID:28335365

  7. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles.

    PubMed

    Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong

    2014-03-01

    Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.

  8. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  9. Natural colloids are the dominant factor in the sedimentation of nanoparticles.

    PubMed

    Quik, Joris T K; Stuart, Martien Cohen; Wouterse, Marja; Peijnenburg, Willie; Hendriks, A Jan; van de Meent, Dik

    2012-05-01

    Estimating the environmental exposure to manufactured nanomaterials is part of risk assessment. Because nanoparticles aggregate with each other (homoaggregation) and with other particles (heteroaggregation), the main route of the removal of most nanoparticles from water is aggregation, followed by sedimentation. The authors used water samples from two rivers in Europe, the Rhine and the Meuse. To distinguish between small (mainly natural organic matter [NOM]) particles and the remainder of the natural colloids present, both filtered and unfiltered river water was used to prepare the particle suspensions. The results show that the removal of nanoparticles from natural river water follows first-order kinetics toward a residual concentration. This was measured in river water with less than 1 mg L(-1) CeO(2) nanoparticles. The authors inferred that the heteroaggregation with or deposition onto the solid fraction of natural colloids was the main mechanism causing sedimentation in relation to homoaggregation. In contrast, the NOM fraction in filtered river water stabilized the residual nanoparticles against further sedimentation for up to 12 d. In 10 mg L(-1) and 100 mg L(-1) CeO(2) nanoparticle suspensions, homoaggregation is likely the main mechanism leading to sedimentation. The proposed model could form the basis for improved exposure assessment for nanomaterials. Copyright © 2012 SETAC.

  10. Biological consequences from interaction of nanosized titanium(iv) oxides with defined human blood components

    NASA Astrophysics Data System (ADS)

    Stella, Aaron

    The utility of engineered nanomaterials is growing, particularly the titanium(iv) oxide (titanium dioxide, TiO2) nanoparticles. TiO 2 is very useful for brightening paints, and coloring foods. Nano-sized TiO2 is also useful for sunscreens, cosmetics, and can be utilized as a photocatalyst. However, the nanometer size of the TiO2 nanoparticle is a characteristic that may contribute oxidative stress to red blood cells (RBCs) in humans. This study utilized screening methods to evaluate different forms of TiO2 nanoparticles which differ by primary particle size, specific surface area, crystalline phase, and surface polarity. RBCs are rich in the intracellular antioxidant glutathione (GSH). HPLC analysis revealed that some TiO2 nanoparticles caused oxidation of GSH to glutathione disulfide (GSSG). Vitamin E is a major membrane-bound antioxidant. Vitamin E levels were then determined by HPLC in the RBC membrane after exposure to TiO2 nanoparticles. The HPLC results showed that each nanoparticle oxidized RBC glutathione and membrane vitamin E at different rates. When hemoglobin was mixed with each TiO2 nanoparticle, hemoglobin was adsorbed at varying rates to the surface of the nanoparticles. Similarly, the aminothiol homocysteine was also adsorbed at different rates by the TiO2 nanoparticles. Using light microscopy, some TiO2 nanoparticles caused the formation of RBC aggregates which significantly changed the RBC morphology. The aggregation data was quantified using a hemacytometer. The TiO2 nanoparticles also caused hemolysis of RBCs. Hemolysis is considered to be a toxic endpoint for RBCs. Changes in the nucleated lymphocyte gene expression of certain oxidative stress genes were also observed using real-time polymerase chain reaction (qPCR). The data indicates that RBCs can ultimately be hemolyzed by biological oxidative damage resulting from a combination of oxidative mechanisms. Additionally, the TiO2 nanoparticles demonstrated the ability to adsorb biomolecules to

  11. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings.

    PubMed

    Besinis, A; Hadi, S D; Le, H R; Tredwin, C; Handy, R D

    2017-04-01

    One of the most common causes of implant failure is peri-implantitis, which is caused by bacterial biofilm formation on the surfaces of dental implants. Modification of the surface nanotopography has been suggested to affect bacterial adherence to implants. Silver nanoparticles are also known for their antibacterial properties. In this study, titanium alloy implants were surface modified following silver plating, anodisation and sintering techniques to create a combination of silver, titanium dioxide and hydroxyapatite (HA) nanocoatings. Their antibacterial performance was quantitatively assessed by measuring the growth of Streptococcus sanguinis, proportion of live/dead cells and lactate production by the microbes over 24 h. Application of a dual layered silver-HA nanocoating to the surface of implants successfully inhibited bacterial growth in the surrounding media (100% mortality), whereas the formation of bacterial biofilm on the implant surfaces was reduced by 97.5%. Uncoated controls and titanium dioxide nanocoatings showed no antibacterial effect. Both silver and HA nanocoatings were found to be very stable in biological fluids with material loss, as a result of dissolution, to be less than 0.07% for the silver nanocoatings after 24 h in a modified Krebs-Ringer bicarbonate buffer. No dissolution was detected for the HA nanocoatings. Thus, application of a dual layered silver-HA nanocoating to titanium alloy implants creates a surface with antibiofilm properties without compromising the HA biocompatibility required for successful osseointegration and accelerated bone healing.

  12. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

    PubMed Central

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.

    2018-01-01

    Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425

  13. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.

    PubMed

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E

    2018-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

  14. Comparative Study of Rhodamine B degradation by Tio2 nanoparticles synthesized from titanium sec butoxide and its chloroacetato derivatves.

    PubMed

    Ambreen, S; Pandey, N D; Pandey, A

    2017-07-31

    TiO2 has been well recognized as a proficient photocatalyst. TiO2 nanoparticles have been synthesized from titanium sec butoxide (1) and its monochloroacetate derived compounds. The modifications of Ti(OsBu)4 with monochloroacetic acid in 1:1 and 1:2 molar ratios afforded Ti(OsBu)3(OOCCH2Cl) (2) and Ti(OsBu)2(OOCCH2Cl)2 (3), respectively. The use of monochloroacetic acid as a modifier allows the control of both the degree of condensation and oligomerization of the precursor. The cross linking of the gel and connectivity of the molecular building blocks are lowered in these heteroleptic alkoxides which results in the formation of gels instead of crystalline precipitate. This modification of the precursors leads to the generation of new building blocks which significantly affect the properties of the resulting TiO2. TiO2 powders were prepared via sol-gel method from these precursors and calcined at 400°C and 600°C for 4 h. Phase and morphology of the prepared metal oxide nanoparticles were studied. XRD patterns showed TiO2 in anatase phase. After coating with the surfactant trioctyl phosphinoxide (TOPO), TiO2 particles were dispersed in chloroform to study the particle size and distribution. The optical properties were studied by UV-VIS drs. The photocatalytic activity was studied over the degradation of Rhodamine B under UV radiation.

  15. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor.

    PubMed

    Haldorai, Yuvaraj; Hwang, Seung-Kyu; Gopalan, Anantha-Iyengar; Huh, Yun Suk; Han, Young-Kyu; Voit, Walter; Sai-Anand, Gopalan; Lee, Kwang-Pill

    2016-05-15

    In this report, titanium nitride (TiN) nanoparticles decorated multi-walled carbon nanotube (MWCNTs) nanocomposite is fabricated via a two-step process. These two steps involve the decoration of titanium dioxide nanoparticles onto the MWCNTs surface and a subsequent thermal nitridation. Transmission electron microscopy shows that TiN nanoparticles with a mean diameter of ≤ 20 nm are homogeneously dispersed onto the MWCNTs surface. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on the MWCNTs-TiN composite modified on a glassy carbon electrode for nitrite sensing are investigated. Under optimum conditions, the current response is linear to its concentration from 1 µM to 2000 µM with a sensitivity of 121.5 µA µM(-1)cm(-2) and a low detection limit of 0.0014 µM. The proposed electrode shows good reproducibility and long-term stability. The applicability of the as-prepared biosensor is validated by the successful detection of nitrite in tap and sea water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    PubMed

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (P<0.05), and the bone-implant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (P<0.05). Scanning electron microscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  17. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application.

    PubMed

    Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg

    2014-01-01

    Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and

  18. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    NASA Astrophysics Data System (ADS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  19. Compositional effects on the chemorheological properties and forming behavior of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions

    NASA Astrophysics Data System (ADS)

    Morissette, Sherry L.

    A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and

  20. Synchrotron Speciation Of Silver And Zinc Oxide Nanoparticles Aged In A Kaolin Suspension

    EPA Science Inventory

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and s...

  1. Combination of Sonodynamic and Photodynamic Therapy against Cancer Would Be Effective through Using a Regulated Size of Nanoparticles

    PubMed Central

    Miyoshi, N.; Kundu, S. K.; Tuziuti, T.; Yasui, K.; Shimada, I.; Ito, Y.

    2016-01-01

    Nanoparticles have been used for many functional materials in nano-sciences and photo-catalyzing surface chemistry. The titanium oxide nanoparticles will be useful for the treatment of tumor by laser and/or ultrasound as the sensitizers in nano-medicine. We have studied the combination therapy of photo- and sono-dynamic therapies in an animal tumor model. Oral-administration of two sensitizers titanium oxide, 0.2%-TiO2 nanoparticles for sono-dynamic and 1 mM 5-aminolevulinic acid for photodynamic therapies have resulted in the best combination therapeutic effects for the cancer treatment. Our light microscopic and Raman spectroscopic studies revealed that the titanium nanoparticles were distributed inside the blood vessel of the cancer tissue (1–3 μm sizes). Among these nanoparticles with a broad size distribution, only particular-sized particles could penetrate through the blood vessel of the cancer tissue, while other particles may only exhibit the side effects in the model mouse. Therefore, it may be necessary to separate the optimum size particles. For this purpose we have separated TiO2 nanoparticles by countercurrent chromatography with a flat coiled column (1.6 mm ID) immersed in an ultrasonic bath (42 KHz). Separation was performed with a two-phase solvent system composed of 1-butanol-acetic acid-water at a volume ratio of 4:1:5 at a flow rate of 0.1 ml/min. Countercurrent chromatographic separation yielded fractions containing particle aggregates at 31 and 4400 nm in diameter. PMID:27088115

  2. Carbothermal reduction of Ti-modified IRMOF-3: an adaptable synthetic method to support catalytic nanoparticles on carbon.

    PubMed

    Kim, Jongsik; McNamara, Nicholas D; Her, Theresa H; Hicks, Jason C

    2013-11-13

    This work describes a novel method for the preparation of titanium oxide nanoparticles supported on amorphous carbon with nanoporosity (Ti/NC) via the post-synthetic modification of a Zn-based MOF with an amine functionality, IRMOF-3, with titanium isopropoxide followed by its carbothermal pyrolysis. This material exhibited high purity, high surface area (>1000 m(2)/g), and a high dispersion of metal oxide nanoparticles while maintaining a small particle size (~4 nm). The material was shown to be a promising catalyst for oxidative desulfurization of diesel using dibenzothiophene as a model compound as it exhibited enhanced catalytic activity as compared with titanium oxide supported on activated carbon via the conventional incipient wetness impregnation method. The formation mechanism of Ti/NC was also proposed based on results obtained when the carbothermal reduction temperature was varied.

  3. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy.

    PubMed

    Ribeiro, Ana R; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A; Granjeiro, José M

    2017-08-03

    While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.

  4. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats.

    PubMed

    Gaté, Laurent; Disdier, Clémence; Cosnier, Frédéric; Gagnaire, François; Devoy, Jérôme; Saba, Wadad; Brun, Emilie; Chalansonnet, Monique; Mabondzo, Aloise

    2017-01-04

    The increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO 2 NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m 3 of a TiO 2 nanostructured aerosol 6h/day, 5days/week for 4 weeks. We measured Ti content in major organs using inductively coupled plasma mass spectrometry immediately and up to 180days after the end of exposure. Large amounts of titanium were initially found in lung which were slowly cleared during the post-exposure period. From day 28, a small increase of Ti was found in the spleen and liver of exposed young adult rats. Such an increase was however never found in their blood, kidneys or brain. In the elderly group, translocation to extra-pulmonary organs was significant at day 90. Ti recovered from the spleen and liver of exposed elderly rats was higher than in exposed young adults. These data suggest that TiO 2 NPs may translocate from the lung to extra-pulmonary organs where they could possibly promote systemic health effects. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    PubMed Central

    Nickheslat, Ali; Amin, Mohammad Mehdi; Izanloo, Hassan; Fatehizadeh, Ali; Mousavi, Seyed Mohammad

    2013-01-01

    Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal. PMID:23710198

  6. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  7. Administrative license suspension: Does length of suspension matter?

    PubMed

    Fell, James C; Scherer, Michael

    2017-08-18

    Administrative license revocation (ALR) laws, which provide that the license of a driver with a blood alcohol concentration at or over the illegal limit is subject to an immediate suspension by the state department of motor vehicles, are an example of a traffic law in which the sanction rapidly follows the offense. The power of ALR laws has been attributed to how swiftly the sanction is applied, but does the length of suspension matter? Our objectives were to (a) determine the relationship of the ALR suspension length to the prevalence of drinking drivers relative to sober drivers in fatal crashes and (b) estimate the extent to which the relationship is associated to the general deterrent effect compared to the specific deterrent effect of the law. Data comparing the impact of ALR law implementation and ALR law suspension periods were analyzed using structural equation modeling techniques on the ratio of drinking drivers to nondrinking drivers in fatal crashes from the Fatality Analysis Reporting System (FARS). States with an ALR law with a short suspension period (1-30 days) had a significantly lower drinking driver ratio than states with no ALR law. States with a suspension period of 91-180 days had significantly lower ratios than states with shorter suspension periods, while the three states with suspension lengths of 181 days or longer had significantly lower ratios than states with shorter suspension periods. The implementation of any ALR law was associated with a 13.1% decrease in the drinking/nondrinking driver fatal crash ratio but only a 1.8% decrease in the intoxicated/nonintoxicated fatal crash ratio. The ALR laws and suspension lengths had a significant general deterrent effect, but no specific deterrent effect. States might want to keep (or adopt) ALR laws for their general deterrent effects and pursue alternatives for specific deterrent effects. States with short ALR suspension periods should consider lengthening them to 91 days or longer.

  8. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo

    NASA Astrophysics Data System (ADS)

    Terentyuk, G. S.; Genina, Elina A.; Bashkatov, A. N.; Ryzhova, M. V.; Tsyganova, N. A.; Chumakov, D. S.; Khlebtsov, B. N.; Sazonov, A. A.; Dolotov, L. E.; Tuchin, Valerii V.; Khlebtsov, Nikolai G.; Inozemtseva, O. A.

    2012-06-01

    The delivery of gold nanoparticles (nanocages coated with a layer of silicon dioxide (40/20 nm)) dispersed in the solution (glycerol + polyethylene glycol-400, 1 : 1) into the skin tissue is studied experimentally in vivo. From the data of optical coherence tomography and histochemical analysis it follows that simple application of suspension of nanoparticles is not efficient enough for delivery of the particles into the skin as a result of passive diffusion. It is shown that fractional laser microablation of skin before the application of the suspension, followed by the topical treatment by ultrasound allows penetration through the epidermis layer and delivery of nanoparticles into dermis and hypodermis

  9. Detection of Silver and TiO2 Nanoparticles using Light Scatter by Flow Cytometry and Darkfield Microscopy

    EPA Science Inventory

    Titanium Dioxide (Ti02) and Silver (Ag) nanoparticles are used in many domestic applications, including sunscreens and paints. Evaluation of the potential hazard of manmade nanomaterials has been hampered by a limited ability to detect and measure nanoparticles in cells. In the p...

  10. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry.

    PubMed

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-11

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.

  11. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    PubMed Central

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  12. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.

  13. The genotoxicity of titanium dioxide and cerium oxide nanoparticles in vitro

    EPA Science Inventory

    The use ofengineered nanoparticles in both current and future consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. Recently, particular emphasis has been placed on particle characterization and the...

  14. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  15. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  16. Magnetic properties of iron nanoparticles prepared by exploding wire technique.

    PubMed

    Alqudami, Abdullah; Annapoorni, S; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2007-06-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to the normal bulk material. The room temperature hysteresis measurements upto a field of 1.0 tesla were performed on a suspension of iron particles in the solution as well as in the powders obtained by filtration. The hysteresis loops indicate that the particles are superparamagnetic in nature. The saturation magnetizations was approximately 60 emu/gm. As these iron particles are very sensitive to oxygen a coating of non-magnetic iron oxide tends to form around the particles giving it a core-shell structure. The core particle size is estimated theoretically from the magnetization measurements. Suspensions of iron nanoparticles in water have been proposed to be used as an effective decontaminant for ground water.

  17. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    EPA Science Inventory

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  18. Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Bayukov, O. A.; Balaev, D. A.; Krasikov, A. A.; Iskhakov, R. S.; Vorotynov, A. M.; Ladygina, V. P.; Purtov, K. V.; Volochaev, M. N.

    2018-03-01

    Superparamagnetic ferrihydrite powders with average nanoparticle sizes of 2.5 nm produced by the chemical deposition method. Static and dynamic magnetic properties are measured. As a result of ultrasonic treatment in the cavitation regime of suspensions of ferrihydrite powders in a solution of the albumin protein, the Fe ions are reduced to the metallic state. A sol of ferrihydrite nanoparticles is prepared in an aqueous solution of arabinogalactan polysaccharide.

  19. Modelling the transport of engineered metallic nanoparticles in the river Rhine.

    PubMed

    Markus, A A; Parsons, J R; Roex, E W M; de Voogt, P; Laane, R W P M

    2016-03-15

    As engineered nanoparticles of zinc oxide, titanium dioxide and silver, are increasingly used in consumer products, they will most probably enter the natural environment via wastewater, atmospheric deposition and other routes. The aim of this study is to predict the concentrations of these nanoparticles via wastewater emissions in a typical river system by means of a numerical model. The calculations rely on estimates of the use of nanomaterials in consumer products and the removal efficiency in wastewater treatment plants as well as model calculations of the fate and transport of nanoparticles in a riverine system. The river Rhine was chosen for this work as it is one of the major and best studied rivers in Europe. The study gives insight in the concentrations that can be expected and, by comparing the model results with measurements of the total metal concentrations, of the relative contribution of these emerging contaminants. Six scenarios were examined. Two scenarios concerned the total emission: in the first it was assumed that nanoparticles are only released via wastewater (treated or untreated) and in the second it was assumed that in addition nanoparticles can enter the river system via runoff from the application of sludge as a fertilizer. In both cases the assumption was that the nanoparticles enter the river system as free, unattached particles. Four additional scenarios, based on the total emissions from the second scenario, were examined to highlight the consequences of the assumption of free nanoparticles and the uncertainties about the aggregation processes. If all nanoparticles enter as free particles, roughly a third would end up attached to suspended particulate matter due to the aggregation processes nanoparticles are subject to. For the other scenarios the contribution varies from 20 to 45%. Since the Rhine is a fast flowing river, sedimentation is unlikely to occur, except at the floodplains and the lakes in the downstream regions, as in fact

  20. Effects of tungsten and titanium oxide nanoparticles on the diazotrophic growth and metals acquisition by Azotobacter vinelandii under molybdenum limiting condition.

    PubMed

    Allard, Patrick; Darnajoux, Romain; Phalyvong, Karine; Bellenger, Jean-Philippe

    2013-02-19

    The acquisition of essential metals, such as the metal cofactors (molybdenum (Mo) and iron (Fe)) of the nitrogenase, the enzyme responsible for the reduction of dinitrogen (N(2)) to ammonium, is critical to N(2) fixing bacteria in soil. The release of metal nanoparticles (MNPs) to the environment could be detrimental to N(2) fixing bacteria by introducing a new source of toxic metals and by interfering with the acquisition of essential metals such as Mo. Since Mo has been reported to limit nonsymbiotic N(2) fixation in many ecosystems from tropical to cold temperate, this question is particularly acute in the context of Mo limitation. Using a combination of microbiology and analytical chemistry techniques, we have evaluated the effect of titanium (Ti) and tungsten (W) oxide nanoparticles on the diazotrophic growth and metals acquisition in pure culture of the ubiquitous N(2) fixing bacterium Azotobacter vinelandii under Mo replete and Mo limiting conditions. We report that under our conditions (≤10 mg·L(-1)) TiO(2) NPs have no effects on the diazotrophic growth of A. vinelandii while WO(3) NPs are highly detrimental to the growth especially under Mo limiting conditions. Our results show that the toxicity of WO(3) NPs to A. vinelandii is due to an interference with the catechol-metalophores assisted uptake of Mo.

  1. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.

    2018-01-01

    Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

  2. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    PubMed

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  3. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    PubMed

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay.

    PubMed

    Chen, Yinghui; Duong, Hien T T; Wen, Shihui; Mi, Chao; Zhou, Yingzhu; Shimoni, Olga; Valenzuela, Stella M; Jin, Dayong

    2018-01-02

    Sensitivity is the key in optical detection of low-abundant analytes, such as circulating RNA or DNA. The enzyme Exonuclease III (Exo III) is a useful tool in this regard; its ability to recycle target DNA molecules results in markedly improved detection sensitivity. Lower limits of detection may be further achieved if the detection background of autofluorescence can be removed. Here we report an ultrasensitive and specific method to quantify trace amounts of DNA analytes in a wash-free suspension assay. In the presence of target DNA, the Exo III recycles the target DNA by selectively digesting the dye-tagged sequence-matched probe DNA strand only, so that the amount of free dye removed from the probe DNA is proportional to the number of target DNAs. Remaining intact probe DNAs are then bound onto upconversion nanoparticles (energy donor), which allows for upconversion luminescence resonance energy transfer (LRET) that can be used to quantify the difference between the free dye and tagged dye (energy acceptor). This scheme simply avoids both autofluorescence under infrared excitation and many tedious washing steps, as the free dye molecules are physically located away from the nanoparticle surface, and as such they remain "dark" in suspension. Compared to alternative approaches requiring enzyme-assisted amplification on the nanoparticle surface, introduction of probe DNAs onto nanoparticles only after DNA hybridization and signal amplification steps effectively avoids steric hindrance. Via this approach, we have achieved a detection limit of 15 pM in LRET assays of human immunodeficiency viral DNA.

  5. A high-throughput label-free nanoparticle analyser.

    PubMed

    Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M; Ruoslahti, Erkki; Cleland, Andrew N

    2011-05-01

    Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10⁻⁶ l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.

  6. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Koshonna; Thurn, Ted; Xin, Lun

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  7. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE PAGES

    Brown, Koshonna; Thurn, Ted; Xin, Lun; ...

    2017-07-19

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  8. Tuning Solvatochromism of Azo Dyes with Intramolecular Hydrogen Bonding in Solution and on Titanium Dioxide Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang

    2013-11-25

    “Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less

  9. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles.

    PubMed

    Nazıroğlu, Mustafa; Muhamad, Salina; Pecze, Laszlo

    2017-07-01

    In etiology of Alzheimer's disease (AD), involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Several nanoparticles such as titanium dioxide, silica dioxide, silver and zinc oxide have been experimentally using for treatment of neurological disease. In the last decade, there has been a great interest on combination of antioxidant bioactive compounds such as selenium (Se) and flavonoids with the oxidant nanoparticles in AD. We evaluated the most current data available on the physiological effects of oxidant and antioxidant nanoparticles. Areas covered: Oxidative nanoparticles decreased the activities of reactive oxygen species (ROS) scavenging enzymes such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase in the brain of rats and mice. However, Se-rich nanoparticles in small size (5-15 nm) depleted Aβ formation through decreasing ROS production. Reports on low levels of Se in blood and tissue samples and the low activities of GSH-Px, catalase and SOD enzymes in AD patients and animal models support the proposed crucial role of oxidative stress in the pathogenesis of AD. Expert commentary: In conclusion, present literature suggests that Se-rich nanoparticles appeared to be a potential therapeutic compound for the treatment of AD.

  10. Substrate Dependence in the Growth of Three-Dimensional Gold Nanoparticle Superlattices

    DTIC Science & Technology

    2001-11-01

    the Hamaker constants between gold nanoparticle assemblies and substrates through the suspension. Van der Waals interactions estimated from this...finally dialyzed to remove inorganic (Na, Cl, and B) and organic impurities. The surfactant affects the dispersion of Au nanoparticles in aqueous...be taken into account for complete understanding of the observed substrate dependency. To consider volume interactions, we calculate the Hamaker

  11. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-05-15

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    Cao, Xiaoqiong; Ma, Changchu; Gao, Zili; Zheng, Jinkai; He, Lili; McClements, David Julian; Xiao, Hang

    2016-12-14

    Nanosized titanium dioxide (TiO 2 ) particles are commonly present in TiO 2 food additives (E171) and have been associated with potential adverse effects on health. However, little knowledge is available regarding the interactions between TiO 2 nanoparticles (NPs) and other food components, such as flavonoids. In this study, we aim to study the molecular interactions between TiO 2 anatase NPs and three structurally closely related polymethoxyflavones (PMFs, flavonoids found in citrus fruits), namely, 3',4'-didemethylnobiletin (DDN), 5-demethylnobiletin (5DN), and 5,3',4'-tridemethylnobiletin (TDN), using ultraviolet-visible (UV-vis) spectrometry and surface-enhanced Raman spectroscopy (SERS). In the UV-vis absorption spectra, bathochromic effects were observed after DDN and TDN conjugated with TiO 2 NPs. The results from SERS analysis clearly demonstrated that DDN and TDN could bind TiO 2 NPs with the functional groups 3'-OH and 4'-OH on ring B and formed charge-transfer complexes. However, 5DN with functional groups C═O on ring C and 5-OH on ring A could not bind TiO 2 NPs. Knowledge on the molecular interactions between TiO 2 NPs and food components, such as flavonoids, will facilitate the understanding of the fate of TiO 2 NPs during food processing and in the gastrointestinal tract after oral consumption.

  13. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, K. L.; Takahara, A.; Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreementmore » was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.« less

  15. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N

    2012-06-30

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and themore » optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.« less

  16. Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup

    NASA Astrophysics Data System (ADS)

    Braun, A.; Neukum, C.; Azzam, R.

    2011-12-01

    The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is

  17. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium.

    PubMed

    Xu, Xiaoting; Xu, Nan; Cheng, Xueying; Guo, Peng; Chen, Zhigang; Wang, Dongtian

    2017-02-01

    The widely used artificial nanoparticles (NPs) and the excess of ammonium (NH 4 + ) fertilizers are easily released into the natural environment. So, clarifying the mobility of NPs in the presence of NH 4 + is therefore of great urgency and high priority. Currently, few studies focus on the transport and deposition of nanoparticle titanium dioxide (nTiO 2 ) in single and binary systems containing NH 4 + , especially describing this process by a mathematical model. In this work, the comparison between the transport and retention of rutile nTiO 2 in single and binary electrolyte solutions of NH 4 Cl and/or NaCl (0.5-50 mM) were conducted at pH 6.0 and 8.0 through running the column experiments. Experimental results show that the aggregation and retention of nTiO 2 in solution containing mono-valence cations obeys the order as follows: NH 4 +  > Na +  > Na +  + NH 4 + at the same ion strength (IS). It is attributed to the lower critical coagulation concentration (CCC) of rutile nTiO 2 in NH 4 + than that in Na + solution. In particular, the simultaneous presence of NH 4 + and Na + favors the transportability of nTiO 2 due to the strong competitive adsorption on the surface of NPs. The two-site kinetic retention model provides the good simulation for their transport behavior. The likely mechanism is that the secondary energy minimum of nTiO 2 in NH 4 + system associated with the greater K 2 at surface Site 2 (from model) on sand can be explained for the more reversible deposition. Ammonium leachate associated with NPs can thus be considered a serious concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The impact of silver and titanium dioxide nanoparticles on the in-vessel composting of municipal solid waste.

    PubMed

    Stamou, Ioannis; Antizar-Ladislao, Blanca

    2016-10-01

    The study evaluated the impact of commercial silver doped titanium dioxide nanoparticles (Ag-TiO2NPs) and silver nanoparticles (AgNPs) on the in-vessel composting of municipal solid waste (MSW), using fluorescence excitation-emission matrix (EEM) spectroscopy as a tool to evaluate the microbial degradation of MSW and subsequent soil application of compost. The fate of NPs present in mature compost used as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The results suggested that the presence of either Ag-TiO2NPs or AgNPs did not inhibit the microbial degradation process within the range of metal concentrations used (5/225, 10/450, 20/900, 50/2250mg Ag/Ti per kg of organic matter for Ag-TiO2NP and 5, 10, 20, 50mg Ag per kg of organic matter for AgNPs). Higher concentrations of Ag-TiO2NP and AgNPs resulted in a higher inorganic carbon removal, and lower formation of humins. Formation of humins was higher for non-contaminated MSW and compost. EEM peaks shifted towards the humic substances (HS) region during in-vessel composting, indicating that microbial degradation occurred and that NPs did not have any effect on humification and therefore on compost stability. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils' top layers following application of compost contaminated with NP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels

    PubMed Central

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO2) and titanium oxide (nTiO2) nanoparticles in soil at 0, 500 and 1000 mg·kg−1 on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO2 and nTiO2 had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO2·kg−1. On the contrary Zn and Mn concentrations were improved by 500 mg nTiO2·kg−1, and Ca by both nTiO2 treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO2 while nTiO2 can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  20. Elimination of iron-containing magnetic nanoparticles from the site of injection in mice: a magnetic-resonance imaging study.

    PubMed

    Inzhevatkin, E V; Morozov, E V; Khilazheva, E D; Ladygina, V P; Stolyar, S V; Falaleev, O V

    2015-04-01

    Suspension of magnetic nanoparticles (0.7 g/liter) obtained from Klebsiella oxytoca culture was injected intraperitoneally (1 ml), intramuscularly (in the hip; 100 μl), and subcutaneously (200 μl) or administered orally instead of drinking water for 2 days. The presence of magnetic nanoparticles was evaluated detected by MRI in 15 min and 2 h after injections and in 1 and 2 days after the beginning of oral consumption of the suspension. Magnetic nanoparticles were eliminated from the site of intramuscular and intraperitoneal injections and after oral consumption. The period of elimination after intramuscular and intraperitoneal injections did not exceed 2 h, while after oral consumption it corresponded to the time of gastrointestinal tract contents evacuation.

  1. Effect of titanium dioxide nanoparticles on the accumulation and distribution of arsenate in Daphnia magna in the presence of an algal food.

    PubMed

    Luo, Zhuanxi; Li, Mengting; Wang, Zhenhong; Li, Jinli; Guo, Jianhua; Rosenfeldt, Ricki R; Seitz, Frank; Yan, Changzhou

    2018-05-15

    The impact of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioavailability of metals in aquatic filter-feeding organisms has rarely been investigated, especially in the presence of algae as a food source. In this study, we quantified the accumulation and subcellular distribution of arsenate (As V ) in Daphnia magna in the presence of nano-TiO 2 and a green alga (Scenedesmus obliquus) food source. Results showed that S. obliquus significantly increased the accumulation of total arsenic (As) and titanium (Ti) in D. magna. The presence of this food source increased As in metal-sensitive fractions (MSF) and as biologically detoxified metals (BDM), while it decreased Ti levels in MSF but increased levels as BDM. The difference in the subcellular distribution of As and Ti demonstrates the dissociation of As from nano-TiO 2 during digestion at subcellular partitioning irrespective of food availability. In turn, the presence of algae was shown to increase metal-based toxicity in D. magna due to the transfer of As from BMD to MSF. Furthermore, S. obliquus significantly increased the concentration of As and Ti in soluble fractions, indicating that As and nano-TiO 2 ingested by D. magna could be transferred more readily to their predators in the presence of S. obliquus. Our study shows the potential of algae to increase the toxicity and biomagnification of As V . Furthermore, it highlights food as an important factor in the toxicity assessment of nanomaterials and co-existing pollutants.

  2. Dye sensitized solar cell based on environmental friendly eosin Y dye and Al doped titanium dioxide nano particles

    NASA Astrophysics Data System (ADS)

    Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.

    2018-03-01

    Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.

  3. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  4. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum.

    PubMed

    Ma, Hongbo; Brennan, Amanda; Diamond, Stephen A

    2012-09-01

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO(2)) and its consequent phototoxicity to Daphnia magna were measured under different solar ultraviolet (UV) spectra by applying a series of optical filters in a solar simulator. Removing UV-B (280-320 nm) from solar radiation had no significant impact on photocatalytic ROS production of nano-TiO(2), whereas removal of UV-A (320-400 nm) decreased ROS production remarkably. Removal of wavelengths below 400 nm resulted in negligible ROS production. A linear correlation between ROS production and D. magna immobilization suggests that photocatalytic ROS production may be a predictor of phototoxicity for nano-TiO(2). Intracellular ROS production within D. magna was consistent with the immobilization of the organism under different solar UV spectra, indicating that oxidative stress was involved in phototoxicity. The dependence of nano-TiO(2) phototoxicity on environmentally realistic variations in solar radiation suggests that risk assessment of these nanomaterials requires careful evaluation of exposure conditions in the environment. Copyright © 2012 SETAC.

  5. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    PubMed

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the

  6. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water.

    PubMed

    Huang, Chang-Ning; Bow, Jong-Shing; Zheng, Yuyuan; Chen, Shuei-Yuan; Ho, Newjin; Shen, Pouyan

    2010-04-13

    Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV-visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  7. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    PubMed Central

    2010-01-01

    Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence. PMID:20672115

  8. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.

    PubMed

    Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans

    2014-07-09

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.

  9. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  10. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.

    PubMed

    Van de Broek, Bieke; Grandjean, Didier; Trekker, Jesse; Ye, Jian; Verstreken, Kris; Maes, Guido; Borghs, Gustaaf; Nikitenko, Sergey; Lagae, Liesbet; Bartic, Carmen; Temst, Kristiaan; Van Bael, Margriet J

    2011-09-05

    The fields of bioscience and nanomedicine demand precise thermometry for nanoparticle heat characterization down to the nanoscale regime. Since current methods often use indirect and less accurate techniques to determine the nanoparticle temperature, there is a pressing need for a direct and reliable element-specific method. In-situ extended X-ray absorption fine structure (EXAFS) spectroscopy is used to determine the thermo-optical properties of plasmonic branched gold nanoparticles upon resonant laser illumination. With EXAFS, the direct determination of the nanoparticle temperature increase upon laser illumination is possible via the thermal influence on the gold lattice parameters. More specifically, using the change of the Debye-Waller term representing the lattice disorder, the temperature increase is selectively measured within the plasmonic branched nanoparticles upon resonant laser illumination. In addition, the signal intensity shows that the nanoparticle concentration in the beam more than doubles during laser illumination, thereby demonstrating that photothermal heating is a dynamic process. A comparable temperature increase is measured in the nanoparticle suspension using a thermocouple. This good correspondence between the temperature at the level of the nanoparticle and at the level of the suspension points to an efficient heat transfer between the nanoparticle and the surrounding medium, thus confirming the potential of branched gold nanoparticles for hyperthermia applications. This work demonstrates that X-ray absorption spectroscopy-based nanothermometry could be a valuable tool in the fast-growing number of applications of plasmonic nanoparticles, particularly in life sciences and medicine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Utilization of gas-atomized titanium and titanium-aluminide powder

    NASA Astrophysics Data System (ADS)

    Moll, John H.

    2000-05-01

    A gas-atomization process has been developed producing clean, high-quality, prealloyed spherical titanium and titanium-aluminide powder. The powder is being used to manufacture hot-isostatically pressed consolidated shapes for aerospace and nonaerospace allocations. These include gamma titanium-aluminide sheet and orthorhombic titanium-aluminide wire as well as niche markets, such as x-ray drift standards and sputtering targets. The powder is also being used in specialized processes, including metal-matrix composites, laser forming, and metal-injection molding.

  12. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.

    PubMed

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef

    2018-02-26

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.

  13. Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Polubotko, A. M.; Chelibanov, V. P.

    2018-01-01

    The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.

  14. Controlled Synthesis, Characterization, and Photocatalytic Application of Co2TiO4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramezani, Majid; Hosseinpour-Mashkani, S. Mostafa

    2017-02-01

    In the current study, an attempt is made to synthesize Co2TiO4 nanoparticles through the simple two-step sol-gel method with the aid of titanium(IV) isopropoxide and cobalt(II) acetate tetrahydrate as starting reagents in the presence of ethanol as a solvent. Additionally, the effects of sodium hydroxide and oxalic acid as the pH controller agents on the morphology and particle size of the products were investigated. Furthermore, effects of several natural and chemical surfactants such as starch, lactose, glucose, oleyl amine, and sodium dodecyl sulfate (SDS) on the morphology and particle size of final products were investigated. Based on the scanning electron microscopy (SEM) results, the above-mentioned parameters have a direct effect on the morphology and particle size of Co2TiO4 nanoparticles. The x-ray diffraction (XRD) results showed that pure cubic cobalt titanium oxide nanoparticles were obtained by this method after heat treatment at 600 and 900°C. Moreover, in the presence of Co2TiO4 nanoparticles as photocatalyst, the percentage of methyl orange (MO) degradation was about 100% after 40 min of irradiation of ultraviolet (UV) light.

  15. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles.

    PubMed

    Durand, L; Habran, N; Henschel, V; Amighi, K

    2010-01-01

    The aim of this study was to encapsulate ethylhexyl methoxycinnamate (EMC), a commonly used UVB filter, in a solid lipid matrix in order to obtain microparticles and then nanoparticles to reduce its photo-instability under UV light exposure. Glyceryl behenate, rice bran wax and ozokerite were investigated for encapsulating EMC. The suspensions of nanoparticles contained 70% encapsulated EMC (relative to the lipid mass). The absorbance level at 310 nm of suspensions containing nanoparticles was more than twice that of those containing microparticles. So, decreasing the size of particles improved the efficiency of light protection, regardless of the lipid material used. Moreover, free EMC presented a 30% loss of its efficiency after 2 h of irradiation, whereas the three NLC formulations showed a loss of absorbency between 10% and 21%. The in vitro cutaneous penetration test did not show a higher potential penetration for EMC contained in nanosuspensions compared to free EMC.

  16. Current research and prospects for health effects of nanoparticles on offspring

    NASA Astrophysics Data System (ADS)

    Umezawa, Masakazu; Takeda, Ken

    2011-10-01

    Caution in handling ceramic nanoparticles is required by workers and consumers if they are to be used safely and profitably. The small size of nanoparticles can bestow high reactivity and unique translocational properties. Studies have shown that exposure to some types of nanoparticles affects the respiratory, cardiovascular and central nervous systems and various organs. When pregnant mice were exposed to nanoparticles, various organs of offspring are also affected. Our recent studies showed that prenatal exposure to nanoparticles (carbon black and titanium dioxide) causes long-term adverse effects on the reproductive, respiratory and central nervous systems of offspring. The effects of nanoparticles on fetuses and children and the possibility of them leading to the onset of diseases in adulthood are of concern. Thus, it is important to research the risk of unintentional exposure to nanoparticles, including ceramic nanoparticles, from the environment and to attempt to identify methods to protect against their toxicity.

  17. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  18. Morphology and microhardness of TiC coatings on titanium treated with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Atkin, Vsevolod S.; Galushka, Viktor V.; Zakharevich, Andrey M.; Skaptsov, Alexander A.

    2018-04-01

    The treatment with high frequency currents (HFC) is traditionally used to improve the mechanical properties of metal products, in particular hardness and wear resistance. A new method of carburization of titanium samples in a solid carburizer using HFC is proposed in the work. The temperature of the carburization is characterized by a wide range from 1000 to 1400 °C. As a result of thermochemical treatment, a hard coating of TiC (H ≥ 20 GPa) with a microstructure (d = 7-14 μm) consisting of nanoparticles (d = 10-12 nm) is formed on the titanium surface. These coatings are widely used in friction pairs for various purposes, including machinery, instrumentation and medicine.

  19. Evolution of size distribution, optical properties, and structure of Si nanoparticles obtained by laser-assisted fragmentation

    NASA Astrophysics Data System (ADS)

    Plautz, G. L.; Graff, I. L.; Schreiner, W. H.; Bezerra, A. G.

    2017-05-01

    We investigate the physical properties of Si-based nanoparticles produced by an environment-friendly three-step method relying on: (1) laser ablation of a solid target immersed in water, (2) centrifugation and separation, and (3) laser-assisted fragmentation. The evolution of size distribution is followed after each step by means of dynamic light scattering (DLS) measurements and crosschecked by transmission electron microscopy (TEM). The as-ablated colloidal suspension of Si nanoparticles presents a large size distribution, ranging from a few to hundreds of nanometers. Centrifugation drives the very large particles to the bottom eliminating them from the remaining suspension. Subsequent irradiation of height-separated suspensions with a second high-fluence (40 mJ/pulse) Nd:YAG laser operating at the fourth harmonic (λ =266 nm) leads to size reduction and ultra-small nanoparticles are obtainable depending on the starting size. Si nanoparticles as small as 1.5 nm with low dispersion (± 0.7 nm) are observed for the uppermost part after irradiation. These nanoparticles present a strong blue photoluminescence that remains stable for at least 8 weeks. Optical absorption (UV-Vis) measurements demonstrate an optical gap widening as a consequence of size decrease. Raman spectra present features related to pure silicon and silicon oxides for the irradiated sample. Interestingly, a defect band associated with silicon oxide is also identified, indicating the possible formation of defect states, which, in turn, supports the idea that the blue photoluminescence has its origin in defects.

  20. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  1. Ultraviolet radiation and nanoparticle induced intracellular free radicals generation measured in human keratinocytes by electron paramagnetic resonance spectroscopy.

    PubMed

    Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C

    2014-05-01

    Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Surface functionalization of WS2 fullerene-like nanoparticles.

    PubMed

    Shahar, Chen; Zbaida, David; Rapoport, Lev; Cohen, Hagai; Bendikov, Tatyana; Tannous, Johny; Dassenoy, Fabrice; Tenne, Reshef

    2010-03-16

    WS(2) belongs to a family of layered metal dichalcogenide compounds that are known to form cylindrical (inorganic nanotubes-INT) and polyhedral nanostructures--onion or nested fullerene-like (IF) particles. The outermost layers of these IF nanoparticles can be peeled under shear stress, thus IF nanoparticles have been studied for their use as solid lubricants. However, the IF nanoparticles tend to agglomerate, presumably because of surface structural defects induced by elastic strain and curvature, a fact that has a deleterious effect on their tribological properties. In the present work, chemical modification of the IF-WS(2) surface with alkyl-silane molecules is reported. The surface-modified IF nanoparticles display improved dispersion in oil-based suspensions. The alkyl-silane coating reduces the IF-WS(2) nanoparticles' tendency to agglomerate and consequently improves the long-term tribological behavior of oil formulated with the IF additive.

  3. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  4. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  5. Sealing glasses for titanium and titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansionmore » about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.« less

  6. Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms.

    PubMed

    Waller, Travis; Marcus, Ian M; Walker, Sharon L

    2018-06-04

    Engineered nanomaterials (ENMs) are commonly incorporated into food and consumer applications to enhance a specific product aspect (i.e., optical properties). Life cycle analyses revealed ENMs can be released from products during usage and reach wastewater treatment plants (WWTPs), with titanium dioxide (TiO 2 ) accounting for a large fraction. As such, food grade (FG) TiO 2 , a more common form of TiO 2 in wastewater, was used in this study. Nanomaterials in WWTPs have been well characterized, although the problematic septic system has been neglected. Elution and bioaccumulation of TiO 2 ENMs from WTTPs in downriver sediments and microorganisms has been observed; however, little is known about mechanisms governing the elution of FG TiO 2 from the septic drainage system. This study characterized the transport behavior and mechanisms of FG TiO 2 particles in porous media conditions after septic waste treatment. FG and industrial grade (IG) TiO 2 (more commonly studied) were introduced to septic tank effluent and low-ionic strength electrolyte solutions prior to column transport experiments. Results indicate that FG TiO 2 aggregate size (200-400 nm) remained consistent across solutions. Additionally, elution of FG and IG TiO 2 was greatest in septic effluent at the higher nanoparticle concentration (100 ppm). FG TiO 2 was well retained at the low (2 ppm) concentration in septic effluent, suggesting that particles that escape the septic system may still be retained in drainage field before reaching the groundwater system, although eluted particles are highly stabilized. Findings provide valuable insight into the significance of the solution environment at mediating differences observed between uniquely engineered nanomaterials. Graphical abstract.

  7. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  8. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE PAGES

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...

    2017-10-06

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  9. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz; Innovation

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly relatedmore » to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.« less

  10. Targeted antitumoral dehydrocrotonin nanoparticles with L-ascorbic acid 6-stearate.

    PubMed

    Frungillo, Lucas; Martins, Dorival; Teixeira, Sérgio; Anazetti, Maristela Conti; Melo, Patrícia da Silva; Durán, Nelson

    2009-12-01

    Tumoral cells are known to have a higher ascorbic acid uptake than normal cells. Therefore, the aim of this study was to obtain polymeric nanoparticles containing the antitumoral compound trans-dehydrocrotonin (DHC) functionalized with L-ascorbic acid 6-stearate (AAS) to specifically target this system tumoral cells. Nanoparticle suspensions (NP-AAS-DHC) were prepared by the nanoprecipitation method. The systems were characterized for AAS presence by thin-layer chromatography and for drug loading (81-88%) by UV-Vis spectroscopy. To further characterize these systems, in vitro release kinetics, size distribution (100-140 nm) and Zeta potential by photon-correlation spectroscopic method were used. In vitro toxicity against HL60 cells was evaluated by tetrazolium reduction and Trypan blue exclusion assays. Cell death by apoptosis was quantified and characterized by flow cytometry and caspase activity. Zeta potential analyses showed that the system has a negatively charged outer surface and also indicate that AAS is incorporated on the external surface of the nanoparticles. In vitro release kinetics assay showed that DHC loaded in nanoparticles had sustained release behavior. In vitro toxicity assays showed that NP-AAS-DHC suspension was more effective as an antitumoral than free DHC or NP-DHC and increased apoptosis induction by receptor-mediated pathway. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension

    NASA Astrophysics Data System (ADS)

    Lamberty, Andrée; Franks, Katrin; Braun, Adelina; Kestens, Vikram; Roebben, Gert; Linsinger, Thomas P. J.

    2011-12-01

    The Institute for Reference Materials and Measurements has organised an interlaboratory comparison (ILC) to allow the participating laboratories to demonstrate their proficiency in particle size and zeta potential measurements on monomodal aqueous suspensions of silica nanoparticles in the 10-100 nm size range. The main goal of this ILC was to identify competent collaborators for the production of certified nanoparticle reference materials. 38 laboratories from four different continents participated in the ILC with different methods for particle sizing and determination of zeta potential. Most of the laboratories submitted particle size results obtained with centrifugal liquid sedimentation (CLS), dynamic light scattering (DLS) or electron microscopy (EM), or zeta potential values obtained via electrophoretic light scattering (ELS). The results of the laboratories were evaluated using method-specific z scores, calculated on the basis of consensus values from the ILC. For CLS (13 results) and EM (13 results), all reported values were within the ±2 | z| interval. For DLS, 25 of the 27 results reported were within the ±2 | z| interval, the two other results were within the ±3 | z| interval. The standard deviations of the corresponding laboratory mean values varied between 3.7 and 6.5%, which demonstrates satisfactory interlaboratory comparability of CLS, DLS and EM particle size values. From the received test reports, a large discrepancy was observed in terms of the laboratory's quality assurance systems, which are equally important for the selection of collaborators in reference material certification projects. Only a minority of the participating laboratories is aware of all the items that are mandatory in test reports compliant to ISO/IEC 17025 (ISO General requirements for the competence of testing and calibration laboratories. International Organisation for Standardization, Geneva, 2005b). The absence of measurement uncertainty values in the reports, for

  12. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less

  13. Effect of treatment media on size and cellular uptake of Ti02 nanoparticles: impact on genotoxicity in human respiratory cells.

    EPA Science Inventory

    The widespread use of titanium dioxide (Ti02) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although Ti02 nanoparticles have been shown to induce DNA damage and micronuclei in vitro, no study has systematically assessed th...

  14. Sentinel Lymph Node Detection Using Carbon Nanoparticles in Patients with Early Breast Cancer

    PubMed Central

    Lu, Jianping; Zeng, Yi; Chen, Xia; Yan, Jun

    2015-01-01

    Purpose Carbon nanoparticles have a strong affinity for the lymphatic system. The purpose of this study was to evaluate the feasibility of sentinel lymph node biopsy using carbon nanoparticles in early breast cancer and to optimize the application procedure. Methods Firstly, we performed a pilot study to demonstrate the optimized condition using carbon nanoparticles for sentinel lymph nodes (SLNs) detection by investigating 36 clinically node negative breast cancer patients. In subsequent prospective study, 83 patients with clinically node negative breast cancer were included to evaluate SLNs using carbon nanoparticles. Another 83 SLNs were detected by using blue dye. SLNs detection parameters were compared between the methods. All patients irrespective of the SLNs status underwent axillary lymph node dissection for verification of axillary node status after the SLN biopsy. Results In pilot study, a 1 ml carbon nanoparticles suspension used 10–15min before surgery was associated with the best detection rate. In subsequent prospective study, with carbon nanoparticles, the identification rate, accuracy, false negative rate was 100%, 96.4%, 11.1%, respectively. The identification rate and accuracy were 88% and 95.5% with 15.8% of false negative rate using blue dye technique. The use of carbon nanoparticles suspension showed significantly superior results in identification rate (p = 0.001) and reduced false-negative results compared with blue dye technique. Conclusion Our study demonstrated feasibility and accuracy of using carbon nanoparticles for SLNs mapping in breast cancer patients. Carbon nanoparticles are useful in SLNs detection in institutions without access to radioisotope. PMID:26296136

  15. Effect of sonication on the colloidal stability of iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2015-04-24

    Colloidal stability of superparamagnetic iron oxide nanoparticles’ (SPION) suspensions, ultrasonically irradiated at various pH was studied. Electrophoresis measurement of the sonicated SPION showed that the shock waves and other unique conditions generated from the acoustic cavitation process (formation, growth and collapse of bubbles) affect the zeta potential value of the suspension. In this work, stabled colloidal suspensions of SPION were prepared and their pH is varied between 3 and 5. Prior to ultrasonic irradiation of the suspensions, their initial zeta potential values were determined. After ultrasonic irradiation of the suspensions, we observed that the sonication process interacts with colloidal stabilitymore » of the nanoparticles. The results demonstrated that only suspensions with pH less 4 were found stable and able to retain more than 90% of its initial zeta potential value. However, at pH greater than 4, the suspensions were found unstable. The result implies that good zeta potential value of SPION can be sustained in sonochemical process as long as the pH of the mixture is kept below 4.« less

  16. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  17. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    PubMed

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  18. Synthesis and Characterization of Composite Hydroxyapatite-Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Charlena; Nuzulia, N. A.; Handika

    2017-03-01

    Hydroxyapatite (HAp) is commonly used as bone implant coating recently; however, the material has disadvantage such as lack of antibacterial properties, that can cause an bacterial infection. Addition of silver nanoparticles is expected to be able to provide antibacterial properties. Silver nanoparticles was obtained by reduction of AgNO3 using glucose monohydrate with microwave heating at 100p for 4 minutes. The composite of hydroxyapatite-silver nanoparticles was synthesized using chemical methods by coprecipitation suspension of Ca(OH)2 with (NH4)HPO4, followed by adding silver nanoparticles solution. The size of the synthesized silver nanoparticles was 30-50 nm and exhibited good antibacterial activity. Nevertheless, when it was composited with HAp to form HAp-AgNPs, there was no antibacterial activity due to very low concentration of silver nanoparticles. This was indicated by the absence of silver nanoparticles diffraction patterns. Infrared spectra indicated the presence of chemical shift and the results of scanning electron microscope showed size of the HAp-AgNPs composite was smaller than that of the HAp. This showed the interaction between HAp and the silver nanoparticles.

  19. In Vitro and In Vivo Characterization of Drug Nanoparticles Prepared Using PureNano™ Continuous Crystallizer to Improve the Bioavailability of Poorly Water Soluble Drugs.

    PubMed

    Tahara, Kohei; Nishikawa, Masahiro; Matsui, Ko; Hisazumi, Koji; Onodera, Risako; Tozuka, Yuichi; Takeuchi, Hirofumi

    2016-09-01

    The aim of this study was to enhance the dissolution and oral absorption of poorly water-soluble active pharmaceutical ingredients (APIs) using nanoparticle suspensions prepared with a PureNano™ continuous crystallizer (PCC). Nanoparticle suspensions were prepared with a PCC, which is based on microfluidics reaction technology and solvent-antisolvent crystallization. Phenytoin, bezafibrate, flurbiprofen, and miconazole were used as model APIs. These APIs were dissolved in ethanol and precipitated by the addition of water and polyvinyl alcohol. Batch crystallization (BC) using a beaker was also performed to prepare the suspensions. Both PCC and BC formulations were freeze-dried before being characterized in vitro and in vivo. The particle sizes of the nanoparticle suspensions prepared with the PCC were smaller than those prepared by BC. The dissolution rate of each API in vitro significantly increased after crystallization. Reducing the particle size of either the BC or PCC formulation led to increased API flux across Caco-2 cell monolayers. PCC preparations showed higher plasma concentrations after oral administration, demonstrating the advantages of a fast dissolution rate and increased interaction with the gastrointestinal tract owing to the smaller particle size. PCC can continuously produce nanoparticle APIs and is an efficient approach for improving their oral bioavailability.

  20. Morphology, Microstructure and Transport Properties of ZnO Decorated SiO2 Nanoparticles (Preprint)

    DTIC Science & Technology

    2010-04-15

    ZnO decorated SiO2 nanoparticles . While the growth conditions we employ for synthesis of ZnO nanocrys- tals are similar to... oxide nanocrystal synthesis on semiconductor oxide nanoparticles is an area yet to be fully explored. One advantage of this approach is that it enables... nanoparticles were resuspended. This washing process was repeated three times. In the hydrolytic ZnO synthesis method, a 1 ml suspension of SiO2 nanoshells