Sample records for nanoparticle system overcomes

  1. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    PubMed

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  2. Nanoparticle therapeutics: Technologies and methods for overcoming cancer.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2015-11-01

    It is anticipated that by 2030 approximately 13 million people will die of cancer. Common cancer therapy often fails due to the development of multidrug resistance (MDR), resulting in high morbidity and poor patient prognosis. Nanotechnology seeks to use drug delivery vehicles of 1-100 nm in diameter, made up of several different materials to deliver anti-cancer drugs selectively to cancer cells and potentially overcome MDR. Several technologies exist for manufacturing and functionalizing nanoparticles. When functionalized appropriately, nanoparticles have been shown to overcome several mechanisms of MDR in vivo and in vitro, reduce drug side effects and represent a promising new area of anti-cancer therapy. This review discusses the fundamental concepts of enhanced permeability and retention (EPR) effect and explores the mechanisms proposed to enhance preferential "retention" in the tumour. The overall objective of this review was to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancer. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  4. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  5. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance

    PubMed Central

    Yan, Fengjiao; Sun, Mingna; Du, Lingran; Peng, Wei; Li, Qiuli; Feng, Yinghong; Zhou, Yi

    2015-01-01

    Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/ Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers. PMID:25605018

  6. Bacterial resistance to silver nanoparticles and how to overcome it

    NASA Astrophysics Data System (ADS)

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  7. Bacterial resistance to silver nanoparticles and how to overcome it.

    PubMed

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  8. A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment.

    PubMed

    Zhang, Yangqing; Tang, Lina; Sun, Leilei; Bao, Junbo; Song, Cunxian; Huang, Laiqiang; Liu, Kexin; Tian, Yan; Tian, Ge; Li, Zhen; Sun, Hongfan; Mei, Lin

    2010-06-01

    Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line. Paclitaxel-loaded nanoparticles were prepared by a water-acetone solvent displacement method using commercial PCL and self-synthesized PCL/Poloxamer 188 compound, respectively. PCL/Poloxamer 188 nanoparticles were found to be of spherical shape and tended to have a rough and porous surface. The nanoparticles had an average size of around 220nm, with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a clear biphasic release pattern. There was an increased level of uptake of PCL/Poloxamer 188 nanoparticles (PPNP) in the paclitaxel-resistant human breast cancer cell line MCF-7/TAX, in comparison with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxol in the MCF-7/TAX cell culture, but the differences were not significant. However, the PCL/Poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than both of PCL nanoparticle formulation and Taxol(R), indicating that paclitaxel-loaded PCL/Poloxamer 188 nanoparticles could overcome MDR in human breast cancer cells and therefore could have considerable therapeutic potential for breast cancer. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. A Novel Docetaxel-Loaded Poly (ɛ-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Yangqing; Zheng, Yi; Tian, Ge; Song, Cunxian; Yang, Dongye; Chen, Hongli; Sun, Hongfan; Tian, Yan; Liu, Kexin; Li, Zhen; Huang, Laiqiang

    2009-12-01

    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ɛ-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere® in the MCF-7 TAX30 cell culture, but the differences were not significant ( p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere® ( p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.

  10. Protamine-based nanoparticles as new antigen delivery systems.

    PubMed

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    PubMed

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  12. Co-delivery nanoparticles with characteristics of intracellular precision release drugs for overcoming multidrug resistance

    PubMed Central

    Zhang, DanDan; Kong, Yan Yan; Sun, Jia Hui; Huo, Shao Jie; Zhou, Min; Gui, Yi Ling; Mu, Xu; Chen, Huan; Yu, Shu Qin; Xu, Qian

    2017-01-01

    Combination chemotherapy in clinical practice has been generally accepted as a feasible strategy for overcoming multidrug resistance (MDR). Here, we designed and successfully prepared a co-delivery system named S-D1@L-D2 NPs, where denoted some smaller nanoparticles (NPs) carrying a drug doxorubicin (DOX) were loaded into a larger NP containing another drug (vincristine [VCR]) via water-in-oil-in-water double-emulsion solvent diffusion-evaporation method. Chitosan-alginate nanoparticles carrying DOX (CS-ALG-DOX NPs) with a smaller diameter of about 20 nm formed S-D1 NPs; vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-modified poly(lactic-co-glycolic acid) nanoparticles carrying VCR (TPGS-PLGA-VCR NPs) with a larger diameter of about 200 nm constituted L-D2 NPs. Some CS-ALG-DOX NPs loaded into TPGS-PLGA-VCR NPs formed CS-ALG-DOX@TPGS-PLGA-VCR NPs. Under the acidic environment of cytosol and endosome or lysosome in MDR cell, CS-ALG-DOX@TPGS-PLGA-VCR NPs released VCR and CS-ALG-DOX NPs. VCR could arrest cell cycles at metaphase by inhibiting microtubule polymerization in the cytoplasm. After CS-ALG-DOX NPs escaped from endosome, they entered the nucleus through the nuclear pore and released DOX in the intra-nuclear alkaline environment, which interacted with DNA to stop the replication of MDR cells. These results indicated that S-D1@L-D2 NPs was a co-delivery system of intracellular precision release loaded drugs with pH-sensitive characteristics. S-D1@L-D2 NPs could obviously enhance the in vitro cytotoxicity and the in vivo anticancer efficiency of co-delivery drugs, while reducing their adverse effects. Overall, S-D1@L-D2 NPs can be considered an innovative platform for the co-delivery drugs of clinical combination chemotherapy for the treatment of MDR tumor. PMID:28356731

  13. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance.

    PubMed

    Yhee, Ji Young; Song, Seungyong; Lee, So Jin; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Myung Goo; Son, Sejin; Koo, Heebeom; Kwon, Ick Chan; Jeong, Ji Hoon; Jeong, Seo Young; Kim, Sun Hwa; Kim, Kwangmeyung

    2015-01-28

    P-glycoprotein (Pgp) mediated multi-drug resistance (MDR) is a major cause of failure in chemotherapy. In this study, small interfering RNA (siRNA) for Pgp down-regulation was delivered to tumors to overcome MDR in cancer. To achieve an efficient siRNA delivery in vivo, self-polymerized 5'-end thiol-modified siRNA (poly-siRNA) was incorporated in tumor targeting glycol chitosan nanoparticles. Pgp-targeted poly-siRNA (psi-Pgp) and thiolated glycol chitosan polymers (tGC) formed stable nanoparticles (psi-Pgp-tGC NPs), and the resulting nanoparticles protected siRNA molecules from enzymatic degradation. The psi-Pgp-tGC NPs could release functional siRNA molecules after cellular delivery, and they were able to facilitate siRNA delivery to Adriamycin-resistant breast cancer cells (MCF-7/ADR). After intravenous administration, the psi-Pgp-tGC NPs accumulated in MCF-7/ADR tumors and down-regulated P-gp expression to sensitize cancer cells. Consequently, chemo-siRNA combination therapy significantly inhibited tumor growth without systemic toxicity. These psi-Pgp-tGC NPs showed great potential as a supplementary therapeutic agent for drug-resistant cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Nanoparticles and the blood coagulation system. Part II: safety concerns

    PubMed Central

    Ilinskaya, Anna N; Dobrovolskaia, Marina A

    2014-01-01

    Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects. PMID:23730696

  15. Introduction for Design of Nanoparticle Based Drug Delivery Systems.

    PubMed

    Edgar, Jun Yan Chan; Wang, Hui

    2017-01-01

    Conventional drug delivery systems contain numerous limitations such as limited targeting, low therapeutic indices, poor water solubility, and the induction of drug resistances. In order to overcome the drawbacks of conventional pathway of drug delivery, nanoparticle delivery systems are therefore designed and used as the drug carriers. Nanoparticle based drug delivery systems have been rapidly growing and are being applied to various sections of biomedicine. Drug nanocarriers based on dendrimers, liposomes, self-assembling peptides, watersoluble polymers, and block copolymer micelles are the most extensively studied types of drug delivery systems and some of them are being used in clinical therapy. In particular for cancer therapy, antineoplastic drugs are taking advantage of nanoparticulate drug carriers to improve the cure efficacy. Nanoparticle based drug carriers are capable of improving the therapeutic effectiveness of the drugs by using active targeting for the site-specific delivery, passive targeting mechanisms such as enhanced permeability and retention (EPR), de novo synthesis and uptake of low density liposome in cancer cells or by being water-soluble to improve the suboptimal pharmacokinetics in limited water-soluble delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases.

    PubMed

    Curtis, Chad; Zhang, Mengying; Liao, Rick; Wood, Thomas; Nance, Elizabeth

    2017-03-01

    Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  18. Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations.

    PubMed

    Neun, Barry W; Dobrovolskaia, Marina A

    2018-01-01

    Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic response and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro Limulus Amebocyte Lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimation of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.

  19. Self-assembling Gold Nanoparticle Monolayers in a Three-phase System - Overcoming Ligand Size Limitations

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.

    An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.

  20. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.

    PubMed

    Martins, João Pedro; Torrieri, Giulia; Santos, Hélder A

    2018-05-01

    Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.

  1. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers

    PubMed Central

    Liu, Jian-ping; Wang, Ting-ting; Wang, Dang-ge; Dong, An-jie; Li, Ya-ping; Yu, Hai-jun

    2017-01-01

    The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment. PMID:27569390

  2. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers.

    PubMed

    Liu, Jian-Ping; Wang, Ting-Ting; Wang, Dang-Ge; Dong, An-Jie; Li, Ya-Ping; Yu, Hai-Jun

    2017-01-01

    The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment.

  3. Engineering nanoparticles to overcome barriers to immunotherapy

    PubMed Central

    Toy, Randall

    2016-01-01

    Abstract Advances in immunotherapy have led to the development of a variety of promising therapeutics, including small molecules, proteins and peptides, monoclonal antibodies, and cellular therapies. Despite this wealth of new therapeutics, the efficacy of immunotherapy has been limited by challenges in targeted delivery and controlled release, that is, spatial and temporal control on delivery. Particulate carriers, especially nanoparticles have been widely studied in drug delivery and vaccine research and are being increasingly investigated as vehicles to deliver immunotherapies. Nanoparticle‐mediated drug delivery could provide several benefits, including control of biodistribution and transport kinetics, the potential for site‐specific targeting, immunogenicity, tracking capability using medical imaging, and multitherapeutic loading. There are also a unique set of challenges, which include nonspecific uptake by phagocytic cells, off‐target biodistribution, permeation through tissue (transport limitation), nonspecific immune‐activation, and poor control over intracellular localization. This review highlights the importance of understanding the relationship between a nanoparticle's size, shape, charge, ligand density and elasticity to its vascular transport, biodistribution, cellular internalization, and immunogenicity. For the design of an effective immunotherapy, we highlight the importance of selecting a nanoparticle's physical characteristics (e.g., size, shape, elasticity) and its surface functionalization (e.g., chemical or polymer modifications, targeting or tissue‐penetrating peptides) with consideration of its reactivity to the targeted microenvironment (e.g., targeted cell types, use of stimuli‐sensitive biomaterials, immunogenicity). Applications of this rational nanoparticle design process in vaccine development and cancer immunotherapy are discussed. PMID:29313006

  4. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  5. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  6. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.

    PubMed

    Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu

    2012-11-01

    This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  8. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  9. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells.

    PubMed

    Meshkini, Azadeh; Oveisi, Hamid

    2017-10-01

    The resistance of cancer cells to chemotherapeutic agents and the poor selectivity of drugs toward tumor cells are regarded as the main impediments in successful cancer therapy. Currently, the design and fabrication of stimulus-responsive drug delivery systems with high specificity toward cancer cells are gaining increasing attention and they show a promising potential for clinical applications. In this study, mesoporous zinc-substituted hydroxyapatite has been synthesized and served as a drug delivery vehicle owing to its biocompatibility and high drug loading capacity. The mesoporous nanoparticles were decorated with F127 and subsequently conjugated with methotrexate (MTX) through a stable amide linkage. Since folate receptors are overexpressed on many tumor cell surfaces, MTX on the nanocarrier system plays a dual role as a targeting molecule and a chemotherapeutic drug. The evaluation of the drug release profile revealed that MTX was cleaved from the nanoparticles by a certain type of enzyme under low pH conditions that are meant to simulate the intracellular conditions in the lysosome. Cell viability studies on primary osteosarcoma cells (Saos-2) and MTX-resistance cell lines (RSaos-2/MTX) revealed that the drug-loaded nanoparticles possess high antitumor efficacy on both of the cell lines relative to free MTX. It was also found that the inhibition of P-glycoproteins by F127 and the release of Zn 2+ ions from the nanoparticles in an acidic environment effectively potentiate the antitumor efficacy of the drug-loaded nanoparticles, leading to caspase-mediated cell death. Based on these data, MTX-F127@ZnHAP nanoparticles are pH-responsive nanocarriers with precise controlled drug release and targeting effect. Therefore, they are considered to be promising candidates capable of overcoming resistance in osteosarcoma cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Review: nanoparticles in delivery of cardiovascular drugs.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Qureshi, Faiza

    2007-10-01

    Everything in nature is built upward from the atomic level to define limits and structures to everything. Nanomedicines marked the field of medicine from nanobiotechnology, biological micro-electromechanical systems, microfluidics, biosensors, drug delivery, microarrays to tissue microengineering. Since then nanoparticles has overcome many challenges from blood brain barrier to targeting tumors. Where solid biodegradable nanoparticles were a step up liposome, targeting nanoparticles opened a whole new field for drug delivery. In this article, we attempt to discuss how the pioneered technique is serving in the drug delivery to cardiovascular system and how with the manipulation of their properties, nanoparticles can be made to fulfill desired function. Also how nanocarriers are improving molecular imaging to help improve diagnosis and treatment of cardiovascular disease is focused in this article.

  11. Recent progress on nanoparticle-based drug delivery systems for cancer therapy

    PubMed Central

    Xin, Yanru; Yin, Mingming; Zhao, Liyuan; Meng, Fanling; Luo, Liang

    2017-01-01

    The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years. PMID:28884040

  12. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  13. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro

    PubMed Central

    Kievit, Forrest M.; Wang, Freddy Y.; Fang, Chen; Mok, Hyejung; Wang, Kui; Silber, John R.; Ellenbogen, Richard G.; Zhang, Miqin

    2011-01-01

    Multidrug resistance (MDR) is characterized by the overexpression of ATP-binding cassette (ABC) transporters that actively pump a broad class of hydrophobic chemotherapeutic drugs out of cancer cells. MDR is a major mechanism of treatment resistance in a variety of human tumors, and clinically applicable strategies to circumvent MDR remain to be characterized. Here we describe the fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumvent MDR. Doxorubicin (DOX), an anthracycline antibiotic commonly used in cancer chemotherapy and substrate for ABC-mediated drug efflux, was covalently bound to polyethylenimine via a pH sensitive hydrazone linkage and conjugated to an iron oxide nanoparticle coated with amine terminated polyethylene glycol. Drug loading, physiochemical properties and pH lability of the DOX-hydrazone linkage were evaluated in vitro. Nanoparticle uptake, retention, and dose-dependent effects on viability were compared in wild-type and DOX-resistant ABC transporter over-expressing rat glioma C6 cells. We found that DOX release from nanoparticles was greatest at acidic pH, indicative of cleavage of the hydrazone linkage. DOX-conjugated nanoparticles were readily taken up by wild-type and drug-resistant cells. In contrast to free drug, DOX-conjugated nanoparticles persisted in drug-resistant cells, indicating that they were not subject to drug efflux. Greater retention of DOX-conjugated nanoparticles was accompanied by reduction of viability relative to cells treated with free drug. Our results suggest that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR. PMID:21277920

  14. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    PubMed

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system

    PubMed Central

    Kosinski, Aaron M.; Brugnano, Jamie L.; Seal, Brandon L.; Knight, Frances C.; Panitch, Alyssa

    2012-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a popular material used to prepare nanoparticles for drug delivery. However, PLGA nanoparticles lack desirable attributes including active targeting abilities, resistance to aggregation during lyophilization, and the ability to respond to dynamic environmental stimuli. To overcome these issues, we fabricated a nanoparticle consisting of a PLGA core encapsulated within a shell of poly(N-isopropylacrylamide). Dynamic light scattering and transmission electron microscope imaging were used to characterize the nanoparticles, while an MTT assay and ELISA suggested biocompatibility in THP1 cells. Finally, a collagen type II binding assay showed successful modification of these nanoparticles with an active targeting moiety. PMID:23507885

  16. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  17. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    PubMed Central

    Novickij, Vitalij; Stanevičienė, Ramunė; Vepštaitė-Monstavičė, Iglė; Gruškienė, Rūta; Krivorotova, Tatjana; Sereikaitė, Jolanta; Novickij, Jurij; Servienė, Elena

    2018-01-01

    Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11–13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high dB/dt 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. PMID:29375537

  18. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields.

    PubMed

    Novickij, Vitalij; Stanevičienė, Ramunė; Vepštaitė-Monstavičė, Iglė; Gruškienė, Rūta; Krivorotova, Tatjana; Sereikaitė, Jolanta; Novickij, Jurij; Servienė, Elena

    2017-01-01

    Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11-13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm -1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high d B /d t 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high d B /d t pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  19. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of nanoparticle delivery to tumours

    NASA Astrophysics Data System (ADS)

    Wilhelm, Stefan; Tavares, Anthony J.; Dai, Qin; Ohta, Seiichi; Audet, Julie; Dvorak, Harold F.; Chan, Warren C. W.

    2016-05-01

    Targeting nanoparticles to malignant tissues for improved diagnosis and therapy is a popular concept. However, after surveying the literature from the past 10 years, only 0.7% (median) of the administered nanoparticle dose is found to be delivered to a solid tumour. This has negative consequences on the translation of nanotechnology for human use with respect to manufacturing, cost, toxicity, and imaging and therapeutic efficacy. In this article, we conduct a multivariate analysis on the compiled data to reveal the contributions of nanoparticle physicochemical parameters, tumour models and cancer types on the low delivery efficiency. We explore the potential causes of the poor delivery efficiency from the perspectives of tumour biology (intercellular versus transcellular transport, enhanced permeability and retention effect, and physicochemical-dependent nanoparticle transport through the tumour stroma) as well as competing organs (mononuclear phagocytic and renal systems) and present a 30-year research strategy to overcome this fundamental limitation. Solving the nanoparticle delivery problem will accelerate the clinical translation of nanomedicine.

  1. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    PubMed

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Drug-Loaded Nanoparticle Systems And Adult Stem Cells: A Potential Marriage For The Treatment Of Malignant Glioma?

    PubMed Central

    Auffinger, Brenda; Morshed, Ramin; Tobias, Alex; Cheng, Yu; Ahmed, Atique U; Lesniak, Maciej S

    2013-01-01

    Despite all recent advances in malignant glioma research, only modest progress has been achieved in improving patient prognosis and quality of life. Such a clinical scenario underscores the importance of investing in new therapeutic approaches that, when combined with conventional therapies, are able to effectively eradicate glioma infiltration and target distant tumor foci. Nanoparticle-loaded delivery systems have recently arisen as an exciting alternative to improve targeted anti-glioma drug delivery. As drug carriers, they are able to efficiently protect the therapeutic agent and allow for sustained drug release. In addition, their surface can be easily manipulated with the addition of special ligands, which are responsible for enhancing tumor-specific nanoparticle permeability. However, their inefficient intratumoral distribution and failure to target disseminated tumor burden still pose a big challenge for their implementation as a therapeutic option in the clinical setting. Stem cell-based delivery of drug-loaded nanoparticles offers an interesting option to overcome such issues. Their ability to incorporate nanoparticles and migrate throughout interstitial barriers, together with their inherent tumor-tropic properties and synergistic anti-tumor effects make these stem cell carriers a good fit for such combined therapy. In this review, we will describe the main nanoparticle delivery systems that are presently available in preclinical and clinical studies. We will discuss their mechanisms of targeting, current delivery methods, attractive features and pitfalls. We will also debate the potential applications of stem cell carriers loaded with therapeutic nanoparticles in anticancer therapy and why such an attractive combined approach has not yet reached clinical trials. PMID:23594406

  3. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability

    PubMed Central

    Neves, Ana Rute; Lúcio, Marlene; Martins, Susana; Lima, José Luís Costa; Reis, Salette

    2013-01-01

    Introduction Resveratrol is a polyphenol found in grapes and red wines. Interest in this polyphenol has increased due to its pharmacological cardio- and neuroprotective, chemopreventive, and antiaging effects, among others. Nevertheless, its pharmacokinetic properties are less favorable, since the compound has poor bioavailability, low water solubility, and is chemically unstable. To overcome these problems, we developed two novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance resveratrol’s oral bioavailability for further use in medicines, supplements, and nutraceuticals. Methods and materials Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) loaded with resveratrol were successfully produced by a modified hot homogenization technique. These were completely characterized to evaluate the quality of the developed resveratrol-loaded nanoparticles. Results Cryo-scanning electron microscopy morphology studies showed spherical and uniform nanoparticles with a smooth surface. An average resveratrol entrapment efficiency of ~70% was obtained for both SLNs and NLCs. Dynamic light scattering measurements gave a Z-average of 150–250 nm, polydispersity index of ~0.2, and a highly negative zeta potential of around −30 mV with no statistically significant differences in the presence of resveratrol. These characteristics remained unchanged for at least 2 months, suggesting good stability. Differential scanning calorimetry studies confirmed the solid state of the SLNs and NLCs at both room and body temperatures. The NLCs had a less ordered crystalline structure conferred by the inclusion of the liquid lipid, since they had lower values for phase transition temperature, melting enthalpy, and the recrystallization index. The presence of resveratrol induced a disorder in the crystal structure of the nanoparticles, suggesting a favoring of its entrapment. The in vitro release studies on conditions of storage showed a negligible

  4. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors

    PubMed Central

    Kopecka, Joanna; Porto, Stefania; Lusa, Sara; Gazzano, Elena; Salzano, Giuseppina; Pinzòn-Daza, Martha Leonor; Giordano, Antonio; Desiderio, Vincenzo; Ghigo, Dario; De Rosa, Giuseppe; Caraglia, Michele; Riganti, Chiara

    2016-01-01

    The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking. The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization. NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors. Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells. PMID:26980746

  5. Alloy nanoparticle synthesis using ionizing radiation

    DOEpatents

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  6. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Overcoming limitations of model-based diagnostic reasoning systems

    NASA Technical Reports Server (NTRS)

    Holtzblatt, Lester J.; Marcotte, Richard A.; Piazza, Richard L.

    1989-01-01

    The development of a model-based diagnostic system to overcome the limitations of model-based reasoning systems is discussed. It is noted that model-based reasoning techniques can be used to analyze the failure behavior and diagnosability of system and circuit designs as part of the system process itself. One goal of current research is the development of a diagnostic algorithm which can reason efficiently about large numbers of diagnostic suspects and can handle both combinational and sequential circuits. A second goal is to address the model-creation problem by developing an approach for using design models to construct the GMODS model in an automated fashion.

  8. Principles of nanoparticle design for overcoming biological barriers to drug delivery

    PubMed Central

    Blanco, Elvin; Shen, Haifa; Ferrari, Mauro

    2016-01-01

    Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery. PMID:26348965

  9. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.

    PubMed

    Mittal, Rahul; Patel, Amit P; Jhaveri, Vasanti M; Kay, Sae-In S; Debs, Luca H; Parrish, James M; Pan, Debbie R; Nguyen, Desiree; Mittal, Jeenu; Jayant, Rahul Dev

    2018-03-01

    The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects. Areas covered: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract. Expert opinion: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.

  10. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

    PubMed Central

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Background Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Methods Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Results Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Conclusion Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia. PMID:22619560

  11. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.

    PubMed

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe(3)O(4)-MNP, and Fe(3)O(4)-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe(3)O(4)-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Fe(3)O(4)-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe(3)O(4)-MNP and Fe(3)O(4)-MNP-DNR-5-BrTet groups, especially in the Fe(3)O(4)-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.

  12. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer.

    PubMed

    Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching

    2015-10-01

    Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    PubMed

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our

  14. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    PubMed

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage.

    PubMed

    Rosenholm, Jessica M; Mamaeva, Veronika; Sahlgren, Cecilia; Lindén, Mika

    2012-01-01

    Nanotechnology may help overcome persisting limitations of current cancer treatment and thus contribute to the creation of more effective, safer and more affordable therapies. While some nanotechnology-based drug delivery systems are already being marketed and others are in clinical trial, most still remain in the preclinical development stage. Mesoporous silica nanoparticles have been highlighted as an interesting drug delivery platform, due to their flexibility and high drug load potential. Although numerous reports demonstrate sophisticated drug delivery mechanisms in vitro, the therapeutic benefit of these systems for in vivo applications have been under continuous debate. This has been due to nontranslatable conditions used in the in vitro studies, as well as contradictory conclusions drawn from preclinical (in vivo) studies. However, recent studies have indicated that the encouraging cellular studies could in fact be repeated also in vivo. Here, we report on these recent advances regarding therapeutic efficacy, targeting and safety issues related to the application of mesoporous silica nanoparticles in cancer therapy.

  16. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

    PubMed Central

    Yu, Bo; Mao, Yicheng; Bai, Li-Yuan; Herman, Sarah E. M.; Wang, Xinmei; Ramanunni, Asha; Jin, Yan; Mo, Xiaokui; Cheney, Carolyn; Chan, Kenneth K.; Jarjoura, David; Marcucci, Guido; Lee, Robert J.; Byrd, John C.

    2013-01-01

    Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif–mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)–conjugated lipopolyplex nanoparticle (RIT-INP)– and Bcl-2–targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell–targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP–G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed. PMID:23165478

  17. Current Challenges and Future of Lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye.

    PubMed

    Guilherme, Viviane A; Ribeiro, Ligia N M; Tofoli, Giovana Radomille; Franz-Montan, Michelle; de Paula, Eneida; de Jesus, Marcelo Bispo

    2017-11-21

    Topical drug administration offers an attractive route with minimal invasiveness. It also avoids limitations of intravenous administration such as the first pass metabolism and presystemic elimination within the gastrointestinal tract. Furthermore, topical drug administration is safe, have few side effects, is easy to apply, and offers a fast onset of action. However, the development of effective topical formulations still represents a challenge for the desired effect to be reached, locally or systemically. Solid lipid nanoparticles and nanostructured lipid carriers are particular candidates to overcome the problem of topical drug administration. The nanometric particle size of lipid nanoparticles favors the physical adhesion to the skin or mucosal, what can also be attained with the formation of hybrid (nanoparticles/polymer) systems. In this review, we discuss the major challenges for lipid nanoparticles formulations for topical application to oral mucosa, skin, and eye, highlighting the strategies to improve the performance of lipid nanoparticles for topical applications. Next, we critically analyzed the in vitro and in vivo approaches used to evaluate lipid nanoparticles performance and toxicity. We addressed some major drawbacks related to lipid nanoparticle topical formulations and concluded the key points that have to be overcome to help them to reach the market in topical formulations to oral mucosa, skin and eye. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases

    PubMed Central

    Ko, Young Tag; Choi, Dong-Kug

    2018-01-01

    Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases. PMID:29588585

  19. Optical Characterization of Single Plasmonic Nanoparticles

    PubMed Central

    Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan

    2015-01-01

    This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351

  20. Preparation and characterization of solid lipid nanoparticles-a review.

    PubMed

    Parhi, Rabinarayan; Suresh, Padilama

    2012-03-01

    In the present scenario, most of the developed and new discovered drugs are posing real challenge to the formulation scientists due to their poor aqueous solubility which in turn is responsible for poor bioavailability. One of the approach to overcome above problem is the packaging of the drug in to particulate carrier system. Among various carriers, lipid emerged as very attractive candidate because of its unique property of enhancing the bioavailability of poorly water soluble drugs. Solid lipid, one of the physical forms of lipid, is used to formulate nanoparticles, popularly known as Solid lipid nanoparticles (SLNs), as an alternative carrier system to emulsions, liposomes and polymeric micro- and nano-particles. SLNs combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews numerous production techniques for SLNs along with their advantages and disadvantages. Special attention is paid to the characterization of the SLNs by using various analytical tools. It also emphasizes on physical state of lipid (supercooled melts, different lipid modifications).

  1. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    PubMed

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  2. A pretargeted nanoparticle system for tumor cell labeling

    PubMed Central

    Gunn, Jonathan; Park, Steven I.; Veiseh, Omid; Press, Oliver W.; Zhang, Miqin

    2011-01-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope. PMID:21107453

  3. A pretargeted nanoparticle system for tumor cell labeling.

    PubMed

    Gunn, Jonathan; Park, Steven I; Veiseh, Omid; Press, Oliver W; Zhang, Miqin

    2011-03-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope.

  4. Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system

    PubMed Central

    Chandel, Shubham; Soni, Jalpa; Ray, Subir kumar; Das, Anwesh; Ghosh, Anirudha; Raj, Satyabrata; Ghosh, Nirmalya

    2016-01-01

    Information on the polarization properties of scattered light from plasmonic systems are of paramount importance due to fundamental interest and potential applications. However, such studies are severely compromised due to the experimental difficulties in recording full polarization response of plasmonic nanostructures. Here, we report on a novel Mueller matrix spectroscopic system capable of acquiring complete polarization information from single isolated plasmonic nanoparticle/nanostructure. The outstanding issues pertaining to reliable measurements of full 4 × 4 spectroscopic scattering Mueller matrices from single nanoparticle/nanostructures are overcome by integrating an efficient Mueller matrix measurement scheme and a robust eigenvalue calibration method with a dark-field microscopic spectroscopy arrangement. Feasibility of quantitative Mueller matrix polarimetry and its potential utility is illustrated on a simple plasmonic system, that of gold nanorods. The demonstrated ability to record full polarization information over a broad wavelength range and to quantify the intrinsic plasmon polarimetry characteristics via Mueller matrix inverse analysis should lead to a novel route towards quantitative understanding, analysis/interpretation of a number of intricate plasmonic effects and may also prove useful towards development of polarization-controlled novel sensing schemes. PMID:27212687

  5. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  6. Overcoming the Coupling Dilemma in DNA-Programmable Nanoparticle Assemblies by "Ag+ Soldering".

    PubMed

    Wang, Huiqiao; Li, Yulin; Liu, Miao; Gong, Ming; Deng, Zhaoxiang

    2015-05-20

    Strong coupling between nanoparticles is critical for facilitating charge and energy transfers. Despite the great success of DNA-programmable nanoparticle assemblies, the very weak interparticle coupling represents a key barrier to various applications. Here, an extremely simple, fast, and highly efficient process combining DNA-programming and molecular/ionic bonding is developed to address this challenge, which exhibits a seamless fusion with DNA nanotechnology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide.

    PubMed

    Castro, Pedro M; Baptista, Patrícia; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2018-05-22

    Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Calcium carbonate nanoparticles as cancer drug delivery system.

    PubMed

    Maleki Dizaj, Solmaz; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro; Lotfipour, Farzaneh

    2015-01-01

    Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration. Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated. According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.

  9. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  10. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.

    PubMed

    Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak

    2017-11-25

    Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.

  11. Micelle-like Nanoparticles as Carriers for DNA and siRNA

    PubMed Central

    Navarro, Gemma; Pan, Jiayi; Torchilin, Vladimir P.

    2015-01-01

    Gene therapy represents a potential efficient approach of disease prevention and therapy. However, due to their poor in vivo stability, gene molecules need to be associated with delivery systems to overcome extracellular and intracellular barriers and allow access to the site of action. Cationic polymeric nanoparticles are popular carriers for small interfering RNA (siRNA) and DNA-based therapeutics for which efficient and safe delivery are important factors that need to be optimized. Micelle-like nanoparticles (MNP) (half micelles, half polymeric nanoparticles) can overcome some of the disadvantages of such cationic carriers by unifying in one single carrier the best of both delivery systems. In this review, we will discuss how the unique properties of MNP including self-assembly, condensation and protection of nucleic acids, improved cell association and gene transfection, and low toxicity may contribute to the successful application of siRNA- and DNA-based therapeutics into the clinic. Recent developments of MNP involving the addition of stimulus-sensitive functions to respond specifically to pathological or externally applied “triggers” (e.g., temperature, pH or enzymatic catalysis, light, or magnetic fields) will be discussed. Finally, we will overview the use of MNP as two-in-one carriers for the simultaneous delivery of different agents (small molecules, imaging agents) and nucleic acid combinations. PMID:25557580

  12. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific

    NASA Astrophysics Data System (ADS)

    Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.

    2015-09-01

    This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered

  13. Multifunctional platinum-based nanoparticles for biomedical applications.

    PubMed

    Cheng, Qinqin; Liu, Yangzhong

    2017-03-01

    Platinum-based anticancer drugs play a central role in current cancer therapy. However, their applicability and efficacy are limited by drug resistance and adverse effects. Nanocarrier-based platinum drug delivery systems are promising alternatives to circumvent the disadvantages of bare platinum drugs. The various properties of nanoparticle chemistry allow for the trend toward multiple functionality. Nanoparticles preferentially accumulate at the tumor site through passive targeting, and the attachment of tumor targeting moieties further enhances their tumor-specific localization as well as tumor cell uptake. The introduction of stimuli-responsive groups into drug delivery systems can further achieve spatially and temporally controlled drug release in response to specific stimuli. Combination therapy strategies have been used to promote synergetic efficacy and overcome the resistance of platinum drugs. The tumor-localized drug delivery strategies exhibit benefits for preventing local tumor recurrence. In addition, the combination of platinum drugs and imaging agents in one unity allows the cancer diagnostics for real-time monitoring the distribution of drug-loaded nanoparticles inside the body and tumor. This review discusses recent scientific advances in multifunctional nanoparticle formulations of platinum drugs, and these designs exhibit new potential of multifunctional nanoparticles for delivering platinum-based anticancer drugs. WIREs Nanomed Nanobiotechnol 2017, 9:e1410. doi: 10.1002/wnan.1410 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  14. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles.

    PubMed

    Shi, Wei-Bin; Le, Van-Minh; Gu, Chun-Hua; Zheng, Yuan-Hong; Lang, Mei-Dong; Lu, Yan-Hua; Liu, Jian-Wen

    2014-04-01

    The principal limitations of chemotherapy are dose-limiting systemic toxicity and the development of multidrug-resistant phenotypes. The aim of this study was to investigate the efficiency of a new sustained drug delivery system based on chitosan and ε-caprolactone to overcome multidrug resistance in monolayer and drug resistance associated with the three-dimensional (3D) tumor microenvironment in our established 3D models. The 5-fluorouracil (5-FU)-loaded nanoparticles (NPs) were characterized by transmission electron microscope and dynamic light scattering, and its released property was determined at different pH values. 5-FU/NPs exhibited well-sustained release properties and markedly enhanced the cytotoxicity of 5-FU against HCT116/L-OHP or HCT8/VCR MDR cells in two-dimensional (2D) and its parental cells in 3D collagen gel culture with twofold to threefold decrease in the IC50 values, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst/propidium iodide staining and flow cytometry analysis. Furthermore, the possible mechanism was explored by high-performance liquid chromatography and rhodamine 123 accumulation experiment. Overall, the results demonstrated that 5-FU/NPs increase intracellular concentration of 5-FU and enhance its anticancer efficiency by inducing apoptosis. It was suggested that this novel NPs are a promising carrier to decrease toxic of 5-FU and has the potential to reverse the forms of both intrinsic and acquired drug resistance in 2D and 3D cultures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?

    PubMed

    Zhao, Mingwei; Zhang, Yue; Zou, Chenwei; Dai, Caili; Gao, Mingwei; Li, Yuyang; Lv, Wenjiao; Jiang, Jianfeng; Wu, Yining

    2017-09-18

    There have been many reports about the thickening ability of nanoparticles on the wormlike micelles in the recent years. Through the addition of nanoparticles, the viscosity of wormlike micelles can be increased. There still exists a doubt: can viscosity be increased further by adding more nanoparticles? To answer this issue, in this work, the effects of silica nanoparticles and temperature on the nanoparticles-enhanced wormlike micellar system (NEWMS) were studied. The typical wormlike micelles (wormlike micelles) are prepared by 50 mM cetyltrimethyl ammonium bromide (CTAB) and 60 mM sodium salicylate (NaSal). The rheological results show the increase of viscoelasticity in NEWMS by adding nanoparticles, with the increase of zero-shear viscosity and relaxation time. However, with the further increase of nanoparticles, an interesting phenomenon appears. The zero-shear viscosity and relaxation time reach the maximum and begin to decrease. The results show a slight increasing trend for the contour length of wormlike micelles by adding nanoparticles, while no obvious effect on the entanglement and mesh size. In addition, with the increase of temperature, remarkable reduction of contour length and relaxation time can be observed from the calculation. NEWMS constantly retain better viscoelasticity compared with conventional wormlike micelles without silica nanoparticles. According to the Arrhenius equation, the activation energy E a shows the same increase trend of NEWMS. Finally, a mechanism is proposed to explain this interesting phenomenon.

  16. Composite nanoparticles for gene delivery.

    PubMed

    Wang, Yuhua; Huang, Leaf

    2014-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.

  17. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment

    PubMed Central

    Yuan, Xun; Ji, Wenxiang; Chen, Si; Bao, Yuling; Tan, Songwei; Lu, Shun; Wu, Kongming; Chu, Qian

    2016-01-01

    Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(d,l-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(d,l-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficiently load PTX and release the drug gradually. There was an increased level of uptake of PLGA-Tween 80 in PTX-resistant lung cancer cell line A549/T, which achieved a significantly higher level of cytotoxicity than both PLGA NP formulation and Taxol®. The in vivo antitumor efficacy also showed that PLGA-Tween 80 NP was more effective than Taxol®, indicating that PLGA-Tween 80 copolymer was a promising carrier for PTX in resistant lung cancer. PMID:27307727

  18. Simple Recovery of Intracellular Gold Nanoparticles from Peanut Seedling Roots.

    PubMed

    Raju, D; Mehta, Urmil J; Ahmad, Absar

    2015-02-01

    Fabrication of inorganic nanomaterials via a biological route witnesses the formation either extracellularly, intracellulary or both. Whereas extracellular formation of these nanomaterials is cherished owing to their easy and economical extraction and purification processes; the intracellular formation of nanomaterials, due to the lack of a proper recovery protocol has always been dreaded, as the extraction processes used so far were tedious, costly, time consuming and often resulting in very low recovery. The aim of the present study was to overcome the problems related with the extraction and recovery of intracellularly synthesized inorganic nanoparticles, and to devise a method to increasing the output, the shape, size, composition and dispersal of nanoparticles is not altered. Water proved to be much better system as it provided well dispersed, stable gold nanoparticles and higher recovery. This is the first report, where intracellular nanoparticles have been recovered using a very cost-effective and eco-friendly approach.

  19. Nanoparticle formulations of cisplatin for cancer therapy

    PubMed Central

    Duan, Xiaopin; He, Chunbai; Kron, Stephen J.; Lin, Wenbin

    2016-01-01

    The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention (EPR) effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. PMID:26848041

  20. Recent advances in inorganic nanoparticle-based drug delivery systems.

    PubMed

    Murakami, Tatsuya; Tsuchida, Kunihiro

    2008-02-01

    Drug delivery systems, designed to enhance drug efficacy and reduce their adverse effects, have evolved accompanied by the development of novel materials. Nanotechnology is an emerging scientific area that has created a variety of intriguing inorganic nanoparticles. In this review, we focus on the feasibility of inorganic nanoparticles, including iron oxide nanoparticles, gold nanoparticles, fullerenes and carbon nanohorns, as drug carriers, and summarize recent advances in this field.

  1. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  2. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  3. Nanoparticle Additives for Multiphase Systems: Synthesis, Formulation and Characterization

    DTIC Science & Technology

    2012-01-01

    ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION Vinod Kanniah University of Kentucky, vinodkanniah@gmail.com This Doctoral...UKnowledge@lsv.uky.edu. Recommended Citation Kanniah, Vinod, "NANOPARTICLE ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Nanoparticle Additives for Multiphase Systems: Synthesis , Formulation and Characterization 5a

  4. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    PubMed

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  5. Nanoparticles in Higher-Order Multimodal Imaging

    NASA Astrophysics Data System (ADS)

    Rieffel, James Ki

    Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.

  6. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  7. Lipid nanoparticles as drug/gene delivery systems to the retina.

    PubMed

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  8. Molecular Imaging with Theranostic Nanoparticles

    PubMed Central

    Jokerst, Jesse V.; Gambhir, Sanjiv S.

    2011-01-01

    Conspectus Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one

  9. Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Constantinou, Pamela E.; Danysh, Brian P.; Shenefelt, Derek L.; Carson, Daniel D.; Farach-Carson, Mary C.; Kulchitsky, Vladimir A.; Wu, Xiangwei; Wagner, Daniel S.; Lapotko, Dmitri O.

    2012-01-01

    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level. PMID:22509318

  10. Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Constantinou, Pamela E; Danysh, Brian P; Shenefelt, Derek L; Carson, Daniel D; Farach-Carson, Mary C; Kulchitsky, Vladimir A; Wu, Xiangwei; Wagner, Daniel S; Lapotko, Dmitri O

    2012-01-01

    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.

  11. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles

    PubMed Central

    Yan, Mina; Yang, Chanzhen; Huang, Binyao; Huang, Zeqian; Huang, Liangfeng; Zhang, Xuefei; Zhao, Chunshun

    2017-01-01

    Layered double hydroxide (LDH) nanoparticles are emerging as one of the promising nanomaterials for biomedical applications, but their systemic toxicity in vivo has received little attention. In the present study, the effects of inorganic nanoparticle aggregation on their systemic toxicity were examined. Remarkably, aggregation was observed after the mixing of naked LDH nanoparticles with saline or erythrocytes. Significant accumulation of the naked LDH nanoparticles in the lungs of mice was detected 1 h after intravenous administration, and the survival rate of mice was 0% after 6 repeated injections. Furthermore, flocculent precipitates in the alveoli and congestion in the lung interstitium were observed in the dead mice. However, lipid membrane-coated LDH nanoparticles would not form aggregates and could be injected intravenously >6 times without causing death. These findings suggested that repeated injections of LDH were lethal even at low dose (30 mg/kg), and lipid membrane coating can be considered as an approach for reducing this risk. PMID:29042768

  12. Biomarkers of Nanoparticles Impact on Biological Systems

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V.; Ieleiko, L.; Glavin, A.; Sorochinska, J.

    Studies of nanoscale mineral fibers have demonstrated that the toxic and carcinogenic effects are related to the surface area and surface activity of inhaled particles. Particle surface characteristics are considered to be key factors in the generation of free radicals and reactive oxygen species and are related to the development of apoptosis or cancer. Existing physico-chemical methods do not always allow estimation of the nanoparticles impact on organismal and cellular levels. The aim of this study was to develop marker system for evaluation the toxic and carcinogenic effects of nanoparticles on cells. The markers are designed with respect to important nanoparticles characteristics for specific and sensitive assessment of their impact on biological system. We have studied DNA damage, the activity of xanthine oxidoreductase influencing the level of free radicals, bioenergetic status, phospholipids profile and formation of 1H-NMR-visible mobile lipid domains in Ehrlich carcinoma cells. The efficiency of the proposed marker system was tested in vivo and in vitro with the use of C60 fullerene nanoparticles and multiwalled carbon nanotubes. Our data suggest that multiwalled carbon nanotubes and fullerene C60 may pose genotoxic effect, change energy metabolism and membrane structure, alter free radical level via xanthine oxidase activation and cause mobile lipid domains formation as determined in vivo and in vitro studies on Ehrlich carcinoma cells.

  13. [Preparation of scopolamine hydrobromide nanoparticles-in-microsphere system].

    PubMed

    Lü, Wei-ling; Hu, Jin-hong; Zhu, Quan-gang; Li, Feng-qian

    2010-07-01

    This study is to prepare scopolamine hydrobromide nanoparticles-in-microsphere system (SH-NiMS) and evaluate its drug release characteristics in vitro. SH nanoparticles were prepared by ionic crosslinking method with tripolyphosphate (TPP) as crosslinker and chitosan as carrier. Orthogonal design was used to optimize the formulation of SH nanoparticles, which took the property of encapsulation efficiency and drug loading as evaluation parameters. With HPMC as carrier, adjusted the parameters of spray drying technique and sprayed the SH nanoparticles in microspheres encaposulated by HPMC was formed and which is called nanoparticles-in-microsphere system (NiMS). SH-NiMS appearances were observed by SEM, structure was obsearved by FT-IR and the release characteristics in vitro were evaluated. The optimized formulation of SH nanoparticles was TPP/CS 1:3 (w/w), HPMC 0.3%, SH 0.2%. The solution peristaltic speed of the spray drying technique was adjusted to 15%, and the temperature of inlet was 110 degrees C. The encapsulation product yeild, drug loading and particle sizes of SH-NiMS were 94.2%, 20.4%, and 1256.5 nm, respectively. The appearances and the structure of SH-NiMS were good. The preparation method of SH-NiMS is stable and reliable to use, which provide a new way to develop new dosage form.

  14. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.

    PubMed

    Krogstad, Emily A; Ramanathan, Renuka; Nhan, Christina; Kraft, John C; Blakney, Anna K; Cao, Shijie; Ho, Rodney J Y; Woodrow, Kim A

    2017-11-01

    Current approaches for topical vaginal administration of nanoparticles result in poor retention and extensive leakage. To overcome these challenges, we developed a nanoparticle-releasing nanofiber delivery platform and evaluated its ability to improve nanoparticle retention in a murine model. We individually tailored two components of this drug delivery system for optimal interaction with mucus, designing (1) mucoadhesive fibers for better retention in the vaginal tract, and (2) PEGylated nanoparticles that diffuse quickly through mucus. We hypothesized that this novel dual-functioning (mucoadhesive/mucus-penetrating) composite material would provide enhanced retention of nanoparticles in the vaginal mucosa. Equivalent doses of fluorescent nanoparticles were vaginally administered to mice in either water (aqueous suspension) or fiber composites, and fluorescent content was quantified in cervicovaginal mucus and vaginal tissue at time points from 24 h to 7d. We also fabricated composite fibers containing etravirine-loaded nanoparticles and evaluated the pharmacokinetics over 7d. We found that our composite materials provided approximately 30-fold greater retention of nanoparticles in the reproductive tract at 24 h compared to aqueous suspensions. Compared to nanoparticles in aqueous suspension, the nanoparticles in fiber composites exhibited sustained and higher etravirine concentrations after 24 h and up to 7d, demonstrating the capabilities of this new delivery platform to sustain nanoparticle release out to 3d and drug retention out to one week after a single administration. This is the first report of nanoparticle-releasing fibers for vaginal drug delivery, as well as the first study of a single delivery system that combines two components uniquely engineered for complementary interactions with mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Review on the Respiratory System Toxicity of Carbon Nanoparticles.

    PubMed

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B; Kafoury, Ramzi

    2016-03-15

    The respiratory system represents the main gateway for nanoparticles' entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles' interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products.

  16. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals.

    PubMed

    Puglia, Carmelo; Bonina, Francesco

    2012-04-01

    Lipid nanoparticles are innovative carrier systems developed as an alternative to traditional vehicles such as emulsions, liposomes and polymeric nanoparticles. Solid lipid nanoparticles (SLN) and the newest nanostructured lipid carriers (NLC) show important advantages for dermal application of cosmetics and pharmaceuticals. This article focuses on the main features of lipid nanoparticles, in terms of their preparation and recent advancements. A detailed review of the literature is presented, introducing the importance of these systems in the topical delivery of drugs and active substances. Lipid nanoparticles are able to enhance drug penetration into the skin, allowing increased targeting to the epidermis and consequently increasing treatment efficiency and reducing the systemic absorption of drugs and cosmetic actives. The complete biodegradation of lipid nanoparticles and their biocompatible chemical nature have secured them the title of 'nanosafe carriers.' SLN and NLC represent a new technological era, which has been taken over by the cosmetic and pharmaceutical industry, which will open new channels for effective topical delivery of substances.

  17. A biosensor system using nickel ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as themore » dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.« less

  18. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE PAGES

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; ...

    2016-11-23

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  19. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  20. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  1. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions.

    PubMed

    Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping

    2013-12-10

    Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.

  2. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.

    PubMed

    Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin

    2018-06-25

    Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  3. MULTI-STAGE DELIVERY NANO-PARTICLE SYSTEMS FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Serda, Rita E.; Godin, Biana; Blanco, Elvin; Chiappini, Ciro; Ferrari, Mauro

    2010-01-01

    Background The daunting task for drug molecules to reach pathological lesions has fueled rapid advances in Nanomedicine. The progressive evolution of nanovectors has led to the development of multi-stage delivery systems aimed at overcoming the numerous obstacles encountered by nanovectors on their journey to the target site. Scope of Review This review summarizes major findings with respect to silicon-based drug delivery vectors for cancer therapeutics and imaging. Based on rational design, well established silicon technologies have been adapted for the fabrication of nanovectors with specific shapes, sizes, and porosities. These vectors are part of a multi-stage delivery system that contains multiple nano-components, each designed to achieve a specific task with the common goal of site-directed delivery of therapeutics. Major Conclusions Quasi-hemispherical and discoidal silicon microparticles are superior to spherical particles with respect to margination in the blood, with particles of different shapes and sizes having unique distributions in vivo. Cellular adhesion and internalization of silicon microparticles is influenced by microparticle shape and surface charge, with the latter dictating binding of serum opsonins. Based on in vitro cell studies, the internalization of porous silicon microparticles by endothelial cells and macrophages is compatible with cellular morphology, intracellular trafficking, mitosis, cell cycle progression, cytokine release, and cell viability. In vivo studies support superior therapeutic efficacy of liposomal encapsulated siRNA when delivered in multi-stage systems compared to free nanoparticles. PMID:20493927

  4. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer

    NASA Astrophysics Data System (ADS)

    Lizotte, P. H.; Wen, A. M.; Sheen, M. R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N. F.; Fiering, S.

    2016-03-01

    Nanotechnology has tremendous potential to contribute to cancer immunotherapy. The ‘in situ vaccination’ immunotherapy strategy directly manipulates identified tumours to overcome local tumour-mediated immunosuppression and subsequently stimulates systemic antitumour immunity to treat metastases. We show that inhalation of self-assembling virus-like nanoparticles from cowpea mosaic virus (CPMV) reduces established B16F10 lung melanoma and simultaneously generates potent systemic antitumour immunity against poorly immunogenic B16F10 in the skin. Full efficacy required Il-12, Ifn-γ, adaptive immunity and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumour microenvironment as an important part of the antitumour immune response. CPMV also exhibited clear treatment efficacy and systemic antitumour immunity in ovarian, colon, and breast tumour models in multiple anatomic locations. CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable. These properties, combined with their inherent immunogenicity and demonstrated efficacy against a poorly immunogenic tumour, make CPMV an attractive and novel immunotherapy against metastatic cancer.

  5. Production of nanoparticle drug delivery systems with microfluidics tools.

    PubMed

    Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Vandamme, Thierry F

    2015-04-01

    Nowadays the development of composite nano- and microparticles is an extensively studied area of research. This interest is growing because of the potential use of such particles in drug delivery systems. Indeed they can be used in various medical disciplines depending upon their sizes and their size distribution, which determine their final biomedical applications. Amongst the different techniques to produce nanoparticles, microfluidic techniques allow preparing particles having a specific size, a narrow size distribution and high encapsulation efficiency with ease. This review covers the general description of microfluidics, its techniques, advantages and disadvantages with focus on the encapsulation of active principles in polymeric nanoparticles as well as on pure drug nanoparticles. Polymeric nanoparticles constitute the majority of the examples reported; however lipid nanoparticulate systems (DNA, SiRNA nanocarriers) are very comparable and their formulation processes are in most cases exactly similar. Accordingly this review focuses also on active ingredient nanoparticles formulated by nanoprecipitation processes in microfluidic devices in general. It also provides detailed description of the different geometries of most common microfluidic devices and the crucial parameters involved in techniques designed to obtain the desired properties. Although the classical fabrication of nanoparticles drug delivery systems in batch is extremely well-described and developed, their production with microfluidic tools arises today as an emerging field with much more potential. In this review we present and discuss these new possibilities for biomedical applications through the current emerging developments.

  6. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo.

    PubMed

    Kolter, Marise; Ott, Melanie; Hauer, Christian; Reimold, Isolde; Fricker, Gert

    2015-01-10

    Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of PBCA-nanoparticles at the BBB, representing the target organ, the inflammatory response in human whole blood, as the site of administration and in a rat model in vivo. PBCA-nanoparticles were prepared by a mini-emulsion method and characterized concerning size, surface charge, shape and PS80-adsorption. The influence on metabolic activity, cell viability and integrity of the BBB was analyzed in an in vitro model of the BBB. In ex vivo experiments in human whole blood the release of 12 inflammatory cytokines was investigated. In addition, the inflammatory response was studied in vivo in rats and complemented with the analysis of different organ toxicity parameters. PBCA-nanoparticles showed time- and concentration-dependent effects on metabolic activity, cell viability and BBB integrity. No cell death or loss of metabolic activity was observed for nanoparticle-concentrations ≤500μg/ml up to 3h of treatment. Within 12 tested inflammatory cytokines, only interleukin-8 displayed a significant release after nanoparticle exposure in human blood. No severe inflammatory processes or organ damages were identified in rats in vivo. Thus, PBCA-nanoparticles are a promising drug delivery system to overcome the BBB since they showed hardly any cytotoxic or inflammatory effect at therapeutic concentrations and incubation times. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  8. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery

    PubMed Central

    Gao, Weiwei; Zhang, Yue; Zhang, Qiangzhe; Zhang, Liangfang

    2016-01-01

    Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely ‘NP-gel’) with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery. PMID:26951462

  9. Current understanding of interactions between nanoparticles and the immune system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guidemore » safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.« less

  10. Local anesthetic lidocaine delivery system: chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles.

    PubMed

    Zhang, Laizhu; Wang, Jianguo; Chi, Huimin; Wang, Shilei

    2016-11-01

    Transdermal local anesthesia is one of the most applied strategies to avoid systemic adverse effects; there is an appealing need for a prolonged local anesthetic that would provide better bioavailability and longer pain relief with a single administration. Layer-by-layer (LBL) technique was used in this study to explore a nanosized drug delivery system for local anesthetic therapy. LBL-coated lidocaine-loaded nanostructured lipid nanoparticles (LBL-LA/NLCs) were prepared and characterized in terms of particle size (PS), zeta potential, drug encapsulation efficiency (EE), in vitro skin permeation and in vivo local anesthetic studies. Evaluation of the in vitro skin permeation and in vivo anesthesia effect illustrated that LBL-LA/NLCs can enhance and prolong the anesthetic effect of LA. LBL-LA/NLCs could function as a promising drug delivery strategy for overcoming the barrier function of the skin and could deliver anesthetic through the skin with sustained release behavior for local anesthetic therapy.

  11. Transport of drugs across the blood-brain barrier by nanoparticles.

    PubMed

    Wohlfart, Stefanie; Gelperina, Svetlana; Kreuter, Jörg

    2012-07-20

    The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review.

    PubMed

    Brohi, Rahim Dad; Wang, Li; Talpur, Hira Sajjad; Wu, Di; Khan, Farhan Anwar; Bhattarai, Dinesh; Rehman, Zia-Ur; Farmanullah, F; Huo, Li-Jun

    2017-01-01

    In the last two decades, nanotechnologies demonstrated various applications in different fields, including detection, sensing, catalysis, electronics, and biomedical sciences. However, public concerns regarding the well-being of human may hinder the wide utilization of this promising innovation. Although, humans are exposed to airborne nanosized particles from an early age, exposure to such particles has risen dramatically within the last century due to anthropogenic sources of nanoparticles. The wide application of nanomaterials in industry, consumer products, and medicine has raised concerns regarding the potential toxicity of nanoparticles in humans. In this review, the effects of nanomaterials on the reproductive system in animal models are discussed. Females are particularly more vulnerable to nanoparticle toxicity, and toxicity in this population may affect reproductivity and fetal development. Moreover, various types of nanoparticles have negative impacts on male germ cells, fetal development, and the female reproductive system. These impacts are associated with nanoparticle modification, composition, concentration, route of administration, and the species of the animal. Therefore, understanding the impacts of nanoparticles on animal growth and reproduction is essential. Many studies have examined the effects of nanoparticles on primary and secondary target organs, with a concentration on the in vivo and in vitro effects of nanoparticles on the male and female reproductive systems at the clinical, cellular, and molecular levels. This review provides important information regarding organism safety and the potential hazards of nanoparticle use and supports the application of nanotechnologies by minimizing the adverse effects of nanoparticles in vulnerable populations.

  13. The delivery of poly(lactic acid)-poly(ethylene glycol) nanoparticles loaded with non-toxic drug to overcome drug resistance for the treatment of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Dhulekar, Jhilmil

    Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the

  14. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K.

    2016-05-23

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters.more » DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.« less

  15. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    NASA Astrophysics Data System (ADS)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  16. S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology.

    PubMed

    Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J

    2015-02-01

    Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nanoengineered drug delivery systems for enhancing antibiotic therapy.

    PubMed

    Kalhapure, Rahul S; Suleman, Nadia; Mocktar, Chunderika; Seedat, Nasreen; Govender, Thirumala

    2015-03-01

    Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles

    PubMed Central

    Senpan, Angana; Caruthers, Shelton D.; Rhee, Ilsu; Mauro, Nicholas A.; Pan, Dipanjan; Hu, Grace; Scott, Michael J.; Fuhrhop, Ralph W.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Nanomedicine approaches to atherosclerotic disease will have significant impact on the practice and outcomes of cardiovascular medicine. Iron oxide nanoparticles have been extensively used for nontargeted and targeted imaging applications based upon highly sensitive T2* imaging properties, which typically result in negative contrast effects that can only be imaged 24 or more hours after systemic administration due to persistent blood pool interference. Although recent advances involving MR pulse sequences have converted these dark contrast voxels into bright ones, the marked delays in imaging from persistent magnetic background interference and prominent dipole blooming effects of the magnetic susceptibility remain barriers to overcome. We report a T1-weighted (T1w) theranostic colloidal iron oxide nanoparticle platform, CION, which is achieved by entrapping oleate-coated magnetite particles within a cross-linked phospholipid nanoemulsion. Contrary to expectations, this formulation decreased T2 effects thus allowing positive T1w contrast detection down to low nanomolar concentrations. CION, a vascular constrained nanoplatform administered in vivo permitted T1w molecular imaging 1 hour after treatment without blood pool interference, although some T2 shortening effects on blood, induced by the superparamagnetic particles persisted. Moreover, CION was shown to encapsulate antiangiogenic drugs, like fumagillin, and retained them under prolonged dissolution, suggesting significant theranostic functionality. Overall, CION is a platform technology, developed with generally recognized as safe components, that overcomes the temporal and spatial imaging challenges associated with current iron oxide nanoparticle T2 imaging agents, and which has theranostic potential in vascular diseases for detecting unstable ruptured plaque or treating atherosclerotic angiogenesis. PMID:19908850

  19. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  20. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy☆

    PubMed Central

    Mekaru, Harutaka; Lu, Jie; Tamanoi, Fuyuhiko

    2015-01-01

    Nanoparticles that respond to internal and external stimuli to carry out controlled release of anticancer drugs have been developed. In this review, we focus on the development of mesoporous silica based nanoparticles, as this type of materials provides a relatively stable material that is amenable to various chemical modifications. We first provide an overview of various designs employed to construct MSN-based controlled release systems. These systems respond to internal stimuli such as pH, redox state and the presence of biomolecules as well as to external stimuli such as light and magnetic field. They are at a different stage of development; depending on the system, their operation has been demonstrated in aqueous solution, in cancer cells or in animal models. Efforts to develop MSNs with multi-functionality will be discussed. Safety and biodegradation of MSNs, issues that need to be overcome for clinical development of MSNs, will be discussed. Advances in the synthesis of mechanized theranostic nanoparticles open up the possibility to start envisioning future needs for medical equipment. PMID:26434537

  1. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review

    PubMed Central

    Brohi, Rahim Dad; Wang, Li; Talpur, Hira Sajjad; Wu, Di; Khan, Farhan Anwar; Bhattarai, Dinesh; Rehman, Zia-Ur; Farmanullah, F.; Huo, Li-Jun

    2017-01-01

    In the last two decades, nanotechnologies demonstrated various applications in different fields, including detection, sensing, catalysis, electronics, and biomedical sciences. However, public concerns regarding the well-being of human may hinder the wide utilization of this promising innovation. Although, humans are exposed to airborne nanosized particles from an early age, exposure to such particles has risen dramatically within the last century due to anthropogenic sources of nanoparticles. The wide application of nanomaterials in industry, consumer products, and medicine has raised concerns regarding the potential toxicity of nanoparticles in humans. In this review, the effects of nanomaterials on the reproductive system in animal models are discussed. Females are particularly more vulnerable to nanoparticle toxicity, and toxicity in this population may affect reproductivity and fetal development. Moreover, various types of nanoparticles have negative impacts on male germ cells, fetal development, and the female reproductive system. These impacts are associated with nanoparticle modification, composition, concentration, route of administration, and the species of the animal. Therefore, understanding the impacts of nanoparticles on animal growth and reproduction is essential. Many studies have examined the effects of nanoparticles on primary and secondary target organs, with a concentration on the in vivo and in vitro effects of nanoparticles on the male and female reproductive systems at the clinical, cellular, and molecular levels. This review provides important information regarding organism safety and the potential hazards of nanoparticle use and supports the application of nanotechnologies by minimizing the adverse effects of nanoparticles in vulnerable populations. PMID:28928662

  2. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.

    PubMed

    Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing

    2015-05-01

    Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.

  3. Anti-P-glycoprotein conjugated nanoparticles for targeting drug delivery in cancer treatment.

    PubMed

    Iangcharoen, Pantiwa; Punfa, Wanisa; Yodkeeree, Supachai; Kasinrerk, Watchara; Ampasavate, Chadarat; Anuchapreeda, Songyot; Limtrakul, Pornngarm

    2011-10-01

    Targeting therapeutics to specific sites can enhance the efficacy of drugs, reduce required doses as well as unwanted side effects. In this work, using the advantages of the specific affinity of an immobilized antibody to membrane P-gp in two different nanoparticle formulations were thus developed for targeted drug delivery to multi-drug resistant cervical carcinoma (KB-V1) cells. Further, this was compared to the human drug sensitive cervical carcinoma cell line (KB-3-1) cells. The two nanoparticle preparations were: NP1, anti-P-gp conjugated with poly (DL-lactic-coglycolic acid) (PLGA) nanoparticle and polyethylene glycol (PEG); NP2, anti-P-gp conjugated to a modified poloxamer on PLGA nanoparticles. The cellular uptake capacity of nanoparticles was confirmed by fluorescent microscopy. Comparing with each counterpart core particles, there was a higher fluorescence intensity of the targeted nanoparticles in KBV1 cells compared to KB-3-1 cells suggesting that the targeted nanoparticles were internalized into KB-V1 cells to a greater extent than KB-3-1 cell. The results had confirmed the specificity and the potential of the developed targeted delivery system for overcoming multi-drug resistance induced by overexpression of P-gp on the cell membrane.

  4. Effect of Nanoparticles on Complement System in Cell Culture Model

    DTIC Science & Technology

    2006-09-15

    case complement activation considerably differs between nanoparticles , being the highest in case of fullerene, ferric oxide and aluminium oxide ... oxide (CdO; 1 µm), manganese oxide (MnO2; 1-2 µm), and tungsten (W; 27 µm) were assessed. Additionally the effects of nanoparticles coated with...using in vitro system. Obtained results indicate that: 1. Nanoparticles toxicity in vitro can’t be measured using methods which were designed

  5. Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms

    NASA Astrophysics Data System (ADS)

    Chronopoulou, Laura; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Palocci, Cleofe

    2016-10-01

    Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.

  6. Antituberculous effect of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kreytsberg, G. N.; Gracheva, I. E.; Kibrik, B. S.; Golikov, I. V.

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  7. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918.

    PubMed

    Sandana Mala, John Geraldine; Rose, Chellan

    2014-01-20

    Microbial synthesis of nanoparticles is a green route towards ecofriendly measures to overcome the toxicity and non-applicability of nanomaterials in clinical uses obtained by conventional physical and chemical approaches. Nanoparticles in the quantum regime have remarkable characteristics with excellent applicability in bioimaging. Yeasts have been commercially exploited for several industrial applications. ZnS nanoparticles as semiconductor quantum dots have mostly been synthesized by bacterial species. Here in, we have attempted to produce ZnS nanoparticles in quantum regime by Saccharomyces cerevisiae MTCC 2918 fungus and characterize its size and spectroscopic properties. Intracellular ZnS nanoparticles were produced by a facile procedure and freeze thaw extraction using 1mM zinc sulfate. The ZnS nanoparticles showed surface plasmon resonance band at 302.57nm. The ZnS nanoparticles were in low yield and in the size range of 30-40nm. Powder XRD analysis revealed that the nanoparticles were in the sphalerite phase. Photoluminescence spectra excited at 280nm and 325nm revealed quantum confinement effects. This suggests that yeasts have inherent sulfate metabolizing systems and are capable fungal sources to assimilate sulfate. Further insights are required to identify the transport/reducing processes that may have caused the synthesis of ZnS nanoparticles such as an oxidoreductase enzyme-mediated mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    PubMed

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system.

    PubMed

    Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming

    2014-01-01

    Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.

  10. Increase of electrodeposited catalyst stability via plasma grown vertically oriented graphene nanoparticle movement restriction.

    PubMed

    Vanrenterghem, Bart; Hodnik, Nejc; Bele, Marjan; Šala, Martin; Amelinckx, Giovanni; Neukermans, Sander; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Breugelmans, Tom

    2017-08-17

    Beside activity, electrocatalyst stability is gaining in importance. The most common degradation mechanism is the loss of the active surface area due to nanoparticle growth via coalescence/agglomeration. We propose a particle confinement strategy via vertically oriented graphene deposition to overcome degradation of the nanoparticles.

  11. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy.

    PubMed

    Song, Xuejiao; Liang, Chao; Feng, Liangzhu; Yang, Kai; Liu, Zhuang

    2017-08-22

    Combining different therapeutic functions within single tumor-targeted nanoscale delivery systems is promising to overcome the limitations of conventional cancer therapies. Herein, transferrin that recognizes transferrin receptors up-regulated on tumor cells is pre-labeled with iodine-131 ( 131 I) and then utilized as the stabilizer in the fabrication of polypyrrole (PPy) nanoparticles. The obtained transferrin-capped PPy@Tf- 131 I nanoparticles could be used for tumor-targeted radioisotope therapy (RIT) and photothermal therapy (PTT), by employing beta-emission from 131 I and the intrinsic high near-infrared (NIR) absorbance of PPy, respectively. Owing to the transferrin-mediated tumor targeting, PPy@Tf- 131 I nanoparticles exhibit obviously enhanced in vitro cancer cell binding and in vivo tumor uptake compared to its non-targeting counterpart. The combined RIT and PTT based on PPy@Tf- 131 I nanoparticles is then conducted, achieving a remarkable synergistic therapeutic effect. This work thus demonstrates a rather simple one-step approach to fabricate tumor-targeting nanoparticles based on protein-capped conjugated polymers, promising for combination cancer therapy with great efficacy and high safety.

  12. Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.

    PubMed

    López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A

    2005-05-12

    Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.

  13. Nanoparticles: Nanoscale Systems for Medical Applications

    NASA Astrophysics Data System (ADS)

    Wadkins, David Allen

    The goal of this project was to develop a series of nano platforms for single cell analysis and drug delivery. Nanoparticles are a promising option to improve our medical therapies by controlling biodistribution and pharmacokinetics of therapeutics. Nanosystems also offer significant opportunity to improve current imaging modalities. The systems developed during this thesis work can be foundations for developing advanced therapies for obesity and improving our fundamental understandings of single cell behavior. The first of the two systems we attempt to create was a drug delivery system that could selectively target adipose tissue to deliver uncoupling agents and drive browning of adipose tissue and associated weight loss. Protonophores have a history of significant toxic side effects in cardiac and neuronal tissues a recently discovered protonophore, but BAM-15, has been shown to have reduced cytotoxicity. We hypothesized that the altered biodistribution of BAM-15 encapsulated in a nanoparticle could provide systemic weight loss with minimized side effects. The second system developed utilized quantum dots to create a fluorescent barcode that could be repeatedly identified using quantitative fluorescent emission readings. This platform would allow for the tracking of individual cells, allowing repeat interrogation across time and space in complex multicellular environments. Ultimately this work demonstrates the process and complexity involved in developing nanoparticulate systems meant to interact with incredibly complex intracellular environments.

  14. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    NASA Astrophysics Data System (ADS)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  15. Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril

    PubMed Central

    Ekambaram, P; Abdul, Hasan Sathali A

    2011-01-01

    Solid lipid nanoparticles are typically spherical with an average diameter between 1 and 1000 nm. It is an alternative carrier system to tradition colloidal carriers, such as, emulsions, liposomes, and polymeric micro and nanoparticles. Ramipril is an antihypertensive agent used in the treatment of hypertension. Its oral bioavailability is 28% and it is rapidly excreted through the renal route. This drug has many side effects such as, postural hypotension, hyperkalemia, and angioedema, when given as an immediate dosage form. To overcome the side effects and to increase the bioavailability of ramipril, solid lipid nanoparticles of ramipril are prepared by using lipids (glyceryl monostearate and glyceryl monooleate) with stabilizers (tween 80, poloxamer 188, and span 20). The prepared formulations have been evaluated for entrapment efficiency, drug content, in-vitro drug release, particle size analysis, scanning electron spectroscopy, Fourier transform-infrared studies, and stability. A formulation containing glyceryl monooleate, stabilized with span 20 as surfactant showed prolonged drug release, smaller particle size, and narrow particle size distribution, as compared to other formulations with different surfactants and lipids. PMID:21897661

  16. Chitosan nanoparticles as a modified diclofenac drug release system

    NASA Astrophysics Data System (ADS)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  17. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  18. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  19. The Impact of Nanoparticle Surface Chemistry on Biological Systems

    NASA Astrophysics Data System (ADS)

    Thorn, Angie Sue Morris

    The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials

  20. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells.

    PubMed

    Löw, Karin; Knobloch, Thomas; Wagner, Sylvia; Wiehe, Arno; Engel, Andrea; Langer, Klaus; von Briesen, Hagen

    2011-06-17

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  1. Enhanced and Extended Anti-Hypertensive Effect of VP5 Nanoparticles

    PubMed Central

    Yu, Ting; Zhao, Shengnan; Li, Ziqiang; Wang, Yi; Xu, Bei; Fang, Dailong; Wang, Fazhan; Zhang, Zhi; He, Lili; Song, Xiangrong; Yang, Jian

    2016-01-01

    Hypertension has become a significant global public health concern and is also one of the most common risk factors of cardiovascular disease. Recent studies have shown the promising result of peptides inhibiting angiotensin converting enzyme (ACE) in lowering the blood pressure in both animal models and humans. However, the oral bioavailability and continuous antihypertensive effectiveness require further optimization. Novel nanoparticle-based drug delivery systems are helpful to overcome these barriers. Therefore, a poly-(lactic-co-glycolic) acid nanoparticle (PLGANPs) oral delivery system, of the antihypertensive small peptides Val-Leu-Pro-Val-Pro (VLPVP, VP5) model, was developed in this study and its antihypertensive effect was investigated in spontaneously hypertensive rats (SHRs) for the first time. The obtained VP5 nanoparticles (VP5-NPs) showed a small particle size of 223.7 ± 2.3 nm and high entrapment efficiency (EE%) of 87.37% ± 0.92%. Transmission electronic microscopy (TEM) analysis showed that the nanoparticles were spherical and homogeneous. The optimal preparation of VP5-NPs exhibited sustained release of VP5 in vitro and a 96 h long-term antihypertensive effect with enhanced efficacy in vivo. This study illustrated that PLGANPs might be an optimal formulation for oral delivery of antihypertensive small peptides and VP5-NPs might be worthy of further development and use as a potential therapeutic strategy for hypertension in the future. PMID:27898022

  2. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

    NASA Astrophysics Data System (ADS)

    Prabhu, Sukumaran; Poulose, Eldho K.

    2012-10-01

    Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

  3. Recent trends in drug delivery system using protein nanoparticles.

    PubMed

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  4. Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity

    NASA Astrophysics Data System (ADS)

    Leifert, Annika; Pan-Bartnek, Yu; Simon, Ulrich; Jahnen-Dechent, Willi

    2013-06-01

    Gold nanoparticles (AuNPs) are widely used as contrast agents in electron microscopy as well as for diagnostic tests. Due to their unique optical and electrical properties and their small size, there is also a growing field of potential applications in medical fields of imaging and therapy, for example as drug carriers or as active compounds in thermotherapy. Besides their intrinsic optical properties, facile surface decoration with (bio)functional ligands renders AuNPs ideally suited for many industrial and medical applications. However, novel AuNPs may have toxicological profiles differing from bulk and therefore a thorough analysis of the quantitative structure-activity relationship (QSAR) is required. Several mechanisms are proposed that cause adverse effects of nanoparticles in biological systems. Catalytic generation of reactive species due to the large and chemically active surface area of nanomaterials is well established. Because nanoparticles approach the size of biological molecules and subcellular structures, they may overcome natural barriers by active or passive uptake. Ultrasmall AuNPs with sizes of 2 nm or less may even behave as molecular ligands. These types of potential interactions would imply a size and ligand-dependent behaviour of any nanomaterial towards biological systems. Thus, to fully understand their QSAR, AuNPs bioactivity should be analysed in biological systems of increasing complexity ranging from cell culture to whole animal studies.

  5. Upconverting nanoparticles for optimizing scintillator based detection systems

    DOEpatents

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  6. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles.

    PubMed

    Reis, Catarina Pinto; Gomes, Ana; Rijo, Patrícia; Candeias, Sara; Pinto, Pedro; Baptista, Marina; Martinho, Nuno; Ascensão, Lia

    2013-10-01

    Azelaic acid (AzA) is used in the treatment of acne. However, side effects and low compliance have been associated with several topical treatments with AzA. Nanotechnology presents a strategy that can overcome these problems. Polymeric nanoparticles can control drug release and targeting and reduce local drug toxicity. The aim of this study was to produce and evaluate an innovative topical treatment for acne with AzA-loaded poly-DL-lactide/glycolide copolymer nanoparticles. A soft white powder of nanoparticles was prepared. The mean size of loaded nanoparticles was < 400 nm and zeta potential was negative. Spherical nanoparticles were observed by scanning electron microscopy. Encapsulation efficiency was around 80% and a strong interaction between the polymer and the drug was confirmed by differential scanning calorimetric analysis. In vitro drug release studies suggested a controlled and pulsatile release profile. System efficacy tests suggested similar results between the loaded nanoparticles and the nonencapsulated drug against the most common bacteria associated with acne. Cytotoxicity of AzA-loaded nanoparticles was concentration dependent, although not pronounced. The occluded patch test seemed to indicate that the formulation excipients were safe and thus AzA-loaded nanoparticles appear to be an efficient and safe treatment for acne.

  7. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System.

    PubMed

    Barbero, Francesco; Russo, Lorenzo; Vitali, Michele; Piella, Jordi; Salvo, Ignacio; Borrajo, Mireya L; Busquets-Fité, Marti; Grandori, Rita; Bastús, Neus G; Casals, Eudald; Puntes, Victor

    2017-12-01

    The interaction of inorganic nanoparticles and many biological fluids often withstands the formation of a Protein Corona enveloping the nanoparticle. This Protein Corona provides the biological identity to the nanoparticle that the immune system will detect. The formation of this Protein Corona depends not only on the composition of the nanoparticle, its size, shape, surface state and exposure time, but also on the type of media, nanoparticle to protein ratio and the presence of ions and other molecular species that interfere in the interaction between proteins and nanoparticles. This has important implications on immune safety, biocompatibility and the use of nanoparticles in medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    NASA Astrophysics Data System (ADS)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  9. Toward RNA nanoparticle vaccines: synergizing RNA and inorganic nanoparticles to achieve immunopotentiation.

    PubMed

    DeLong, Robert K; Curtis, Chandler B

    2017-03-01

    Traditionally, vaccines have been composed of live attenuated or killed microorganisms. Alternatively, individual protein subunits or other molecular components of the microorganism can serve as the antigen and trigger an antibody response by the immune system. The immune system is a coordinated molecular and cellular response that works in concert to check the spread of infection. In the past decade, there has been much progress on DNA vaccines. DNA vaccination includes using the coding segments of a viral or bacterial genome to generate an immune response. However, the potential advantage of combining an RNA molecule with inorganic nanoparticle delivery should be considered, with the goal to achieve immuno-synergy between the two and to overcome some of the current limitations of DNA vaccines and traditional vaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1415. doi: 10.1002/wnan.1415 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  10. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.

    PubMed

    Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D

    2018-03-01

    Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals

  11. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi

    2012-05-14

    We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.

  12. Nanoparticles for magnetic biosensing systems

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.

  13. A quantitative x-ray detection system for gold nanoparticle tumour biomarkers.

    PubMed

    Ricketts, K; Castoldi, A; Guazzoni, C; Ozkan, C; Christodoulou, C; Gibson, A P; Royle, G J

    2012-09-07

    X-ray fluorescence techniques have proven beneficial for identifying and quantifying trace elements in biological tissues. A novel approach is being developed that employs x-ray fluorescence with an aim to locate heavy nanoparticles, such as gold, which are embedded into tissues. Such nanoparticles can be functionalized to act as markers for tumour characteristics to map the disease state, with the future aim of imaging them to inform cancer therapy regimes. The uptake of functionalized nanoparticles by cancer cells will also enable detection of small clusters of infiltrating cancer cells which are currently missed by commonly used imaging modalities. The novel system, consisting of an energy-resolving silicon drift detector with high spectral resolution, shows potential in both quantification of and sensitivity to nanoparticle concentrations typically found in tumours. A series of synchrotron measurements are presented; a linear relationship between fluorescence intensity and gold nanoparticle (GNP) concentration was found down to 0.005 mgAu ml(-1), the detection limit of the system. Successful use of a bench-top source, suitable for possible future clinical use, is also demonstrated, and found not to degrade the detection limit or accuracy of the GNP concentration measurement. The achieved system sensitivity suggests possible future clinical usefulness in measuring tumour uptake in vivo, particularly in shallow tumour sites and small animals, in ex vivo tissue and in 3D in vitro research samples.

  14. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier

    PubMed Central

    Tang, Benjamin C.; Dawson, Michelle; Lai, Samuel K.; Wang, Ying-Ying; Suk, Jung Soo; Yang, Ming; Zeitlin, Pamela; Boyle, Michael P.; Fu, Jie; Hanes, Justin

    2009-01-01

    Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces. PMID:19901335

  15. Transdermal delivery of biomacromolecules using lipid-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Bello, Evelyn A.

    The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.

  16. Nanoparticles Engineered from Lecithin-in-Water Emulsions As A Potential Delivery System for Docetaxel

    PubMed Central

    Yanasarn, Nijaporn; Sloat, Brian R.; Cui, Zhengrong

    2009-01-01

    Docetaxel is a potent anti-cancer drug. However, there continues to be a need for alternative docetaxel delivery systems to improve its efficacy. We reported the engineering of a novel spherical nanoparticle formulation (~270 nm) from lecithin-in-water emulsions. Docetaxel can be incorporated into the nanoparticles, and the resultant docetaxel-nanoparticles were stable when stored as an aqueous suspension. The release of the docetaxel from the nanoparticles was likely caused by a combination of diffusion and Case II transport. The docetaxel-in-nanoparticles were more effective in killing tumor cells in culture than free docetaxel. Moreover, the docetaxel-nanoparticles did not cause any significant red blood cell lysis or platelet aggregation in vitro, nor did they induce detectable acute liver damage when injected intravenously into mice. Finally, compared to free docetaxel, the intravenously injected docetaxel-nanoparticles increased the accumulation of the docetaxel in a model tumor in mice by 4.5-fold. These lecithin-based nanoparticles have the potential to be a novel biocompatible and efficacious delivery system for docetaxel. PMID:19524029

  17. Live Cell Imaging of the Endocytosis and the Intracellular Trafficking of Multifunctional Lipid Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tieqiao; Danthi, S. N.; Xie, Jianwu

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug deliverymore » system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.« less

  18. Live cell imaging of the endocytosis and the intracellular trafficking of multifunctional lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Tieqiao; Danthi, S. Narasimhan; Xie, Jianwu; Hu, Dehong; Lu, Peter; Li, King

    2006-02-01

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug delivery system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.

  19. Spray-Dried Nanoparticle-in-Microparticle Delivery Systems (NiMDS) for Gene Delivery, Comprising Polyethylenimine (PEI)-Based Nanoparticles in a Poly(Vinyl Alcohol) Matrix.

    PubMed

    Schulze, Jan; Kuhn, Stephanie; Hendrikx, Stephan; Schulz-Siegmund, Michaela; Polte, Tobias; Aigner, Achim

    2018-03-01

    Nucleic acid-based therapies rely on efficient formulations for nucleic acid protection and delivery. As nonviral strategies, polymeric and lipid-based nanoparticles have been introduced; however, biological efficacy and biocompatibility as well as poor storage properties due to colloidal instability and their unavailability as ready-to-use systems are still major issues. Polyethylenimine is the most widely explored and promising candidate for gene delivery. Polyethylenimine-based polyplexes and their combination with liposomes, lipopolyplexes, are efficient for DNA or siRNA delivery in vitro and in vivo. In this study, a highly potent spray-dried nanoparticle-in-microparticle delivery system is presented for the encapsulation of polyethylenimine-based polyplexes and lipopolyplexes into poly(vinyl alcohol) microparticles, without requiring additional stabilizing agents. This easy-to-handle gene delivery device allows prolonged nanoparticle storage and protection at ambient temperature. Biological analyses reveal further advantages regarding profoundly reduced cytotoxicity and enhanced transfection efficacies of polyethylenimine-based nanoparticles from the nanoparticle-in-microparticle delivery system over their freshly prepared counterparts, as determined in various cell lines. Importantly, this nanoparticle-in-microparticle delivery system is demonstrated as ready-to-use dry powder to be an efficient device for the inhalative delivery of polyethylenimine-based lipopolyplexes in vivo, as shown by transgene expression in mice after only one administration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-10-28

    Nanoparticles have demonstrated significant advancements in potential oral delivery of insulin. In this publication, we review the current status of polymeric, inorganic and solid-lipid nanoparticles designed for oral administration of insulin. Firstly, the structure and physiological function of insulin are examined. Then, the efficiency and shortcomings of insulin nanoparticle are discussed. These include the susceptibility to digestive enzyme degradation, instability in the acidic pH environment, poor mucus diffusion and inadequate permeation through the gastrointestinal epithelium. In order to optimise the nanocarriers, the following considerations, including polymer nature, surface charge, size, polydispersity index and morphology of nanoparticles, have to be taken into account. Some novel designs such as chitosan-based glucose-responsive nanoparticles, layer by layer technique-based nanoparticles and zwitterion nanoparticles are being adopted to overcome the physiological challenges. The review ends with some future directions and challenges to be addressed for the success of oral delivery of insulin-loaded nanoparticle formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    NASA Astrophysics Data System (ADS)

    Wibroe, Peter Popp; Anselmo, Aaron C.; Nilsson, Per H.; Sarode, Apoorva; Gupta, Vivek; Urbanics, Rudolf; Szebeni, Janos; Hunter, Alan Christy; Mitragotri, Samir; Mollnes, Tom Eirik; Moghimi, Seyed Moein

    2017-07-01

    Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration.

  2. Lanthanide‐Doped Upconversion Nanoparticles: Emerging Intelligent Light‐Activated Drug Delivery Systems

    PubMed Central

    Bagheri, Ali; Arandiyan, Hamidreza

    2016-01-01

    The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR‐initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light‐based DDSs—NIR offers better tissue penetration depth and a reduced risk of cellular photo‐damage caused by exposure to light at high‐energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo‐responsive materials with red‐shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR‐initiated DDS, with emphasis on the use of photo‐responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted. PMID:27818904

  3. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Palanikumar, L.; Jeena, M. T.; Kim, Kibeom; Yong Oh, Jun; Kim, Chaekyu; Park, Myoung-Hwan; Ryu, Ja-Hyoung

    2017-04-01

    Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment.

  4. Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, J.

    2015-04-28

    The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolytemore » (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.« less

  5. Pulmonary Nanoparticle Exposure Disrupts Systemic Microvascular Nitric Oxide Signaling

    PubMed Central

    Nurkiewicz, Timothy R.; Porter, Dale W.; Hubbs, Ann F.; Stone, Samuel; Chen, Bean T.; Frazer, David G.; Boegehold, Matthew A.; Castranova, Vincent

    2009-01-01

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs is/are unclear. The purpose of this study was to identify alterations in the production of reactive species and endogenous nitric oxide (NO) after nanoparticle exposure, and determine the relative contribution of hemoproteins and oxidative enzymes in this process. Sprague-Dawley rats were exposed to fine TiO2 (primary particle diameter ∼1 μm) and TiO2 nanoparticles (primary particle diameter ∼21 nm) via aerosol inhalation at depositions of 4–90 μg per rat. As in previous intravital experiments in the spinotrapezius muscle, dose-dependent arteriolar dilations were produced by intraluminal infusions of the calcium ionophore A23187. Nanoparticle exposure robustly attenuated these endothelium-dependent responses. However, this attenuation was not due to altered microvascular smooth muscle NO sensitivity because nanoparticle exposure did not alter arteriolar dilations in response to local sodium nitroprusside iontophoresis. Nanoparticle exposure significantly increased microvascular oxidative stress by ∼60%, and also elevated nitrosative stress fourfold. These reactive stresses coincided with a decreased NO production in a particle deposition dose-dependent manner. Radical scavenging, or inhibition of either myeloperoxidase or nicotinamide adenine dinucleotide phosphate oxidase (reduced) oxidase partially restored NO production as well as normal microvascular function. These results indicate that in conjunction with microvascular dysfunction, nanoparticle exposure also decreases NO bioavailability through at least two functionally distinct mechanisms that may mutually increase local reactive species. PMID:19270016

  6. Construction and characterization of curcumin nanoparticles system

    NASA Astrophysics Data System (ADS)

    Sun, Weitong; Zou, Yu; Guo, Yaping; Wang, Lu; Xiao, Xue; Sun, Rui; Zhao, Kun

    2014-03-01

    This study was aimed at developing a nanoparticles system for curcumin, a widely used traditional Chinese medicine, but with the disadvantage of poor aqueous solubility. The objective was intended to improve in vitro release characteristics, enhance blood and gastrointestinal stability, increase bioavailability and pharmacological activities. Curcumin nanoparticles system (Cur-NS) was prepared by ionotropic gelation technique. Cur-NS was characterized by particle size, zeta potential, drug entrapment efficiency, drug loading, and physical stability, respectively. Cur-NS presented controlled release properties, and the release properties of Cur from NS were fit non-Fickian mechanism, controlled by the expected diffusional release and the erosion or solubilization from the crosslink layer of polymer carrier. In addition, the pharmacokinetic study in rats revealed a notable improved oral bioavailability of Cur, and the anti-tumor activity in vivo of Cur-NS on tumor growth was investigated. Cur-NS significantly inhibited tumor effect compared with non-vehicle group, thus making it a potential candidate for cancer therapy.

  7. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  8. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    PubMed

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  9. Metal nanoparticles in DBS card materials modification

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  10. The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study.

    PubMed

    Betzer, Oshra; Shilo, Malka; Opochinsky, Renana; Barnoy, Eran; Motiei, Menachem; Okun, Eitan; Yadid, Gal; Popovtzer, Rachela

    2017-07-01

    Our goal was to develop an efficient nanoparticle-based system that can overcome the restrictive mechanism of the blood-brain barrier (BBB) by targeting insulin receptors and would thus enable drug delivery to the brain. Insulin-coated gold nanoparticles (INS-GNPs) were synthesized to serve as a BBB transport system. The effect of nanoparticle size (20, 50 and 70 nm) on their ability to cross the BBB was quantitatively investigated in Balb/C mice. The most widespread biodistribution and highest accumulation within the brain were observed using 20 nm INS-GNPs, 2 h post injection. In vivo CT imaging revealed that particles migrated to specific brain regions, which are involved in neurodegenerative and neuropsychiatric disorders. These findings promote the optimization of nanovehicles for transport of drugs through the BBB. The insulin coating of the particles enabled targeting of specific brain regions, suggesting the potential use of INS-GNPs for delivery of various treatments for brain-related disorders.

  11. Nanocomposites for neurodegenerative diseases: hydrogel-nanoparticle combinations for a challenging drug delivery.

    PubMed

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Rodilossi, Serena; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2011-12-01

    Neurodegenerative disorders are expected to strike social and health care systems of developed countries heavily in the coming decades. Alzheimer's and Parkinson's diseases (AD/PD) are the most prevalent neurodegenerative pathologies, and currently their available therapy is only symptomatic. However, innovative potential drugs are actively under development, though their efficacy is sometimes limited by poor brain bioavailability and/or sustained peripheral degradation. To partly overcome these constraints, the development of drug delivery devices made by biocompatible and easily administrable materials might be a great adjuvant. In particular, materials science can provide a powerful tool to design hydrogels and nanoparticles as basic components of more complex nanocomposites that might ameliorate drug or cell delivery in AD/PD. This kind of approach is particularly promising for intranasal delivery, which might increase brain targeting of neuroprotective molecules or proteins. Here we review these issues, with a focus on nanoparticles as nanocomponents able to carry and tune drug release in the central nervous system, without ignoring warnings concerning their potential toxicity.

  12. Supercooled smectic nanoparticles: a potential novel carrier system for poorly water soluble drugs.

    PubMed

    Kuntsche, J; Westesen, K; Drechsler, M; Koch, M H J; Bunjes, H

    2004-10-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester. Nanoparticles were prepared by high-pressure melt homogenization or solvent evaporation using phospholipids, phospholipid/ bile salt, or polyvinyl alcohol as emulsifiers. The physicochemical state and phase behavior of the particles was characterized by particle size measurements (photon correlation spectroscopy, laser diffraction with polarization intensity differential scattering), differential scanning calorimetry, X-ray diffraction, and electron and polarizing light microscopy. The viscosity of the isotropic and liquid crystalline phases of CM in the bulk was investigated in dependence on temperature and shear rate by rotational viscometry. CM nanoparticies can be obtained in the smectic phase and retained in this state for at least 12 months when stored at 230C in optimized systems. The recrystallization tendency of CM in the dispersions strongly depends on the stabilizer system and the particle size. Stable drug-loaded smectic nanoparticles were obtained after incorporation of 10% (related to CM) ibuprofen, miconazole, etomidate, and 1% progesterone. Due to their liquid crystalline state, colloidal smectic nanoparticles offer interesting possibilities as carrier system for lipophilic drugs. CM nanoparticles are suitable model systems for studying the crystallization behavior and investigating the influence of various parameters for the development of smectic nanoparticles resistant against recrystallization upon storage.

  13. Attachment of an anti-MUC1 monoclonal antibody to 5-FU loaded BSA nanoparticles for active targeting of breast cancer cells.

    PubMed

    Kouchakzadeh, Hasan; Shojaosadati, Seyed Abbas; Mohammadnejad, Javad; Paknejad, Malihe; Rasaee, Mohammad Javad

    2012-01-01

    With PR81 as a murine monoclonal antibody (mAb) that was prepared against the human breast cancer, the MUC1 receptor specific targeting is possible. In this study, PR81-conjugated bovine serum albumin (BSA) nanoparticles loaded with anticancer drug 5-fluorouracil (5-FU) were developed. Enzyme linked immunosorbant assay (ELISA) results showed high immunoreactivity of PR81 mAb conjugated to nanoparticles towards MUC1 related peptide or native cancerous MUC1 and almost no cross-reaction to non-specific proteins. In vitro experiments were performed to determine the ability of this new drug delivery system on overcoming MCF-7 breast cancer cells in comparison with four other systems. The results revealed that these cell-type specific drug loaded nanoparticles could achieve more cell death as compared to when the 5-FU was used with no carriers. Stability studies of produced drug delivery system proved high immunoreactivity of conjugated PR81 even after 11 days of storage in room temperature.

  14. Nanoparticles in the clinic

    PubMed Central

    Anselmo, Aaron C.

    2016-01-01

    Abstract Nanoparticle/microparticle‐based drug delivery systems for systemic (i.e., intravenous) applications have significant advantages over their nonformulated and free drug counterparts. For example, nanoparticle systems are capable of delivering therapeutics and treating areas of the body that other delivery systems cannot reach. As such, nanoparticle drug delivery and imaging systems are one of the most investigated systems in preclinical and clinical settings. Here, we will highlight the diversity of nanoparticle types, the key advantages these systems have over their free drug counterparts, and discuss their overall potential in influencing clinical care. In particular, we will focus on current clinical trials for nanoparticle formulations that have yet to be clinically approved. Additional emphasis will be on clinically approved nanoparticle systems, both for their currently approved indications and their use in active clinical trials. Finally, we will discuss many of the often overlooked biological, technological, and study design challenges that impact the clinical success of nanoparticle delivery systems. PMID:29313004

  15. Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy

    NASA Astrophysics Data System (ADS)

    Amiji, Mansoor M.

    2016-05-01

    Recent advances in biomedical sciences, especially in the field of human genetics, is increasingly considered to facilitate a new frontier in development of novel disease-modifying therapeutics. One of major challenges in the development of nucleic acid therapeutics is efficient and specific delivery of the molecules to the target tissue and cell upon systemic administration. In this report, I discuss our strategy to develop combinatorial-designed multifunctional nanoparticle assemblies based on natural biocompatible and biodegradable polymers for nucleic acid delivery in: (1) overcoming tumor drug resistance and (2) genetic modulation of macrophage functional phenotype from M1 to M2 in treatment of inflammatory diseases.

  16. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat

  17. Upward magnetic relaxation in self organizing Fe nanoparticle system

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra Prakash; Sharma, Gyaneshwar; Sen, P.

    2018-04-01

    Study of the thermoremanent magnetic relaxation behavior of Fe nanoparticles and its nanocomposite with activated carbon has been systematically performed. Magnetic relaxation data shows the spontaneous collective periodic oscillations of the spins superimposed on the magnetic decay curves. At sufficiently high temperature, due to thermal noise induced ordering of the magnetic moment an inflexion with an increase in the absolute value of the magnetization takes place. Due to insufficient interaction on account of dilution in the case of nanocomposite, the spin - spin interaction which was responsible for magnetic ordering in the case of bare Fe nanoparticles, collective oscillations of the system do not sustain upto longer times in the case of carbon diluted system.

  18. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    NASA Astrophysics Data System (ADS)

    Chen, Fei-yan; Zhang, Yu; Chen, Xiang-yu; Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun

    2017-04-01

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsOx) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  19. Nanoparticle mucoadhesive system as a new tool for fish immune system modulation.

    PubMed

    Charlie-Silva, Ives; de Melo, Nathalie Ferreira Silva; Gomes, Juliana M M; Fraceto, Leonardo Fernandes; de Melo, Daniela Chemim; de Oliveira Silva, Juliana; de Barros, André Luis Branco; Corrêa Junior, Jose Dias

    2018-05-30

    Recently, chitosan-based nanoparticles with mucoadhesive properties emerged as a strategy for mucosal drug release. This study aimed to characterize the interaction of mucoadhesive system chitosancoated PLGA nanoparticles (NPMA) with fish external mucus. NP suspensions with fluorescent probe were prepared and characterized by size, polydispersity, zeta potential and pH measures. In post-exposure fish were observed an increase in fluorescence imaging over time and it was significantly influenced by NPMA concentration. We also observed the main predominance the fluorescence in the spleen, followed by liver, gill and other tissues. The use of mucoadhesive nanocarriers becomes an alternative for administration of drugs and immunomodulators in immersion systems since the nanosystem can adhere to the mucosal surface of the fish with little residual effect in the water. Copyright © 2018. Published by Elsevier Ltd.

  20. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    PubMed Central

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  1. Case Western Reserve University — Treatment of Glioblastoma Using Chain-Like Nanoparticles

    Cancer.gov

    To overcome the limitations of current drugs to treat brain tumors, Case Western University seeks to integrate the unique features of a chain-like nanoparticle with the appropriate combination of complementary drugs.

  2. Nanoparticles and amyloid systems: A fatal encounter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, Bernd

    2014-10-06

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayersmore » in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.« less

  3. A Critical Review of Lipid-based Nanoparticles for Taxane Delivery

    PubMed Central

    Feng, Lan; Mumper, Russell J.

    2012-01-01

    Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed. PMID:22796606

  4. A novel lipoprotein nanoparticle system for membrane proteins

    PubMed Central

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  5. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  6. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    PubMed

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  7. Nanoparticle-based Therapies for Wound Biofilm Infection: Opportunities and Challenges

    PubMed Central

    Kim, Min-Ho

    2016-01-01

    Clinical data from human chronic wounds implicates biofilm formation with the onset of wound chronicity. Despite the development of novel antimicrobial agents, the cost and complexity of treating chronic wound infections associated with biofilms remain a serious challenge, which necessitates the development of new and alternative approaches for effective anti-biofilm treatment. Recent advancement in nanotechnology for developing a new class of nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of biofilm infections. Over the last decade, nanoparticle-based approaches against wound biofilm infection have been directed toward developing nanoparticles with intrinsic antimicrobial properties, utilizing nanoparticles for controlled antimicrobials delivery, and applying nanoparticles for antibacterial hyperthermia therapy. In addition, a strategy to functionalize nanoparticles towards enhanced penetration through the biofilm matrix has been receiving considerable interest recently by means of achieving an efficient targeting to the bacterial cells within biofilm matrix. This review summarizes and highlights the recent development of these nanoparticle-based approaches as potential therapeutics for controlling wound biofilm infection, along with current challenges that need to be overcome for their successful clinical translation. PMID:26955044

  8. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  9. Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy

    PubMed Central

    Gad, Aniket; Kydd, Janel; Piel, Brandon; Rai, Prakash

    2016-01-01

    Cancer forms exhibiting poor prognosis have been extensively researched for therapeutic solutions. One of the conventional modes of treatment, chemotherapy shows inadequacy in its methodology due to imminent side-effects and acquired drug-resistance by cancer cells. However, advancements in nanotechnology have opened new frontiers to significantly alleviate collateral damage caused by current treatments via innovative delivery techniques, eliminating pitfalls encountered in conventional treatments. Properties like reduced drug-clearance and increased dose efficacy by the enhanced permeability and retention effect deem nanoparticles suitable for this application. Optimization of size, surface charge and surface modifications have provided nanoparticles with stealth properties capable of evading immune responses, thus deeming them as excellent carriers of chemotherapeutic agents. Biocompatible and biodegradable forms of polymers enhance the bioavailability of chemotherapeutic agents, and permit a sustained and time-dependent release of drugs which is a characteristic of their composition, thereby providing a controlled therapeutic approach. Studies conducted in vitro and animal models have also demonstrated a synergism in cytotoxicity given the mechanism of action of anticancer drugs when administered in combination providing promising results. Combination therapy has also shown implications in overcoming multiple-drug resistance, which can however be subdued by the adaptable nature of tumor microenvironment. Surface modifications with targeting moieties can therefore feasibly increase nanoparticle uptake by specific receptor-ligand interactions, increasing dose efficacy which can seemingly overcome drug-resistance. This article reviews recent trends and investigations in employing polymeric nanoparticles for effectively delivering combination chemotherapy, and modifications in delivery parameters enhancing dose efficacy, thus validating the potential in this

  10. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  11. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer

    PubMed Central

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156

  12. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Wang, Yu-Cai; Long, Hong-Yan; Xiong, Meng-Hua; Mao, Cheng-Qiong; Yao, Yan-Dan; Wang, Jun

    2012-06-26

    The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both polymeric and lipid-based nanoparticles for siRNA delivery, while diminishing the shortcomings of both. In this study, cationic lipid-polymer hybrid nanoparticles were prepared by a single-step nanoprecipitation of a cationic lipid (N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide, BHEM-Chol) and amphiphilic polymers for systemic delivery of siRNA. The formed hybrid nanoparticles comprised a hydrophobic polylactide core, a hydrophilic poly(ethylene glycol) shell, and a cationic lipid monolayer at the interface of the core and the shell. Such hybrid nanoparticles exhibited excellent stability in serum and showed significantly improved biocompatibility compared to that of pure BHEM-Chol particles. The hybrid nanoparticles were capable of delivering siRNA into BT474 cells and facilitated the escape of loaded siRNA from the endosome into the cytoplasm. The hybrid nanoparticles carrying polo-like kinase 1 (Plk1)-specific siRNA (siPlk1) remarkably and specifically downregulated expression of the oncogene Plk1 and induced cancer cell apoptosis both in vitro and in vivo and significantly suppressed tumor growth following systemic administration. We demonstrate that this system is stable, nontoxic, highly efficient, and easy to scale up, bringing the clinical application of siRNA therapy one important step closer to reality.

  13. Cancer theranostics: Multifunctional gold nanoparticles for diagnostics and therapy

    NASA Astrophysics Data System (ADS)

    Conde, Joao Diogo Osorio de Castro

    The use of gold nanoparticles (AuNPs) has been gaining momentum in molecular diagnostics due to their unique physico-chemical properties these systems present huge advantages, such as increased sensitivity, reduced cost and potential for single-molecule characterisation. Because of their versatility and easy of functionalisation, multifunctional AuNPs have also been proposed as optimal delivery systems for therapy (nanovectors). Being able to produce such systems would mean the dawn of a new age in theranostics (diagnostics and therapy)driven by nanotechnology vehicles. Nanotechnology can be exploit for cancer theranostics via the development of diagnostics systems such as colorimetric and imunoassays, and in therapy approaches through gene therapy, drug delivery and tumour targeting systems. The unique characteristics of nanoparticles in the nanometre range, such as high surface-tovolume ratio or shape/size-dependent optical properties, are drastically different from those of their bulk materials and hold pledge in the clinical field for disease therapeutics. This PhD project intends to optimise a gold-nanoparticle based technique for the detection of oncogenes' transcripts (c-Myc and BCR-ABL) that can be used for the evaluation of the expression profile in cancer cells, while simultaneously developing an innovative platform of multifunctional gold nanoparticles (tumour markers, cell penetrating peptides, fluorescent dyes) loaded with siRNA capable of silencing the selected proto-oncogenes, which can be used to evaluate the level of expression and determine the efficiency of silencing. In order to achieve this goal we developed effective conjugation strategies to combine, in a highly controlled way, biomolecules to the surface of AuNPs with specific functions such as: ssDNA oligos to detect specific sequences and for mRNA quantification; Biofunctional spacers: Poly(ethylene glycol) (PEG) spacers used to increase solubility and biocompatibility and confer chemical

  14. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    PubMed

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases

    PubMed Central

    Zhang, Zheng; Tsai, Pei-Chin; Ramezanli, Tannaz; Michniak-Kohn, Bozena B.

    2013-01-01

    Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers specially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters) and non-degradable (polyarylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nano-sized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed. PMID:23386536

  17. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-08-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.

  18. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    NASA Astrophysics Data System (ADS)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  19. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    NASA Astrophysics Data System (ADS)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  20. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    PubMed Central

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  1. Cancer-specific transgene expression mediated by systemic injection of nanoparticles.

    PubMed

    Chisholm, Edward J; Vassaux, Georges; Martin-Duque, Pilar; Chevre, Raphael; Lambert, Olivier; Pitard, Bruno; Merron, Andrew; Weeks, Mark; Burnet, Jerome; Peerlinck, Inge; Dai, Ming-Shen; Alusi, Ghassan; Mather, Stephen J; Bolton, Katherine; Uchegbu, Ijeoma F; Schatzlein, Andreas G; Baril, Patrick

    2009-03-15

    The lack of safe and efficient systemic gene delivery vectors has largely reduced the potential of gene therapy in the clinic. Previously, we have reported that polypropylenimine dendrimer PPIG3/DNA nanoparticles are capable of tumor transfection upon systemic administration in tumor-bearing mice. To be safely applicable in the clinic, it is crucial to investigate the colloidal stability of nanoparticles and to monitor the exact biodistribution of gene transfer in the whole body of the live subject. Our biophysical characterization shows that dendrimers, when complexed with DNA, are capable of forming spontaneously in solution a supramolecular assembly that possesses all the features required to diffuse in experimental tumors through the enhanced permeability and retention effect. We show that these nanoparticles are of sizes ranging from 33 to 286 nm depending on the DNA concentration, with a colloidal stable and well-organized fingerprint-like structure in which DNA molecules are condensed with an even periodicity of 2.8 nm. Whole-body nuclear imaging using small-animal nano-single-photon emission computed tomography/computer tomography scanner and the human Na/I symporter (NIS) as reporter gene shows unique and highly specific tumor targeting with no detection of gene transfer in any of the other tissues of tumor-bearing mice. Tumor-selective transgene expression was confirmed by quantitative reverse transcription-PCR at autopsy of scanned animals, whereas genomic PCR showed that the tumor sites are the predominant sites of nanoparticle accumulation. Considering that NIS imaging of transgene expression has been recently validated in humans, our data highlight the potential of these nanoparticles as a new formulation for cancer gene therapy.

  2. A Review on the Respiratory System Toxicity of Carbon Nanoparticles

    PubMed Central

    Pacurari, Maricica; Lowe, Kristine; Tchounwou, Paul B.; Kafoury, Ramzi

    2016-01-01

    The respiratory system represents the main gateway for nanoparticles’ entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles’ interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products. PMID:26999172

  3. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.

    PubMed

    Liu, Jingyue

    2005-06-01

    Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.

  4. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Sierros, Konstantinos A. (Inventor); Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Shafran, Matthew S. (Inventor)

    2017-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment including a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  5. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Shafran, Matthew S. (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  6. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  7. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.

    PubMed

    Ben Yehuda Greenwald, Maya; Ben Sasson, Shmuel; Bianco-Peled, Havazelet

    2013-01-01

    Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.

  8. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells

    PubMed Central

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-01-01

    The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (MCF-7/ADR). The faster release of curcumin from the folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables sufficient p-glycoprotein inhibition, which allows increased cellular uptake and cytotoxicity of paclitaxel. In western blot assay, curcumin can efficiently inhibit the expression of p-glycoprotein, conformed the enhancement of cytotoxicity by paclitaxel. Furthermore, folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles exhibited increased uptake of paclitaxel and curcumin into MCF-7/ADR cells through the folate receptor-mediated internalization. Taken together, these results indicate that folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables the enhanced, folate-targeted delivery of multiple anticancer drugs by inhibiting the multi-drug resistance efficiently, which may also serve as a useful nano-system for co-delivery of other anticancer drugs. PMID:28423731

  9. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    PubMed Central

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775

  10. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    PubMed

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  11. Evaluation of Organogel Nanoparticles as Drug Delivery System for Lipophilic Compounds.

    PubMed

    Martin, Baptiste; Brouillet, Fabien; Franceschi, Sophie; Perez, Emile

    2017-05-01

    The purpose of the study was to evaluate organogel nanoparticles as a drug delivery system by investigating their stability, according to the formulation strategy, and their release profile. The gelled nanoparticles were prepared by hot emulsification (above the gelation temperature) of an organogel in water, and cooling at room temperature. In the first step, we used DLS and DSC to select the most suitable formulations by optimizing the proportion of ingredients (HSA, PVA, castor oil) to obtain particles of the smallest size and greatest stability. Then, two lipophilic drug models, indomethacin and ketoconazole were entrapped in the nanoparticles made of castor oil gelled by 12-hydroxystearic acid. Thermal studies (DSC) confirmed that there was no significant alteration of gelling due to the entrapped drugs, even at 3% w/w. Very stable dispersions were obtained (>3 months), with gelled oil nanoparticles presenting a mean diameter between 250 and 300 nm. High encapsulation efficiency (>98%) was measured for indomethacin and ketoconazole. The release profile determined by in vitro dialysis showed an immediate release of the drug from the organogel nanoparticles, due to rapid diffusion. The study demonstrates the interest of these gelled oil nanoparticles for the encapsulation and the delivery of lipophilic active compounds.

  12. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles

    PubMed Central

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  13. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles.

    PubMed

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  14. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy

    NASA Astrophysics Data System (ADS)

    Mekheimer, Kh. S.; Hasona, W. M.; Abo-Elkhair, R. E.; Zaher, A. Z.

    2018-01-01

    Cancer is dangerous and deadly to most of its patients. Recent studies have shown that gold nanoparticles can cure and overcome it, because these particles have a high atomic number which produce the heat and leads to treatment of malignancy tumors. A motivation of this article is to study the effect of heat transfer with the blood flow (non-Newtonian model) containing gold nanoparticles in a gap between two coaxial tubes, the outer tube has a sinusoidal wave traveling down its wall and the inner tube is rigid. The governing equations of third-grade fluid along with total mass, thermal energy and nanoparticles are simplified by using the assumption of long wavelength. Exact solutions have been evaluated for temperature distribution and nanoparticles concentration, while approximate analytical solutions are found for the velocity distribution using the regular perturbation method with a small third grade parameter. Influence of the physical parameters such as third grade parameter, Brownian motion parameter and thermophoresis parameter on the velocity profile, temperature distribution and nanoparticles concentration are considered. The results pointed to that the gold nanoparticles are effective for drug carrying and drug delivery systems because they control the velocity through the Brownian motion parameter Nb and thermophoresis parameter Nt. Gold nanoparticles also increases the temperature distribution, making it able to destroy cancer cells.

  15. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  16. Designing and Testing Functional RNA Nanoparticles | Center for Cancer Research

    Cancer.gov

    Recent advances in nanotechnology have generated excitement that nanomaterials may provide novel approaches for the diagnosis and treatment of deadly diseases, such as cancer. However, the use of synthetic materials to generate nanoparticles can present challenges with endotoxin content, sterility, or biocompatibility. Employing biological materials may overcome these issues

  17. Gold nanoparticles to improve HIV drug delivery.

    PubMed

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy.

  18. Mucus-penetrating nanoparticles: Promising drug delivery systems for the photodynamic therapy of intestinal cancer.

    PubMed

    Anderski, Juliane; Mahlert, Laura; Mulac, Dennis; Langer, Klaus

    2018-05-17

    Photodynamic therapy (PDT) is an auspicious therapy approach for the treatment of cancer. Despite its numerous benefits, the drug delivery of the used photosensitizer (PS) to target locations inside the human body remains a main therapy challenge, since the standard intravenous PS injection often causes systemic side-effects. To circumvent this therapy drawback, the oral application represents a promising administration alternative. Especially for the treatment of intestinal cancer it offers the possibility of a local treatment with a reduced likelihood for adverse drug reactions. To establish a suitable drug delivery system for intestinal PDT, we developed nanoparticles (NP) of the biodegradable and biocompatible polymer poly(lactic-co-glycolic) acid (PLGA), loaded with the model PS 5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrin (mTHPP). By functionalizing the particle surface with either poly(ethylene glycol) (PEG) or chitosan (CS), mucus-penetrating or mucoadhesive properties were obtained. These particle characteristics are important to enable an overcoming of the intestinal mucus barrier and thus lead to a PS accumulation close to and in the target cells. In permeation studies with a biosimilar mucus and in cell culture experiments with mucus-covered Caco-2 cells, PEG-modified NP were identified as a superior drug vehicle for an intestinal PDT, compared to surface unmodified or mucoadhesive NP. Copyright © 2018. Published by Elsevier B.V.

  19. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  20. Self-Assembled Peptide-Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery.

    PubMed

    Yan, Jin; He, Wangxiao; Yan, Siqi; Niu, Fan; Liu, Tianya; Ma, Bohan; Shao, Yongping; Yan, Yuwei; Yang, Guang; Lu, Wuyuan; Du, Yaping; Lei, Bo; Ma, Peter X

    2018-02-27

    Developing a sophisticated nanomedicine platform to deliver therapeutics effectively and safely into tumor/cancer cells remains challenging in the field of nanomedicine. In particular, reliable peptide drug delivery systems capable of overcoming biological barriers are still lacking. Here, we developed a simple, rapid, and robust strategy to manufacture nanoclusters of ∼90 nm in diameter that are self-assembled from lanthanide-doped nanoparticles (5 nm), two anticancer peptides with different targets (BIM and PMI), and one cyclic peptide iNGR targeted to cancer cells. The peptide-lanthanide nanoclusters (LDC-PMI-BIM-iNGR) enhanced the resistance of peptide drugs to proteolysis, disassembled in response to reductive conditions that are present in the tumor microenvironment and inhibited cancer cell growth in vitro and in vivo. Notably, LDC-PMI-BIM-iNGR exhibited extremely low systemic toxicity and side effects in vivo. Thus, the peptide-lanthanide nanocluster may serve as an ideal multifunctional platform for safe, targeted, and efficient peptide drug delivery in cancer therapy.

  1. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  2. New developments in breast cancer therapy: role of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Thoidingjam, Shivani; Bhan Tiku, Ashu

    2017-06-01

    Breast cancer is one of the leading causes of deaths in females worldwide. The high metastatic rate and drug resistance makes it one of the difficult cancers to treat. Early diagnosis and treatment are keys to better survival of breast cancer patients. Conventional treatment approaches like chemotherapy, radiotherapy and surgery suffer from major drawbacks. Novel approaches to improve cancer therapy with minimal damage to normal tissues and better quality of life for cancer patients need to be developed. Among various approaches used for treatment and diagnosis of breast cancer, use of nanoparticles (NPs) is coming up as a new and promising treatment regime. It can help overcome various limitations of conventional therapies like non-targeted effects, resistance to treatment, late diagnosis, etc. Among various nanoparticles studied for their biomedical applications, especially for breast cancer therapy, iron oxide nanoparticles (IONPs) are perhaps the most exciting due to their biocompatibility, biodegradability, size and properties like superparamagnetism. Besides, IONPs are also the only metal oxide nanoparticles approved for clinical use in magnetic resonance imaging (MRI) which is an added advantage for early detection. Therefore in this mini review, we are discussing the developments made in the use of IONPs for breast cancer therapy over the short span of the last five years i.e. 2010-2015. Since late diagnosis and therapy resistance are important drawbacks in breast cancer therapy, the potential of IONPs to overcome these limitations are also evaluated.

  3. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration.

    PubMed

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana; Borges, Fernanda; Sarmento, Bruno

    2017-03-01

    Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

  4. Endotoxin hitchhiking on polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Donnell, Mason L.; Lyon, Andrew J.; Mormile, Melanie R.; Barua, Sutapa

    2016-07-01

    The control of microbial infections is critical for the preparation of biological media including water to prevent lethal septic shock. Sepsis is one of the leading causes of death in the United States. More than half a million patients suffer from sepsis every year. Both gram-positive and gram-negative bacteria are responsible for septic infection by the most common organisms i.e., Escherichia coli and Pseuodomonas aeruginosa. The bacterial cell membrane releases negatively charged endotoxins upon death and enzymatic destruction, which stimulate antigenic response in humans to gram-negative infections. Several methods including distillation, ethylene oxide treatment, filtration and irradiation have been employed to remove endotoxins from contaminated samples, however, the reduction efficiency remains low, and presents a challenge. Polymer nanoparticles can be used to overcome the current inability to effectively sequester endotoxins from water. This process is termed endotoxin hitchhiking. The binding of endotoxin on polymer nanoparticles via electrostatic and hydrophobic interactions offers efficient removal from water. However, the effect of polymer nanoparticles and its surface areas has not been investigated for removal of endotoxins. Poly(ε-caprolactone) (PCL) polymer was tested for its ability to effectively bind and remove endotoxins from water. By employing a simple one-step phase separation technique, we were able to synthesize PCL nanoparticles of 398.3 ± 95.13 nm size and a polydispersity index of 0.2. PCL nanoparticles showed ∼78.8% endotoxin removal efficiency, the equivalent of 3.9 × 105 endotoxin units (EU) per ml. This is 8.34-fold more effective than that reported for commercially available membranes. Transmission electron microscopic images confirmed binding of multiple endotoxins to the nanoparticle surface. The concept of using nanoparticles may be applicable not only to eliminate gram-negative bacteria, but also for any gram

  5. Biogenic nanoparticle-mediated augmentation of seed germination, growth, and antioxidant level of Eruca sativa mill. varieties.

    PubMed

    Ushahra, Jyoti; Bhati-Kushwaha, Himakshi; Malik, C P

    2014-09-01

    A study was undertaken to examine the influence of biogenic nanoparticles synthesized from Tridax procumbens on different parameters of seed germination, seedling growth, and various biochemical parameters in four Eruca sativa varieties having low percentage of germination. Seeds were treated with different concentrations (30 and 40 ppm) of biogenic nanoparticles, of which 30 ppm was found to be the most effective and was therefore used for subsequent studies. Initially, the effect of biogenic nanoparticles on germination percentage, speed of germination, coefficient of germination, mean germination time, shoot and root length, fresh and dry matter, and vigor index was studied. From the experiments performed and the results obtained, it was evident that the treatment with biogenic nanoparticles decreased the electrolyte leakage and level of malondialdehyde as compared to control. The treatment with biogenic nanoparticles enhanced the levels of proline and ascorbic acid and stimulated the antioxidant enzyme activities resulting in the reduced level of reactive oxygen species. These activities were found to be variety-dependent. The possible involvement of biogenic nanoparticles in the production of new pores in seed coat during their penetration, resulting in the influx of the nutrients inside the seed, is suggested. This accelerated seed germination is followed by rapid seedling growth. The present findings indicated that biogenic nanoparticles promote seed germination in E. sativa by overcoming the detrimental effects of reactive oxygen species (ROS) and improving the antioxidative defense system which finally result in increased seedling growth.

  6. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  7. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems.

    PubMed

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-02-23

    Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.

  8. An Electrochemical DNA Sensing System Using Modified Nanoparticle Probes for Detecting Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro

    2017-01-01

    We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.

  9. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    NASA Astrophysics Data System (ADS)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two

  10. Binary nanoparticle superlattices of soft-particle systems

    DOE PAGES

    Travesset, Alex

    2015-08-04

    The solid-phase diagram of binary systems consisting of particles of diameter σ A=σ and σ B=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversitymore » observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.« less

  11. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Improvement in Therapeutic Efficacy and Reduction in Cellular Toxicity: Introduction of a Novel Anti-PSMA-Conjugated Hybrid Antiandrogen Nanoparticle.

    PubMed

    Thangavel, Chellappagounder; Perepelyuk, Maryna; Boopathi, Ettickan; Liu, Yi; Polischak, Steven; Deshpande, Deepak A; Rafiq, Khadija; Dicker, Adam P; Knudsen, Karen E; Shoyele, Sunday A; Den, Robert B

    2018-05-07

    Second generation antiandrogens have improved overall survival for men with metastatic castrate resistant prostate cancer; however, the antiandrogens result in suppression of androgen receptor (AR) activity in all tissues resulting in dose limiting toxicity. We sought to overcome this limitation through encapsulation in a prostate specific membrane antigen (PSMA)-conjugated nanoparticle. We designed and characterized a novel nanoparticle containing an antiandrogen, enzalutamide. Selectivity and enhanced efficacy was achieved through coating the particle with PSMA. The PSMA-conjugated nanoparticle was internalized selectively in AR expressing prostate cancer cells. It did not elicit an inflammatory effect. The efficacy of enzalutamide was not compromised through insertion into the nanoparticle; in fact, lower systemic drug concentrations of enzalutamide resulted in comparable clinical activity. Normal muscle cells were not impacted by the PSMA-conjugated containing antiandrogen. This approach represents a novel strategy to increase the specificity and effectiveness of antiandrogen treatment for men with castrate resistant prostate cancer. The ability to deliver higher drug concentrations in prostate cancer cells may translate into improved clinical end points including overall survival.

  13. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  14. Time multiplexing super-resolution nanoscopy based on the Brownian motion of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Wagner, Omer; Zalevsky, Zeev

    2017-02-01

    Super-resolution localization microscopy can overcome the diffraction limit and achieve a tens of order improvement in resolution. It requires labeling the sample with fluorescent probes followed with their repeated cycles of activation and photobleaching. This work presents an alternative approach that is free from direct labeling and does not require the activation and photobleaching cycles. Fluorescently labeled gold nanoparticles in a solution are distributed on top of the sample. The nanoparticles move in a random Brownian motion, and interact with the sample. By obscuring different areas in the sample, the nanoparticles encode the sub-wavelength features. A sequence of images of the sample is captured and decoded by digital post processing to create the super-resolution image. The achievable resolution is limited by the additive noise and the size of the nanoparticles. Regular nanoparticles with diameter smaller than 100nm are barely seen in a conventional bright field microscope, thus fluorescently labeled gold nanoparticles were used, with proper

  15. Quantitative study of FORC diagrams in thermally corrected Stoner- Wohlfarth nanoparticles systems

    NASA Astrophysics Data System (ADS)

    De Biasi, E.; Curiale, J.; Zysler, R. D.

    2016-12-01

    The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations "blur" the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner- Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution.

  16. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Highly sensitive free radical detection by nitrone-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Du, Libo; Huang, Saipeng; Zhuang, Qianfen; Jia, Hongying; Rockenbauer, Antal; Liu, Yangping; Liu, Ke Jian; Liu, Yang

    2014-01-01

    The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems, has been greatly limited partially due to the low reaction rate between the currently available spin traps with biological radicals. To overcome this drawback, we herein report the first example of nitrone functionalized gold nanoparticles (Au@EMPO) as highly efficient spin traps in which the thiolated EMPO (2-(ethoxycarbonyl)-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide) derivative was self-assembled on gold nanoparticles. Kinetic studies showed that Au@EMPO has a 137-fold higher reaction rate constant with &z.rad;OH than PBN (N-tert-butyl-α-phenylnitrone). Owing to the high rate of trapping &z.rad;OH by Au@EMPO as well as the high stability of the resulting spin adduct (t1/2 ~ 56 min), Au@EMPO affords 124-fold higher sensitivity for &z.rad;OH than EMPO. Thus, this new nanospin trap shows great potential in trapping the important radicals such as &z.rad;OH in various biological systems and provides a novel strategy to design spin traps with much improved properties.The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems

  18. Designing and Testing Functional RNA Nanoparticles | Center for Cancer Research

    Cancer.gov

    Recent advances in nanotechnology have generated excitement that nanomaterials may provide novel approaches for the diagnosis and treatment of deadly diseases, such as cancer. However, the use of synthetic materials to generate nanoparticles can present challenges with endotoxin content, sterility, or biocompatibility. Employing biological materials may overcome these issues with RNA being particularly attractive given the clinical applications of RNA interference and the abundance of functional RNAs, including aptamers and ribozymes. RNA can form stable three-dimensional nanoparticle structures that can be decorated with other nucleic acids, small molecules, or proteins, potentially increasing local concentrations of therapeutic agents and acting synergistically when combined.

  19. Concepts and practices used to develop functional PLGA-based nanoparticulate systems.

    PubMed

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.

  20. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  1. Gold nanoparticles to improve HIV drug delivery

    PubMed Central

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Background: Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Results & Conclusion: Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy. PMID:26132521

  2. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  3. Experimental Aspects of Colloidal Interactions in Mixed Systems of Liposome and Inorganic Nanoparticle and Their Applications

    PubMed Central

    Michel*, Raphael; Gradzielski*, Michael

    2012-01-01

    In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications. PMID:23109874

  4. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism.

    PubMed

    Yokel, Robert; Grulke, Eric; MacPhail, Robert

    2013-01-01

    This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.

  5. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system

    NASA Astrophysics Data System (ADS)

    Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang

    2006-05-01

    Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.

  6. Design of Novel Ophthalmic Formulation Containing Drug Nanoparticles and Its Usefulness as Anti-glaucoma Drugs.

    PubMed

    Nagai, Noriaki

    2016-01-01

    The ophthalmic application of drugs is the primary route of administration for the therapy of glaucoma; however, in traditional formulations, only small amounts of the administered drug penetrate the cornea to reach the desired intraocular tissue due to corneal barriers. Recently, nanoparticulate drug delivery is expected as a technology to overcome the difficulties in delivering drugs across biological barriers (improvement of bioavailability). In this study, we attempted to establish a new method for preparing solid drug nanoparticles by using a bead mill and various additives, and succeeded in preparing a high quality dispersion containing drug nanoparticles. For a more concrete example, a mean particle size of disulfiram (DSF) treated with bead mill is 183 nm. The corneal penetration and corneal residence time of DSF from the ophthalmic dispersion containing DSF nanoparticles were significantly higher than those from a 2-hydroxypropyl-β-cyclodextrin solution containing DSF (DSF solution). It is known that the administration of DSF has intraocular pressure (IOP)-reducing effects. The IOP-reducing effects of the ophthalmic dispersion containing DSF nanoparticles were significantly greater than those of the DSF solution in rabbits (the IOP was enhanced by placing the rabbits in a dark room for 5 h). In addition, the ophthalmic dispersion containing DSF nanoparticles is better tolerated by corneal epithelial cells than DSF solution. It is possible that dispersions containing DSF nanoparticles provide new possibilities for effectively treating glaucoma, and that ocular drug delivery systems using drug nanoparticles may expand their usage for therapy in the ophthalmologic field.

  7. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  8. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    PubMed

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  9. pH-Dependent anticancer drug release from silk nanoparticles

    PubMed Central

    Seib, F. Philipp; Jones, Gregory T.; Rnjak-Kovacina, Jelena; Lin, Yinan; Kaplan, David L.

    2013-01-01

    Silk has traditionally been used as a suture material because of its excellent mechanical properties and biocompatibility. These properties have led to the development of different silk-based material formats for tissue engineering and regenerative medicine. Although there have been a small number of studies about the use of silk particles for drug delivery, none of these studies have assessed the potential of silk to act as a stimulus-responsive anticancer nanomedicine. This report demonstrates that an acetone precipitation of silk allowed the formation of uniform silk nanoparticles (98 nm diameter, polydispersity index 0.109), with an overall negative surface charge (-33.6 ±5.8 mV), in a single step. Silk nanoparticles were readily loaded with doxorubicin (40 ng doxorubicin/μg silk) and showed pH-dependent release (pH 4.5>> 6.0 > 7.4). In vitro studies with human breast cancer cell lines demonstrated that the silk nanoparticles were not cytotoxic (IC50 >120/μ/ml) and that doxorubicin-loaded silk nanoparticles were able to overcome drug resistance mechanisms. Live cell fluorescence microscopy studies showed endocytic uptake and lysosomal accumulation of silk nanoparticles. In summary, the pH-dependent drug release and lysosomal accumulation of silk nanoparticles demonstrated the ability of drug-loaded silk nanoparticles to serve as a lysosomotropic anticancer nanomedicine. PMID:23625825

  10. Carbon nanoparticles as possible radioprotectors in biological systems

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Lichota, Anna; Nowak, Katarzyna E.; Grebowski, Jacek

    2016-11-01

    Ionizing radiation causes radiolysis of water and the production of reactive oxygen species (ROS), which interact with biochemically important molecules in cells leading to cell death. In order to reduce the dangerous radiation effects on cells, tissues and organs, the search for radioprotectors is essential. ROS result in damage to biomolecules, e.g. proteins, lipids and DNA, and as a consequence, cause the loss of cell function. The chemical and biological properties of fullerenes and other carbon nanoparticles enable the possibility of generating either oxidative stress or its attenuation by both scavenging free radicals and modification/upregulation of endogenous antioxidative systems in cells. This study discusses the possible applications of carbon nanoparticles as radioprotective agents and/or free radical scavengers. Special attention is paid to water-soluble fullerenes as they are promising radioprotectors and exhibit low toxicity and cytotoxicity.

  11. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    PubMed Central

    Su, Wen-Pin; Cheng, Fong-Yu; Shieh, Dar-Bin; Yeh, Chen-Sheng; Su, Wu-Chou

    2012-01-01

    Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3) activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA) to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated. Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX), enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI). The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel-resistant A549/T12 cell lines with α-tubulin mutation. Results: A549 and A549/T12 cells contain constitutively activated Stat3, and silencing Stat3 by siRNA made both cancer cells more sensitive to paclitaxel. Therefore, PLGA-PEI-TAX-S3SI was synthesized to test its therapeutic role in A549 and A549/T12 cells. Transmission electron microscopy showed the size of PLGA-PEI-TAX-S3SI to be around 250 nm. PLGA-PEI nanoparticles were nontoxic. PLGA-PEI-TAX was taken up by A549 and A549/T12 cells more than free paclitaxel, and they induced more condensed microtubule bundles and had higher cytotoxicity in these cancer cells. Moreover, the yellowish fluorescence observed in the cytoplasm of the cancer cells indicates that the PLGA-PEI nanoparticles were still simultaneously delivering Oregon Green paclitaxel and cyanine-5-labeled Stat3 siRNA 3

  12. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    NASA Astrophysics Data System (ADS)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-02-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  13. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.

    PubMed

    Liu, Juan; Wei, Tuo; Zhao, Jing; Huang, Yuanyu; Deng, Hua; Kumar, Anil; Wang, Chenxuan; Liang, Zicai; Ma, Xiaowei; Liang, Xing-Jie

    2016-06-01

    By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  15. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  16. Interactions of nanomaterials with biological systems: A study of bio-mineralized nanoparticles and nanoparticle antibiotics

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer Chappell

    Nature is continually able to out-perform laboratory syntheses of nanomaterials with control of specific properties under ambient temperatures, pressures and pH. The investigation of existing biomolecule-mediated nanoparticle synthesis provides insight and knowledge necessary for duplicating these processes. In this way, peptides or proteins with nanomaterial mediation capabilities can be: 1) explored to further understand the ways in which biomolecules create specific nanoparticles then 2) used to create genetically encodable tags for use in electron tomography. The goal of designing such a tag was to assist in closing the resolution gap that exists in current imaging techniques between approximately 5 nm and 100 nm. Presented in this thesis are examples of peptides and proteins that form iron oxide, silver or gold nanoparticles under discrete circumstances. Three iron oxide-related bacterial proteins -- bacterioferritin, Dps and Mms6 -- were investigated for potential use. Similarly, a silver mineralizing peptide, Ge8, was studied upon attachment to the filamentous protein, FtsZ, and a gold mineralizing peptide, A3, was examined to characterize the way in which it mediates the formation of both Au0 nanoclusters and nanoparticles. Given the established interactions that occur between nanoparticles and biomolecules, it may not be surprising that gold nanoparticles displaying specific ratios of functional groups are able to interact with bacteria, in some cases inhibiting growth or causing cell death as antibiotics. A previously developed small molecule variable ligand display (SMVLD) method was expanded to identify a nanoparticle conjugate with a minimal inhibitory concentration (MIC99.9) of 6 muM for Mycobacterium smegmatis, a common laboratory model for M. tuberculosis and the first example of SMVLD applied to mycobacteria. Nanoparticle structure-activity relationships, modes of action and approximations of mammalian cell toxicities were also explored to expand

  17. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Pandit, Raksha; Paralikar, Priti; Gupta, Indarchand; Chaud, Marco V; Dos Santos, Carolina Alves

    2017-10-30

    Now-a-days development of microbial resistancce have become one of the most important global public health concerns. It is estimated that about 2 million people are infected in USA with multidrug resistant bacteria and out of these, about 23,000 die per year. In Europe, the number of deaths associated with infection caused by MDR bacteria is about 25,000 per year, However, the situation in Asia and other devloping countries is more critical. Considering the increasing rate of antibiotic resistance in various pathogens, it is estimated that MDR organisms can kill about 10 million people every year by 2050. The use of antibiotics in excessive and irresponsible manner is the main reason towards its ineffectiveness. However, in this context, promising application of nanotechnology in our everyday life has generated a new avenue for the development of potent antimicrobial materials and compounds (nanoantimicrobials) capable of dealing with microbial resistance. The devlopement and safe incorporation of nanoantimicrobials will bring a new revolution in health sector. In this review, we have critically focused on current worldwide situation of antibiotic resistance. In addition, the role of various nanomaterials in the management of microbial resistance and the possible mechanisms for antibacterial action of nanoparticles alone and nanoparticle-antibiotics conjuagte are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.

    PubMed

    Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol

    2015-01-01

    Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems. © 2014 Wiley Periodicals, Inc.

  19. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  20. Nanoparticles and direct immunosuppression

    PubMed Central

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  1. Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite.

    PubMed

    Vakilian, Saeid; Mashayekhan, Shohreh; Shabani, Iman; Khorashadizadeh, Mohsen; Fallah, Ali; Soleimani, Masoud

    2015-04-01

    The cellular microenvironment can be engineered through the utilization of various nano-patterns and matrix-loaded bioactive molecules. In this study, a multilayer system of electrospun scaffold containing chitosan nanoparticles was introduced to overcome the common problems of instability and burst release of proteins from nanofibrous scaffolds. Bovine serum albumin (BSA)-loaded chitosan nanoparticles was fabricated based on ionic gelation interaction between chitosan and sodium tripolyphosphate. Suspension electrospinning was employed to fabricate poly-ɛ-caprolacton (PCL) containing protein-loaded chitosan nanoparticles with a core-shell structure. To obtain the desired scaffold mechanical properties with enough elasticity for expansion and contraction, a hybrid mono and multilayer electrospun scaffold was fabricated using PCL containing protein-loaded chitosan nanoparticles and poly-L-lactic acid (PLLA). According to the BSA release profile, the multi-layered structure of nanofibers with two barrier layers provided a programmable release pattern of the loaded protein. Moreover, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism spectra results showed that the electrospinning process had no significant effect on the primary and secondary structure of the protein. The results indicated a desirable biocompatibility and mechanical cues of the multilayer nanofibrous scaffolds supporting structural stability and controlled release of the protein, which can offer diverse applications in hollow organ tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

  3. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  4. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems

    NASA Astrophysics Data System (ADS)

    Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu

    2015-11-01

    Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied

  5. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-01

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in

  7. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  8. Process optimization for the preparation of oligomycin-loaded folate-conjugated chitosan nanoparticles as a tumor-targeted drug delivery system using a two-level factorial design method.

    PubMed

    Zu, Yuangang; Zhao, Qi; Zhao, Xiuhua; Zu, Shuchong; Meng, Li

    2011-01-01

    Oligomycin-A (Oli-A), an anticancer drug, was loaded to the folate (FA)-conjugated chitosan as a tumor-targeted drug delivery system for the purpose of overcoming the nonspecific targeting characteristics and the hydrophobicity of the compound. The two-level factorial design (2-LFD) was applied to modeling the preparation process, which was composed of five independent variables, namely FA-conjugated chitosan (FA-CS) concentration, Oli-A concentration, sodium tripolyphosphate (TPP) concentration, the mass ratio of FA-CS to TPP, and crosslinking time. The mean particle size (MPS) and the drug loading rate (DLR) of the resulting Oli-loaded FA-CS nanoparticles (FA-Oli-CSNPs) were used as response variables. The interactive effects of the five independent variables on the response variables were studied. The characteristics of the nanoparticles, such as amount of FA conjugation, drug entrapment rate (DER), DLR, surface morphology, and release kinetics properties in vitro were investigated. The FA-Oli-CSNPs with MPS of 182.6 nm, DER of 17.3%, DLR of 58.5%, and zeta potential (ZP) of 24.6 mV were obtained under optimum conditions. The amount of FA conjugation was 45.9 mg/g chitosan. The FA-Oli-CSNPs showed sustained-release characteristics for 576 hours in vitro. The results indicated that FA-Oli-CSNPs obtained as a targeted drug delivery system could be effective in the therapy of leukemia in the future.

  9. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  10. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles.

    PubMed

    Perteghella, Sara; Crivelli, Barbara; Catenacci, Laura; Sorrenti, Milena; Bruni, Giovanna; Necchi, Vittorio; Vigani, Barbara; Sorlini, Marzio; Torre, Maria Luisa; Chlapanidas, Theodora

    2017-03-30

    The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Smart nanoparticles as targeting platforms for HIV infections

    NASA Astrophysics Data System (ADS)

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-04-01

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  12. Smart nanoparticles as targeting platforms for HIV infections.

    PubMed

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-05-07

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  13. Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai, Chunxi; Inukai, Koji; Takahashi, Yosuke

    2014-09-15

    Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did notmore » affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.« less

  14. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition.

    PubMed

    He, Qianjun; Shi, Jianlin

    2014-01-22

    In the anti-cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti-cancer drugs to normal tissues due to the lack of tumor-selectivity, the multi-drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state-of-art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti-cancer strategy, this review highlights the most recent advances of MSN anti-cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs-based anti-cancer nanomedicines, and propose several innovative and forward-looking anti-cancer strategies, including tumor tissue-cell-nuclear successionally targeted drug delivery strategy, tumor cell-selective nuclear-targeted drug delivery strategy, multi-targeting and multi-drug strategy, chemo-/radio-/photodynamic-/ultrasound-/thermo-combined multi-modal therapy by virtue of functionalized hollow/rattle-structured MSNs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shortcomings of existing systems for registration and legal protection of software products and possible ways to overcome them

    NASA Astrophysics Data System (ADS)

    Liapidevskiy, A. V.; Petrov, A. S.; Zhmud, V. A.; Sherubneva, I. G.

    2018-05-01

    The paper reveals the shortcomings of the existing system of registration and legal protection of software products. The system has too many disadvantages and shortcomings. Explanatory examples are given. Possible ways of overcoming these shortcomings are discussed. The paper also gives possible prospects for the use of new digital technologies. Also in the paper, the information is provided about the modern software components for protecting intellectual property rights of State corporations

  16. Role of silver nanoparticles (AgNPs) on the cardiovascular system.

    PubMed

    Gonzalez, Carmen; Rosas-Hernandez, Hector; Ramirez-Lee, Manuel Alejandro; Salazar-García, Samuel; Ali, Syed F

    2016-03-01

    With the advent of nanotechnology, the use and applications of silver nanoparticles (AgNPs) have increased, both in consumer products as well as in medical devices. However, little is known about the effects of these nanoparticles on human health, more specific in the cardiovascular system, since this system represents an important route of action in terms of distribution, bioaccumulation and bioavailability of the different circulating substances in the bloodstream. A collection of studies have addressed the effects and applications of different kinds of AgNPs (shaped, sized, coated and functionalized) in several components of the cardiovascular system, such as endothelial cells, isolated vessels and organs as well as integrative animal models, trying to identify the underlying mechanisms involved in their actions, to understand their implication in the field of biomedicine. The purpose of the present review is to summarize the most relevant studies to date of AgNPs effects in the cardiovascular system and provide a broader picture of the potential toxic effects and exposure risks, which in turn will allow pointing out the directions of further research as well as new applications of these versatile nanomaterials.

  17. Platinum folate nanoparticles toxicity: cancer vs. normal cells.

    PubMed

    Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam H; Rigas, Basil

    2013-03-01

    Almost for two decades metallic nanoparticles are successfully used for cancer detection, imaging and treatment. Due to their high electron density they can be easily observed by electron microscopy and used in laser and radiofrequency therapy as energy releasing agents. However, the limitation for this practice is an inability to generate tumor-specific heating in a minimally invasive manner to the healthy tissue. To overcome this restraint we proposed to use folic acid coated metallic nanoparticles and determine whether they preferentially penetrate cancer cells. We developed technique for synthesizing platinum nanoparticles using folic acid as stabilizing agent which produced particles of relatively narrow size distribution, having d=2.3 ± 0.5 nm. High resolution TEM and zeta potential analysis indicated that the particles produced by this method had a high degree of crystalline order with no amorphous outer shell and a high degree of colloidal stability. The keratinocytes and mammary breast cells (cancer and normal) were incubated with platinum folate nanoparticles, and the results showed that the IC50 was significantly higher for the normal cells than the cancer cells in both cases, indicating that these nanoparticles preferentially target the cancer cells. TEM images of thin sections taken from the two types of cells indicated that the number of vacuoles and morphology changes after incubation with nanoparticles was also larger for the cancer cells in both types of tissue studied. No preferential toxicity was observed when folic acid receptors were saturated with free folic acid prior to exposure to nanoparticles. These results confirm our hypothesis regarding the preferential penetration of folic acid coated nanoparticles to cancer cells due to receptor mediated endocytosis. Published by Elsevier Ltd.

  18. Nanoparticle-based photodynamic therapy on non-melanoma skin cancer

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    There are several advantages of Photodynamic Therapy (PDT) for nonmelanoma skin cancer treatment compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages its noninvasive nature, the use of non ionizing radiation and its high selectivity can be mentioned. Despite all these advantages, the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. An adequate dosimetry is needed in order to personalize the protocol. There are strategies that try to overcome the current PDT shortcomings, such as the improvement of the photosensitizer accumulation in the target tissue, optical radiation distribution optimization or photochemical reactions maximization. These strategies can be further complemented by the use of nanostructures with conventional PDT. Customized dosimetry for nanoparticle-based PDT requires models in order to adjust parameters of different nature to get an optimal tumor removal. In this work, a predictive model of nanoparticle-based PDT is proposed and analyzed. Dosimetry in nanoparticle-based PDT is going to be influenced by photosensitizer-nanoparticle distribution in the malignant tissue, its influence in the optical radiation distribution and the subsequent photochemical reactions. Nanoparticles are considered as photosensitizer carriers on several types of non-melanoma skin cancer. Shielding effects are taken into account. The results allow to compare the estimated treatment outcome with and without nanoparticles.

  19. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel.

    PubMed

    Torres-Méndez, Fernando; Martinez-Castañon, Gabriel-Alejandro; Torres-Gallegos, Iranzihuatl; Zavala-Alonso, Norma-Verónica; Patiño-Marin, Nuria; Niño-Martínez, Nereyda; Ruiz, Facundo

    2017-05-31

    The objective was to evaluate the effect of adding silver nanoparticles into three commercial adhesive systems (Excite™, Adper Prompt L-Pop™ and AdheSE™). Nanoparticles were prepared by a chemical method then mixed with the commercial adhesive systems. This was later applied to the fluorotic enamel, and then micro-tensile bond strength, contact angle measurements and scanning electron microscopy observations were conducted. The commercial adhesive systems achieved the lowest micro-tensile bond strength (Excite™: 11.0±2.1, Adper Prompt L-Pop™: 14.0±5.4 and AdheSE™: 16.0±3.0 MPa) with the highest adhesive failure mode related with the highest contact angle (46.0±0.6º, 30.0±0.5º and 28.0±0.4º respectively). The bond strength achieved in all the experimental adhesive systems (19.0±5.4, 20.0±4.0 and 19.0±3.5 MPa respectively) was statistically higher (p<0.05) than the control and showed the highest cohesive failures related to the lowest contact angle. Adding silver nanoparticles in order to decrease the contact angle improve the adhesive system wetting and its bond strength.

  20. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.

    PubMed

    Rinkenauer, Alexandra C; Press, Adrian T; Raasch, Martin; Pietsch, Christian; Schweizer, Simon; Schwörer, Simon; Rudolph, Karl L; Mosig, Alexander; Bauer, Michael; Traeger, Anja; Schubert, Ulrich S

    2015-10-28

    Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo

  1. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  2. [Cancer immunotherapy. Importance of overcoming immune suppression].

    PubMed

    Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo

    2010-01-01

    Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.

  3. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Sun, Tian-Meng; Mao, Cheng-Qiong; Wang, Hong-Xia; Wang, Jun

    2011-12-10

    Delivery of small interfering RNA (siRNA) has been one of the major hurdles for the application of RNA interference in therapeutics. Here, we describe a cationic lipid assisted polymeric nanoparticle system with stealthy property for efficient siRNA encapsulation and delivery, which was fabricated with poly(ethylene glycol)-b-poly(d,l-lactide), siRNA and a cationic lipid, using a double emulsion-solvent evaporation technique. By incorporation of the cationic lipid, the encapsulation efficiency of siRNA into the nanoparticles could be above 90% and the siRNA loading weight ratio was up to 4.47%, while the diameter of the nanoparticles was around 170 to 200nm. The siRNA retained its integrity within the nanoparticles, which were effectively internalized by cancer cells and escaped from the endosome, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in HepG2-luciferase cells which stably express luciferase, and suppression of polo-like kinase 1 (Plk1) expression in HepG2 cells, following delivery of specific siRNAs by the nanoparticles. Furthermore, the nanoparticles carrying siRNA targeting the Plk1 gene were found to induce remarkable apoptosis in both HepG2 and MDA-MB-435s cancer cells. Systemic delivery of specific siRNA by nanoparticles significantly inhibited luciferase expression in an orthotopic murine liver cancer model and suppressed tumor growth in a MDA-MB-435s murine xenograft model, suggesting its therapeutic promise in disease treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Method and system for near-field spectroscopy using targeted deposition of nanoparticles

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2012-01-01

    There is provided in one embodiment of the invention a method for analyzing a sample material using surface enhanced spectroscopy. The method comprises the steps of imaging the sample material with an atomic force microscope (AFM) to select an area of interest for analysis, depositing nanoparticles onto the area of interest with an AFM tip, illuminating the deposited nanoparticles with a spectrometer excitation beam, and disengaging the AFM tip and acquiring a localized surface enhanced spectrum. The method may further comprise the step of using the AFM tip to modulate the spectrometer excitation beam above the deposited nanoparticles to obtain improved sensitivity data and higher spatial resolution data from the sample material. The invention further comprises in one embodiment a system for analyzing a sample material using surface enhanced spectroscopy.

  5. Carbohydrate Nanoparticles for Brain Delivery.

    PubMed

    Lalatsa, A; Barbu, E

    2016-01-01

    Many brain tumors and neurological diseases can greatly benefit from the use of emerging nanotechnologies based on targeted nanomedicines that are able to noninvasively transport highly potent and specific pharmaceuticals across the blood-brain barrier. Carbohydrates have received considerable interest as materials for drug carriers due to their natural origin and inherent biodegradability and biocompatibility, as well as due to their hydrophilic character and ease of chemical modification combined with low cost and the possibility for large-scale manufacturing. This chapter provides an overview of the latest research involving the use of carbohydrate-based nanoparticles for drug delivery to the central nervous system. After reviewing the challenges posed by delivering drugs into the brain, the current state-of-the-art approaches for delivery of actives across the blood-brain barrier, including invasive and noninvasive strategies, are presented. A particular focus has been placed on chitosan polymers as they are among the most promising carbohydrate nanocarriers for the preparation and testing of chitosan-based nanomedicines that led, in preclinical proof-of-concept studies, to enhanced brain drug levels and increased pharmacodynamics responses after intravenous, nasal, and oral administration. While chitosan nanoparticles are to date among the most studied and most promising carriers, approaches based on other polysaccharides such as dextran, pullulan, and cellulose warrant further research in the attempt to advance the existing technologies for overcoming the blood-brain barrier. © 2016 Elsevier Inc. All rights reserved.

  6. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  7. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

    PubMed Central

    Lee, Justin B; Zhang, Kaixin; Tam, Yuen Yi C; Quick, Joslyn; Tam, Ying K; Lin, Paulo JC; Chen, Sam; Liu, Yan; Nair, Jayaprakash K; Zlatev, Ivan; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Rennie, Paul S; Cullis, Pieter R

    2016-01-01

    The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer. PMID:28131285

  8. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  10. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    PubMed

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  11. Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.

    PubMed

    Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong

    2018-05-18

    Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers

    PubMed Central

    Nash, Michael A.; Yager, Paul; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new diagnostic system for the enrichment and detection of protein biomarkers from human plasma is presented. Gold nanoparticles (AuNPs) were surface-modified with a diblock copolymer synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer contained a thermally-responsive poly(N-isopropylacrylamide) (pNIPAAm) block, a cationic amine-containing block, and a semi-telechelic PEG2-biotin end group. When a mixed suspension of 23 nm pNIPAAm-modified AuNPs was heated with pNIPAAm-coated 10 nm iron oxide magnetic nanoparticles (mNPs) in human plasma, the thermally-responsive pNIPAAm directed the formation of mixed AuNP/mNP aggregates that could be separated efficiently with a magnet. Model studies showed that this mixed nanoparticle system could efficiently purify and strongly enrich the model biomarker protein streptavidin in spiked human plasma. A 10 ng/mL streptavidin sample was mixed with the biotinylated and pNIPAAm modified AuNP and magnetically separated in the mixed nanoparticle system with pNIPAAm mNPs. The aggregates were concentrated into a 50-fold smaller fluid volume at room temperature where the gold nanoparticle reagent redissolved with the streptavidin target still bound. The concentrated gold-labeled streptavidin could be subsequently analyzed directly using lateral flow immunochromatography. This rapid capture and enrichment module thus utilizes the mixed stimuli-responsive nanoparticle system to achieve direct concentration of a gold-labeled biomarker that can be directly analyzed using lateral flow or other rapid diagnostic strategies. PMID:21070026

  13. Engineering empty space between Si nanoparticles for lithium-ion battery anodes.

    PubMed

    Wu, Hui; Zheng, Guangyuan; Liu, Nian; Carney, Thomas J; Yang, Yuan; Cui, Yi

    2012-02-08

    Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long cycle life remains a significant challenge due to pulverization of the silicon and unstable solid-electrolyte interphase (SEI) formation during the electrochemical cycles. Despite significant advances in nanostructured Si electrodes, challenges including short cycle life and scalability hinder its widespread implementation. To address these challenges, we engineered an empty space between Si nanoparticles by encapsulating them in hollow carbon tubes. The synthesis process used low-cost Si nanoparticles and electrospinning methods, both of which can be easily scaled. The empty space around the Si nanoparticles allowed the electrode to successfully overcome these problems Our anode demonstrated a high gravimetric capacity (~1000 mAh/g based on the total mass) and long cycle life (200 cycles with 90% capacity retention). © 2012 American Chemical Society

  14. Influence of platinum nanoparticles orally administered to rats evaluated by systemic gene expression profiling.

    PubMed

    Katao, Kazuo; Honma, Reiko; Kato, Satoko; Watanabe, Shinya; Imai, Jun-ichi

    2011-01-01

    Platinum is recognized as a harmless metal and is widely used in many industrial products. Recent studies have proposed that platinum in the form of nanoparticles has antioxidant properties, suggesting potential uses for platinum nanoparticles as additives in foods and cosmetics, with direct exposure consequences for humans. However, the influence of platinum nanoparticles on humans has not been sufficiently evaluated, thus far. Therefore, to investigate the influence of platinum nanoparticles on a living body, we comprehensively examined the expression profiles of genes obtained from 25 organs and tissues of rats after oral administration of platinum nanoparticles by gavage. Comparative analysis revealed that the expression levels of 18 genes were altered in 12 organs and tissues after the administration (approximately 0.17% of all the genes examined). Of the tissues examined, those of the glandular stomach, which were most directly exposed to the orally administered platinum nanoparticles, showed altered expression levels of genes associated with inflammation. In subcutaneous adipose tissue, the expression levels of genes whose products exhibited ATPase activity were altered. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) analysis confirmed the alteration in the expression levels of these genes in these 2 different tissues. Our findings indicate that orally administered platinum nanoparticles do not have a marked effect on systemic gene expression levels, except on a small number of genes expressed in rat tissues, including peripheral tissues indirectly exposed to the orally administered nanoparticles.

  15. Development of a bolus injection system for regional deposition studies of nanoparticles in the human respiratory system

    NASA Astrophysics Data System (ADS)

    Koujalagi, V.; Ramesh, S. L.; Gunarathne, G. P. P.; Semple, S.; Ayres, J. G.

    2009-02-01

    This study presents the work carried out in developing a precision bolus injection system in order to understand the regional deposition of nanoparticles (NP) in human lung. A real-time control system has been developed that is capable of storing graphite NP, assessing human breathing pattern and delivering a bolus of the stored NP at a pre-determined instance of the inhalation phase of breathing. This will form the basis for further development of a system to deliver radioactive nanoparticles to enable 3-dimensional lung imaging using techniques such as positron emission tomography (PET). The system may then be used to better understand the actual regional deposition in human lung, which could validate or challenge the current computational lung models such as that published by the International Commission for Radiation Protection (ICRP-1994). A dose related response to inhaled PM can possibly be shown, which can be used to review the current workplace exposure limits (WELs).

  16. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    PubMed

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  17. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    NASA Astrophysics Data System (ADS)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  18. The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system.

    PubMed

    Kumar, Deepak; Parashar, Abhinav; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2017-07-01

    Zero-valent iron nanoparticles are used for the degradation of organic compounds and the immobilization of metals and metalloids. The lack of information on the effect of nZVI in freshwater system necessitated the risk assessment of zero-valent iron nanoparticles in lake water environment. The present study deals with the stability and fate of synthesized zero-valent iron nanoparticles in the upper and lower layers of freshwater microcosm system at a concentration of 1000 mg L -1 . The study was divided into two different exposure periods: short-term exposure, up to 24 h after the introduction of nanoparticles, and long-term exposure period up to 180 days (4416 h). Aggregation kinetics of nZVI in freshwater microcosm was studied by measuring the mean hydrodynamic size of the nanoparticles with respect to time. A gradual increase in the particle size with time was observed up to 14 h. The algal population and total chlorophyll content declined for the short exposure period, i.e., 2-24 h, while in the case of longer exposure period, i.e., 24 h to 180 days (4416 h), a gradual increase of both the algal population and total chlorophyll was noted. Five different physico-chemical parameters such as pH, temperature, conductivity, salinity, and total dissolved solids were recorded for 180 days (6 calendar months). The study suggested that the nanoscale zero-valent iron did not exhibit significant toxicity at an exposure concentration of 1000 mg L -1 on the resident algal population in the microcosm system over the longer exposure period tested.

  19. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets.

    PubMed

    Li, Feng-Qian; Yan, Cheng; Bi, Juan; Lv, Wei-Lin; Ji, Rui-Rui; Chen, Xu; Su, Jia-Can; Hu, Jin-Hong

    2011-01-01

    Scopolamine hydrobromide (SH)-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs) using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) were achieved for the microparticles, which ranged from 2 μm to 8 μm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH's intrinsic characteristics.

  20. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets

    PubMed Central

    Li, Feng-Qian; Yan, Cheng; Bi, Juan; Lv, Wei-Lin; Ji, Rui-Rui; Chen, Xu; Su, Jia-Can; Hu, Jin-Hong

    2011-01-01

    Scopolamine hydrobromide (SH)-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs) using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) were achieved for the microparticles, which ranged from 2 μm to 8 μm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH’s intrinsic characteristics. PMID:21720502

  1. Nanoparticles in the ocular drug delivery

    PubMed Central

    Zhou, Hong-Yan; Hao, Ji-Long; Wang, Shuang; Zheng, Yu; Zhang, Wen-Song

    2013-01-01

    Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases. PMID:23826539

  2. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.

    PubMed

    Yoo, Dongwon; Jeong, Heeyeong; Noh, Seung-Hyun; Lee, Jae-Hyun; Cheon, Jinwoo

    2013-12-02

    Overcoming resistance: Heat-treated cancer cells possess a protective mechanism for resistance and survival. Resistance-free apoptosis-inducing magnetic nanoparticles (RAINs) successfully promote hyperthermic apoptosis, obstructing cell survival by triggering two functional units of heat generation and the release of geldanamycin (GM) for heat shock protein (Hsp) inhibition under an alternating magnetic field (AMF). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. New systemic strategies for overcoming resistance to targeted therapies in non-small cell lung cancer.

    PubMed

    Genova, Carlo; Rijavec, Erika; Biello, Federica; Rossi, Giovanni; Barletta, Giulia; Dal Bello, Maria Giovanna; Vanni, Irene; Coco, Simona; Alama, Angela; Grossi, Francesco

    2017-01-01

    Although the achievements in the treatment of advanced non-small cell lung cancer (NSCLC) have been translated in improved disease control, response rate and survival, especially in the case of patients with targetable oncogenic drivers, acquired resistance is common after initial benefit; furthermore, primary resistance can occasionally be observed. Due to its clinical implications, the management of treatment-resistant NSCLC is a top topic of the current research, and many efforts are being put in the study of the mechanisms at the base of resistance and in the development of effective therapeutic countermeasures. Areas covered: This review aims at identifying the most relevant novel chemical therapies designed to overcome resistance in NSCLC, including recently approved agents, as well as compounds in clinical development. Expert opinion: An improved knowledge of the mechanisms causing resistance to treatments in NSCLC translates into effective innovative chemical therapies able to overcome such occurrence, and the paradigms of this progress are represented by novel inhibitors of the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK); however, the study of novel systemic therapies in this setting is challenging, and further efforts in this setting are highly needed.

  4. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-01

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient

  5. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    PubMed

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  6. Gold-magnetite nanoparticle-biomolecule conjugates: Synthesis, properties and toxicity studies

    NASA Astrophysics Data System (ADS)

    Pariti, Akshay

    This thesis study focuses on synthesizing and characterizing gold-magnetite optically active magnetic nanoparticle and its conjugation with biomolecules for biomedical applications, especially magnetic fluid hyperthermia treatment for cancerous tissue. Gold nanoparticles have already displayed their potential in the biomedical field. They exhibit excellent optical properties and possess strong surface chemistry which renders them suitable for various biomolecule attachments. Studies have showed gold nanoparticles to be a perfect biocompatible vector. However, clinical trials for gold mediated drug delivery and treatment studied in rat models identified some problems. Of these problems, the low retention time in bloodstream and inability to maneuver externally has been the consequential. To further enhance their potential applications and overcome the problems faced in using gold nanoparticles alone, many researchers have synthesized multifunctional magnetic materials with gold at one terminal. Magnetite, among the investigated magnetic materials is a promising and reliable candidate because of its high magnetic saturation moment and low toxicity. This thesis showcases a simple and facile one pot synthesis of gold-magnetite nanoparticles with an average particle size of 80 nm through hot injection method. The as-synthesized nanoparticles were characterized by XRD, TEM, Mossbauer spectroscopy, SQUID and MTS toxicity studies. The superparamagnetism of the as-synthesized nanoparticles has an interestingly high saturation magnetization moment and low toxicity than the literature values reported earlier. L-cysteine and (-)-EGCG (epigallacatechin-3-gallate) were attached to this multifunctional nanoparticles through the gold terminal and characterized to show the particles applicability through Raman, FTIR and UV-Vis spectroscopy.

  7. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles

    PubMed Central

    2009-01-01

    Background Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. Results A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 μg/cm2. The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 μg/cm2) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 μg/cm2 ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. Conclusion The ALICE

  8. Pre-systemic metabolism of orally administered drugs and strategies to overcome it.

    PubMed

    Pereira de Sousa, Irene; Bernkop-Schnürch, Andreas

    2014-10-28

    The oral bioavailability of numerous drugs is not only limited by poor solubility and/or poor membrane permeability as addressed by the biopharmaceutical classification system (BCS) but also by a pre-systemic metabolism taking place to a high extent in the intestine. Enzymes responsible for metabolic reactions in the intestine include cytochromes P450 (CYP450), transferases, peptidases and proteases. Furthermore, in the gut nucleases, lipases as well as glycosidases influence the metabolic pathway of drugs and nutrients. A crucial role is also played by the intestinal microflora able to metabolize a wide broad of pharmaceutical compounds. Strategies to provide a protective effect towards an intestinal pre-systemic metabolism are based on the co-administration of enzyme inhibitor being optimally immobilized on unabsorbable and undegradable polymeric excipients in order to keep them concentrated there where an inhibitory effect is needed. Furthermore, certain polymeric excipients such as polyacrylates exhibit per se enzyme inhibitory properties. In addition, by incorporating drugs in cyclodextrines, in self-emulsifying drug delivery systems (SEDDS) or liposomes a protective effect towards an intestinal enzymatic attack can be achieved. Being aware of the important role of this pre-systemic metabolism by integrating it in the BCS as third dimension and keeping strategies to overcome this enzymatic barrier in mind, the therapeutic efficacy of many orally given drugs can certainly be substantially improved. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Overcoming barriers to electronic medical record (EMR) implementation in the US healthcare system: A comparative study.

    PubMed

    Kumar, Sameer; Aldrich, Krista

    2010-12-01

    An EMR system implementation would significantly reduce clinician workload and medical errors while saving the US healthcare system major expense. Yet, compared to other developed nations, the US lags behind. This article examines EMR system efforts, benefits, and barriers, as well as steps needed to move the US closer to a nationwide EMR system. The analysis includes a blueprint for implementation of EMR, industry comparisons to highlight the differences between successful and non-successful EMR ventures, references to costs and benefit information, and identification of root causes. 'Poka-yokes' (avoid (yokeru) mistakes (poka)) will be inserted to provide insight into how to systematically overcome challenges. Implementation will require upfront costs including patient privacy that must be addressed early in the development process. Government structure, incentives and mandates are required for nationwide EMR system in the US.

  10. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)

    PubMed Central

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

  12. Magnetically-Responsive Nanoparticles for Vectored Delivery of Cancer Therapeutics

    NASA Astrophysics Data System (ADS)

    Klostergaard, Jim; Bankson, James; Woodward, Wendy; Gibson, Don; Seeney, Charles

    2010-12-01

    We propose that physical targeting of therapeutics to tumors using magnetically-responsive nanoparticles (MNPs) will enhance intratumoral drug levels compared to free drugs in an effort to overcome tumor resistance. We evaluated the feasibility of magnetic enhancement of tumor extravasation of systemically-administered MNPs in human xenografts implanted in the mammary fatpads of nude mice. Mice with orthotopic tumors were injected systemically with MNPs, with a focused magnetic field juxtaposed over the tumor. Magnetic resonance imaging and scanning electron microscopy both indicated successful tumor localization of MNPs. Next, MNPs were modified with poly-ethylene-glycol (PEG) and their clearance compared by estimating signal attenuation in liver due to iron accumulation. The results suggested that PEG substitution could retard the rate of MNP plasma clearance, which may allow greater magnetically-enhanced tumor localization. We propose that this technology is clinically scalable to many types of both superficial as well as some viscerable tumors with existing magnetic technology.

  13. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research

  14. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.

    PubMed

    Wu, Jian; Zheng, Yudong; Song, Wenhui; Luan, Jiabin; Wen, Xiaoxiao; Wu, Zhigu; Chen, Xiaohua; Wang, Qi; Guo, Shaolin

    2014-02-15

    Bacterial cellulose has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity, which is one of critical skin-barrier functions in wound healing. To overcome such deficiency, we developed a novel method to synthesize and impregnate silver nanoparticles on to bacterial cellulose nanofibres (AgNP-BC). Uniform spherical silver nano-particles (10-30 nm) were generated and self-assembled on the surface of BC nano-fibers, forming a stable and evenly distributed Ag nanoparticles coated BC nanofiber. Such hybrid nanostructure prevented Ag nanoparticles from dropping off BC network and thus minimized the toxicity of nanoparticles. Regardless the slow Ag(+) release, AgNP-BC still exhibited significant antibacterial activities with more than 99% reductions in Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, AgNP-BC allowed attachment and growth of epidermal cells with no cytotoxicity emerged. The results demonstrated that AgNP-BC could reduce inflammation and promote wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  16. Formulation and Characterization of Anthocyanins-Loaded Nanoparticles.

    PubMed

    Dupeyrón, Danay; Kawakami, Monique; Rieumont, Jacques; Carvalho, José Carlos

    2017-01-01

    Açaí berry, from the Euterpe oleracea Mart. Palm, has been described as the most important fruit in the Brazilian Amazon. Several studies have reported that anthocyanins (ACNs), one of the components of the açaí, have enormous potential for pharmaceuticals applications. However, the bioavailability of anthocyanins is relatively low compared to that of other flavonoids. Then, in the present work, anthocyanins-loaded nanoparticles have been developed to overcome their poor bioavailability. A two-level factorial design with three factors was considered to evaluate the effect of EUDRAGIT ® L100, polyethylene glycol 2000 (PEG 2000) and polysorbate 80 on encapsulation efficiency (EE) of anthocyanins. Also, major parameters of nanoparticles were assessed by using mainly SEM microscopy and Dynamic light scattering. PEG 2000 was the only individual factor that has statistical significance (95% confidence level). The process yields (PY) were found in between 67% and 92%; the particle size and morphology analysis showed two distribution size, one for NPs and another for the agglomerates. The pH-sensitive polymer together with the hydrophilic polymer showed to be suitable as ACNs delivery system. The delayed release profile of ACNs, observed for all formulations, can enhance their poor bioavailability. Nevertheless, ACNs bioavailability in vivo remains to be studied. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Molecular Dynamics Simulation of the Kinetic Reaction between Ni and Al Nanoparticles

    DTIC Science & Technology

    2009-01-01

    reaction time and temperature for separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the...separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles...nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles

  18. Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and Pgp siRNA to Overcome Drug Resistance in a Cancer Cell Line

    PubMed Central

    Meng, Huan; Liong, Monty; Xia, Tian; Li, Zongxi; Ji, Zhaoxia; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    Overexpression of drug efflux transporters such as P-glycoprotein (P-gp) protein is one of the major mechanisms for multiple drug resistance (MDR) in cancer cells. A new approach to overcome MDR is to use a co-delivery strategy that utilizes a siRNA to silence the expression of efflux transporter together with an appropriate anti-cancer drug for drug resistant cells. In this paper, we report that mesoporous silica nanoparticles (MSNP) can be functionalized to effectively deliver a chemotherapeutic agent doxorubicin (Dox) as well as Pgp siRNA to a drug-resistant cancer cell line (KB-V1 cells) to accomplish cell killing in an additive or synergistic fashion. The functionalization of the particle surface with a phosphonate group allows electrostatic binding of Dox to the porous interior, from where the drug could be released by acidification of the medium under abiotic and biotic conditions. In addition, phosphonate modification also allows exterior coating with the cationic polymer, polyethylenimine (PEI), which endows the MSNP contemporaneously deliver Pgp siRNA. The dual delivery of Dox and siRNA in KB-V1 cells was capable of increasing the intracellular as well as intranuclear drug concentration to levels exceeding that of free Dox or the drug being delivered by MSNP in the absence of siRNA co-delivery. These results demonstrate that it is possible to use the MSNP platform to effectively deliver a siRNA that knocks down gene expression of a drug exporter that can be used to improve drug sensitivity to a chemotherapeutic agent. PMID:20731437

  19. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice.

    PubMed

    Kommareddy, Sushma; Amiji, Mansoor

    2007-02-01

    The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150-250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300-350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. Copyright (c) 2006 Wiley-Liss, Inc.

  20. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  1. Nanoparticle mediated micromotor motion

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  2. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    NASA Astrophysics Data System (ADS)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  3. Access to organs for transplantation: overcoming "rejection".

    PubMed Central

    Somerville, M A

    1985-01-01

    Recent success in overcoming rejection of transplanted organs has led to a much greater demand for organs from donors and to a reconsideration of mechanisms for increasing the availability of organs from cadavers. In the latter respect the two basic systems are "contracting-in" and "contracting-out". Each system has different benefits and harms, and it is a value judgement that should be adopted. However, both systems raise legal, ethical and practical issues that must be addressed if organs for transplantation are to become available to all who need them. PMID:3880649

  4. Modulating Gold Nanoparticle in vivo Delivery for Photothermal Therapy Applications Using a T Cell Delivery System

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura Carpin

    This thesis reports new gold nanoparticle-based methods to treat chemotherapy-resistant and metastatic tumors that frequently evade conventional cancer therapies. Gold nanoparticles represent an innovative generation of diagnostic and treatment agents due to the ease with which they can be tuned to scatter or absorb a chosen wavelength of light. One area of intensive investigation in recent years is gold nanoparticle photothermal therapy (PTT), in which gold nanoparticles are used to heat and destroy cancer. This work demonstrates the utility of gold nanoparticle PTT against two categories of cancer that are currently a clinical challenge: trastuzumab-resistant breast cancer and metastatic cancer. In addition, this thesis presents a new method of gold nanoparticle delivery using T cells that increases gold nanoparticle tumor accumulation efficiency, a current challenge in the field of PTT. I ablated trastuzumab-resistant breast cancer in vitro for the first time using anti-HER2 labeled silica-gold nanoshells, demonstrating the potential utility of PTT against chemotherapy-resistant cancers. I next established for the first time the use of T cells as gold nanoparticle vehicles in vivo. When incubated with gold nanoparticles in culture, T cells can internalize up to 15000 nanoparticles per cell with no detrimental effects to T cell viability or function (e.g. migration and cytokine secretion). These AuNP-T cells can be systemically administered to tumor-bearing mice and deliver gold nanoparticles four times more efficiently than by injecting free nanoparticles. In addition, the biodistribution of AuNP-T cells correlates with the normal biodistribution of T cell carrier, suggesting the gold nanoparticle biodistribution can be modulated through the choice of nanoparticle vehicle. Finally, I apply gold nanoparticle PTT as an adjuvant treatment for T cell adoptive transfer immunotherapy (Hyperthermia-Enhanced Immunotherapy or HIT) of distant tumors in a melanoma mouse

  5. Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2018-05-01

    In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.

  6. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells.

    PubMed

    Liu, Ting; Zeng, Lilan; Jiang, Wenting; Fu, Yuanting; Zheng, Wenjie; Chen, Tianfeng

    2015-05-01

    Multidrug resistance is one of the greatest challenges in cancer therapy. Herein we described the synthesis of folate (FA)-conjugated selenium nanoparticles (SeNPs) as cancer-targeted nano-drug delivery system for ruthenium polypyridyl (RuPOP) exhibits strong fluorescence, which allows the direct imaging of the cellular trafficking of the nanosystem. This nanosystem could effectively antagonize against multidrug resistance in liver cancer. FA surface conjugation significantly enhanced the cellular uptake of SeNPs by FA receptor-mediated endocytosis through nystain-dependent lipid raft-mediated and clathrin-mediated pathways. The nanomaterials overcame the multidrug resistance in R-HepG2 cells through inhibition of ABC family proteins expression. Internalized nanoparticles triggered ROS overproduction and induced apoptosis by activating p53 and MAPKs pathways. Moreover, FA-SeNPs exhibited low in vivo acute toxicity, which verified the safety and application potential of FA-SeNPs as nanodrugs. This study provides an effective strategy for the design of cancer-targeted nanodrugs against multidrug resistant cancers. In the combat against hepatocellular carcinoma, multidrug resistance remains one of the obstacles to be overcome. The authors designed and synthesized folate (FA)-conjugated selenium nanoparticles (SeNPs) with enhanced cancer-targeting capability. This system carried ruthenium polypyridyl (RuPOP), an efficient metal-based anti-cancer drug with strong fluorescence. It was shown that this combination was effective in antagonizing against multidrug resistance in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    PubMed Central

    Miele, Evelina; Spinelli, Gian Paolo; Miele, Ermanno; Di Fabrizio, Enzo; Ferretti, Elisabetta; Tomao, Silverio; Gulino, Alberto

    2012-01-01

    During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and

  8. Creeping flashover characteristics improvement of nanofluid/pressboard system with TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Wang, Lei; Ge, Yang; Lv, Yu-zhen; Qi, Bo; Li, Cheng-rong

    2018-03-01

    Creeping flashover easily occurs at the interface between oil and pressboard in transformer and thus results in outage of power transmission system. Investigations have shown that creeping flashover characteristics at oil/pressboard interface can be improved by the addition of TiO2 nanoparticles, but the mechanism is still not thoroughly known. In this work, creeping flashover performance at nanofluid/pressboard interface modified by different sizes of nanoparticles were studied and the mechanism was presented as well. Nanofluids with the same concentration but with different sizes of TiO2 nanoparticles were prepared, and pressboards impregnated with them were prepared as well. After that, their creeping flashover characteristics were measured and compared. Nanoparticle's size affected the creeping flashover performance along oil/pressboard greatly under both AC and lightning impulse voltages. The highest creeping flashover voltage can be enhanced by as high as 12.2% and 32.0% respectively. The underlying electric field distribution and charge transportation behaviors were analyzed to demonstrate the influence of nanoparticle's size. By the addition of nanoparticles with a smaller size, the dielectric constant of nanofluid was increased closer to that of the pressboard, thus they were matched better. Moreover, charge was easier to dissipate from the oil/pressboard interface and electric field distortion at the interface was consequently reduced. Therefore, the electric field was more like a uniform field and the forward development of flashover was more difficult, leading to a better performance of creeping flashover of oil-impregnated pressboard.

  9. In vivo architectonic stability of fully de novo designed protein-only nanoparticles.

    PubMed

    Céspedes, María Virtudes; Unzueta, Ugutz; Tatkiewicz, Witold; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Álamo, Patricia; Xu, Zhikun; Casanova, Isolda; Corchero, José Luis; Pesarrodona, Mireia; Cedano, Juan; Daura, Xavier; Ratera, Imma; Veciana, Jaume; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramón

    2014-05-27

    The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.

  10. Zein Nanoparticles as Eco-Friendly Carrier Systems for Botanical Repellents Aiming Sustainable Agriculture.

    PubMed

    Oliveira, Jhones L de; Campos, Estefânia V R; Pereira, Anderson E S; Pasquoto, Tatiane; Lima, Renata; Grillo, Renato; Andrade, Daniel Junior de; Santos, Fabiano Aparecido Dos; Fraceto, Leonardo Fernandes

    2018-02-14

    Botanical repellents represent one of the main ways of reducing the use of synthetic pesticides and the contamination of soil and hydric resources. However, the poor stability and rapid degradation of these compounds in the environment hinder their effective application in the field. Zein nanoparticles can be used as eco-friendly carrier systems to protect these substances against premature degradation, provide desirable release characteristics, and reduce toxicity in the environment and to humans. In this study, we describe the preparation and characterization of zein nanoparticles loaded with the main constituents of the essential oil of citronella (geraniol and R-citronellal). The phytotoxicity, cytotoxicity, and insect activity of the nanoparticles toward target and nontarget organisms were also evaluated. The botanical formulations showed high encapsulation efficiency (>90%) in the nanoparticles, good physicochemical stability, and effective protection of the repellents against UV degradation. Cytotoxicity and phytotoxicity assays showed that encapsulation of the botanical repellents decreased their toxicity. Repellent activity tests showed that nanoparticles containing the botanical repellents were highly repellent against the Tetranychus urticae Koch mite. This nanotechnological formulation offers a new option for the effective use of botanical repellents in agriculture, reducing toxicity, protecting against premature degradation, and providing effective pest control.

  11. Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system

    NASA Astrophysics Data System (ADS)

    Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama

    2018-04-01

    We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.

  12. Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Lam, Letisha McLaughlin

    Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications. Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for

  13. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Control of viscous fingering by nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabet, Nasser; Hassanzadeh, Hassan; Abedi, Jalal

    2017-12-01

    A substantial viscosity increase by the addition of a low dose of nanoparticles to the base fluids can well influence the dynamics of viscous fingering. There is a lack of detailed theoretical studies that address the effect of the presence of nanoparticles on unstable miscible displacements. In this study, the impact of nonreactive nanoparticle presence on the stability and subsequent mixing of an originally unstable binary system is examined using linear stability analysis (LSA) and pseudospectral-based direct numerical simulations (DNS). We have parametrized the role of both nondepositing and depositing nanoparticles on the stability of miscible displacements using the developed static and dynamic parametric analyses. Our results show that nanoparticles have the potential to weaken the instabilities of an originally unstable system. Our LSA and DNS results also reveal that nondepositing nanoparticles can be used to fully stabilize an originally unstable front while depositing particles may act as temporary stabilizers whose influence diminishes in the course of time. In addition, we explain the existing inconsistencies concerning the effect of the nanoparticle diffusion coefficient on the dynamics of the system. This study provides a basis for further research on the application of nanoparticles for control of viscosity-driven instabilities.

  15. Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles

    PubMed Central

    Jimbow, Kowichi; Ishii-Osai, Yasue; Ito, Shosuke; Tamura, Yasuaki; Ito, Akira; Yoneta, Akihiro; Kamiya, Takafumi; Yamashita, Toshiharu; Honda, Hiroyuki; Wakamatsu, Kazumasa; Murase, Katsutoshi; Nohara, Satoshi; Nakayama, Eiichi; Hasegawa, Takeo; Yamamoto, Itsuo; Kobayashi, Takeshi

    2013-01-01

    Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system. PMID:23533767

  16. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  17. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  18. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  20. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles.

    PubMed

    McClements, Jake; McClements, David Julian

    2016-06-10

    There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.

  1. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments

    NASA Astrophysics Data System (ADS)

    Colmenares Roldán, Gabriel Jaime; Agudelo Gomez, Liliana María; Carlos Cornelio, Jesús Antonio; Rodriguez, Luis Fernando; Pinal, Rodolfo; Hoyos Palacio, Lina Marcela

    2018-03-01

    Encapsulation and controlled release of substances using polymeric nanoparticles require that these have a high reproducibility, homogeneity, and control over their properties (diameter and polydispersity), especially when they are to be used in medical, pharmaceutical, or nutritional applications among others. In conventional production systems, it is tough to ensure these characteristics; hence, the cost increases when we try to control these properties. This paper shows a comparison between a recirculating system and the standard nanoprecipitation technique for producing polymeric nanoparticles. In previous investigations, we evaluate the effect of recirculating flow and the ratio between the organic and aqueous phase. For this paper, we evaluated the effect of polymer and surfactant concentrations using a multifactorial design of experiments on the recirculating system and on the standard nanoprecipitation system. The response of the design was the average diameter of the nanoparticles and polydispersity index. Finally, we found that the polymer and surfactant concentrations could change the average diameter and polydispersity index of the nanoparticles obtained. On the other hand, it was found that the effect of the polymer concentration was stronger than the surfactant concentration to reduce the average diameter of the nanoparticles. The results of the present study show that the proposed recirculation system presents a high potential to produce polymer nanoparticles with good morphological characteristics, particle size distributions in the nano range, and with a low polydispersity. The average mean size of nanoparticles of polycaprolactone for the design using the recirculating system was of 61 to 140 nm and the values of polydispersity index PDI for this design were between 0.097 and 0.22, while for the design using the standard nanoprecipitation technique, the obtained diameters were 74 to 176 nm and the polydispersity was between 0.26 and 0.41.

  2. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.

    PubMed

    Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien

    2013-10-14

    Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.

  3. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    PubMed

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  5. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  6. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis

    NASA Astrophysics Data System (ADS)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D.; Manunta, Maria D.; Hart, Stephen L.; Khaw, Peng T.

    2016-02-01

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  7. Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery

    PubMed Central

    Abdelmawla, Sherine; Guo, Songchuan; Zhang, Limin; Pulukuri, Sai M; Patankar, Prithviraj; Conley, Patrick; Trebley, Joseph; Guo, Peixuan; Li, Qi-Xiang

    2011-01-01

    Previous studies have shown that the packaging RNA (pRNA) of bacteriophage phi29 DNA packaging motor folds into a compact structure, constituting a RNA nanoparticle that can be modularized with functional groups as a nanodelivery system. pRNA nanoparticles can also be self-assembled by the bipartite approach without altering folding property. The present study demonstrated that 2′-F-modified pRNA nanoparticles were readily manufactured through this scalable bipartite strategy, featuring total chemical synthesis and permitting diverse functional modularizations. The RNA nanoparticles were chemically and metabolically stable and demonstrated a favorable pharmacokinetic (PK) profile in mice (half-life (T1/2): 5–10 hours, clearance (Cl): <0.13 l/kg/hour, volume of distribution (Vd): 1.2 l/kg). It did not induce an interferon (IFN) response nor did it induce cytokine production in mice. Repeat intravenous administrations in mice up to 30 mg/kg did not result in any toxicity. Fluorescent folate-pRNA nanoparticles efficiently and specifically bound and internalized to folate receptor (FR)-bearing cancer cells in vitro. It also specifically and dose-dependently targeted to FR+ xenograft tumor in mice with minimal accumulation in normal tissues. This first comprehensive pharmacological study suggests that the pRNA nanoparticle had all the preferred pharmacological features to serve as an efficient nanodelivery platform for broad medical applications. PMID:21468004

  8. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.

    PubMed

    Ramasamy, Mohankandhasamy; Lee, Jin-Hyung; Lee, Jintae

    2016-09-01

    The objective of this study was to develop a bimetallic nanoparticle with enhanced antibacterial activity that would improve the therapeutic efficacy against bacterial biofilms. Bimetallic gold-silver nanoparticles were bacteriogenically synthesized using γ-proteobacterium, Shewanella oneidensis MR-1. The antibacterial activities of gold-silver nanoparticles were assessed on the planktonic and biofilm phases of individual and mixed multi-cultures of pathogenic Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive bacteria (Enterococcus faecalis and Staphylococcus aureus), respectively. The minimum inhibitory concentration of gold-silver nanoparticles was 30-50 µM than that of other nanoparticles (>100 µM) for the tested bacteria. Interestingly, gold-silver nanoparticles were more effective in inhibiting bacterial biofilm formation at 10 µM concentration. Both scanning and transmission electron microscopy results further accounted the impact of gold-silver nanoparticles on biocompatibility and bactericidal effect that the small size and bio-organic materials covering on gold-silver nanoparticles improves the internalization and thus caused bacterial inactivation. Thus, bacteriogenically synthesized gold-silver nanoparticles appear to be a promising nanoantibiotic for overcoming the bacterial resistance in the established bacterial biofilms. © The Author(s) 2016.

  9. Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice

    PubMed Central

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-01-01

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in a subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56 %ID/mL*h in blood, 187 and 322 %ID/g*h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71 %ID/mL*h in blood and 138 %ID/g*h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models. PMID:23544877

  10. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice.

    PubMed

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-05-06

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56%ID/mL·h in blood, 187 and 322%ID/g·h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71%ID/mL·h in blood and 138%ID/g·h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models.

  11. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  12. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    NASA Astrophysics Data System (ADS)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  13. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    PubMed

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe 2+ ) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    PubMed Central

    Chiang, Yu-Chun; Liang, Chia-Chun; Chung, Chun-Ping

    2015-01-01

    Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt) nanoparticles were deposited on oxidized graphene sheets (cG). The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%). The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA) was 88 m2/g (Pt/cG), much higher than that of Pt/C (46 m2/g). The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33%) > Pt/cG (7%). The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C. PMID:28793577

  15. Dynamics of micelle-nanoparticle systems undergoing shear. A coarse-grained molecular dynamics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolfe, Bryan A.; Chun, Jaehun; Joo, Yong L.

    2013-09-05

    Recent experimental work has shown that polymeric micelles can template nanoparticles via interstitial sites in shear-ordered micelle solutions. In the current study, we report simulation results based on a coarse-grained molecular dynamics (CGMD) model of a solvent/polymer/nanoparticle system. Our results demonstrate the importance of polymer concentration and the micelle corona length in 2D shear-ordering of neat block copolymer solutions. Although our results do not show strong 3D ordering during shear, we find that cessation of shear allows the system to relax into a 3D configuration of greater order than without shear. It is further shown that this post-shear relaxation ismore » strongly dependent on the length of the micelle corona. For the first time, we demonstrate the presence and importance of a flow disturbance surrounding micelles in simple shear flow at moderate Péclet numbers. This disturbance is similar to what is observed around simulated star polymers and ellipsoids. The extent of the flow disturbance increases as expected with a longer micelle corona length. It is further suggested that without proper consideration of these dynamics, a stable nanoparticle configuration would be difficult to obtain.« less

  16. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    PubMed

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  17. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  18. A sight on protein-based nanoparticles as drug/gene delivery systems.

    PubMed

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.

  19. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system

    PubMed Central

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto

    2018-01-01

    Background The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20–40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. Methods In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. Results The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100–200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. Conclusion The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems. PMID:29430179

  20. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating.

    PubMed

    Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita

    2017-05-01

    Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.

  1. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

    PubMed

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

  2. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein.

    PubMed

    Mun, Ellina A; Morrison, Peter W J; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2014-10-06

    Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.

  3. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    DOE PAGES

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; ...

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  4. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid.

    PubMed

    Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad

    2018-01-29

    In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.

  5. Overcoming breastfeeding problems

    MedlinePlus

    Plugged milk ducts; Nipple soreness when breastfeeding; Breastfeeding - overcoming problems; Let-down reflex ... Breastfeeding (nursing) your baby can be a good experience for both the mother and the baby. It ...

  6. Effects of dipolar interactions in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Ruta, Sergiu; Hovorka, Ondrej; Chantrell, Roy

    2014-03-01

    Understanding the effects of magnetostatic interactions in magnetic nanoparticle systems is of importance in magnetic recording, biomedical applications such as in hyperthermia cancer treatment, or for sensing approaches in biology and chemistry, for example. In this talk we discuss the macroscopic and microscopic effects of dipole-dipole interactions in three-dimensional assemblies of magnetic nanoparticles in various spatial arrangements, including the BCC, FCC, or randomized lattices. Our study is based on the kinetic Monte-Carlo modelling and concentrates on exploring the effect of the particle arrangement, distributions of particle volumes and anisotropy axes, and the role of thermal effects on the overall behaviour of hysteresis loops, ZFC/FC temperature scans and the magnetization decay data computed during the relaxation to equilibrium. In the case of the FCC lattice we find a counter-intuitive effect where increasing the interaction strength enhances/suppresses the hysteresis loop coercivity at high/low temperatures. The analysis of the domain pattern formation and pair correlation functions suggests for the observed behaviour to be a result of the phenomenon of frustration. We also discuss the possibility of observing the super-ferromagnetic phases on similar syste

  7. Preliminary study of injury from heating systemically delivered, nontargeted dextran–superparamagnetic iron oxide nanoparticles in mice

    PubMed Central

    Kut, Carmen; Zhang, Yonggang; Hedayati, Mohammad; Zhou, Haoming; Cornejo, Christine; Bordelon, David; Mihalic, Jana; Wabler, Michele; Burghardt, Elizabeth; Gruettner, Cordula; Geyh, Alison; Brayton, Cory; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Aim To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). Materials & methods Twenty three male nude mice received intravenous injections of dextran–superparamagnetic iron oxide nanoparticles on days 1–3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. Results Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. Conclusion Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran–superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. PMID:22830502

  8. Nanoparticle mediated micromotor motion.

    PubMed

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-03-21

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ∼200 μm s(-1). By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ∼10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.

  9. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line.

    PubMed

    Meng, Huan; Liong, Monty; Xia, Tian; Li, Zongxi; Ji, Zhaoxia; Zink, Jeffrey I; Nel, Andre E

    2010-08-24

    Overexpression of drug efflux transporters such as P-glycoprotein (Pgp) protein is one of the major mechanisms for multiple drug resistance (MDR) in cancer cells. A new approach to overcome MDR is to use a co-delivery strategy that utilizes a siRNA to silence the expression of efflux transporter together with an appropriate anticancer drug for drug resistant cells. In this paper, we report that mesoporous silica nanoparticles (MSNP) can be functionalized to effectively deliver a chemotherapeutic agent doxorubicin (Dox) as well as Pgp siRNA to a drug-resistant cancer cell line (KB-V1 cells) to accomplish cell killing in an additive or synergistic fashion. The functionalization of the particle surface with a phosphonate group allows electrostatic binding of Dox to the porous interior, from where the drug could be released by acidification of the medium under abiotic and biotic conditions. In addition, phosphonate modification also allows exterior coating with the cationic polymer, polyethylenimine, which endows the MSNP to contemporaneously deliver Pgp siRNA. The dual delivery of Dox and siRNA in KB-V1 cells was capable of increasing the intracellular as well as intranuclear drug concentration to levels exceeding that of free Dox or the drug being delivered by MSNP in the absence of siRNA codelivery. These results demonstrate that it is possible to use the MSNP platform to effectively deliver a siRNA that knocks down gene expression of a drug exporter that can be used to improve drug sensitivity to a chemotherapeutic agent.

  10. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  11. Theoretical investigation on the magnetization enhancement of Fe3O4-reduced graphene oxide nanoparticle system

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Wicaksono, Y.; Fauzi, A. D.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We present a theoretical study on the enhancement of magnetization of Fe3O4 nanoparticle system upon addition of reduced graphene oxide (rGO). Experimental data have shown that the magnetization of Fe3O4-rGO nanoparticle system increases with increasing rGO content up to about 5 wt%, but decreases back as the rGO content increases further. We propose that the enhancement is due to spin-flipping of Fe ions at the tetrahedral sites assisted by oxygen vacancies at the Fe3O4 particle boundaries. These oxygen vacancies are induced by the presence of rGO flakes that adsorb oxygen atoms from Fe3O4 particles around them. To understand the enhancement of the magnetization, we construct a tight-binding based model Hamiltonian for the Fe3O4 nanoparticle system with the concentration of oxygen vacancies being controlled by the rGO content. We calculate the magnetization as a function of the applied magnetic field for various values of rGO wt%. We use the method of dynamical mean-field theory and perform the calculations for a room temperature. Our result for rGO wt% dependence of the saturated magnetization shows a very good agreement with the existing experimental data of the Fe3O4-rGO nanoparticle system. This result may confirm that our model already carries the most essential idea needed to explain the above phenomenon of magnetization enhancement.

  12. Theoretical studies to elucidate the influence of magnetic dipolar interactions occurring in the magnetic nanoparticle systems, for biomedical applications

    NASA Astrophysics Data System (ADS)

    Osaci, M.; Cacciola, M.

    2016-02-01

    In recent years, the study of magnetic nanoparticles has been intensively developed not only for their fundamental theoretical interest, but also for their many technological applications, especially biomedical applications, ranging from contrast agents for magnetic resonance imaging to the deterioration of cancer cells via hyperthermia treatment. The theoretical and experimental research has shown until now that the magnetic dipolar interactions between nanoparticles can have a significant influence on the magnetic behaviour of the system. But, this influence is not well understood. It is clear that the magnetic dipolar interaction intensity is correlated with the nanoparticle concentration, volume fraction and magnetic moment orientations. In this paper, we try to understand the influence of magnetic dipolar interactions on the behaviour of magnetic nanoparticle systems, for biomedical applications. For the model, we considered spherical nanoparticles with uniaxial anisotropy and lognormal distribution of the sizes. The model involves a simulation stage of the spatial distribution and orientation of the nanoparticles and their easy axes of magnetic anisotropy, and an evaluation stage of the Néel relaxation time. To assess the Néel relaxation time, we are going to discretise and adapt, to the local magnetic field, the Coffey analytical solution for the equation Fokker-Planck describing the dynamics of magnetic moments of nanoparticles in oblique external magnetic field. There are three fundamental aspects of interest in our studies on the magnetic nanoparticles: their spatial & orientational distributions, concentrations and sizes.

  13. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  14. Effects of engineered nanoparticles on the innate immune system.

    PubMed

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation.

    PubMed

    Huang, Xiao-Nan; Du, Xin-Ying; Xing, Jin-Feng; Ge, Zhi-Qiang

    2016-09-01

    Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2016-09-01

    The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system.

    PubMed

    Baiget, Mar; Constantí, Magda; López, M Teresa; Medina, Francesc

    2013-09-25

    Reduction of soluble uranium(VI) to insoluble uranium(IV) for remediating a uranium-contaminated effluent (EF-03) was examined using a biotic and abiotic integrated system. Shewanella putrefaciens was first used and reduced U(VI) in a synthetic medium but not in the EF-03 effluent sample. Subsequently the growth of autochthonous microorganisms was stimulated with lactate. When lactate was supported on active carbon 77% U(VI) was removed in 4 days. Separately, iron nanoparticles that were 50 nm in diameter reduced U(VI) by 60% in 4 hours. The efficiency of uranium(VI) removal was improved to 96% in 30 min by using a system consisting of lactate and iron nanoparticles immobilized on active carbon. Lactate also stimulated the growth of potential uranium-reducing microorganisms in the EF-03 sample. This system can be efficiently used for the bioremediation of uranium-contaminated effluents. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  19. Overcoming job stress

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000884.htm Overcoming job stress To use the sharing features on this page, ... stay healthy and feel better. Causes of Job Stress Although the cause of job stress is different ...

  20. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less

  1. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  2. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    EPA Science Inventory

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  3. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    PubMed Central

    Wen, Ru; Umeano, Afoma C.; Francis, Lily; Sharma, Nivita; Tundup, Smanla; Dhar, Shanta

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease. PMID:27258316

  4. Electrophoretic build-up of multi nanoparticle array for a highly sensitive immunoassay

    PubMed Central

    Han, Jin-Hee; Kim, Hee-Joo; Sudheendra, L.; Hass, Elizabeth A.; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2012-01-01

    One of the challenges in shrinking immunoassays to smaller sizes is to immobilize the biological molecules to nanometer-scaled spots. To overcome this complication, we have employed a particle-based immunoassay to create a nanostructured platform with a regular array of sensing elements. The technique makes use of an electrophoretic particle entrapment system (EPES) to immobilize nanoparticles that are coated with biological reagents into wells using a very small trapping potential. To provide useful information for controlling the trapping force and optimal design of the nanoarray, electrophoretic trapping of a nanoparticle was modeled numerically. The trapping efficiency, defined as the fraction of wells occupied by a single particle, was 91%. The performance of the array was demonstrated with a competitive immunoassay for a small molecule analyte, 3-phenoxybenzoic acid (214.2 g mole−1). The limit of detection determined with a basic fluorescence microscope was 0.006 μg l−1 (30 pM); this represented a sixteen-fold improvement in sensitivity compared to a standard 96-well plate-based ELISA; the improvement was attributed to the small size of the sample volume and the presence of light diffraction among factors unique to this structure. The EPES/nanoarray system promises to offer a new standard in applications that require portable, point-of-care and real-time monitoring with high sensitivity. PMID:23021853

  5. A Potent Staphylococcus Aureus Growth Inhibitor Of A Dried Flower Extract Of Pinus Merkusii Jungh & De Vriese And Copper Nanoparticle

    NASA Astrophysics Data System (ADS)

    Masruri, Masruri; Norani Pangestin, Dinna; Mariyah Ulfa, Siti; Riyanto, Slamet; Srihardyastutie, Arie; Farid Rahman, Moh.

    2018-01-01

    The paper report antibacterial activity of flower extract from Pinus merkusii Jungh Et De Vriese and its mixture with copper nanoparticle on Staphylococcus aureus. This finding revealed the potency of pine forestry waste to overcome a bacterial-resistance problem on some commercially antibiotics. The extract was prepared by hot water extraction of a dried powder of pine flower. Copper nanoparticle was synthesized following “green synthesis technique” using phenolic-rich extract of pine’s flower as a reduction and capping agent. In short, a mixture of pine’s flower extract and copper nanoparticle importantly was able to inhibit the growth of Staphylococcus aureus four times higher than that using water extract.

  6. A systems biology approach to overcome TRAIL resistance in cancer treatment.

    PubMed

    Selvarajoo, Kumar

    2017-09-01

    Over the last decade, our research team has investigated the dynamic responses and global properties of living cells using systems biology approaches. More specifically, we have developed computational models and statistical techniques to interpret instructive cell signaling and high-throughput transcriptome-wide behaviors of immune, cancer, and embryonic development cells. Here, I will focus on our recent works in overcoming cancer resistance. TRAIL (tumor necrosis factor related apoptosis-inducing ligand), a proinflammatory cytokine, has shown promising success in controlling cancer threat due to its ability to induce apoptosis in cancers specifically, while having limited effect on normal cells. Nevertheless, several malignant cancer types, such as fibrosarcoma (HT1080) or colorectal adenocarcinoma (HT29), remain non-sensitive to TRAIL. To sensitize HT1080 to TRAIL treatment, we first developed a dynamic computational model based on perturbation-response approach, to predict a crucial co-target to enhance cell death. The model simulations suggested that PKC inhibition together with TRAIL induce 95% cell death. Subsequently, we confirmed this result experimentally utilizing the PKC inhibitor, bisindolylmaleimide (BIM) I, and PKC siRNAs in HT1080. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microemulsions based transdermal drug delivery systems.

    PubMed

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  8. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application.

    PubMed

    Safavi, A; Absalan, G; Bamdad, F

    2008-03-10

    In this work the catalytic role of unsupported gold nanoparticles on the luminol-hydrazine reaction is investigated. Gold nanoparticles catalyze the reaction of hydrazine and dissolved oxygen to generate hydrogen peroxide and also catalyze the oxidation of luminol by the produced hydrogen peroxide. The result is an intense chemiluminescence (CL) due to the excited 3-aminophthalate anion. In the absence of gold nanoparticles no detectable CL was observed by the reaction of luminol and hydrazine unless an external oxidant is present in the system. The size effect of gold nanoparticles on the CL intensity was investigated. The most intensive CL signals were obtained with 15-nm gold nanoparticles. UV-vis spectra and transmission electron microscopy studies were used to investigate the CL mechanism. The luminol and hydroxide ion concentration, gold nanoparticles size and flow rate were optimized. The proposed method was successfully applied to the determination of hydrazine in boiler feed water samples. Between 0.1 and 30 microM of hydrazine could be determined with a detection limit of 30 nM.

  9. Terahertz cascades from nanoparticles

    NASA Astrophysics Data System (ADS)

    Arnardottir, K. B.; Liew, T. C. H.

    2018-05-01

    In this article we propose a system capable of terahertz (THz) radiation with quantum yield above unity. The system consists of nanoparticles where the material composition varies along the radial direction of each nanoparticle in such a way that a ladder of equidistant energy levels emerges. By then exciting the highest level of this ladder we produce multiple photons of the same frequency in the THz range. We demonstrate how we can calculate a continuous material composition profile that achieves a high quantum yield and then show that a more experimentally friendly design of a multishell nanoparticle can still result in a high quantum yield.

  10. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less

  11. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    NASA Astrophysics Data System (ADS)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  12. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in

  13. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release.

    PubMed

    Aw, M S; Paniwnyk, L

    2017-09-26

    One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target. Nanocapsules for oral delivery are found to be suitable candidates for targeting Toxoplasma gondii (T. gondii), a maneuvering and smart protozoic parasite found across Europe and America that causes a subtle but deadly infection. To overcome this disease, there is much potential of integrating protein-based cells into bioinspired nanocompartments such as via biodegradable cross-linked disulfide polyelectrolyte nanoparticles. The inner membrane vesicle system of these protein-drugs is not as simple as one might think. It is a complex transport network that includes sequential pathways, namely, endocytosis, exocytosis and autophagy. Unfortunately, the intracellular trafficking routes for nanoparticles in cells have not been extensively and intensively investigated. Hence, there lies the need to create robust protein nanocapsules for precise tracing and triggering of drug release to combat this protozoic disease. Protein nanocapsules have the advantage over other biomaterials due to their biocompatibility, use of natural ingredients, non-invasiveness, patient compliance, cost and time effectiveness. They also offer low maintenance, non-toxicity to healthy cells and a strictly defined route toward intracellular elimination through controlled drug delivery within the therapeutic window. This review covers the unprecedented opportunities that exist for constructing advanced nanocapsules to meet the growing needs arising from many therapeutic fields. Their versatile use includes therapeutic ultrasound for tumor imaging, recombinant DNA, ligand and functional group binding, the delivery of drugs and peptides via protein nanocapsules and polyelectrolytes, ultrasound-(US)-aided drug release through the gastrointestinal (GI) tract, and the recent progress in targeting tumor cells and a vast range of cancer therapies

  14. Nanoparticles as strengthening agents in polymer systems

    NASA Astrophysics Data System (ADS)

    Shahid, Naureen

    2005-11-01

    Carboxylate-substituted alumina nanoparticles are produced solvent free using mechanical shear. The general nature of this method has been demonstrated for L-lysine-, stearate, and p-hydroxybenzoate-derived materials. The reaction rate and particle size is controlled by a combination of temperature and shear rate. The nanoparticles are spectroscopically equivalent to those reported from aqueous syntheses, however, the average particle size can be decreased and the particle size distribution narrowed depending on the reaction conditions. Lysine and p-hydroxybenzoato alumoxanes have been introduced in carbon fiber reinforced epoxide resin composites. Different preparation conditions have been studied to obtain composite with enhanced performances that are ideal for the motor sports and aerospace industries. A new composite material has been fabricated utilizing surface-modified carboxylate alumoxane nanoparticles and the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA). For this study, composites were prepared using various functional groups including: a surfactant alumoxane to enhance nanoparticle dispersion into the polymer; an activated-alumoxane to enhance nanoparticle interaction with the polymer matrix; a mixed alumoxane containing both activated and surfactant groups. Nanocomposites prepared with all types of alumoxane, as well as blank polymer resin and unmodified boehmite, underwent mechanical testing and were characterized by SEM and microprobe analysis. A nanocomposite composed of mixed alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited increased flexural modulus compared to polymer resin alone, and a significant enhancement over both the activated and surfacted alumoxanes. Boric acid is used as the cross-linking agent in oil well drilling industry even though the efficacy of the borate ion, [B(OH)4]- , as a cross-linking agent is poor. The reaction product of boric acid and the polysaccharide guaran

  15. Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles.

    PubMed

    Klapper, Markus; Nenov, Svetlin; Haschick, Robert; Müller, Kevin; Müllen, Klaus

    2008-09-01

    Polymer latex particles are nanofunctional materials with widespread applications including electronics, pharmaceuticals, photonics, cosmetics, and coatings. These materials are typically prepared using waterborne heterogeneous systems such as emulsion, miniemulsion, and suspension polymerization. However, all of these processes are limited to water-stable catalysts and monomers mainly polymerizable via radical polymerization. In this Account, we describe a method to overcome this limitation: nonaqueous emulsions can serve as a versatile tool for the synthesis of new types of polymer nanoparticles. To form these emulsions, we first needed to find two nonmiscible nonpolar/polar aprotic organic solvents. We used solvent mixtures of either DMF or acetonitrile in alkanes and carefully designed amphiphilic block and statistical copolymers, such as polyisoprene- b-poly(methyl methacrylate) (PI- b-PMMA), as additives to stabilize these emulsions. Unlike aqueous emulsions, these new emulsion systems allowed the use of water-sensitive monomers and catalysts. Although polyaddition and polycondensation reactions usually lead to a large number of side products and only to oligomers in the aqueous phase, these new conditions resulted in high-molecular-weight, defect-free polymers. Furthermore, conducting nanoparticles were produced by the iron(III)-induced synthesis of poly(ethylenedioxythiophene) (PEDOT) in an emulsion of acetonitrile in cyclohexane. Because metallocenes are sensitive to nitrile and carbonyl groups, the acetonitrile and DMF emulsions were not suitable for carrying out metallocene-catalyzed olefin polymerization. Instead, we developed a second system, which consists of alkanes dispersed in perfluoroalkanes. In this case, we designed a new amphipolar polymeric emulsifier with fluorous and aliphatic side chains to stabilize the emulsions. Such heterogeneous mixtures facilitated the catalytic polymerization of ethylene or propylene to give spherical nanoparticles

  16. Development of a fast and simple test system for the semiquantitative protein detection in cerebrospinal liquids based on gold nanoparticles.

    PubMed

    Göbel, Gero; Lange, Robert; Hollidt, Jörg-Michael; Lisdat, Fred

    2016-01-01

    The fast and simple detection of increased protein concentrations in cerebrospinal liquids is preferable in the emergency medicine and it can help to avoid unnecessary laboratory work by an early classification of neurological diseases. Here a test system is developed which is based on the electrostatic interaction between negatively charged gold nanoparticles and proteins at pH values around 5. The test system can be adjusted in such a way that protein/nanoparticles aggregates are formed leading to a red-shift in the absorption spectrum of the nanoparticles suspension. At concentrations above 500 mg/l the color of the suspension changes from red via violet toward blue in a rather small concentration range from 500 to 1000 mg/l. Furthermore the influence of various parameters such as gold nanoparticle concentration, pH value and varying ion concentration in the sample on the test system is examined. Finally cerebrospinal liquids of a larger number of patients have been analyzed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base.

    PubMed

    Joyce, Paul; Prestidge, Clive A

    2018-06-15

    A novel hybrid microparticulate system composed of poly(lactic-co-glycolic) acid (PLGA) nanoparticles and submicron medium-chain triglyceride (MCT) droplets was fabricated to overcome the pH-dependent solubility and precipitation challenges associated with a model poorly water-soluble weak base, cinnarizine (CIN). Molecular CIN was confined within both the lipid and polymer phase of PLGA-lipid hybrid (PLH) and PLGA-lipid-mannitol hybrid (PLMH) particles, which offered significant biopharmaceutical advantages in comparison to the unformulated drug, submicron MCT droplets and PLGA nanoparticles. This was highlighted by a substantial reduction in the pH-induced precipitation during in vitro gastrointestinal two-step dissolution studies. A >2.5-fold solubilisation enhancement was observed for the composite particles during simulated intestinal conditions, compared to pure CIN. Furthermore, the drug solubilisation capacity during in vitro intestinal digesting conditions was ~2-2.5 times greater for PLMH particles compared to the precursor emulsion droplets and PLGA nanoparticles. The observations from this study indicate that a synergy exists between the degradation products of PLGA nanoparticles and lipid droplets, whereby the dual-phase release and dissolution mechanism of the hybrid particles aids in prolonging pH-provoked precipitation. Subsequently, the ability for PLGA polymers and oligomers to act as polymeric precipitation inhibitors has been highlighted for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Background Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Conclusion Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and

  19. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-01

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular

  20. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.

    PubMed

    Sharma, Damyanti

    2013-07-01

    Gold nanoparticle (AuNP) chains have been formed by a single step method in a lecithin/water system where lecithin itself plays the role of a reductant and a template for AuNP chain formation. Two preparative strategies were explored: (1) evaporating lecithin solution with aqueous gold chloride (HAuCl4) at different pHs and (2) dispersing lecithin vesicles in aqueous HAuCl4 solutions of various pHs in the range of 2.5-11.3. In method 1, at initial pH 2.5, 20-50 nm AuNPs are found attached to lecithin vesicles. When pH is raised to 5.5 there are no vesicles present and 20 nm monodisperse particles are found aggregating. Chain formation of fine nanoparticles (3-5 nm) is observed from neutral to basic pH, between 6.5-10.3 The chains formed are hundreds of nanometers to micrometer long and are usually 2-3 nanoparticles wide. On further increasing pH to 11.3, particles form disk-like or raft-like structures. When method (ii) was used a little chain formation was observed. Most of the nanoparticles formed were found either sitting together as raft like structures or scattered on lecithin structures. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting

    PubMed Central

    Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.

    2017-01-01

    The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434

  2. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.

    PubMed

    Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-04-26

    Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.

  3. Construction of METHFR shRNA/5-fluorouracil co-loaded folate-targeted chitosan polymeric nanoparticles and its anti-carcinoma effect on gastric cells growth

    NASA Astrophysics Data System (ADS)

    Xin, Lin; Fan, Ji-Chang; Le, Yi-Guan; Zeng, Fei; Cheng, Hua; Hu, Xiao-yun; Cao, Jia-Qing

    2016-05-01

    PEGylated and folate-targeted chitosan polymeric nanoparticles (FPNs) for the treatment of gastric carcinoma were prepared successfully. OQC-anchored folate conjugates were synthesized and used in assembling FPNs nano-system for enhancing intracellular uptake against folate receptor overexpressing cancer cells. The results indicated that folate-targeted chitosan polymeric nanoparticles (CPNs) can reverse drug-resistant SGC-7901 cells of 5-fluorouracil (5-FU) compared with non-targeted CPNs. Increased therapeutic efficiency of 5-FU/METHFR shRNA co-loaded PNs were also tested in SGC-7901 cells and compaed with 5-FU or METHFR shRNA in solution, which was associated with increased cell inhibition function for single drug group and synergistic effects of 5-FU and METHFR shRNA at 2.0 µg/mL FPNs concentration. In addition, the cell accumulation levels of 5-FU in SGC-7901 cells was time dependent for these nanoparticles. FPNs (effective diameter: 83.2 ± 1.1 nm; polydispersity index: 0.193) could significantly boost cellular accumulation of 5-FU and overcome the drug efflux mechanism of MDR than 5-FU-loaded NPNs and 5-FU in solution. In conclusion, ligand-targeted PNs can be used as a potentially effective drug delivery system.

  4. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems.

    PubMed

    Luo, Ping; Roca, Alejandro; Tiede, Karen; Privett, Katie; Jiang, Jiachao; Pinkstone, John; Ma, Guibin; Veinot, Jonathan; Boxall, Alisatair

    2018-02-01

    Novel applications of nanotechnology may lead to the release of engineered nanoparticles (ENPs), which result in concerns over their potential environmental hazardous impact. It is essential for the research workers to be able to quantitatively characterise ENPs in the environment and subsequently to assist the risk assessment of the ENPs. This study hence explored the application of nanoparticle tracking system (NTA) to quantitatively describe the behaviour of the ENPs in natural sediment-water systems. The NTA allows the measurement of both particle number concentration (PNC) and particle size distribution (PSD) of the ENPs. The developed NTA method was applied to a range of gold and magnetite ENPs with a selection of surface properties. The results showed that the positively-charged ENPs interacted more strongly with the sediment than neutral and negatively-charged ENPs. It was also found that the citrate coated Au ENPs had a higher distribution percentage (53%) than 11-mercaptoundecanoic acid coated Au ENPs (20%) and citrate coated magnetite ENPs (21%). The principles of the electrostatic interactions between hard (and soft) acids and bases (HSAB) are used to explain such behaviours; the hard base coating (i.e. citrate ions) will interact more strongly with hard acid (i.e. magnetite) than soft acid (i.e. gold). The results indicate that NTA is a complementary method to existing approaches to characterise the fate and behaviour of ENPs in natural sediment. Copyright © 2017. Published by Elsevier B.V.

  5. Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Logie, Jennifer

    Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P

  6. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm.

    PubMed

    Panwar, Richa; Pemmaraju, Suma C; Sharma, Asvene K; Pruthi, Vikas

    2016-06-01

    Candida albicans, an opportunistic fungal pathogen is a major causative agent of superficial to systemic life-threating biofilm infections on indwelling medical devices. These biofilms acts as double edge swords owing to their resistance towards antibiotics and immunological barriers. To overcome this threat ferulic acid encapsulated chitosan nanoparticles (FA-CSNPs) were formulated to assess its efficacy as an antibiofilm agent against C. albicans. These FA-CSNPs were synthesized using ionotropic gelation method and observed through field emission scanning electron microscopy (FESEM) and fluorescent microscopy. Assessment of successful encapsulation and stability of ferulic acid into chitosan nanoparticles was made using Fourier transform infrared spectrum (FTIR), (1)H NMR and thermal analyses. Synthesized FA-CSNPs, were found to be cytocompatible, when tested using Human Embryonic Kidney (HEK-293) cell lines. XTT assay revealed that FA-CSNPs reduced the cell metabolic activity of C. albicans upto 22.5% as compared to native ferulic acid (63%) and unloaded CSNPs (88%) after 24 h incubation. Disruption of C. albicans biofilm architecture was visualized by FESEM. Results highlighted the potential of FA-CSNPs to be used as an effective alternative to the conventional antifungal therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    NASA Astrophysics Data System (ADS)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  8. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide.

    PubMed

    Abo-Elseoud, Wafaa S; Hassan, Mohammad L; Sabaa, Magdy W; Basha, Mona; Hassan, Enas A; Fadel, Shaimaa M

    2018-05-01

    The aim of the present work was to study the use of cellulose nanocrystals (CNC) and chitosan nanoparticles (CHNP) for developing controlled-release drug delivery system of the anti-hyperglycemic drug Repaglinide (RPG). CNC was isolated from palm fruit stalks by sulfuric acid hydrolysis; the dimensions of the isolated nanocrystals were 86-237 nm in length and 5-7 nm in width. Simple and economic method was used for the fabrication of controlled release drug delivery system from CNC and CHNP loaded with RPG drug via ionic gelation of chitosan in the presence of CNC and RPG. The prepared systems showed high drug encapsulation efficiency of about ~98%. Chemical modification of CNC by oxidation to introduce carboxylic groups on their surface (OXCNC) was also carried out for further controlling of RPG release. Particles size analysis showed that the average size of CHNP was about 197 nm while CHNP/CNC/RPG or CHNP/OXCNC/RPG nanoparticles showed average size of 215-310 nm. Compatibility studies by Fourier transform infrared (FTIR) spectroscopy showed no chemical reaction between RPG and the system's components used. By studying the drug release kinetic, all the prepared RPG formulations followed Higuchi model, indicating that the drug released by diffusion through the nanoparticles polymeric matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.

    PubMed

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-21

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (∼10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol(-1) and 71 kJ mol(-1), respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with

  10. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    NASA Astrophysics Data System (ADS)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  11. Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system.

    PubMed

    Zhu, Junwu; Zeng, Guiyu; Nie, Fude; Xu, Xiaoming; Chen, Sheng; Han, Qiaofeng; Wang, Xin

    2010-06-01

    A facile chemical procedure capable of aligning CuO nanoparticles on graphene oxide (GO) in a water-isopropanol system has been described. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicate that the exfoliated GO sheets are decorated randomly by spindly or spherical CuO nanoparticle aggregates, forming well-ordered CuO:GO nanocomposites. A formation mechanism of these interesting nanocomposites is proposed as intercalation and adsorption of Cu2+ ions onto the GO sheets, followed by the nucleation and growth of the CuO crystallites, which in return resulted in the exfoliation of GO sheets. Moreover, the obtained nanocomposites exhibit a high catalytic activity for the thermal decomposition of ammonium perchlorate (AP), due to the concerted effect of CuO and GO.

  12. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas.

    PubMed

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-04-06

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems-Li-Mn, Li-Cr, Li-Co, and Li-Ni-were compared to understand formation mechanism of Li-Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li-Me oxide nanoparticles were successfully synthesized in Li-Mn, Li-Cr, and Li-Co systems. Spinel structured LiMn₂O₄ with truncated octahedral shape was formed. Layer structured LiCrO₂ or LiCoO₂ nanoparticles with polyhedral shapes were also synthesized in Li-Cr or Li-Co systems. By contrast, Li-Ni oxide nanoparticles were not synthesized in the Li-Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  13. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model.

    PubMed

    Singh, Amit; Xu, Jing; Mattheolabakis, George; Amiji, Mansoor

    2016-04-01

    In this study, we have formulated redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a targeted vector for systemic delivery of gemcitabine therapy in pancreatic cancer. The gelatin nanoparticles were formed by ethanol-induced desolvation process to encapsulate the bound drug. The surface of the nanoparticles was decorated either with poly(ethylene glycol) (PEG) chains to impart enhanced circulation time or with EGFR targeting peptide to confer target specificity. Our in vitro studies in Panc-1 human pancreatic ductal adenocarcinoma cells confirm that gemcitabine encapsulated in EGFR-targeted gelatin nanoparticles, released through disulfide bond cleavage, had a significantly improved cytotoxic profile. Further, the in vivo anticancer activity was evaluated in an orthotopic pancreatic adenocarcinoma tumor bearing SCID beige mice, which confirmed that EGFR-targeted gelatin nanoparticles could efficiently deliver gemcitabine to the tumor leading to higher therapeutic benefit as compared to the drug in solution. The treatment of pancreatic cancer remains unsatisfactory, with an average 5-year survival of less than 5%. New treatment modalities are thus urgently needed. In this study, the authors presented their formulation of redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a carrier for gemcitabine. In-vitro and in-vivo experiments showed encouraging results. It is hoped that the findings would provide a novel and alternative drug delivery platform for the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly.

    PubMed

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-28

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.

  16. Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications.

    PubMed

    Incoronato, A L; Buonocore, G G; Conte, A; Lavorgna, M; Nobile, M A Del

    2010-12-01

    Silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles were obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and to be reduced by thermal treatment. The Ag-MMT nanoparticles were embedded in agar, zein, and poly(ε-caprolactone) polymer matrices. These nanocomposites were tested in vitro with a three-strain cocktail of Pseudomonas spp. to assess antimicrobial effectiveness. The results indicate that Ag-MMT nanoparticles embedded into agar may have antimicrobial activity against selected spoilage microorganisms. No antimicrobial effects were recorded with active zein and poly(ε-caprolactone). The water content of the polymeric matrix was the key parameter associated with antimicrobial effectiveness of this active system intended for food packaging applications.

  17. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System.

    PubMed

    Kheiri Manjili, Hamidreza; Ma'mani, Leila; Tavaddod, Sharareh; Mashhadikhan, Maedeh; Shafiee, Abbas; Naderi-Manesh, Hossein

    2016-01-01

    A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells.

  18. Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid)

    PubMed Central

    Yu, Tao; Wang, Ying-Ying; Yang, Ming; Schneider, Craig; Zhong, Weixi; Pulicare, Sarah; Choi, Woo-Jin; Mert, Olcay; Fu, Jie; Lai, Samuel K.; Hanes, Justin

    2013-01-01

    Mucus secretions coating entry points to the human body that are not covered by skin efficiently trap and clear conventional drug carriers, limiting controlled drug delivery at mucosal surfaces. To overcome this challenge, we recently engineered nanoparticles that readily penetrate a variety of human mucus secretions, which we termed mucus-penetrating particles (MPP). Here, we report a new biodegradable MPP formulation based on diblock copolymers of poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA-PEG). PLGA-PEG nanoparticles prepared by a solvent diffusion method rapidly diffused through fresh, undiluted human cervicovaginal mucus (CVM) with an average speed only eightfold lower than their theoretical speed in water. In contrast, PLGA nanoparticles were slowed more than 12,000-fold in the same CVM secretions. Based on the measured diffusivities, as much as 75% of the PLGA-PEG nanoparticles are expected to penetrate a 10-μm-thick mucus layer within 30 min, whereas virtually no PLGA nanoparticles are expected to do so over the same duration. These results encourage further development of PLGA-PEG nanoparticles as mucus-penetrating drug carriers for improved drug and gene delivery to mucosal surfaces. PMID:24205449

  19. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  20. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions.

    PubMed

    Weaver, James L; Tobin, Grainne A; Ingle, Taylor; Bancos, Simona; Stevens, David; Rouse, Rodney; Howard, Kristina E; Goodwin, David; Knapton, Alan; Li, Xiaohong; Shea, Katherine; Stewart, Sharron; Xu, Lin; Goering, Peter L; Zhang, Qin; Howard, Paul C; Collins, Jessie; Khan, Saeed; Sung, Kidon; Tyner, Katherine M

    2017-07-17

    As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.

  1. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system.

    PubMed

    Zhang, Ming; Guiraud, Pascal

    2017-12-01

    The treatment of nanoparticle (NP) polluted aqueous suspensions by flotation can be problematic due to the low probability of collision between particles and bubbles. To overcome this limitation, the present work focuses on developing an enhanced flotation technique using the surface-functionalized microbubbles - colloidal gas aphrons (CGAs). The CGA generator was adapted to be air flow rate controlled based on the classical Sebba system; thus it could be well adopted in a continuous flotation process. Cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were employed for CGA creation. Positively surface-charged CTAB-CGAs (∼44.1 μm in size) and negatively surface-charged SDS-CGAs (∼42.1 μm in size) were produced at the optimum stirring speed of 8000 rpm. The half-life of CGAs varied from 100 s to 340 s under the tested conditions, which was largely sufficient for transferring CGAs from bubble generator to flotation cell. The air flow led to less stable CTAB-CGAs but apparently enhanced the stability of SDS-CGAs at higher air flow rates. In the presence of air flow, the drainage behavior was not much related to the type of surfactants. The continuous CGA-flotation trials highlighted the effective separation of silica nanoparticles - the removal efficiencies of different types of SiO 2 NPs could reach approximately 90%-99%; however, at equivalent surfactant concentrations, no greater than 58% of NPs were removed when surfactants and bubbles were separately added into the flotation cell. The SiO 2 NPs with small size were removed more efficiently by the CGA-flotation process. For the flotation with CTAB-CGAs, the neutral and basic initial SNP suspension was recommended, whereas the SDS-CGAs remained high flotation efficiency over all investigated pH. The good performance of CGA-flotation might be interpreted: most of the surfactant molecules well covered/coated on the surfaces of stable CGAs and thus fully contacted with NPs, resulting in

  2. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE PAGES

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...

    2017-05-30

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  3. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  4. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  5. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo.

    PubMed

    van der Meer, Selina Beatrice; Knuschke, Torben; Frede, Annika; Schulze, Nina; Westendorf, Astrid M; Epple, Matthias

    2017-07-15

    Avidin was covalently conjugated to the surface of calcium phosphate nanoparticles, coated with a thin silica shell and terminated by sulfhydryl groups (diameter of the solid core about 50nm), with a bifunctional crosslinker connecting the amino groups of avidin to the sulfhydryl group on the nanoparticle surface. This led to a versatile nanoparticle system where all kinds of biotinylated (bio-)molecules can be easily attached to the surface by the non-covalent avidin-biotin-complex formation. It also permits the attachment of different biomolecules on the same nanoparticle (heteroavidity), creating a modular system for specific applications in medicine and biology. The variability of the binding to the nanoparticle surface of the was demonstrated with various biotinylated molecules, i.e. fluorescent dyes and antibodies. The accessibility of the conjugated avidin was demonstrated by a fluorescence-quenching assay. About 2.6 binding sites for biotin were accessible on each avidin tetramer. Together with a number of about 240 avidin tetramer units per nanoparticle, this offers about 600 binding sites for biotin on each nanoparticle. The uptake of fluorescently labelled avidin-conjugated calcium phosphate nanoparticles by HeLa cells showed the co-localization of fluorescent avidin and fluorescent biotin, indicating the stability of the complex under cell culture conditions. CD11c-antibody functionalized nanoparticles specifically targeted antigen-presenting immune cells (dendritic cells; DCs) in vitro and in vivo (mice) with high efficiency. Calcium phosphate nanoparticles have turned out to be very useful transporters for biomolecules into cells, both in vitro and in vivo. However, their covalent surface functionalization with antibodies, fluorescent dyes, or proteins requires a separate chemical synthesis for each kind of surface molecule. We have therefore developed avidin-terminated calcium phosphate nanoparticles to which all kinds of biotinylated molecules can

  6. Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems.

    PubMed

    Liptrott, Neill J; Giardiello, Marco; McDonald, Tom O; Rannard, Steve P; Owen, Andrew

    2018-03-15

    Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.

  7. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  8. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    PubMed

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  9. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.

    PubMed

    Clark, Andrew J; Davis, Mark E

    2015-10-06

    Most therapeutic agents are excluded from entering the central nervous system by the blood-brain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate Tf-TfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis.

  10. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting

  11. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  12. Pharmaceutical Amorphous Nanoparticles.

    PubMed

    Jog, Rajan; Burgess, Diane J

    2017-01-01

    There has been a tremendous revolution in the field of nanotechnology, resulting in the advent of novel drug delivery systems known as nanomedicines for diagnosis and therapy. One of the applications is nanoparticulate drug delivery systems which are used to improve the solubility and oral bioavailability of poorly soluble compounds. This is particularly important because most of the molecules emerging from the drug discovery pipeline in recent years have problems associated with solubility and bioavailability. There has been considerable focus on nanocrystalline materials; however, amorphous nanoparticles have the advantage of synergistic mechanisms of enhancing dissolution rates (due to their nanosize range and amorphous nature) as well as increasing supersaturation levels (due to their amorphous nature). An example of this technology is Nanomorph TM , developed by Soliqus/Abbott, wherein the nanosize drug particles are precipitated in an amorphous form in order to enhance the dissolution rate. This along with other simple and easily scalable manufacturing techniques for amorphous nanoparticles is described. In addition, the mechanisms of formation of amorphous nanoparticles and several physicochemical properties associated with amorphous nanoparticles are critically reviewed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    PubMed Central

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  14. Optical response of hybrid semiconductor quantum dot-metal nanoparticle system: Beyond the dipole approximation

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Atefeh; Miri, MirFaez

    2018-01-01

    We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.

  15. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  16. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  17. TiO2 nanoparticles alleviate toxicity by reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kathawala, Mustafa Hussain; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-06-01

    Nanoparticles have been a subject of intense safety screenings due to their influx in various applications. Although recent studies have reported on the plausible cytotoxicity of nanoparticles, many of these focused only on single-material nanoparticles, while the cytotoxicity of dual-nanoparticle systems (e.g., ZnO with TiO2) has remained unexplored. For example, commercial products like sunscreens and cosmetics contain both nano-sized ZnO and TiO2, but cytotoxicity studies of such systems are meager. In this paper, the cytotoxicity of this dual-nanoparticle system comprising both ZnO and TiO2 was evaluated in vitro on skin-mimicking human primary epidermal keratinocytes (HPEKs). Inductively coupled plasma mass spectrometry, flow cytometry, and confocal microscopy were used to investigate the uptake of nanoparticles and free ions. Results revealed that ZnO nanoparticles were partially soluble (up to 20 μg ml-1 after 1 day) and could induce strong cytotoxicity as compared to the insoluble TiO2 nanoparticles which remained non-toxic until very high concentrations. It was found that TiO2 nanoparticles could play "vigilante" by protecting keratinocytes from acute toxicity of ZnO nanoparticles. This is in agreement with the observation that TiO2 nanoparticles caused an attenuation of free intracellular Zn2+ ions concentration, by adsorbing and immobilizing free Zn2+ ions. This study reveals a unique dual-nanoparticle observation in vitro on HPEKs, and highlights the importance of dual-nanoparticulate toxicity studies, especially in applications where more than one nanoparticle material-type is present.

  18. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.

    PubMed

    Shin, Daiha; Kim, Eun Hye; Lee, Jaewang; Roh, Jong-Lyel

    2017-10-01

    Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53-MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we found a novel resistance mechanism of RITA treatment and an effective combined treatment to overcome RITA resistance in head and neck cancer (HNC) cells. The effects of RITA and 3-methyladenine (3-MA) were tested in different HNC cell lines, including cisplatin-resistant and acquired RITA-resistant HNC cells. The effects of each drug alone and in combination were assessed by measuring cell viability, apoptosis, cell cycle, glutathione, reactive oxygen species, protein expression, genetic inhibition of p62 and Nrf2, and a mouse xenograft model of cisplatin-resistant HNC. RITA induced apoptosis of HNC cells at different levels without significantly inhibiting normal cell viability. Following RITA treatment, RITA-resistant HNC cells exhibited a sustained expression of other autophagy-related proteins, overexpressed p62, and displayed activation of the Keap1-Nrf2 antioxidant pathway. The autophagy inhibitor 3-MA sensitized resistant HNC cells to RITA treatment via the dual inhibition of molecules related to the autophagy and antioxidant systems. Silencing of the p62 gene augmented the combined effects. The effective antitumor activity of RITA plus 3-MA was also confirmed in vivo in mouse xenograft models transplanted with resistant HNC cells, showing increased oxidative stress and DNA damage. The results indicate that RITA plus 3-MA can help overcome RITA resistance in HNC cells. This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual

  19. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    PubMed

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  20. "Chemical transformers" from nanoparticle ensembles operated with logic.

    PubMed

    Motornov, Mikhail; Zhou, Jian; Pita, Marcos; Gopishetty, Venkateshwarlu; Tokarev, Ihor; Katz, Evgeny; Minko, Sergiy

    2008-09-01

    The pH-responsive nanoparticles were coupled with information-processing enzyme-based systems to yield "smart" signal-responsive hybrid systems with built-in Boolean logic. The enzyme systems performed AND/OR logic operations, transducing biochemical input signals into reversible structural changes (signal-directed self-assembly) of the nanoparticle assemblies, thus resulting in the processing and amplification of the biochemical signals. The hybrid system mimics biological systems in effective processing of complex biochemical information, resulting in reversible changes of the self-assembled structures of the nanoparticles. The bioinspired approach to the nanostructured morphing materials could be used in future self-assembled molecular robotic systems.

  1. Delivery Systems for Birch-Bark Triterpenoids and Their Derivatives in Anticancer Research.

    PubMed

    Mierina, Inese; Vilskersts, Reinis; Turks, Maris

    2018-05-29

    Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumour cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is rapidly developing approach to the solubilisation of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.

    PubMed

    Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing

    2011-02-28

    Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Photodynamic therapy of tumors with pyropheophorbide-a-loaded polyethylene glycol-poly(lactic-co-glycolic acid) nanoparticles.

    PubMed

    Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong

    Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide- a -loaded polyethylene glycol-poly(lactic- co -glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm 2 , 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide- a has the potential to be used in tumor-targeted PDT.

  4. Photodynamic therapy of tumors with pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles

    PubMed Central

    Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong

    2016-01-01

    Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm2, 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide-a has the potential to be used in tumor-targeted PDT. PMID:27729788

  5. Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species.

    PubMed

    Prieto, Martin; Rwei, Alina Y; Alejo, Teresa; Wei, Tuo; Lopez-Franco, Maria Teresa; Mendoza, Gracia; Sebastian, Victor; Kohane, Daniel S; Arruebo, Manuel

    2017-12-06

    Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd 3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

  6. Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Attaluri, Anilchandra

    Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass

  7. Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage

    PubMed Central

    Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.

    2017-01-01

    Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183

  8. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  9. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe2O3 nanoparticle system

    NASA Astrophysics Data System (ADS)

    Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.

    2015-03-01

    Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  10. Overcoming Health System Challenges for Women and Children Living With HIV Through the Global Plan.

    PubMed

    Modi, Surbhi; Callahan, Tegan; Rodrigues, Jessica; Kajoka, Mwikemo D; Dale, Helen M; Langa, Judite O; Urso, Marilena; Nchephe, Matsepeli I; Bongdene, Helene; Romano, Sostena; Broyles, Laura N

    2017-05-01

    To meet the ambitious targets set by the Global Plan Towards the Elimination of New HIV Infections Among Children by 2015 and Keeping Their Mothers Alive (Global Plan), the initial 22 priority countries quickly developed innovative approaches for overcoming long-standing health systems challenges and providing HIV testing and treatment to pregnant and breastfeeding women and their infants. The Global Plan spurred programs for prevention of mother-to-child HIV transmission to integrate HIV-related care and treatment into broader maternal, newborn, and child health services; expand the effectiveness of the health workforce through task sharing; extend health services into communities; strengthen supply chain and commodity management systems; reduce diagnostic and laboratory hurdles; and strengthen strategic supervision and mentorship. The article reviews the ongoing challenges for prevention of mother-to-child HIV transmission programs as they continue to strive for elimination of vertical transmission of HIV infection in the post-Global Plan era. Although progress has been rapid, health systems still face important challenges, particularly follow-up and diagnosis of HIV-exposed infants, continuity of care, and the promotion of services that are respectful and client centered.

  11. Overcoming Health System Challenges for Women and Children Living With HIV Through the Global Plan

    PubMed Central

    Modi, Surbhi; Callahan, Tegan; Rodrigues, Jessica; Kajoka, Mwikemo D.; Dale, Helen M.; Langa, Judite O.; Urso, Marilena; Nchephe, Matsepeli I.; Bongdene, Helene; Romano, Sostena; Broyles, Laura N.

    2017-01-01

    To meet the ambitious targets set by the Global Plan Towards the Elimination of New HIV Infections Among Children by 2015 and Keeping Their Mothers Alive (Global Plan), the initial 22 priority countries quickly developed innovative approaches for overcoming long-standing health systems challenges and providing HIV testing and treatment to pregnant and breastfeeding women and their infants. The Global Plan spurred programs for prevention of mother-to-child HIV transmission to integrate HIV-related care and treatment into broader maternal, newborn, and child health services; expand the effectiveness of the health workforce through task sharing; extend health services into communities; strengthen supply chain and commodity management systems; reduce diagnostic and laboratory hurdles; and strengthen strategic supervision and mentorship. The article reviews the ongoing challenges for prevention of mother-to-child HIV transmission programs as they continue to strive for elimination of vertical transmission of HIV infection in the post-Global Plan era. Although progress has been rapid, health systems still face important challenges, particularly follow-up and diagnosis of HIV-exposed infants, continuity of care, and the promotion of services that are respectful and client centered. PMID:28399000

  12. Interfacial engineering of nanoparticle systems: Assesment of electron transfer in inter and intrananoparticle photosystems as well as sensing applications

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce Drury

    Electron transfer within nanochemical systems plays a key role in their uses. This body of work looks to better understand the conditions required for electron transport within these nanochemical systems and under what circumstances does it play a role in their use. Assessing electron transfer from aqueous graphene nanoparticles to aqueous ions through observation by quenching photoluminescence pointed to interesting requirements for transfer. Sensitivity was observed down to 1.6x10 -6 M for the most strongly quenching ions. More interesting though was a marked dependence on chemical hardness of the ions, with specific chemical hardness required to quench each graphene quantum dot species. Graphene quantum dots sourced from carbon fiber were observed to quench best with ions near that of 8.50 eV chemical hardness, like that of nickelous ions. Nitrogen doped graphene quantum dots were observed to quench best with ions near 7.70 eV in chemical hardness, like that of mercuric ions. The shift to a lower hardness is also noted in a shift toward lower excitation energy of the nanoparticles. For some ions concentration dependence was observed, with ions increasing PL emission initially then subsequently acting as quenchers. This behavior points to multiple quenching sites on the nanoparticles with different complexation values, some leading to stabilization of the PL emission when complexed. EDTA, ethylenediaminetetraacetic acid, was used as a complexing agent to assess possible recovery of emissions. EDTA was observed to complex ions and recovers some PL emission from some ions, with recovery dependent not only on quenching efficiency of the ion but the complexation constant. The most intriguing behavior was observed for aluminum ions which were observed to further quench with additions of EDTA after a critical point emission started to recover. We ascribe this behavior to multiple complexation sites on the nanoparticles with varied concentration and distinct roles in

  13. Multifunctional Core–Shell Nanoparticles: Discovery of Previously Invisible Biomarkers

    PubMed Central

    2011-01-01

    Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core–shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (KD < 10–11 M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable. PMID:21999289

  14. Engineered Gold Nanoparticles and Plant Adaptation Potential

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  15. A Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO2 Nanofibers and Covered by Porous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yunqian; Lim, Byungkwon; Yang, Yong

    2010-10-25

    Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and,more » at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.« less

  16. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  17. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  18. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells.

    PubMed

    De Miguel, Diego; Gallego-Lleyda, Ana; Ayuso, José María; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; Fernández, Luis José; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-06

    Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  19. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin.

    PubMed

    Elsayed, Amani; Al-Remawi, Mayyas; Qinna, Nidal; Farouk, Asim; Al-Sou'od, Khaldoun A; Badwan, Adnan A

    2011-09-01

    The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.

  20. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    PubMed

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    NASA Astrophysics Data System (ADS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  2. Iron oxide nanoparticles with controlled morphology for advanced hyperthermia

    NASA Astrophysics Data System (ADS)

    Nemati Porshokouh, Zohreh; Khurshid, Hafsa; Alonso Messa, Javier; Phan, Manh-Huong; Srikanth, Hariharan

    2015-03-01

    Magnetic nanoparticles (NPs) are interesting for a wide range of applications. In biomedicine, they have been exploited for use in drug delivery, magnetic resonance imaging, and magnetic hyperthermia. While magnetic hyperthermia, using NPs to convert electromagnetic energy into heat to destroy the cancer cells, represents a novel cancer treatment technique, a poor heating conversion efficiency of the existing NPs restricts its practical use. Different strategies have been proposed to overcome this limitation, mainly by tuning the size, saturation magnetization and effective anisotropy of the NPs. Here we report a magnetic hyperthermia study on Fe3O4 NPs, where the effective anisotropy was tuned by varying particle morphology from the spherical to octopod shape. The Fe3O4 NPs were synthesized using a thermal decomposition method. Transmission electron microscopy (TEM) and high-resolution TEM images show high crystalline monodisperse nanoparticles. X-ray diffraction patterns confirm the presence of Fe3O4 phase. Hyperthermia experiments indicate that the octopods possess a higher SAR as compared to their spherical counterpart. Our findings provide an effective approach to improve the SAR of NPs by manipulating the shape anisotropy of the nanoparticles. Research was supported by USAMRMC through Grant Numbers W81XWH-07-1-0708 and W81XWH1020101/3349.

  3. Study of urological devices coated with fullerene-like nanoparticles.

    PubMed

    Goldbart, Ohad; Elianov, Olga; Shumalinsky, Dmitry; Lobik, Leonid; Cytron, Shmuel; Rosentsveig, Rita; Wagner, H Daniel; Tenne, Reshef

    2013-09-21

    Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.

  4. Study of urological devices coated with fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Goldbart, Ohad; Elianov, Olga; Shumalinsky, Dmitry; Lobik, Leonid; Cytron, Shmuel; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef

    2013-08-01

    Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.

  5. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations.

    PubMed

    Hofmann-Amtenbrink, Margarethe; Grainger, David W; Hofmann, Heinrich

    2015-10-01

    Although nanoparticles research is ongoing since more than 30years, the development of methods and standard protocols required for their safety and efficacy testing for human use is still in development. The review covers questions on toxicity, safety, risk and legal issues over the lifecycle of inorganic nanoparticles for medical applications. The following topics were covered: (i) In vitro tests may give only a very first indication of possible toxicity as in the actual methods interactions at systemic level are mainly neglected; (ii) the science-driven and the regulation-driven approaches do not really fit for decisive strategies whether or not a nanoparticle should be further developed and may receive a kind of "safety label". (iii) Cost and time of development are the limiting factors for the drug pipeline. Knowing which property of a nanoparticle makes it toxic it may be feasible to re-engineer the particle for higher safety (safety by design). Testing the safety and efficacy of nanoparticles for human use is still in need of standardization. In this concise review, the author described and discussed the current unresolved issues over the application of inorganic nanoparticles for medical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors.

    PubMed

    Wu, Mingfang; Lian, Bolin; Deng, Yiping; Feng, Ziqi; Zhong, Chen; Wu, Weiwei; Huang, Yannian; Wang, Lingling; Zu, Chang; Zhao, Xiuhua

    2017-08-01

    In this study, glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were prepared to establish a tumor targeting nano-sized drug delivery system. Glycyrrhizic acid was coupled to human serum albumin, and resveratrol was encapsulated in glycyrrhizic acid-conjugated human serum albumin by high-pressure homogenization emulsification. The average particle size of sample nanoparticles prepared under the optimal conditions was 108.1 ± 5.3 nm with a polydispersity index (PDI) of 0.001, and the amount of glycyrrhizic acid coupled with human serum albumin was 112.56 µg/mg. The drug encapsulation efficiency and drug loading efficiency were 83.6 and 11.5%, respectively. The glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were characterized through laser light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analyses, and gas chromatography. The characterization results showed that resveratrol in glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles existed in amorphous state and the residual amounts of chloroform and methanol in nanoparticles were separately less than the international conference on harmonization (ICH) limit. The in vitro drug-release study showed that the nanoparticles released the drug slowly and continuously. The inhibitory rate of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide method. The IC50 values of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles and resveratrol were 62.5 and 95.5 µg/ml, respectively. The target ability of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles

  7. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  8. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system

    NASA Astrophysics Data System (ADS)

    Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.

    2015-09-01

    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in

  9. A supramolecular nanoparticle system based on β-cyclodextrin-conjugated poly-l-lysine and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma.

    PubMed

    Xiong, Qingqing; Cui, Mangmang; Bai, Yang; Liu, Yuanyuan; Liu, Di; Song, Tianqiang

    2017-07-01

    A novel supramolecular nanoparticle system with core-shell structure was designed based on β-cyclodextrin-conjugated poly-l-lysine (PLCD) and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma (HCC). PLCD was synthesized by the conjugation of monoaldehyde activated β-cyclodextrin with poly-l-lysine via Shiff's base reaction. Doxorubicin, as a model therapeutic drug, was included into the hydrophobic cavity of β-cyclodextrin in PLCD through host-guest interaction. OligoRNA, as a model gene, was further condensed into the inclusion complexes by electrostatic interaction to form oligoRNA and doxorubicin co-loaded supramolecular nanoparticle system. Hyaluronic acid, which is often over-expressed by HCC cells, was coated on the surface of the above nanoparticles to construct HCC-targeted nanoparticle system. These nanoparticles had regular spherical shape with classic "core-shell" structure, and their size and zeta potential were 195.8nm and -22.7mV, respectively. The nanoparticles could effectively deliver doxorubicin and oligoRNA into HCC cells via CD44 receptor-mediated endocytosis and significantly inhibit the cell proliferation. In the nude mice bearing MHCC-97H tumor, the nanoparticles could be efficiently accumulated in the tumor, suggesting their strong hepatoma-targeting capability. These findings demonstrated that this novel supramolecular nanoparticle system had a promising potential for combining gene therapy and chemotherapy to treat HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles.

    PubMed

    Zelenková, Tereza; Barresi, Antonello A; Fissore, Davide

    2015-01-01

    This work deals with the use of a water/tert-butyl alcohol (TBA) system in the manufacturing process of poly-ε-caprolactone (PCL) nanoparticles, namely in the synthesis stage, using the solvent displacement method in a confined impinging jet mixer (CIJM), and in the following freeze-drying stage. The experimental investigation evidenced that the nanoparticles size is significantly reduced with respect to the case where acetone is the solvent. Besides, the solvent evaporation step is not required before freeze-drying as TBA is fully compatible with the freeze-drying process. The effect of initial polymer concentration, flow rate, water to TBA flow rate ratio, and quench volumetric ratio on the mean nanoparticles size was investigated, and a simple equation was proposed to relate the mean nanoparticles size to these operating parameters. Then, freeze-drying of the nanoparticles suspensions was studied. Lyoprotectants (sucrose and mannitol) and steric stabilizers (Cremophor EL and Poloxamer 388) have to be used to avoid nanoparticles aggregation, thus preserving particle size distribution and mean nanoparticles size. Their effect, as well as that of the heating shelf temperature, has been investigated by means of statistical techniques, with the goal to identify which of these factors, or combination of factors, plays the key role in the nanoparticles size preservation at the end of the freeze-drying process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Conductance oscillations in molecularly linked Au nanoparticle film-superconductor systems.

    PubMed

    Dunford, Jeffrey L; Dhirani, Al-Amin

    2008-01-16

    Charge transport across a disordered normal-superconductor (DN-S) interface was studied using a macroscopic, molecularly linked Au nanoparticle film as the DN component. Low-temperature conductance versus voltage and magnetic field exhibit zero-bias and zero-field peaks, respectively. Importantly, the latter typically exhibit superimposed oscillations. Such oscillations are rarely seen in other DN-S systems and are remarkable given their robustness in these macroscopic films and interfaces. A number of observations indicate that conductance peaks and oscillations arise due to a 'reflectionless tunnelling' process. Scattering length scales extracted from the data using a reflectionless tunnelling picture are consistent with literature values. Factors resulting in the observation of oscillations in this system are discussed.

  12. Programmed packaging of multicomponent envelope-type nanoparticle system for gene delivery

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Marianecci, Carlotta; Carafa, Maria; Marchini, Cristina; Montani, Maura; Amici, Augusto; Caracciolo, Giulio

    2010-05-01

    A programmed packaging strategy to develop a multicomponent envelope-type nanoparticle system (MENS) is presented. To this end, we took specific advantage of using in-house tailored liposomes that have been recently shown to exhibit intrinsic endosomal rupture properties that allow plasmid DNA to escape from endosomes and to enter the nucleus with extremely high efficiency. Transfection efficiency experiments on NIH 3T3 mouse fibroblasts indicate that MENS is a promising transfection candidate.

  13. Curcumin Loaded-PLGA Nanoparticles Conjugated with Tet-1 Peptide for Potential Use in Alzheimer's Disease

    PubMed Central

    Mathew, Anila; Fukuda, Takahiro; Nagaoka, Yutaka; Hasumura, Takashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Venugopal, Kizhikkilot; Kumar, D. Sakthi

    2012-01-01

    Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated- curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease. PMID:22403681

  14. Effect of Citric Acid Surface Modification on Solubility of Hydroxyapatite Nanoparticles.

    PubMed

    Samavini, Ranuri; Sandaruwan, Chanaka; De Silva, Madhavi; Priyadarshana, Gayan; Kottegoda, Nilwala; Karunaratne, Veranja

    2018-04-04

    Worldwide, there is an amplified interest in nanotechnology-based approaches to develop efficient nitrogen, phosphorus, and potassium fertilizers to address major challenges pertaining to food security. However, there are significant challenges associated with fertilizer manufacture and supply as well as cost in both economic and environmental terms. The main issues relating to nitrogen fertilizer surround the use of fossil fuels in its production and the emission of greenhouse gases resulting from its use in agriculture; phosphorus being a mineral source makes it nonrenewable and casts a shadow on its sustainable use in agriculture. This study focuses on development of an efficient P nutrient system that could overcome the inherent problems arising from current P fertilizers. Attempts are made to synthesize citric acid surface-modified hydroxyapatite nanoparticles using wet chemical precipitation. The resulting nanohybrids were characterized using powder X-ray diffraction to extract the crystallographic data, while functional group analysis was done by Fourier transform infrared spectroscopy. Morphology and particle size were studied using scanning electron microscopy along with elemental analysis using energy-dispersive X-ray diffraction spectroscopy. Its effectiveness as a source of P was investigated using water release studies and bioavailability studies using Zea mays as the model crop. Both tests demonstrated the increased availability of P from nanohybrids in the presence of an organic acid compared with pure hydroxyapatite nanoparticles and rock phosphate.

  15. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats.

    PubMed

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Cham, Thau-Ming; Lin, Chun-Ching

    2008-05-01

    Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.

  16. Optimization of nanoparticle focusing by coupling thermophoresis and engineered vortex in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Cao, Zhibo; Fraser, John; Oztekin, Alparslan; Cheng, Xuanhong

    2017-01-01

    Enriching nanoparticles in an aqueous solution is commonly practiced for various applications. Despite recent advances in microfluidic technologies, a general method to concentrate nanoparticles in a microfluidic channel in a label free and continuous flow fashion is not yet available, due to strong Brownian motion on the nanoscale. Recent research of thermophoresis indicates that thermophoretic force can overcome the Brownian force to direct nanoparticle movement. Coupling thermophoresis with natural convection on the microscale has been shown to induce significant enrichment of biomolecules in a thermal diffusion column. However, the column operates in a batch process, and the concentrated samples are inconvenient to retrieve. We have recently designed a microfluidic device that combines a helical fluid motion and simple one-dimensional temperature gradient to achieve effective nanoparticle focusing in a continuous flow. The helical convection is introduced by microgrooves patterned on the channel floor, which directly controls the focusing speed and power. Here, COMSOL simulations are conducted to study how the device geometry and flow rate influence transport and subsequent nanoparticle focusing, with a constant temperature gradient. The results demonstrate a complex dependence of nanoparticle accumulation on the microgroove tilting angle, depth, and spacing, as well as channel width and flow rate. Further dimensional analyses reveal that the ratio between particle velocities induced by thermophoretic and fluid inertial forces governs the particle concentration factor, with a maximum concentration at a ratio of approximately one. This simple relationship provides fundamental insights about nanoparticle transport in coupled flow and thermal fields. The study also offers a useful guideline to the design and operation of nanoparticle concentrators based on combining engineered helical fluid motion subject to phoretic fields.

  17. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways

    PubMed Central

    Knuckles, Travis L.; Yi, Jinghai; Frazer, David G.; Leonard, Howard D.; Chen, Bean T.; Castranova, Vince; Nurkiewicz, Timothy R.

    2016-01-01

    The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. PMID:21830860

  18. Enhancing Tumor Cell Response to Chemotherapy through the Targeted Delivery of Platinum Drugs Mediated by Highly Stable, Multifunctional Carboxymethylcellulose-Coated Magnetic Nanoparticles.

    PubMed

    Medříková, Zdenka; Novohradsky, Vojtech; Zajac, Juraj; Vrána, Oldřich; Kasparkova, Jana; Bakandritsos, Aristides; Petr, Martin; Zbořil, Radek; Brabec, Viktor

    2016-07-04

    The fabrication of nanoparticles using different formulations, and which can be used for the delivery of chemotherapeutics, has recently attracted considerable attention. We describe herein an innovative approach that may ultimately allow for the selective delivery of anticancer drugs to tumor cells by using an external magnet. A conventional antitumor drug, cisplatin, has been incorporated into new carboxymethylcellulose-stabilized magnetite nanoparticles conjugated with the fluorescent marker Alexa Fluor 488 or folic acid as targeting agent. The magnetic nanocarriers possess exceptionally high biocompatibility and colloidal stability. These cisplatin-loaded nanoparticles overcome the resistance mechanisms typical of free cisplatin. Moreover, experiments aimed at the localization of the nanoparticles driven by an external magnet in a medium that mimics physiological conditions confirmed that this localization can inhibit tumor cell growth site-specifically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature.

    PubMed

    Kong, G; Braun, R D; Dewhirst, M W

    2001-04-01

    The efficacy of novel cancer therapeutics can be hampered by inefficient delivery of agents to the tumor at effective concentrations. Liposomes have been used as a method to overcome some delivery issues and, in combination with hyperthermia, have been shown to increase drug delivery to tumors. This study investigates the effects of a range of temperatures (34-42 degrees C) and hyperthermia treatment scheduling (time between hyperthermia and drug administration as well as between consecutive hyperthermia treatments) on the extravasation of nanoparticles (100-nm liposomes) from tumor microvasculature in a human tumor (SKOV-3 ovarian carcinoma) xenograft grown in athymic nude mouse window chambers. Under normothermic conditions (34 degrees C) and at 39 degrees C, nanoparticles were unable to extravasate into the tumor interstitium. From 40 to 42 degrees C, nanoparticle extravasation increased with temperature, reaching maximal extravasation at 42 degrees C. Temperatures higher than 42 degrees C led to hemorrhage and stasis in tumor vessels. Enhanced nanoparticle extravasation was observed several hours after heating, decaying back to baseline at 6 h postheating. Reheating (42 degrees C for 1 h) 8 h after an initial heating (42 degrees C for 1 h) did not result in any increased nanoparticle extravasation, indicating development of vascular thermotolerance. The results of this study have implications for the application and scheduling of hyperthermia combined with other therapeutics (e.g., liposomes, antibodies, and viral vectors) for the treatment of cancer.

  20. Preparation and Evaluation of Montelukast Sodium Loaded Solid Lipid Nanoparticles

    PubMed Central

    Priyanka, K; Sathali, A Abdul Hasan

    2012-01-01

    Solid lipid nanoparticles (SLNs) are an alternative carrier system used to load the drug for targeting, to improve the bioavailability by increasing its solubility, and protecting the drug from presystemic metabolism. The avoidance of presystemic metabolism is due to the nano-metric size range, so that the liver cannot uptake the drug from the delivery system and is not metabolized by the liver. Montelukast sodium is an anti-asthmatic drug, because of its poor oral bioavailability, presystemic metabolism, and decreased half-life; it was chosen to formulate as the solid lipid nanoparticle (SLN) system by hot homogenization followed by an ultrasonication method, to overcome the above. Compritol ATO 888, stearic acid, and glyceryl monostearate were used as a lipid matrix and polyvinyl alcohol as a surfactant. The prepared formulations have been evaluated for entrapment efficiency, drug content, in vitro drug release, particle size analysis, scanning electron microscopy, Fourier transform-infrared studies (FT-IR), differential scanning calorimetry (DSC), and stability. Particle size analysis revealed that the SLN prepared from the higher melting point lipid showed a larger particle size and with increased carbon chain length of the fatty acids. Entrapment efficiency (EE) was ranging from 42% to 92%. In vitro release studies showed maximum cumulative drug release was obtained for F 1 (59.1%) containing stearic acid, and the lowest was observed for F 18 (28.1%) containing compritol ATO 888 after 12 h and all the formulations followed first-order release kinetics. FT-IR and DSC studies revealed no interaction between drug and lipids. Studies showed that increase in lipid concentration, increased particle size, EE, and maintained the sustained release of drug. Among all, compritol ATO 888 was chosen as the best lipid for formulating SLN because it had high EE and sustained the drug release. PMID:23112531

  1. Size-dependent redox behavior of iron observed by in-situ single nanoparticle spectro-microscopy on well-defined model systems

    NASA Astrophysics Data System (ADS)

    Karim, Waiz; Kleibert, Armin; Hartfelder, Urs; Balan, Ana; Gobrecht, Jens; van Bokhoven, Jeroen A.; Ekinci, Yasin

    2016-01-01

    Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.

  2. Size-dependent redox behavior of iron observed by in-situ single nanoparticle spectro-microscopy on well-defined model systems.

    PubMed

    Karim, Waiz; Kleibert, Armin; Hartfelder, Urs; Balan, Ana; Gobrecht, Jens; van Bokhoven, Jeroen A; Ekinci, Yasin

    2016-01-06

    Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.

  3. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from

  4. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system.

    PubMed

    Bell, Iris R; Koithan, Mary

    2012-10-22

    This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Homeopathic

  5. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-inducedmore » for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.« less

  6. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    PubMed Central

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  7. Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage

    DOE PAGES

    Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; ...

    2017-03-13

    There are many challenges to overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. We report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers, in order to begin addressing these challenges (and others). The tethered array of nanoparticles, MnO in this case, bound directly to amore » gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). Our strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles.« less

  8. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  9. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs

    PubMed Central

    Ezzati Nazhad Dolatabadi, Jafar; Valizadeh, Hadi; Hamishehkar, Hamed

    2015-01-01

    In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs) have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed. PMID:26236652

  10. Electroinduced Delivery of Hydrogel Nanoparticles in Colon 26 Cells, Visualized by Confocal Fluorescence System.

    PubMed

    Atanasova, Severina; Nikolova, Biliana; Murayama, Shuhei; Stoyanova, Elena; Tsoneva, Iana; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana

    2016-09-01

    Nano-scale drug delivery systems (nano-DDS) are under intense investigation. Nano-platforms are developed for specific administration of small molecules, drugs, genes, contrast agents [quantum dots (QDs)] both in vivo and in vitro. Electroporation is a biophysical phenomenon which consists of the application of external electrical pulses across the cell membrane. The aim of this study was to research electro-assisted Colon 26 cell line internalization of QDs and QD-loaded nano-hydrogels (polymersomes) visualized by confocal microscopy and their influence on cell viability. The experiments were performed on the Colon 26 cancer cell line, using a confocal fluorescent imaging system and cell viability test. Electroporation facilitated the delivery of nanoparticles in vivo. We demonstrated increased voltage-dependent delivery of nanoparticles into cells after electrotreatment, without significant cell viability reduction. The delivery and retention of the polymersomes in vitro is a promising tool for future cancer treatment strategies and nanomedcine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Research progress of nanoparticles as enzyme mimetics

    NASA Astrophysics Data System (ADS)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  12. Theranostic nanoparticles for the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  13. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    NASA Astrophysics Data System (ADS)

    Das, Amitava; Mukherjee, Priyabrata; Singla, Sumit K.; Guturu, Praveen; Frost, Megan C.; Mukhopadhyay, Debabrata; Shah, Vijay H.; Ranjan Patra, Chitta

    2010-07-01

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 °C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  14. Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System.

    PubMed

    Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola

    2016-12-01

    Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Capping agents in nanoparticle synthesis: Surfactant and solvent system

    NASA Astrophysics Data System (ADS)

    Gulati, Shivani; Sachdeva, M.; Bhasin, K. K.

    2018-05-01

    The preparation of nanomaterials by organometallic precursors require a capping agent, which primarily acts as stabilizing agent and provide colloidal stability along with preventing agglomeration and stopping uncontrolled growth. Final morphology of nanocrystal largely depends on the type of capping agent which is adsorbed on the surface of nanocrystal. Thus capping agents are the keys to obtain the small-sized nanoparticles and are very frequently used in colloidal synthesis of nanoparticles to avoid its overgrowth.

  16. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  17. Nanoparticles for transcutaneous vaccination.

    PubMed

    Hansen, Steffi; Lehr, Claus-Michael

    2012-03-01

    The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano-vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle-free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra-flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. © 2011 The Authors; Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Nanoparticles for transcutaneous vaccination

    PubMed Central

    Hansen, Steffi; Lehr, Claus‐Michael

    2012-01-01

    Summary The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano‐vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle‐free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra‐flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. PMID:21854553

  19. Characterization of nanoparticle uptake by endothelial cells.

    PubMed

    Davda, Jasmine; Labhasetwar, Vinod

    2002-02-21

    Endothelium is an important target for drug or gene therapy because of its important role in the biological system. In this paper, we have characterized nanoparticle uptake by endothelial cells in cell culture. Nanoparticles were formulated using poly DL-lactide-co-glycolide polymer containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker. It was observed that the cellular uptake of nanoparticles depends on the time of incubation and the concentration of nanoparticles in the medium. The uptake of nanoparticles was rapid with confocal microscopy demonstrating their localization mostly in the cytoplasm. The mitogenic study demonstrated biocompatability of nanoparticles with the cells. The study thus demonstrates that nanoparticles could be used for localizing therapeutic agents or gene into endothelial cells. Nanoparticles localized in the endothelium could provide prolonged drug effects because of their sustained release characterics, and also could protect the encapsulated agent from enzymatic degradation.

  20. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation.

    PubMed

    Ma, Pengju; Li, Ting; Xing, Huaixin; Wang, Suzhen; Sun, Yingui; Sheng, Xiugui; Wang, Kaiguo

    2017-05-01

    There is a compelling need for prolonged local anesthetic that would be used for analgesia with a single administration. However, due to the low molecular weight of local anesthetics (LA) (lidocaine, bupivacaine, procaine, dibucaine, etc), they present fast systemic absorption. The aim of the present study was to develop and evaluate bupivacaine lipid-polymer hybrid nanoparticles (BVC LPNs), and compared with BVC loaded PLGA nanoparticles (BVC NPs). Their morphology, particle size, zeta potential and drug loading capacity were evaluated. In vitro release study, stability and cytotoxicity were studied. In vivo evaluation of anesthetic effects was performed on animal models. A facile nanoprecipitation and self-assembly method was optimized to obtain BVC LPNs, composed of PLGA, lecithin and DSPE-PEG 2000 , of ∼175nm particle size. Compared to BVC NPs, BVC LPNs exhibited prolonged in vitro release in phosphate-buffered saline (pH=7.4). Further, BVC LPNs displayed enhanced in vitro stability in 10% FBS and lower cytotoxicity (the concentration of BVC ranging from 1.0μM to 20μM). In addition, BVC LPNs exhibited significantly prolonged analgesic duration. These results demonstrate that the LPNs could function as promising drug delivery system for overcoming the drawbacks of poor stability and rapid drug leakage, and prolonging the anesthetic effect with slight toxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.