Science.gov

Sample records for nanoparticle technology addressing

  1. Addressing Issues Related to Technology and Engineering

    ERIC Educational Resources Information Center

    Technology Teacher, 2008

    2008-01-01

    This article presents an interview with Michael Hacker and David Burghardt, codirectors of Hoftra University's Center for Technological Literacy. Hacker and Burghardt address issues related to technology and engineering. They argue that teachers need to be aware of the problems kids are facing, and how to present these problems in an engaging…

  2. Building technology services that address student needs.

    PubMed

    Le Ber, Jeanne M; Lombardo, Nancy T; Wimmer, Erin

    2015-01-01

    A 16-question technology use survey was conducted to assess incoming health sciences students' knowledge of and interest in current technologies, and to identify student device and tool preferences. Survey questions were developed by colleagues at a peer institution and then edited to match this library's student population. Two years of student responses have been compiled, compared, and reviewed as a means for informing library decisions related to technology and resource purchases. Instruction and event programming have been revised to meet student preferences. Based on the number of students using Apple products, librarians are addressing the need to become more proficient with this platform. PMID:25611437

  3. Addressing social resistance in emerging security technologies.

    PubMed

    Mitchener-Nissen, Timothy

    2013-01-01

    In their efforts to enhance the safety and security of citizens, governments and law enforcement agencies look to scientists and engineers to produce modern methods for preventing, detecting, and prosecuting criminal activities. Whole body scanners, lie detection technologies, biometrics, etc., are all being developed for incorporation into the criminal justice apparatus. Yet despite their purported security benefits these technologies often evoke social resistance. Concerns over privacy, ethics, and function-creep appear repeatedly in analyses of these technologies. It is argued here that scientists and engineers continue to pay insufficient attention to this resistance; acknowledging the presence of these social concerns yet failing to meaningfully address them. In so doing they place at risk the very technologies and techniques they are seeking to develop, for socially controversial security technologies face restrictions and in some cases outright banning. By identifying sources of potential social resistance early in the research and design process, scientists can both engage with the public in meaningful debate and modify their security technologies before deployment so as to minimize social resistance and enhance uptake. PMID:23970863

  4. Addressing social resistance in emerging security technologies

    PubMed Central

    Mitchener-Nissen, Timothy

    2013-01-01

    In their efforts to enhance the safety and security of citizens, governments and law enforcement agencies look to scientists and engineers to produce modern methods for preventing, detecting, and prosecuting criminal activities. Whole body scanners, lie detection technologies, biometrics, etc., are all being developed for incorporation into the criminal justice apparatus.1 Yet despite their purported security benefits these technologies often evoke social resistance. Concerns over privacy, ethics, and function-creep appear repeatedly in analyses of these technologies. It is argued here that scientists and engineers continue to pay insufficient attention to this resistance; acknowledging the presence of these social concerns yet failing to meaningfully address them. In so doing they place at risk the very technologies and techniques they are seeking to develop, for socially controversial security technologies face restrictions and in some cases outright banning. By identifying sources of potential social resistance early in the research and design process, scientists can both engage with the public in meaningful debate and modify their security technologies before deployment so as to minimize social resistance and enhance uptake. PMID:23970863

  5. Nitric Oxide Nanoparticle Technology

    PubMed Central

    Englander, Laura

    2010-01-01

    Staphylococcus aureus infections account for the majority of skin and soft tissue infections in the United States. Staphylococcus aureus is rapidly evolving resistance to contemporary topical as well as systemic antibiotics. Alternatives to current treatment options for skin and soft tissue infections are needed for more effective treatment now and in the future. Nitric oxide's proven roles in both wound repair and as an antimicrobial agent make it an excellent candidate for the treatment of skin infections. Recent attempts at novel nitric oxide therapies, in the form of nitric oxide donors, have shown limited potential in treating cutaneous infection. However, more recent developments in nitric oxide delivery, using nitric oxide nanoparticle technology, demonstrate substantial promise in the promotion of wound repair and eradication of skin and soft tissue infections. PMID:20725551

  6. Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    PubMed Central

    Rae, Chris; Koudelka, Kristopher J.; Destito, Giuseppe; Estrada, Mayra N.; Gonzalez, Maria J.; Manchester, Marianne

    2008-01-01

    Background Cowpea Mosaic Virus (CPMV) is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. Methodology/Principal Findings Short wave (254 nm) UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0–2.5 J/cm2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. Conclusions These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications. PMID:18830402

  7. Addressing Energy Poverty through Smarter Technology

    ERIC Educational Resources Information Center

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  8. Registering Names and Addresses for Information Technology.

    ERIC Educational Resources Information Center

    Knapp, Arthur A.

    The identification of administrative authorities and the development of associated procedures for registering and accessing names and addresses of communications data systems are considered in this paper. It is noted that, for data communications systems using standards based on the Open Systems Interconnection (OSI) Reference Model specified by…

  9. Digital Citizenship: Addressing Appropriate Technology Behavior

    ERIC Educational Resources Information Center

    Ribble, Mike S.; Bailey, Gerald D.; Ross, Tweed W.

    2004-01-01

    Recently, the popular press has pointed to increasing evidence of misuse and abuse of emerging technologies in U.S. schools. Some examples include using Web sites to intimidate or threaten students, downloading music illegally from the Internet, plagiarizing information using the Internet, using cellular phones during class time, and playing games…

  10. Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts.

    PubMed

    Robinson, Donald A; Kondajji, Aditya M; Castañeda, Alma D; Dasari, Radhika; Crooks, Richard M; Stevenson, Keith J

    2016-07-01

    Herein the problem of colloidal instability on electrochemically detected nanoparticle (NP) collisions with a Hg ultramicroelectrode (UME) by electrocatalytic amplification is addressed. NP tracking analysis (NTA) shows that rapid aggregation occurs in solution after diluting citrate-stabilized Pt NPs with hydrazine/phosphate buffers of net ionic strength greater than 70 mM. Colloidal stability improves by lowering the ionic strength, indicating that aggregation processes were strongly affected by charge screening of the NP double layer interactions at high cation concentrations. For the system of lowest ionic strength, the overwhelming majority of observed electrocatalytic current signals represent single NP/electrode impacts, as confirmed by NTA kinetic monitoring. NP diffusion coefficients determined by NTA and NP impact electroanalysis are in excellent agreement for the stable colloids, which signifies that the sticking probability of Pt NPs interacting with Hg is unity and that the observed NP impact rate agrees with the expected steady-state diffusive flux expression for the spherical cap Hg UME. PMID:27306603

  11. Perfluorocarbon Nanoparticles:. A Theranostic Platform Technology

    NASA Astrophysics Data System (ADS)

    Lanza, Gregory M.; Winter, Patrick M.; Caruthers, Shelton D.; Hughes, Michael S.; Hu, Grace; Pan, Dipanjan; Schmieder, Anne H.; Pham, Christine; Wickline, Samuel A.

    2013-09-01

    Nanomedicine clearly offers unique tools to address intractable medical problems in cancer and cardiovascular disease from entirely new perspectives. Among the theranostic options emerging in this new wave of biotechnology development, the perfluorocarbon nanoparticles have shown robust potential in vivo for diagnosing, characterizing, treating and following proliferating cancers, progressive atherosclerosis, rheumatoid arthritis and much more. These molecular imaging agents have been demonstrated for use with ultrasound, MRI, CT, and SPECT/CT. Moreover, the synergism of imaging for confirmation of therapeutic delivery, for dosimetry, and for noninvasively following early treatment responses is discussed. Image-guided drug delivery based on nanotechnology is emerging as a powerful clinical opportunity, and PFC nanoparticles are among the leading technologies reaching clinical testing today with this potential.

  12. Technology and Engineering are Both Addressed through Technology Education

    ERIC Educational Resources Information Center

    Ritz, John

    2006-01-01

    Technology education has had its directions as a school subject influenced by changes in society, the economy, politics, and homeland threats. The philosophy and curriculum content for technology education has had certain turning points due to these changes. During the twenty-first century, outside factors and internal research will continue to…

  13. Reservoir technology research at LBL addressing geysers issues

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1990-04-01

    The Geothermal Technology Division of the Department of Energy is redirecting a significant part of its Reservoir Technology funding to study problems now being experienced at The Geysers. These include excessive pressure drawdown and associated decline in well flow rates, corrosion due to high chloride concentration in the produced steam and high concentration of noncondensible gases in some parts of the field. Lawrence Berkeley Laboratory (LBL) is addressing some of these problems through field, laboratory and theoretical studies. 11 refs., 6 figs.

  14. IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6)

    PubMed Central

    Jara, Antonio J.; Moreno-Sanchez, Pedro; Skarmeta, Antonio F.; Varakliotis, Socrates; Kirstein, Peter

    2013-01-01

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145

  15. IPv6 addressing proxy: mapping native addressing from legacy technologies and devices to the Internet of Things (IPv6).

    PubMed

    Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter

    2013-01-01

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145

  16. Addressable Reconfigurable Technology (ART) for Building Sustainable Moon Bases

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Shaya, E. J.; Cheung, C. Y.; Floyd, S. R.

    2005-05-01

    NASA's Exploration Initiative requires approaches and tools to support of near future human activities on the lunar surface. A sustainable infrastructure and tools to support such activities must be developed using currently available ElectroMechanical Systems (EMS). Architecture based on Addressable Reconfigurable Technology (ART), which we are already developing for small rovers, should be well suited to this task. ART structures are highly addressable arrays of robust nodes interconnected by highly reconfigurable struts that, along with tethers and surfaces are autonomously and reversibly deployable. The basic building unit in this architecture is a tetrahedron, the most efficient space-filling form, consisting of nodes interconnected with struts that can be reversibly and/or partially deployed or stowed to allow the tetrahedron to change its size and shape on command in real-time. Tetrahedral units are interlinked in one (linear), two (planar), or three (space-filling) dimensions to create conformable objects. As more tetrahedra are interconnected, the degrees of freedom are increased and motions evolve from simple to complex, from stepped to continuous. This design allows movement to change shape and/or location revolutionizing the architecture for space structures by epitomizing portable `form follows function' at every level. Although the 3D network of actuators and structural elements is composed of nodes that are addressable as are pixels in an LCD screen. The full functionality of such a system requires fully autonomous operation, and will ultimately be realized through a neural basis function (NBF) we are currently developing, which possesses the capability for actuator-level autonomic response and heuristic-level decision-making. Two EMS level ART-based concepts are designed for sustainable autonomous operation on the Moon. The Autonomous Lunar Investigator (ALI) would consist of one or more 12tetrahedral walkers capable of rapid locomotion with the

  17. Microelectronic Technology and the Hearing Impaired: The Future. Keynote Address.

    ERIC Educational Resources Information Center

    Thorkildsen, Ron

    1985-01-01

    The potential of microelectronic technology for alleviating communication problems of hearing-impaired persons is discussed from a futuristic point of view. The need for computer literacy training is related to changing career opportunities. Computer literacy, artificial intelligence, and videodisc technology are described and related to training…

  18. Addressing Mathematics Literacy through Technology, Innovation, Design, and Engineering

    ERIC Educational Resources Information Center

    Litowitz, Len S.

    2009-01-01

    In an era when so much emphasis is being placed on the high-stakes standardized testing of fundamental subjects such as reading, writing, and math, it makes sense to demonstrate the role technology educators play in developing such fundamental knowledge and skills in youth. While the author believes that technology education contributes to the…

  19. Integrated Communications, Navigation and Surveillance Technologies Keynote Address

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. Victor

    2004-01-01

    Slides for the Keynote Address present graphics to enhance the discussion of NASA's vision, the National Space Exploration Initiative, current Mars exploration, and aeronautics exploration. The presentation also focuses on development of an Air Transportation System and transformation from present systems.

  20. RFID in the pharmaceutical industry: addressing counterfeits with technology.

    PubMed

    Taylor, Douglas

    2014-11-01

    The use of Radio Frequency Identification (RFID) in the pharmaceutical industry has grown in recent years. The technology has matured from its specialized tracking and retail uses to a systemic part of supply chain management in international pharmaceutical production and distribution. Counterfeit drugs, however, remain a significant challenge for governments, pharmaceutical companies, clinicians, and patients and the use of RFID to track these compounds represents an opportunity for development. This paper discusses the medical, technological, and economic factors that support widespread adoption of RFID technology in the pharmaceutical industry in an effort to prevent counterfeit medicines from harming patients and brand equity. PMID:25308613

  1. Association for Educational Communications and Technology 1995 Presidential Address.

    ERIC Educational Resources Information Center

    Milet, Lynn

    1997-01-01

    Discusses plans for AECT (Association for Educational Communications and Technology), including membership growth and services; leadership development; organizational structure and the need for restructuring; and strategic alliances with other professional associations and educators. (LRW)

  2. Information technology in health care: addressing promises and pitfalls.

    PubMed

    Stanyon, Robert

    2005-01-01

    Health information technology (HIT) and electronic medical records systems are receiving much attention in health care though only a relatively small number of health care organizations and providers have embraced the technology. This article introduces important concepts and definitions and provides the risk manager with key elements to consider when incorporating HIT principles into a proactive risk management program. A checklist is offered to assist in the assessment of electronic records systems. PMID:20200873

  3. Addressing Learning Disabilities with UDL and Technology: Strategic Reader

    ERIC Educational Resources Information Center

    Hall, Tracey E.; Cohen, Nicole; Vue, Ge; Ganley, Patricia

    2015-01-01

    CAST created "Strategic Reader," a technology-based system blending Universal Design for Learning (UDL) and Curriculum-Based Measurement (CBM) in a digital learning environment to improve reading comprehension instruction. This experimental study evaluates the effectiveness of Strategic Reader using two treatment conditions for measuring…

  4. Association for Educational Communications and Technology 1996 Presidential Address.

    ERIC Educational Resources Information Center

    Burns, William J.

    1997-01-01

    Presents visions for AECT (Association for Educational Communications and Technology, including a continuing discussion of pedagogy, high quality research methodology, commitment to professional ethics and personal integrity, electronic developments, collaboration, leadership development, membership growth, and state and regional affiliations.…

  5. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  6. Hallmarks of mechanochemistry: from nanoparticles to technology.

    PubMed

    Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, Krystyna

    2013-09-21

    The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references). PMID:23558752

  7. Synthesis of gold nanoparticles and silver nanoparticles via green technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Zulfiqaar; Balu, S. S.

    2012-11-01

    The proposed work describes the comparison of various methods of green synthesis for preparation of Gold and Silver nanoparticles. Pure extracts of Lemon (Citrus limon) and Tomato (Solanum lycopersicum) were mixed with aqueous solution of auric tetrachloride and silver nitrate. The resultant solutions were treated with four common techniques to assist in the reduction namely photo catalytic, thermal, microwave assisted reduction and solvo - thermal reduction. UV - Visible Spectroscopy results and STM images of the final solutions confirmed the formation of stable metallic nanoparticles. A preliminary account of the green synthesis work is presented here.

  8. ALI (Autonomous Lunar Investigator): Revolutionary Approach to Exploring the Moon with Addressable Reconfigurable Technology

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.

    2005-01-01

    Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.

  9. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    PubMed

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  10. Nanoparticle flotation collectors: mechanisms behind a new technology.

    PubMed

    Yang, Songtao; Pelton, Robert; Raegen, Adam; Montgomery, Miles; Dalnoki-Veress, Kari

    2011-09-01

    This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling. PMID:21790133

  11. New Strategies on the Development of Nanoparticle Technology

    NASA Astrophysics Data System (ADS)

    Okuyama, Kikuo

    2011-12-01

    Processing of nanoparticles and nanocomposites has great potential for use in the application of various industrial fields including environmental remediation and renewable energy conversion. It is very important to develop their synthesis methods in which nanoparticles having controlled characteristics including size distribution, morphology, and composition can be produced. To be industrially relevant, the process needs to be simple, low in cost, and have both continuous operation and high production rate. In this lecture, after briefly introducing of the gas-phase and liquid-phase synthesis methods for nanoparticles, the new strategies on the development of nanoparticle technology will be reviewed as shown in the following: Strategy 1: Determination of impurity and optimum size of nanoparticles. Determination of the optimum size and minimizing the impurities are key steps for the synthesis of best performance nanoparticles. Strategy 2: Selection and use of environmental-friendly materials. Consideration on the cheap materials having high performance is inevitable. Strategy 3: Consideration on nanoparticles health effect (nanorisk). Design of particles in submicron-sized having nanoparticles properties (e.g. nanostructured or nanocomposite) will be desirable. Detoxification operation becomes important. Strategy 4: Optimization of synthesis process, including nanoparticles nucleation, growth, transport, deposition, and sintering is important aspects for reactor design. In addition, the nanoparticles dispersion using beads mill with very small media would be essential for nanocomposite preparation process. Strategy 5: Micro-controlled composite particles. Micro-controlled composite particles for multi- purpose application is important, especially in medical application. Our recent researches will be introduced based on the above strategies.

  12. Microfluidic technologies for accelerating the clinical translation of nanoparticles

    PubMed Central

    Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit; Langer, Robert

    2013-01-01

    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent ‘batch-to-batch’, and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine. PMID:23042546

  13. Microfluidic technologies for accelerating the clinical translation of nanoparticles

    NASA Astrophysics Data System (ADS)

    Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit; Langer, Robert

    2012-10-01

    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

  14. Using Digital Technologies to Address Aboriginal Adolescents' Education: An Alternative School Intervention

    ERIC Educational Resources Information Center

    Pirbhai-Illich, Fatima; Turner, K. C. Nat; Austin, Theresa Y.

    2009-01-01

    Purpose: The purpose of this paper is to examine how digital technologies were introduced in a collaborative literacy intervention to address a population long underserved by traditional schools: the Aboriginals of Canada. Design/methodology/approach: Situated within a critical ethnographic project, this paper examines how digital technologies…

  15. Evaluation of cost-effective aeration technology solutions to address total trihalomethane (TTHM) compliance

    EPA Science Inventory

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  16. Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.

    PubMed

    Strelow, Christian; Theuerholz, T Sverre; Schmidtke, Christian; Richter, Marten; Merkl, Jan-Philip; Kloust, Hauke; Ye, Ziliang; Weller, Horst; Heinz, Tony F; Knorr, Andreas; Lange, Holger

    2016-08-10

    Hybrid nanosystems composed of excitonic and plasmonic constituents can have different properties than the sum of of the two constituents, due to the exciton-plasmon interaction. Here, we report on a flexible model system based on colloidal nanoparticles that can form hybrid combinations by self-organization. The system allows us to tune the interparticle distance and to combine nanoparticles of different sizes and thus enables a systematic investigation of the exciton-plasmon coupling by a combination of optical spectroscopy and quantum-optical theory. We experimentally observe a strong influence of the energy difference between exciton and plasmon, as well as an interplay of nanoparticle size and distance on the coupling. We develop a full quantum theory for the luminescence dynamics and discuss the experimental results in terms of the Purcell effect. As the theory describes excitation as well as coherent and incoherent emission, we also consider possible quantum optical effects. We find a good agreement of the observed and the calculated luminescence dynamics induced by the Purcell effect. This also suggests that the self-organized hybrid system can be used as platform to address quantum optical effects. PMID:27355971

  17. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    SciTech Connect

    Pruski, Marek; Trewyn, Brian; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  18. Nanoparticle Technology for Biorefining of Non-Food Source Feedstocks

    SciTech Connect

    Pruski, Marek; Trewyn, Brian G.; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  19. Use of Technology to Address Substance Use in the Context of HIV: A Systematic Review.

    PubMed

    Young, Sean D; Swendeman, Dallas; Holloway, Ian W; Reback, Cathy J; Kao, Uyen

    2015-12-01

    Substance users are at elevated risk for HIV. HIV researchers, particularly at the intersection of HIV and substance use, have requested new methods to better understand and address this important area. New technologies, such as social media and mobile applications, are increasingly being used as research tools in studies on HIV and substance use. These technologies have the potential to build on existing recruitment methods, provide new and improved intervention methods, and introduce novel ways of monitoring and predicting new HIV cases. However, little work has been done to review and broadly explore the types of studies being conducted on the use of technologies to address HIV and substance use. This systematic literature review identified studies on this topic between 2005 and 2015. We identified 33 studies on this topic after excluding studies that did not fit inclusion criteria. Studies were either observational (n = 24) or interventional (n = 9), with the majority being pilot studies exploring the feasibility of using these new technologies to study HIV and substance use. We discuss the implications of this work along with limitations and recommendations for future research on this topic. PMID:26475670

  20. Vertically integrated sensor array technology for unattended sensor networks (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Balcerak, Raymond; Thurston, John; Breedlove, Jonathan

    2005-05-01

    The increasing need for unattended sensor networks drives individual sensor development, signal processing for network management, and communication technology. The application space is becoming more complex, with requirements for sensor networks in force protection; surveillance of large expanses of rugged terrain; and monitoring complex urban areas. Individual sensors exhibit excellent performance and include a wide variety of sensing modes, such as acoustic, electro-optical imaging, seismic, and radio frequency devices. These sensors continue to shrink with packaging, while applications continue to demand more of the sensor technology. Although single imaging arrays, which are available in spectral bands from the visible through the infrared, can be integrated into packages size as small as a cubic inch, the information from a single sensor is not sufficient to meet requirements for day/night, all-weather operation. This has driven the need for integration of multiple sensors into the compact packages intended for an individual sensor. A major step toward addressing the need for more effective sensor technology for unattended sensor networks is being taken through development of Vertically Integrated Sensor Array (VISA) technology. This technology, currently being developed for imaging sensors, builds multiple layers of signal processing at each pixel in the sensor array. Processing power is dramatically increased, allowing the integration of multiple sensors in small compact packages. This paper reviews the VISA approach to imaging sensors and describes applications for unattended sensors.

  1. Information Technology for Training and Education (ITTE): Conference Keynote Addresses (Brisbane, Queensland, Australia, February 4-8, 1991).

    ERIC Educational Resources Information Center

    Queensland Univ., Brisbane (Australia).

    This volume presents the text of nine keynote addresses and an abstract of one other address presented at ITTE'91, an international forum and conference on Information Technology for Training and Education (ITTE). Each address is preceded by biographical information on the speaker and followed by a brief critique by a professional in information…

  2. [The increase in receptor-mediated endocytosis of drugs in the composition of nanoparticles with the address fragment].

    PubMed

    Kostryukova, L V; Sanzhakov, M A; Ignatov, D V; Prozorovskyi, V N; Druzhilovskaya, O S; Kasatkina, E S; Medvedeva, N V; Ipatova, O M

    2016-03-01

    It is known that disorders in the cell functioning of the organs/tissues is accompanied by increased expression of certain receptors. A modern approach to improve the specificity of the drug accumulation in the affected area is to construct the delivery nanosystems with the address fragments. Active tagged transport may help to reduce the dose of the drug, minimizing the impact on healthy cells and organs (reduced adverse events). This approach is particularly important in oncology because of the high toxicity of the drugs used. In this work we have obtained and characterized the pharmaceutical composition of doxorubicin and chlorine e6 into colloidal nanoparticles with synthesized previously targeted conjugates based on folic acid and biotin. On the cell culture Hep G2 it was shown an increase in the internalization of drugs when they were introduced in the incubation medium in the form of drug compositions with transport nanosystems and targeted fragments. PMID:27420624

  3. SERS-active nanoparticle aggregate technology for tags and seals

    SciTech Connect

    Brown, Leif O; Montoya, Velma M; Havrilla, George J; Doorn, Stephen K

    2010-06-03

    In this paper, we describe our efforts to create a modern tagging and sealing technology for international safeguards application. Our passive tagging methods are based on SANAs (SERS-Active Nanoparticle Aggregates; SERS: Surface Enhanced Raman Scattering). These SANAs offer robust spectral barcoding capability in an inexpensive tag/seal, with the possibility of rapid in-field verification that requires no human input. At INMM 2009, we introduced SANAs, and showed approaches to integrating our technology with tags under development at Sandia National Laboratories (SNL). Here, we will focus on recent LANL development work, as well as adding additional dimensionality to the barcoding technique. The field of international safeguards employs a broad array of tags, seals, and tamper-indicating devices to assist with identification, tracking, and verification of components and materials. These devices each have unique strengths suited to specific applications, and span a range of technologies from passive metal cup seals and adhesive seals to active, remotely monitored fiber optic seals. Regardless of the technology employed, essential characteristics center around security, environmental and temporal stability, ease of use, and the ability to provide confidence to all parties. Here, we present a new inexpensive tagging technology that will deliver these attributes, while forming the basis of either a new seal, or as a secure layer added to many existing devices. Our approach uses the Surface Enhanced Raman Scattering (SERS) response from SANAs (SERS-Active Nanoparticle Aggregates, Figure 1) to provide a unique identifier or signature for tagging applications. SANAs are formed from gold or silver nanoparticles in the 40-80 nm size range. A chemical dye is installed on the nanoparticle surface, and the nanoparticles are then aggregated into ensembles of {approx}100 to 500 nm diameter, prior to being coated with silica. The silica shell protects the finished SANA from

  4. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  5. Adapting Semantic Natural Language Processing Technology to Address Information Overload in Influenza Epidemic Management

    PubMed Central

    Keselman, Alla; Rosemblat, Graciela; Kilicoglu, Halil; Fiszman, Marcelo; Jin, Honglan; Shin, Dongwook; Rindflesch, Thomas C.

    2013-01-01

    Explosion of disaster health information results in information overload among response professionals. The objective of this project was to determine the feasibility of applying semantic natural language processing (NLP) technology to addressing this overload. The project characterizes concepts and relationships commonly used in disaster health-related documents on influenza pandemics, as the basis for adapting an existing semantic summarizer to the domain. Methods include human review and semantic NLP analysis of a set of relevant documents. This is followed by a pilot-test in which two information specialists use the adapted application for a realistic information seeking task. According to the results, the ontology of influenza epidemics management can be described via a manageable number of semantic relationships that involve concepts from a limited number of semantic types. Test users demonstrate several ways to engage with the application to obtain useful information. This suggests that existing semantic NLP algorithms can be adapted to support information summarization and visualization in influenza epidemics and other disaster health areas. However, additional research is needed in the areas of terminology development (as many relevant relationships and terms are not part of existing standardized vocabularies), NLP, and user interface design. PMID:24311971

  6. Adapting Semantic Natural Language Processing Technology to Address Information Overload in Influenza Epidemic Management.

    PubMed

    Keselman, Alla; Rosemblat, Graciela; Kilicoglu, Halil; Fiszman, Marcelo; Jin, Honglan; Shin, Dongwook; Rindflesch, Thomas C

    2010-12-01

    Explosion of disaster health information results in information overload among response professionals. The objective of this project was to determine the feasibility of applying semantic natural language processing (NLP) technology to addressing this overload. The project characterizes concepts and relationships commonly used in disaster health-related documents on influenza pandemics, as the basis for adapting an existing semantic summarizer to the domain. Methods include human review and semantic NLP analysis of a set of relevant documents. This is followed by a pilot-test in which two information specialists use the adapted application for a realistic information seeking task. According to the results, the ontology of influenza epidemics management can be described via a manageable number of semantic relationships that involve concepts from a limited number of semantic types. Test users demonstrate several ways to engage with the application to obtain useful information. This suggests that existing semantic NLP algorithms can be adapted to support information summarization and visualization in influenza epidemics and other disaster health areas. However, additional research is needed in the areas of terminology development (as many relevant relationships and terms are not part of existing standardized vocabularies), NLP, and user interface design. PMID:24311971

  7. Enterprise project management is key to success: addressing the people, process and technology dimensions of healthcare.

    PubMed

    Becker, JoAnn; Rhodes, Harry

    2007-01-01

    The world of healthcare professionals is in a constant state of transition, requiring different processes for the organization, and for completing projects and programs. Projects that manage transition are complex undertakings prone to cost and time overruns. An enterprise project management model is proposed to address the people, process and technology dimensions. It includes the five-step PMI project process, vocabulary, processes, soft skills, stakeholder expectation management, portfolio management and talent diversity. Differences in project deliverables and organizational results are discussed, along with a technique to analyze gaps from the current to the new state, which then defines the projects and programs for an organizational initiative. The role and responsibilities of an executive decision team are defined. Learning the model is needed by all members of the organization, regardless of their role or level, for successfully adapting to future changes. Finally, a case is made for healthcare organizations to implement these competencies if they are to be well-performing organizations in this continuous world of change. PMID:19195295

  8. Silver nanoparticle ink technology: state of the art.

    PubMed

    Rajan, Krishna; Roppolo, Ignazio; Chiappone, Annalisa; Bocchini, Sergio; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Printed electronics will bring to the consumer level great breakthroughs and unique products in the near future, shifting the usual paradigm of electronic devices and circuit boards from hard boxes and rigid sheets into flexible thin layers and bringing disposable electronics, smart tags, and so on. The most promising tool to achieve the target depends upon the availability of nanotechnology-based functional inks. A certain delay in the innovation-transfer process to the market is now being observed. Nevertheless, the most widely diffused product, settled technology, and the highest sales volumes are related to the silver nanoparticle-based ink market, representing the best example of commercial nanotechnology today. This is a compact review on synthesis routes, main properties, and practical applications. PMID:26811673

  9. Silver nanoparticle ink technology: state of the art

    PubMed Central

    Rajan, Krishna; Roppolo, Ignazio; Chiappone, Annalisa; Bocchini, Sergio; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Printed electronics will bring to the consumer level great breakthroughs and unique products in the near future, shifting the usual paradigm of electronic devices and circuit boards from hard boxes and rigid sheets into flexible thin layers and bringing disposable electronics, smart tags, and so on. The most promising tool to achieve the target depends upon the availability of nanotechnology-based functional inks. A certain delay in the innovation-transfer process to the market is now being observed. Nevertheless, the most widely diffused product, settled technology, and the highest sales volumes are related to the silver nanoparticle-based ink market, representing the best example of commercial nanotechnology today. This is a compact review on synthesis routes, main properties, and practical applications. PMID:26811673

  10. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  11. Technology Strategies to Address Grade-Level Outcomes: National Standards 1 and 2

    ERIC Educational Resources Information Center

    Baert, Helena

    2015-01-01

    The need to prepare students to thrive in the digital world and the benefit of using instructional technology have both been widely recognized in education. As new technology becomes available, its use by both students and teachers must be carefully evaluated. Technology can help enhance learning and facilitate the teaching process, if and when it…

  12. Addressing sustainable contributions to GEO/GEOSS from Science and Technology Communities: the EGIDA Methodology

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.

    2012-04-01

    The European Project EGIDA (Coordinating Earth and Environmental cross-disciplinary projects to promote GEOSS) co-funded by the European Commission under the Seventh Framework programme, has started in September 2010. It aims to prepare a sustainable process of contribution to GEO/GEOSS promoting coordination of activities carried out by: the GEO Science & Technology (S&T) Committee; S&T national and European initiatives; and other S&T Communities. This will be done by supporting broader implementation and effectiveness of the GEOSS S&T Roadmap and the GEOSS mission through coherent and interoperable networking of National and European projects, and International initiatives. The definition of a general methodology for a sustainable contribution to GEO/GEOSS through the implementation of a System-of-System (re-) engineering process is one of the objectives of the EGIDA Project in order to consolidate the results of the actions carried out in support of the GEO Science and Technology Committee (STC) Road Map. The EGIDA Methodology is based on several sources including GEO activities and documents, activities of the EGIDA project in support of the GEO STC Road Map, lessons learned from the initiatives and projects already contributing, in different ways, to the building of advanced infrastructures as direct or indirect part to GEO/GEOSS. The design of the EGIDA Methodology included several steps: a) an operational definition of the EGIDA Methodology, b) the identification of the target audience for the EGIDA Methodology, c) the identification of typical scenarios for the application of the EGIDA Methodology. Basing on these design activities the EGIDA Methodology is defined as a set of two activities running in parallel: Networking Activities - to identify and address the relevant S&T community(-ies) and actors (Community Engagement) - and Technical Activities: - to guide the infrastructure development and align it with the GEO/GEOSS interoperability principles

  13. Breaking through barriers: using technology to address executive function weaknesses and improve student achievement.

    PubMed

    Schwartz, David M

    2014-01-01

    Assistive technologies provide significant capabilities for improving student achievement. Improved accessibility, cost, and diversity of applications make integration of technology a powerful tool to compensate for executive function weaknesses and deficits and their impact on student performance, learning, and achievement. These tools can be used to compensate for decreased working memory, poor time management, poor planning and organization, poor initiation, and decreased memory. Assistive technology provides mechanisms to assist students with diverse strengths and weaknesses in mastering core curricular concepts. PMID:25010083

  14. Assessing Second Phase High School Learners' Attitudes towards Technology in Addressing the Technological Skills Shortage in the South African Context

    ERIC Educational Resources Information Center

    Muller, H.; Gumbo, M. T.; Tholo, J. A. T.; Sedupane, S. M.

    2014-01-01

    This article argues the case that the decline in the numbers of school leavers entering science, technology, engineering and mathematics study courses worldwide and in South Africa in particular, is linked to negative attitudes towards Technology. The issue is regarded as critical since a negative trend in new entrants into the technology sector…

  15. Addressing the English Language Arts Technology Standard in a Secondary Reading Methodology Course.

    ERIC Educational Resources Information Center

    Merkley, Donna J.; Schmidt, Denise A.; Allen, Gayle

    2001-01-01

    Describes efforts to integrate technology into a reading methodology course for secondary English majors. Discusses the use of e-mail, multimedia, distance education for videoconferences, online discussion technology, subject-specific software, desktop publishing, a database management system, a concept mapping program, and the use of the World…

  16. Addressing AACSB Global and Technology Requirements: Exploratory Assessment of a Marketing Management Assignment

    ERIC Educational Resources Information Center

    Greene, Scott; Bao, Yongchuan

    2009-01-01

    The Association to Advance Collegiate Schools of Business (AACSB) standards mandate knowledge of global and technology issues. Businesses desire employees with ability to analyze international markets and to be adept with technology. Taxpayers supporting public universities and organizations hiring business school graduates expect accountability…

  17. Has Research on Collaborative Learning Technologies Addressed Massiveness? A Literature Review

    ERIC Educational Resources Information Center

    Manathunga, Kalpani; Hernández-Leo, Davinia

    2015-01-01

    There is a growing interest in understanding to what extent innovative educational technologies can be used to support massive courses. Collaboration is one of the main desired elements in massive learning actions involving large communities of participants. Accumulated research in collaborative learning technologies has proposed and evaluated…

  18. Nanoparticles: synthesis and applications in life science and environmental technology

    NASA Astrophysics Data System (ADS)

    Luong Nguyen, Hoang; Nguyen, Hoang Nam; Hai Nguyen, Hoang; Quynh Luu, Manh; Hieu Nguyen, Minh

    2015-03-01

    This work focuses on the synthesis, functionalization, and application of gold and silver nanoparticles, magnetic nanoparticles Fe3O4, combination of 4-ATP-coated silver nanoparticles and Fe3O4 nanoparticles. The synthesis methods such as chemical reduction, seeding, coprecipitation,and inverse microemulsion will be outlined. Silica- and amino-coated nanoparticles are suitable for several applications in biomedicine and the environment. The applications of the prepared nanoparticles for early detection of breast cancer cells, basal cell carcinoma, antibacterial test, arsenic removal from water, Herpes DNA separation, CD4+ cell separation and isolation of DNA of Hepatitis virus type B (HBV) and Epstein-Barr virus (EBV) are discussed. Finally, some promising perspectives will be pointed out. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  19. Global Energy Technology Strategy: Addressing Climate Change Phase 2 Findings from an international Public-Private Sponsored Research Program

    SciTech Connect

    Edmonds, James A.; Wise, Marshall A.; Dooley, James J.; Kim, Son H.; Smith, Steven J.; Runci, Paul J.; Clarke, Leon E.; Malone, Elizabeth L.; Stokes, Gerald M.

    2007-05-01

    This book examines the role of global energy technology in addressing climate change. The book considers the nature of the climate change challenge and the role of energy in the issue. It goes on to consider the implications for the evolution of the global energy system and the potential value of technology availability, development and deployment. Six technology systems are identified for special consideration: CO2 capture and storage, Biotechnology, Hydrogen systems, Nuclear energy, Wind and solar energy, and End-use energy technologies. In addition, consideration is given to the role of non-CO2 gases in climate change as well as the potential of technology development and deployment to reduce non-CO2 emissions. Present trends in energy R&D are examined and potentially fruitful avenues for research. The book concludes with a set of key findings.

  20. Technical Assistance Sampler on: Using Technology To Address Barriers to Learning.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health in Schools.

    Under the auspices of the School Mental Health Project in the Department of Psychology at the University of California, Los Angeles (UCLA), the Center for Mental Health in Schools approaches mental health and psychosocial concerns from the broad perspective of addressing barriers to learning and promoting healthy development. To accommodate the…

  1. Nanoparticle-based Technologies for Retinal Gene Therapy

    PubMed Central

    Adijanto, Jeffrey; Naash, Muna I

    2015-01-01

    For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression. PMID:25592325

  2. Applying Inkjet Technology to Dispense Colloidal Nanoparticle Fluids

    NASA Astrophysics Data System (ADS)

    O, Annie; Mohar, Harjyot; Hernandez, Victor; Estrada, Arturo; Munoz, Leonel; Fan, Sewan; Fatuzzo, Laura; Jimenez, Steven

    2014-03-01

    The inkjet technology is widely employed to reliably deliver nanomaterials onto a substrate medium for further characterization and processing. To explore the feasibility of inkjet deposition for colloids, a novel drop-on-demand fluid dispenser is constructed to eject various types of liquids to produce atomized droplets. To make structured nanomaterials on a substrate using inkjet techniques, it is essential to determine the dynamical properties of the droplets as they are being formed. These would include the ejection speed, acceleration, terminal velocity and flight trajectories. For measuring these dynamic parameters, we successfully dispensed propylene glycol solution in different mixing ratios. This forms a reference fluid for establishing a baseline for our investigations. Our experimental data suggest that rapidly ejected droplets can be accurately modeled using Newton's equations and Stokes' law. In this conference, we describe our experiments consisting of an innovative inkjet dispensing apparatus in synchronization with a high-resolution camera imaging system. Furthermore, we plan to discuss our research efforts in dispensing microdroplets for relevant materials, such as chemical colloidal suspensions containing nanoparticles and polymer based fluids. Department of Education grant number P031S90007.

  3. Addressing the crush of sampling. [technology programs for space information systems

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.; Holcomb, L. B.; Rubin, B.

    1980-01-01

    An overall space information system involves sensing, processing, analyzing, and distributing space-acquired information. These systems may be partitioned into the spacecraft segment, the wideband space-to-ground communication segment, and the ground-based data analysis and distribution segment. The paper discusses NASA's advanced technology programs aimed at providing improved sensors and on-board data systems. Advances in charge-transfer devices, lasers, and microwave technologies will be responsible for major improvements in NASA's sensing and detection capabilities for future missions. These improvements will result in a future data crush that will amplify the data management problem.

  4. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  5. Closing Pandora's Box: Copyright Technological Issues Addressed by EC Espirit II Project, CITED.

    ERIC Educational Resources Information Center

    Nancarrow, Peter; Boisson, Jean-Francois

    1993-01-01

    Describes how the European Community's CITED Project provides the information industry with a solution to the problem of copyright applied to digital technology. The use of technical means to control copying and an assessment of the legal and commercial situation in the information industry are discussed. (EAM)

  6. Breaking the Geek Myth: Addressing Young Women's Misperceptions about Technology Careers

    ERIC Educational Resources Information Center

    Siek, Katie A.; Connelly, Kay; Stephano, Amanda; Menzel, Suzanne; Bauer, Jacki; Plale, Beth

    2006-01-01

    Some women have various misconceptions about technology careers. Some of them think that one has to be a geek in order to become a computer scientist. When the Women in Computing Group at Indiana University (WIC@IU) was looking for ideas on how to increase the number of women in computing majors at IU, the authors realized that women were turning…

  7. Nanoparticle characterization: State of the art, challenges, and emerging technologies

    PubMed Central

    Cho, Eun Jung; Holback, Hillary; Liu, Karen C.; Abouelmagd, Sara A.; Park, Joonyoung; Yeo, Yoon

    2013-01-01

    Nanoparticles have received enormous attention as a promising tool to enhance target-specific drug delivery and diagnosis. Various in vitro and in vivo techniques are used to characterize a new system and predict its clinical efficacy. These techniques enable efficient comparison across nanoparticles and facilitate a product optimization process. On the other hand, we recognize their limitations as a prediction tool, which owe to inadequate applications and overly simplified test conditions. This article provides a critical review of in vitro and in vivo techniques currently used for evaluation of nanoparticles and introduces emerging techniques and models that may be used complementarily. PMID:23461379

  8. Addressing Ethics and Technology in Business: Preparing Today's Students for the Ethical Challenges Presented by Technology in the Workplace

    ERIC Educational Resources Information Center

    Brooks, Rochelle

    2008-01-01

    The ethical development of information systems is but one of those sensitive scenarios associated with computer technology that has a tremendous impact on individuals and social life. The significance of these issues of concern cannot be overstated. However, since computer ethics is meant to be everybody's responsibility, the result can often be…

  9. Virtual Reality and Interactive Digital Game Technology: New Tools to Address Obesity and Diabetes

    PubMed Central

    “Skip” Rizzo, Albert; Lange, Belinda; Suma, Evan A; Bolas, Mark

    2011-01-01

    The convergence of the exponential advances in virtual reality (VR)-enabling technologies with a growing body of clinical research and experience has fueled the evolution of the discipline of clinical VR. This article begins with a brief overview of methods for producing and delivering VR environments that can be accessed by users for a range of clinical health conditions. Interactive digital games and new forms of natural movement-based interface devices are also discussed in the context of the emerging area of exergaming, along with some of the early results from studies of energy expenditure during the use of these systems. While these results suggest that playing currently available active exergames uses significantly more energy than sedentary activities and is equivalent to a brisk walk, these activities do not reach the level of intensity that would match playing the actual sport, nor do they deliver the recommended daily amount of exercise for children. However, these results provide some support for the use of digital exergames using the current state of technology as a complement to, rather than a replacement, for regular exercise. This may change in the future as new advances in novel full-body interaction systems for providing vigorous interaction with digital games are expected to drive the creation of engaging, low-cost interactive game-based applications designed to increase exercise participation in persons at risk for obesity. PMID:21527091

  10. Addressing the Real-World Challenges in the Development of Propulsion IVHM Technology Experiment (PITEX)

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy; Fulton, Christopher E.; Balaban, Edward; Sweet, Adam; Hayden, Sandra Claire; Bajwa, Anupa

    2005-01-01

    The Propulsion IVHM Technology Experiment (PITEX) has been an on-going research effort conducted over several years. PITEX has developed and applied a model-based diagnostic system for the main propulsion system of the X-34 reusable launch vehicle, a space-launch technology demonstrator. The application was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real-time on flight-like hardware. In an attempt to expose potential performance problems, these PITEX algorithms were subject to numerous real-world effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. The current research has demonstrated the potential benefits of model-based diagnostics, defined the performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  11. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    SciTech Connect

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  12. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  13. Shape control technology during electrochemical synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-yu; Cui, Cong-ying; Cheng, Ying-wen; Ma, Hou-yi; Liu, Duo

    2013-05-01

    Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuCl4) to an electrolyzed aqueous solution of poly( N-vinylpyrrolidone) (PVP) and KNO3, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuCl4, respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.

  14. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.

    PubMed

    Ricroch, Agnès E; Hénard-Damave, Marie-Cécile

    2016-08-01

    Most of the genetically modified (GM) plants currently commercialized encompass a handful of crop species (soybean, corn, cotton and canola) with agronomic characters (traits) directed against some biotic stresses (pest resistance, herbicide tolerance or both) and created by multinational companies. The same crops with agronomic traits already on the market today will continue to be commercialized, but there will be also a wider range of species with combined traits. The timeframe anticipated for market release of the next biotech plants will not only depend on science progress in research and development (R&D) in laboratories and fields, but also primarily on how demanding regulatory requirements are in countries where marketing approvals are pending. Regulatory constraints, including environmental and health impact assessments, have increased significantly in the past decades, delaying approvals and increasing their costs. This has sometimes discouraged public research entities and small and medium size plant breeding companies from using biotechnology and given preference to other technologies, not as stringently regulated. Nevertheless, R&D programs are flourishing in developing countries, boosted by the necessity to meet the global challenges that are food security of a booming world population while mitigating climate change impacts. Biotechnology is an instrument at the service of these imperatives and a wide variety of plants are currently tested for their high yield despite biotic and abiotic stresses. Many plants with higher water or nitrogen use efficiency, tolerant to cold, salinity or water submergence are being developed. Food security is not only a question of quantity but also of quality of agricultural and food products, to be available and accessible for the ones who need it the most. Many biotech plants (especially staple food) are therefore being developed with nutritional traits, such as biofortification in vitamins and metals. The main

  15. Address to the international workshop on greenhouse gas mitigation, technologies and measures

    SciTech Connect

    Kant, A.

    1996-12-31

    The Netherlands has a long history in combatting natural forces for it`s mere survival and even creation. Around half of the country was not Yet existent around 2000 years ago: it was still below sea level that time. Building dikes and the discovery of eolic energy applied in windmills, allowing to pump water from one side of the dike to the other, are technologies that gradually shaped the country into its current form, a process that continues to materialize till the present day. Water has not always been an enemy of the country. In the Hundred Year War with Spain, during which the country was occupied territory for most of the time, the water was used to drive the Spanish armies from the country. As large parts are well below sea level breaking the dikes resulted in flooding the country which made the armoury of the Spanish army useless. In this way they had to give up the siege of several major Dutch cities that time. These events marked the gradual liberation of the Dutch territory. Consequently, in the discussion on adaption and prevention of the greenhouse effect the Netherlands has a clear stand. The greenhouse effect will occur anyway, even if countries deploy all possible counter measures at once. So their aim is to prevent the occurrence of the greenhouse effect to the highest extent possible, and to protect the most vulnerable areas meanwhile, especially the coastal zones. In order to reach these goals the Dutch government has established a Joint Implementation Experimental Programme in accordance with the provisions made by the Conference of Parties in Berlin (1995).

  16. Preparing Special Educators in Eastern North Carolina To Use Assistive Technology: A Multimedia Approach to Addressing Training Needs Unique to Rural Areas.

    ERIC Educational Resources Information Center

    Darrow, Melissa; And Others

    This paper describes a project addressing the assistive technology training needs of teachers of children with disabilities in rural eastern North Carolina, through development of a multimedia software tutorial service. The project utilized both a special education/assistive technology professional and an instructional technology professional to…

  17. Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology.

    PubMed

    Ibsen, Stuart; Sonnenberg, Avery; Schutt, Carolyn; Mukthavaram, Rajesh; Yeh, Yasan; Ortac, Inanc; Manouchehri, Sareh; Kesari, Santosh; Esener, Sadik; Heller, Michael J

    2015-10-01

    The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications. PMID:26274918

  18. Utilization of nanoparticle technology in rheumatoid arthritis treatment.

    PubMed

    Dolati, Sanam; Sadreddini, Sanam; Rostamzadeh, Davoud; Ahmadi, Majid; Jadidi-Niaragh, Farhad; Yousefi, Mehdi

    2016-05-01

    Rheumatoid arthritis (RA) is one of the common and severe autoimmune diseases related to joints. This chronic autoimmune inflammatory disease, leads to functional limitation and reduced quality of life, since as there is bone and cartilage destruction, joint swelling and pain. Current advances and new treatment approaches have considerably postponed disease progression and improved the quality of life for many patients. In spite of major advances in therapeutic options, restrictions on the routes of administration and the necessity for frequent and long-term dosing often result in systemic adverse effects and patient non-compliance. Unlike usual drugs, nanoparticle systems are planned to deliver therapeutic agents especially to inflamed synovium, so avoiding systemic and unpleasant effects. The present review discusses about some of the most successful drugs in RA therapy and their side effects and also focuses on key design parameters of RA-targeted nanotechnology-based strategies for improving RA therapies. PMID:27133037

  19. Virus-based nanoparticles as platform technologies for modern vaccines.

    PubMed

    Lee, Karin L; Twyman, Richard M; Fiering, Steven; Steinmetz, Nicole F

    2016-07-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website. PMID:26782096

  20. Real-Time Imaging of Gene Delivery and Expression with DNA Nanoparticle Technologies

    NASA Astrophysics Data System (ADS)

    Sun, Wenchao; Ziady, Assem G.

    The construction of safe, efficient, and modifiable synthetic DNA nanoparticles is an emerging technology that has achieved important milestones of success in the past 5 years. Advances in chemical conjugation, purification, and controlled synthesis have allowed researchers to produce uniform and stable particles, whose physical characteristics can be well characterized and monitored. As a result of these improvements, DNA nanoparticles have now been cleared for clinical testing, and show good potential for human gene therapy. A very important recent development in the study of DNA nanoparticles is the use of small-animal imaging. Real-time imaging has become a valuable technique for tracking particle biodistribution and gene transfer efficacy. In this chapter, we discuss how bioluminescent, positron emission tomography, and magnetic resonance imaging can be used separately or in concert to study particle delivery, localization, and magnitude of gene expression in vivo.

  1. Antenna of silver nanoparticles mounted on a flexible polymer substrate constructed using inkjet print technology

    NASA Astrophysics Data System (ADS)

    Matyas, Jiri; Munster, Lukas; Olejnik, Robert; Vlcek, Karel; Slobodian, Petr; Krcmar, Petr; Urbanek, Pavel; Kuritka, Ivo

    2016-02-01

    This article describes the construction of an antenna that operates at frequencies of 1.07, 1.5, and 2.49 GHz and that is fabricated on a flexible polymer substrate using inkjet printing technology. In particular, this article is focused on the preparation and characterization of an antenna starting from the ink formulation for printing a homogeneous, electrically conductive layer using silver nanoparticles. The diameter of the prepared silver nanoparticles ranges from 50 to 200 nm. The inkjet printing technology on flexible polymer substrates offers a wide range of applications where there are high demands for flexibility. In combination with the polymer substrate, inkjet printing enables the production of more complex shapes and curves for antennas that are widely applicable not only in wearable electronic devices but also in plastic cases for portable communication devices.

  2. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures. PMID:22093770

  3. Silver nanoparticles ink synthesis for conductive patterns fabrication using inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Chien Dang, Mau; Dung Dang, Thi My; Fribourg-Blanc, Eric

    2015-03-01

    In this paper we present silver nanoparticles ink synthesis targeting conductive patterns for micro fabricated devices by inkjet printing technology. The well dispersed nanoparticles ink was composed of silver colloid with an average particle diameter less than 10 nm. These nanoparticles were protected by a capping layer of poly(N-vinylpyrrolidone) (PVP) even at silver concentration of 20 wt%. Stable aqueous inks were formulated by using a combination of solvent and co-solvents and under vigorous stirring. Various factors affecting the adhesion between the ink and the substrate were investigated, such as solvent and co-solvent content. The ink containing 20 wt% silver has a viscosity of about 9.5 cP and a surface tension of 32 to 36 mN m-1 at room temperature, meeting inkjet printer requirements. The ink stored under ambient conditions was stable against aggregation for more than one month. Silver nanoparticles patterns have been successfully printed on various substrates. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  4. Nanoparticles for biomedical imaging

    PubMed Central

    Nune, Satish K; Gunda, Padmaja; Thallapally, Praveen K; Lin, Ying-Ying; Forrest, M Laird; Berkland, Cory J

    2011-01-01

    Background Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. PMID:19743894

  5. SERS-active nanoparticles as a barcoding technology for tags and seals

    SciTech Connect

    Brown, Leif O; Doorn, Stephen K; Merkle, Peter B

    2009-01-01

    In this paper, we present our work to modernize tagging and sealing technologies for international safeguards applications. Our work combines technologies developed at both Los Alamos National Laboratory (LANL), and Sandia National Laboratories (SNL), to offer a passive tag and seal system that can be applied and verified in field, with minimal training for on-site personnel, along with a low per-seal cost. Here, we focus primarily on LANL technology: the use of Surface Enhanced Raman Scattering (SERS) as an inexpensive verification tool. Our nanoparticles offer unique SERS responses, which we can then use to incorporate robust barcoding into tag materials. We describe this technology in more detail, offer preliminary results, and outline integration with SNL developments.

  6. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  7. Improved delivery of poorly soluble compounds using nanoparticle technology: a review.

    PubMed

    Kalepu, Sandeep; Nekkanti, Vijaykumar

    2016-06-01

    Although a large number of new drug molecules with varied therapeutic potentials have been discovered in the recent decade, yet most of them are still in developmental process. This can be attributed to the limited aqueous solubility which governs the bioavailability of such drug molecules. Hence, there is a requisite for a technology-based product (formulation) in order to overcome such issues without compromising on the therapeutic response. The purpose of this review is to provide an insight to the formulation of drug nanoparticles for enhancing solubility and dissolution velocity with concomitant enhancement in bioavailability. In the recent decade, nanonization has evolved from a concept to reality owing to its versatile applications, especially in the development of drugs having poor solubility. In this review, a relatively simple and scalable approach for the manufacture of drug nanoparticles and latest characterization techniques utilized to evaluate the drug nanoparticles are discussed. The drug nanoparticulate approach described herein provides a general applicability of the platform technology in designing a formulation for drugs associated with poor aqueous solubility. PMID:26891912

  8. Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Placido, Tiziana; Comparelli, Roberto; Lucia Curri, M.; Striccoli, Marinella; Tabiryan, Nelson; Bunning, Timothy J.

    2015-05-01

    Controlling light interactions with matter on the nanometer scale provides for compelling opportunities for modern technology and stretches our understanding and exploitation of applied physics, electronics, and fabrication science. The smallest size to which light can be confined using standard optical elements such as lenses and mirrors is limited by diffraction. Plasmonic nanostructures have the extraordinary capability to control light beyond the diffraction limit through an unique phenomenon called the localized plasmon resonance. This remarkable capability enables unique prospects for the design, fabrication and characterization of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and nanoscale electronic circuits. This paper summarizes the basic principles and the main achievements in the practical utilization of plasmonic effects in nanoparticles. Specifically, the paper aims at highlighting the major contributions of nanoparticles to nanoscale temperature monitoring, modern "drug free" medicine and the application of nanomaterials to a new generation of opto-electronics integrated circuits.

  9. A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation

    NASA Astrophysics Data System (ADS)

    Roller, Justin M.; Maric, Radenka

    2015-12-01

    Catalytic materials are complex systems in which achieving the desired properties (i.e., activity, selectivity and stability) depends on exploiting the many degrees of freedom in surface and bulk composition, geometry, and defects. Flame aerosol synthesis is a process for producing nanoparticles with ample processing parameter space to tune the desired properties. Flame dynamics inside the reactor are determined by the input process variables such as solubility of precursor in the fuel; solvent boiling point; reactant flow rate and concentration; flow rates of air, fuel and the carrier gas; and the burner geometry. In this study, the processing parameters for reactive spray deposition technology, a flame-based synthesis method, are systematically evaluated to understand the residence times, reactant mixing, and temperature profiles of flames used in the synthesis of Pt nanoparticles. This provides a framework for further study and modeling. The flame temperature and length are also studied as a function of O2 and fuel flow rates.

  10. Socio-Technical Systems Analysis and Manufacturing Technology: Addressing "Big Brother" and Computers in Blue-Collar Work.

    ERIC Educational Resources Information Center

    Taylor, James C.

    For more than 80 years, jobs in the United States have been designed by people for others. For most of these years, the experts in job design have placed the production technology above the job holder in importance. Since the 1950s, many jobs have been redesigned around new, computer-based technology. Often, the net effect has been to make those…

  11. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies.

    PubMed

    Gulson, Brian; McCall, Maxine J; Bowman, Diana M; Pinheiro, Teresa

    2015-11-01

    Metal oxide nanoparticles in sunscreens provide broad-spectrum ultraviolet protection to skin. All studies to assess dermal penetration of nanoparticles have unanimously concluded that the overwhelming majority of nanoparticles remain on the outer surface of the skin. However, possibly due to many different experimental protocols in use, conclusions over the potential penetration to viable skin are mixed. Here, we review several factors that may influence experimental results for dermal penetration including the species studied (human, or animal model), size and coating of the metal oxide nanoparticles, composition of the sunscreen formulation, site of sunscreen application, dose and number of applications, duration of the study, types of biological samples analysed, methods for analysing samples, exposure to UV and skin flexing. Based on this information, we suggest an appropriate research agenda involving international collaboration that maximises the potential for dermal absorption of nanoparticles, and their detection, under normal conditions of sunscreen use by humans. If results from this research agenda indicate no absorption is observed, then concerns over adverse health effects from the dermal absorption of nanoparticles in sunscreens may be allayed. PMID:26140917

  12. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    SciTech Connect

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  13. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI).

    PubMed

    Simeonidis, K; Kaprara, E; Samaras, T; Angelakeris, M; Pliatsikas, N; Vourlias, G; Mitrakas, M; Andritsos, N

    2015-12-01

    The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO4 and Fe2(SO4)3) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH)3 form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology. PMID:25891685

  14. Applications and development of BitClean technology including selective nanoparticle manipulation

    NASA Astrophysics Data System (ADS)

    Robinson, Tod; Brinkley, David; White, Roy; LeClaire, Jeff; Archuletta, Michael; Bozak, Ron; Yi, Daniel

    2012-06-01

    The technology to selectively remove nanoparticles from a photomask surface by adhering it to an AFM tip (BitClean) first introduced with the Merlin® nanomachining mask repair platform has been successfully integrated in numerous mask house production centers across the globe over the last two years. One outstanding request for development from customers has been to develop the capability to not only selectively remove nanoparticles from a target surface, but to also redeposit in another target region. This paper reviews the preliminary work done to develop this capability with particular emphasis on its potential applications in creating realistic nanoparticle inspection sites for KLA systems at critical pattern print locations as well as the accumulation of trace amounts of contaminates for better compositional and print-impact analysis. There is also a feasibility study of new ultra-high aspect ratio (AR > 1.5) NanoBits for future BitClean process applications. The potential for these capabilities to be adapted for new applications will be examined for future work as well as a detailed parametric process analysis with the goal of showing how to make significant improvements in BitClean PRE.

  15. Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

    PubMed

    Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily

    2015-11-24

    Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater. PMID:26493711

  16. Technology and Sexuality--What's the Connection? Addressing Youth Sexualities in Efforts to Increase Girls' Participation in Computing

    ERIC Educational Resources Information Center

    Ashcraft, Catherine

    2015-01-01

    To date, girls and women are significantly underrepresented in computer science and technology. Concerns about this underrepresentation have sparked a wealth of educational efforts to promote girls' participation in computing, but these programs have demonstrated limited impact on reversing current trends. This paper argues that this is, in part,…

  17. National Institute of Justice (NIJ): improving the effectiveness of law enforcement via homeland security technology improvements (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Morgan, John S.

    2005-05-01

    Law enforcement agencies play a key role in protecting the nation from and responding to terrorist attacks. Preventing terrorism and promoting the nation"s security is the Department of Justice"s number one strategic priority. This is reflected in its technology development efforts, as well as its operational focus. The National Institute of Justice (NIJ) is the national focal point for the research, development, test and evaluation of technology for law enforcement. In addition to its responsibilities in supporting day-to-day criminal justice needs in areas such as less lethal weapons and forensic science, NIJ also provides critical support for counter-terrorism capacity improvements in state and local law enforcement in several areas. The most important of these areas are bomb response, concealed weapons detection, communications and information technology, which together offer the greatest potential benefit with respect to improving the ability to law enforcement agencies to respond to all types of crime including terrorist acts. NIJ coordinates its activities with several other key federal partners, including the Department of Homeland Security"s Science and Technology Directorate, the Technical Support Working Group, and the Department of Defense.

  18. Compositional analysis of iron-platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan

    FePt nanoparticles are candidates for the future magnetic recording technology because of their good chemical stability and high magnetocrystalline anisotropy. One of the fundamental problems that limit the application of these nanoparticles is the particle-to-particle compositional and size variations. This dissertation addresses the following: (a) The mechanism of formation of FePt nanoparticles by two synthesis methods, the iron pentacarbonyl method and the superhydride method (b) determines how the sequence of the nucleation and growth processes contribute to the size and compositional variability and (c) provides a method to engineer the nucleation and growth sequence to produce nanoparticle dispersions with high degree of compositional and size uniformity.

  19. A case study in innovative outreach--combining training, research, and technology transfer to address real-world problems.

    PubMed Central

    Chang, D P

    1998-01-01

    Outreach, training, technology transfer, and research are often treated as programmatically distinct activities. The interdisciplinary and applied aspects of the Superfund Basic Research Program offer an opportunity to explore different models. A case study is presented that describes a collaborative outreach effort that combines all of the above. It involves the University of California's Davis and Berkeley program projects, the University of California Systemwide Toxic Substances Research and Teaching Program, the U.S. Navy's civilian workforce at the former Mare Island Naval Shipyard, Vallejo, California (MINSY), a Department of Defense (DoD) Environmental Education Demonstration Grant program, and the Private Industry Council of Napa and Sonoma counties in California. The effort applied a Superfund-developed technology to a combined waste, radium and polychlorinated biphenyl contamination, stemming from a problematic removal action at an installation/restoration site at MINSY. The effort demonstrates that opportunities for similar collaborations are possible at DoD installations. PMID:9703494

  20. AlGaInN laser diode bar and array technology for high-power and individual addressable applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.

    2016-04-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications for medical, industrial, display and scientific purposes. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with high optical powers of >100mW with high reliability. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. We demonstrate the operation of monolithic AlGaInN laser bars with up to 20 emitters giving optical powers up to 4W cw at ~395nm with a common contact configuration. These bars are suitable for optical pumps and novel extended cavity systems. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.

  1. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles.

    PubMed

    Huang, Di; Wang, Lili; Dong, Yixuan; Pan, Xin; Li, Ge; Wu, Chuanbin

    2014-09-01

    This study was designed to investigate the feasibility of silk fibroin nanoparticles (SFNs) for sustained drug delivery in transscleral ultrasound. Fluorescein isothiocynate labeled bovine serum albumin (FITC-BSA, MW 66.45 kDa) was chosen as a model macromolecular protein drug and SFNs were used as nano-carrier systems suitable for ocular drug delivery. Drug loaded nanoparticles (FITC-BSA-SFNs) were first prepared and characterized. In vitro transscleral study under ultrasound exposure (1MHz, 0.5 W/cm(2), 5 min continuous wave) using isolated sclera of rabbit was performed. The posterior eye segment of rabbit was examined for adverse effect by slit-lamp and histology. It was found that FITC-BSA-SFNs possessed sustained release, bioadhesive, and co-permeation characteristics. The ultrasound application significantly improved the penetration efficiency of FITC-BSA-SFNs as compared with passive delivery, meanwhile caused no damages to the ocular tissue and particles themselves. The distribution profile of SFNs revealed rapid and lasting adhesion on the outer scleral tissues, followed by migration into the interior up to one week after treatment. This research suggested a novel non-invasive transscleral administration of macromolecular protein drugs using SFN carriers combining with ultrasound technology. PMID:24833007

  2. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  3. The Health Sciences and Technology Academy: An Educational Pipeline to Address Health Care Disparities in West Virginia

    PubMed Central

    McKendall, Sherron Benson; Kasten, Kasandra; Hanks, Sara; Chester, Ann

    2014-01-01

    Health and educational disparities are national issues in the United States. Research has shown that health care professionals from underserved backgrounds are more likely than others to work in underserved areas. The Association of American Medical Colleges’ Project 3000 by 2000, to increase the number of underrepresented minorities in medical schools, spurred the West Virginia School of Medicine to start the Health Sciences and Technology Academy (HSTA) in 1994 with the goal of supporting interested underrepresented high school students in pursuing college and health professions careers. The program was based on three beliefs: (1) if underrepresented high school students have potential and the desire to pursue a health professions career and are given the support, they can reach their goals, including obtaining a health professions degree; (2) underserved high school students are able to predict their own success if given the right resources; and (3) community engagement would be key to the program’s success. In this perspective, the authors describe the HSTA and its framework and philosophy, including the underlying theories and pedagogy from research in the fields of education and the behavioral/social sciences. They then offer evidence of the program’s success, specifically for African American students, including graduates’ high college-going rate and overwhelming intention to choose a health professions major. Finally, the authors describe the benefits of the HSTA’s community partnerships, including providing mentors to students, adding legislative language providing tuition waivers and a budgetary line item devoted to the program, and securing program funding from outside sources. PMID:24280836

  4. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  5. MAEA Interactive Science Programs: An Innovative Approach to Address the Under-representation of Minorities and Women in Science, Math, and Technological Fields.

    NASA Astrophysics Data System (ADS)

    Holloman, E. L.; Baynes, D. L.

    2004-12-01

    Minority Aviation Education Association Inc. (MAEA) was founded in 1992 by Darryl Lee Baynes to address the under-representation of minorities and women in all science, math, and technological fields. The organization is committed to exposing minorities and women to science, math, and technology in grades K-12. The first objective of MAEA is to educate teachers on how to integrate hands-on experiments in their class and include inquiry based learning in their science curriculum. A second objective is to educate students, teachers, and the community regarding the history of minorities in the fields of science, math, and technology, in order to provide role models in these fields. The last objective is to demonstrate the relevance of science in everyday life, with the intention of stimulating future career interest in the fields of science, math, and technology. MAEA currently offers more than 70 hands on inquiry-based programs that are aligned with the 2061 Bench Marks and National Science Standards. The programs are divided into four main categories: auditorium/classroom, enrichment and outreach, after school, and professional development. For the last 14 years, MAEA has served communities and schools across the country with remarkable success and therefore offers an alternative model for K-12 science education. This alternative is significant to the scientific community because it links the under-served population to an active academic and professional pipeline.

  6. High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology

    PubMed Central

    2015-01-01

    The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study, we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening five industrially relevant ENP exposures (SiO2, ZnO, Fe2O3, Ag, and CeO2) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary (H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range of 5, 10, and 20 μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO > Ag > Fe2O3 > CeO2 > SiO2 in TK6 cells at 4 h and Ag > Fe2O3 > ZnO > CeO2 > SiO2 in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies. PMID:24617523

  7. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  8. Opening addresses.

    PubMed

    Chukudebelu, W O; Lucas, A O; Ransome-kuti, O; Akinla, O; Obayi, G U

    1988-01-01

    The theme of the 3rd International Conference of the Society of Gynecology and Obstetrics of Nigeria (SOGON) held October 26, 1986 in Enugu was maternal morbidity and mortality in Africa. The opening addresses emphasize the high maternal mortality rate in Africa and SOGON's dedication to promoting women's health and welfare. In order to reduce maternal mortality, the scope of this problem must be made evident by gathering accurate mortality rates through maternity care monitoring and auditing. Governments, health professionals, educators, behavioral scientists, and communication specialists have a responsibility to improve maternal health services in this country. By making the population aware of this problem through education, measures can be taken to reduce the presently high maternal mortality rates. Nigerian women are physically unprepared for childbirth; therefore, balanced diets and disease prevention should be promoted. Since about 40% of deliveries are unmanaged, training for traditional birth attendants should be provided. Furthermore, family planning programs should discourage teenage pregnancies, encourage birth spacing and small families, and promote the use of family planning techniques among men. The problem of child bearing and rearing accompanied by hard work should also be investigated. For practices to change so that maternal mortality rates can be reduced, attitudes must be changed such that the current rates are viewed as unacceptable. PMID:12179275

  9. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  10. Presidential address.

    PubMed

    Vohra, U

    1993-07-01

    The Secretary of India's Ministry of Health and Family Welfare serves as Chair of the Executive Council of the International Institute for Population Sciences in Bombay. She addressed its 35th convocation in 1993. Global population stands at 5.43 billion and increases by about 90 million people each year. 84 million of these new people are born in developing countries. India contributes 17 million new people annually. The annual population growth rate in India is about 2%. Its population size will probably surpass 1 billion by the 2000. High population growth rates are a leading obstacle to socioeconomic development in developing countries. Governments of many developing countries recognize this problem and have expanded their family planning programs to stabilize population growth. Asian countries that have done so and have completed the fertility transition include China, Japan, Singapore, South Korea, and Thailand. Burma, Malaysia, North Korea, Sri Lanka, and Vietnam have not yet completed the transition. Afghanistan, Bangladesh, Iran, Nepal, and Pakistan are half-way through the transition. High population growth rates put pressure on land by fragmenting finite land resources, increasing the number of landless laborers and unemployment, and by causing considerable rural-urban migration. All these factors bring about social stress and burden civic services. India has reduced its total fertility rate from 5.2 to 3.9 between 1971 and 1991. Some Indian states have already achieved replacement fertility. Considerable disparity in socioeconomic development exists among states and districts. For example, the states of Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh have female literacy rates lower than 27%, while that for Kerala is 87%. Overall, infant mortality has fallen from 110 to 80 between 1981 and 1990. In Uttar Pradesh, it has fallen from 150 to 98, while it is at 17 in Kerala. India needs innovative approaches to increase contraceptive prevalence rates

  11. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  12. pH-Triggered reversible morphological inversion of orthogonally-addressable poly(3-acrylamidophenylboronic acid)-block-poly(acrylamidoethylamine) micelles and their shell crosslinked nanoparticles

    PubMed Central

    Zou, Jiong; Zhang, Shiyi; Shrestha, Ritu; Seetho, Kellie; Donley, Carrie L.

    2012-01-01

    Functionally-responsive amphiphilic core-shell nanoscopic objects, capable of either complete or partial inversion processes, were produced by the supramolecular assembly of pH-responsive block copolymers, without or with covalent crosslinking of the shell layer, respectively. A new type of well-defined, dual-functionalized boronic acid- and amino-based diblock copolymer poly(3-acrylamidophenylboronic acid)30-block-poly(acrylamidoethylamine)25 (PAPBA30-b-PAEA25) was synthesized by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and then assembled into cationic micelles in aqueous solution at pH 5.5. The micelles were further cross-linked throughout the shell domain comprised of poly(acrylamidoethylamine) by reaction with a bis-activated ester of 4,15-dioxo-8,11-dioxa-5,14-diazaoctadecane-1,18-dioic acid, upon increase of the pH to 7, to different cross-linking densities (2%, 5% and 10%), forming well-defined shell cross-linked nanoparticles (SCKs) with hydrodynamic diameters of ca. 50 nm. These smart micelles and SCKs presented switchable cationic, zwitterionic and anionic properties, and existed as stable nanoparticles with high positive surface charge at low pH (pH = 2, zeta potential ~ +40 mV) and strong negative surface charge at high pH (pH = 12, zeta potential ~ −35 mV). 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and zeta potential, were used to characterize the chemical compositions, particle sizes, morphologies and surface charges. Precipitation occurred near the isoelectric points (IEP) of the polymer/particle solutions, and the IEP values could be tuned by changing the shell cross-linking density. The block copolymer micelles were capable of full reversible morphological inversion as a function of pH, by orthogonal protonation of the PAEA and hydroxide association with the PAPBA units, whereas the

  13. Opening Address

    NASA Astrophysics Data System (ADS)

    Abalakin, V. K.

    1997-03-01

    Dear Colleagues, It is a great pleasure and honor for me to invite you on the occasion of the IAU Colloquium International Cooperation in Dissemination of the Astronomical Data to the Central (Pulkovo) Astronomical Observatory of the Russian Academy of Sciences. This distinguished gathering of experts in the vast field of modern methods for archiving and managing almost infinite astronomical data files of everlasting value will doubtlessly make a considerable and important contribution to success in the present and future research in astronomy. All of us are witnesses of a great technological, even psychological upturn that occurs in the everyday astronomical practice. The small but the most powerful handy devices known as desktop, laptop, or even palm-top PCs, have rendered a tedious calculating work and stressing search in the card-file or book-form catalogs to a pure pleasure and raised an admiration for those brilliant minds that have invented such a kind of hard- and software. The networks of all kinds and sorts -- Internet, Bitnet, World Wide Web, etc. -- have realized ancient dreams of a Man to fly with thought all over the world communicating with other human beings. But ... don't forget that the most real and valuable communication is the live one, when one can see the face and the eyes of his (or her) partner, listen to his voice as large as life, and the only opportunity for this is to stay together. And this just occurs at the colloquium like ours! So, let me heartily welcome you to the Pulkovo Observatory.

  14. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-01

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport. PMID:24015820

  15. Silver nanoparticles: a possibility for malarial and filarial vector control technology.

    PubMed

    Soni, Namita; Prakash, Soam

    2014-11-01

    Green synthesis technology is one of the rapid, reliable and best routes for the synthesis of silver nanoparticles (AgNPs). There are bioactive compounds with enormous potential in Azadirachta indica (Neem). The extraordinary mosquitoes warrant nanotechnology to integrate with novel molecules. This will be sustainable technology for future. Here, we synthesized AgNPs using aqueous extracts of leaves and bark of Az. indica (Neem). We tested AgNPs as larvicides, pupicides and adulticides against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations varying many hours by probit analysis. The synthesized AgNPs were spherical in shape and with varied sizes (10.47-nm leaf and 19.22-nm bark). The larvae, pupae and adults of filariasis vector C. quinquefasciatus were found to be more susceptible to our AgNPs than the malaria vector An. stephensi. The first and the second instar larvae of C. quinquefasciatus show a mortality rate of 100% after 30 min of exposure. The results against the pupa of C. quinquefasciatus were recorded as LC₅₀ 4 ppm, LC₉₀ 11 ppm and LC₉₉ 13 ppm after 3 h of exposure. In the case of adult mosquitoes, LC₅₀ 1.06 μL/cm(2), LC₉₀ 2.13 μL/cm(2) and LC₉₉ 2.4 μL/cm(2) were obtained after 4 h of exposure. These results suggest that our AgNPs are environment-friendly for controlling malarial and filarial vectors. PMID:25132567

  16. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  17. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain.

    PubMed

    Leyva-Gómez, Gerardo; Cortés, Hernán; Magaña, Jonathan J; Leyva-García, Norberto; Quintanar-Guerrero, David; Florán, Benjamín

    2015-07-01

    The absence of a definitive treatment for Parkinson's disease has driven the emerging investigation in the search for novel therapeutic alternatives. At present, the formulation of different drugs on nanoparticles has represented several advantages over conventional treatments. This type of multifunctional carrier, owing to its size and composition, has different interactions in biological systems that can lead to a decrease in ability to cross the blood-brain barrier. Therefore, this review focuses on the latest advances in obtaining nanoparticles for Parkinson's disease and provides an overview of technical aspects in the design of brain drug delivery of nanoparticles and an analysis of surface phenomena, a key aspect in the development of functional nanoparticles for Parkinson's disease. PMID:25701281

  18. Industrial Arts and a Humane Technology for the Future. Representative Addresses and Proceedings of the American Industrial Arts Association's Annual Conference (36th, Seattle, Washington, 1974).

    ERIC Educational Resources Information Center

    American Industrial Arts Association, Washington, DC.

    The document contains 75 representative addresses from the American Industrial Arts Association's 36th annual conference. The number of addresses by each group are: three general sessions addresses; six by the American Council of Elementary School Industrial Arts; one by the American Council of Industrial Arts Supervisors; fifteen by the American…

  19. Precision Nanoparticles

    ScienceCinema

    John Hemminger

    2010-01-08

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  20. Precision Nanoparticles

    SciTech Connect

    John Hemminger

    2009-07-21

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  1. Application of rapid milling technology for fabrication of SiC nanoparticles.

    PubMed

    Kim, Jong-Woong; Shim, Jae-Shik; Kwak, Min-Gi; Hong, Sung-Jei; Cho, Hyun-Min

    2013-09-01

    SiC nanoparticles were successfully fabricated by a high energy ball milling method, so that can be used in the printed electronics to make SiC thin film patterns. Here we utilized the waste of Si sludge for making the SiC nanoparticles. In order to achieve uniform thin film from the nanoparticle ink, fine sized SiC nanoparticles less than 100 nm has to be uniformly dispersed. In this study, we employed the ultra apex milling (UAM) system for particle comminution and dispersion. We investigated the effects of milling parameters, e.g., size of ZrO2 bead and milling time. The size of the SiC particles reached about 103 nm after 4 hours of UAM, when the ZrO2 beads of 50 microm were used. Then SiC ink was formulated with organic solvents and a dispersing agent. A specially designed pattern was printed by an ink-jet printer for evaluating the feasibility of the SiC nanoparticle inks. PMID:24205600

  2. University contributions to the HPV vaccine and implications for access to vaccines in developing countries: addressing materials and know-how in university technology transfer policy.

    PubMed

    Crager, Sara E; Guillen, Ethan; Price, Matt

    2009-01-01

    , materials and knowledge, vaccines have the potential to be evaluated efficiently and cost-effectively via a pathway parallel to establishing bioequivalence for generic small molecule drugs. A new paradigm is needed that addresses the additional barriers that exist, outside of simply patent protection, to the generic production of vaccines and other biologics. One possible framework, which builds upon previous work on prize funds and patent pools, is discussed here: a Patents, Materials, and Know-how Pool (PMK Pool), based on the patent pool model such as those outlined in the Essential Medical Inventions Licensing Agency and proposals recently put forth by the governments of Barbados and Bolivia. University approaches to licensing vaccines and other biologics need to ensure access not only to patents, knowledge, and materials covered by intellectual property, but must also address the problem of access to materials and know-how that are often proprietary trade secrets. Universities should actively participate in the creation of this and other novel mechanisms, and in the meantime use currently available technology transfer mechanisms to ensure low-cost access to medicines in developing countries. PMID:19697749

  3. The Platte River - High Plains Aquifer (PR-HPA) Long Term Agroecosystem Research (LTAR) Network - Data and Technological Resources to Address Current and Emerging Issues in Agroecosystems.

    NASA Astrophysics Data System (ADS)

    Okalebo, J. A.; Wienhold, B.; Suyker, A.; Erickson, G.; Hayes, M. J.; Awada, T.

    2015-12-01

    The Platte River - High Plains Aquifer (PR-HPA) is one of 18 established Long Term Agroecosystem Research (LTAR) networks across the US. PR-HPA is a partnership between the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln (UNL), the USDA-ARS Agroecosystem Management Research Unit (AMRU) in Lincoln, and the USDA-ARS Environmental Management Research Unit (EMRU) in Clay Center, NE. The PR-HPA network encompasses 27,750 ha of research sites with data going back to the early 1900s. A partial list of on-going research projects include those encompassing long-term manuring and continuous corn (Est. 1912), dryland tillage plots (Est. 1970), soil nutrients and tillage (Est. 1983), biofuel feedstock studies (Est. 2001), and carbon sequestration study (Est. 2000). Affiliated partners include the National Drought Mitigation Center (NDMC) that develops measures to improve preparedness and adaptation to climate variability and drought; the High Plains Regional Climate Center (HPRCC) that coordinates data acquisition from over 170 automated weather stations and around 50 automated soil moisture network across NE and beyond; the AMERIFLUX and NEBFLUX networks that coordinate the water vapor and carbon dioxide flux measurements across NE with emphasis on rainfed and irrigated crop lands; the ARS Greenhouse gas Reduction through Agricultural Carbon Enhancement network (GRACEnet) and the Resilient Economic Agricultural Practices (REAP) project; and the Center for Advanced Land Management Information Technologies (CALMIT) that assists with the use of geospatial technologies for agriculture and natural resource applications. Current emphases are on addressing present-day and emerging issues related to profitability and sustainability of agroecosystems. The poster will highlight some of the ongoing and planned efforts in research pertaining to climate variability and change, water sustainability, and ecological and agronomic challenges associated

  4. Addressing challenges of training a new generation of clinician-innovators through an interdisciplinary medical technology design program: Bench-to-Bedside.

    PubMed

    Loftus, Patrick D; Elder, Craig T; D'Ambrosio, Troy; Langell, John T

    2015-01-01

    Graduate medical education has traditionally focused on training future physicians to be outstanding clinicians with basic and clinical science research skills. This focus has resulted in substantial knowledge gains, but a modest return on investment based on direct improvements in clinical care. In today's shifting healthcare landscape, a number of important challenges must be overcome to not only improve the delivery of healthcare, but to prepare future physicians to think outside the box, focus on and create healthcare innovations, and navigate the complex legal, business and regulatory hurdles of bringing innovation to the bedside. We created an interdisciplinary and experiential medical technology design competition to address these challenges and train medical students interested in moving new and innovative clinical solutions to the forefront of medicine. Medical students were partnered with business, law, design and engineering students to form interdisciplinary teams focused on developing solutions to unmet clinical needs. Over the course of six months teams were provided access to clinical and industry mentors, $500 prototyping funds, development facilities, and non-mandatory didactic lectures in ideation, design, intellectual property, FDA regulatory requirements, prototyping, market analysis, business plan development and capital acquisition. After four years of implementation, the program has supported 396 participants, seen the development of 91 novel medical devices, and launched the formation of 24 new companies. From our perspective, medical education programs that develop innovation training programs and shift incentives from purely traditional basic and clinical science research to also include high-risk innovation will see increased student engagement in improving healthcare delivery and an increase in the quality and quantity of innovative solutions to medical problems being brought to market. PMID:25984273

  5. Stories From the Field: The Use of Information and Communication Technologies to Address the Health Needs of Underserved Populations in Latin America and the Caribbean

    PubMed Central

    Faba, Gladys; Julian, Soroya; Mejía, Felipe; Cabieses, Báltica; D'Agostino, Marcelo; Cortinois, Andrea A

    2015-01-01

    Background As their availability grew exponentially in the last 20 years, the use of information and communication technologies (ICT) in health has been widely espoused, with many emphasizing their potential to decrease health inequities. Nonetheless, there is scarce availability of information regarding ICT as tools to further equity in health, specifically in Latin American and Caribbean settings. Objective Our aim was to identify initiatives that used ICT to address the health needs of underserved populations in Latin America and Caribbean. Among these projects, explore the rationale behind the selection of ICT as a key component, probe perceptions regarding contributions to health equity, and describe the challenges faced during implementation. Methods We conducted an exploratory qualitative study. Interviews were completed via Skype or face-to-face meetings using a semistructured interview guide. Following participant consent, interviews were audio recorded and verbatim transcriptions were developed. All transcriptions were coded using ATLASti7 software. The text was analyzed for patterns, shared themes, and diverging opinions. Emerging findings were reviewed by all interviewers and shared with participants for feedback. Results We interviewed representatives from eight organizations in six Latin American and Caribbean countries that prominently employed ICT in health communication, advocacy, or surveillance projects. ICT expanded project's geographic coverage, increased their reach into marginalized or hard-to-reach groups, and allowed real-time data collection. Perceptions of contributions to health equity resided mainly in the provision of health information and linkage to health services to members of groups experiencing greater morbidity because of poverty, remote place of residence, lack of relevant public programs, and/or stigma and discrimination, and in more timely responses by authorities to the health needs of these groups as a result of the

  6. Communities Address Barriers to Connectivity.

    ERIC Educational Resources Information Center

    Byers, Anne

    1996-01-01

    Rural areas lag behind urban areas in access to information technologies. Public institutions play a critical role in extending the benefits of information technologies to those who would not otherwise have access. The most successful rural telecommunications plans address barriers to use, such as unawareness of the benefits, technophobia, the…

  7. Education and training in optics fabrication: establishing unique partnerships to address workforce training needs for optics and other high technology manufacturing

    SciTech Connect

    Kiernan, K. J., LLNL

    1998-03-11

    Over the past several years much concern has been voiced about the lack of trained technologists to support high-technology industry and manufacturing in the United States. Attracting and training both new members and upgrading and retraining current members of this area of the workforce has many challenges to address before adequate numbers of well trained individuals will be available to fill the growing demand and help secure our nation`s economic industrial edge. Among the concerns are the lack of effective training programs, available funding, career image, and vehicles to educate the public on the availability of positions and excellent rate of compensation. These concems which effect many areas of industrial manufacturing have been highlighted by government organizations, such as the Department of Labor statistics, and professional journals and publications. In the specific area of optical fabrication, journals such as ``Laser Focus: and Photon& Spectra`` have dedicated articles and editorials discussing the lack of optical fabrication training resources in the United States. Examples of other vocational areas lacking skilled workers, such as precision machinists, are reflected in articles in other publications such as ``Manufacturing Engineering``. The rising concern by both industry and educational institutions has given rise to examining new and innovative approaches to cooperatively solving these problems. In 1994, the American Association of Community Colleges in collaboration with the U.S. Department of Labor, published a study on creative partnerships between community colleges, business, industry and governmental organizations. The premise developed by the research editor was that while partnerships between colleges and private and public sectors have been developed with great benefit for many years, the challenges facing all parties concerned with workforce development going into a new century will require a new magnitude of creativity. Discussions

  8. Fundamentals and Technology of Surface-enhanced Raman Spectroscopy Through the Fabrication and Manipulation of Plasmonic Gold Metal Nanoparticle Dimers

    NASA Astrophysics Data System (ADS)

    Alexander, Kristen Delane

    2011-12-01

    Surface enhanced Raman spectroscopy (SERS) was originally discovered in the 1970s with the observation that organic molecules adsorbed onto a metal surface exhibit greatly enhanced Raman scattered light intensities when illuminated with a laser source. Enhancements of approximately 10 6 over regular Raman scattering have been commonly observed and proposed applications of SERS-active sensors exist over a wide range of fields, including chemical analysis, healthcare, food safety and national security, spurring an intense scientific interest in the area. More recently, observations of single- molecule SERS have demonstrated enhancement factors greater than 10 13 at random 'hot spots', but so far, these enhancement factors are poorly understood due to lack of reproducibility and lack of methodical characterization of such spots. Theoretical calculations have shown that the dominant field enhancements are specifically localized in the crevices between metal nanoparticles and are strongly dependent on particle morphology, excitation wavelength and, perhaps above all, particle-particle coupling. The focus of this thesis is to address experimentally theoretical predictions by fabricating SERS configurations and to make definitive measurements of the SERS magnitude at interparticle hot spots. In this work, metal nanoparticles have been directed to form ordered arrays exclusively of metal nanoparticle dimers with control over orientation, size and interparticle spacing. In order to achieve unprecedented control of the material and geometric variables, elastomeric substrates were used to change particle-particle distance while holding all other physical parameters constant. This fundamental new approach to hot spot creation has opened doors to a new family of SERS substrates, where the turning on/off of a hot spot is as easy as flipping a switch. Most recently, I have demonstrated the feasibility of this approach with long nanorods that show an outstanding theoretical SERS

  9. Challenges of Implementing New Technologies for Sustainable Energy. Opening address at the Sixth Grove Fuel Cell Symposium, London, 13-16 September 1999

    NASA Astrophysics Data System (ADS)

    Jørgen Koch, Hans

    To meet the commitments made in Kyoto, energy-related CO 2 emissions would have to fall to almost 30% below the level projected for a "Business-As-Usual" scenario. Meeting this goal will require a large-scale shift toward climate-friendly technologies such as fuel cells, which have a large long-term potential for both stationary generation and transportation. The deployment of a technology is the last major stage in the process of technological shift. Climate-friendly technologies are not being deployed at a sufficient rate or in sufficient amount to allow IEA countries to meet their targets. Hence, if technology is to play an important roll in reducing emissions within the Kyoto time frame (2008-2012) and beyond, immediate and sustained action to accelerate technology deployment will be required. Obstacles in the way of the deployment of technologies that are ready or near-ready for normal use have come to be referred to as market barriers. The simplest yet most significant form of market barrier to a new technology is the out-of-pocket cost to the user relative to the cost of technologies currently in use. Some market barriers also involve market failure, where the market fails to take account of all the costs and benefits involved, such as omitting external environmental costs, and therefore retard the deployment of more environmentally sustainable technologies. Other barriers include poor information dissemination, excessive and costly regulations, slow capital turnover rates, and inadequate financing. Efforts by governments to alleviate market barriers play an important role to complement private-sector activities, and there are many policies and measures each government could take. In addition, international technology collaboration can help promote the best use of available R&D resources and can contribute to more effective deployment of the result of research and development by sharing costs, pooling information and avoiding duplication of efforts.

  10. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology.

    PubMed

    Liu, Dongfei; Chen, Li; Jiang, Sunmin; Zhu, Shuning; Qian, Yong; Wang, Fengzhen; Li, Rui; Xu, Qunwei

    2014-03-01

    To successfully prepare the diclofenac sodium (DS)-loaded solid lipid nanoparticles (SLNs), phospholipid complexes (PCs) technology was applied here to improve the liposolubility of DS. Solid lipid nanoparticles (SLNs) loaded with phospholipid complexes (PCs) were prepared by the modified emulsion/solvent evaporation method. DS could be solubilized effectively in the organic solvents with the existence of phospholipid and apparent partition coefficient of DS in PCs increased significantly. X-ray diffraction analysis suggested that DS in PCs was either molecularly dispersed or in an amorphous form. However, no significant difference was observed between the Fourier transform infrared spectroscopy (FT-IR) spectra of physical mixture and that of PCs. Particles with small sizes, narrow polydispersity indexes and high entrapment efficiencies could be obtained with the addition of PCs. Furthermore, according to the transmission electron microscopy, a core-shell structure was likely to be formed. The presence of PCs caused the change of zeta potential and retarded the drug release of SLNs, which indicated that phospholipid formed multilayers around the solid lipid core of SLNs. Both FT-IR and differential scanning calorimetry analysis also illustrated that some weak interactions between DS and lipid materials might take place during the preparation of SLNs. In conclusion, the model hydrophilic drug-DS can be formulated into the SLNs with the help of PCs. PMID:24236407

  11. The New Digital [St]age: Barriers to the Adoption and Adaptation of New Technologies to Deliver Extension Programming and How to Address Them

    ERIC Educational Resources Information Center

    Seger, Jamie

    2011-01-01

    With the rise of social media and the need for statewide program cohesiveness, The Ohio State University Extension has the opportunity to position itself as a catalyst for technology adoption and adaptation nationwide. Unfortunately, many barriers exist to the successful use and implementation of technology, including an organizational structure…

  12. What English Language Teachers from the Peoples' Republic of China Find Surprising about Information Technology: Thoughts on How to Address the Need for Change

    ERIC Educational Resources Information Center

    Towndrow, Phillip A.

    2004-01-01

    Recent educational reforms in China are placing increasing emphasis on the integration of new technologies in the English language curriculum. At the same time, a debate has begun concerning the effectiveness of Information Technology (IT) usage in transforming language pedagogy in the Chinese context. In response to points made in the discussions…

  13. Nitric oxide nanoparticle technology: a novel antimicrobial agent in the context of current treatment of skin and soft tissue infection.

    PubMed

    Englander, Laura; Friedman, Adam

    2010-06-01

    Staphylococcus aureus infections account for the majority of skin and soft tissue infections in the United States. Staphylococcus aureus is rapidly evolving resistance to contemporary topical as well as systemic antibiotics. Alternatives to current treatment options for skin and soft tissue infections are needed for more effective treatment now and in the future. Nitric oxide's proven roles in both wound repair and as an antimicrobial agent make it an excellent candidate for the treatment of skin infections. Recent attempts at novel nitric oxide therapies, in the form of nitric oxide donors, have shown limited potential in treating cutaneous infection. However, more recent developments in nitric oxide delivery, using nitric oxide nanoparticle technology, demonstrate substantial promise in the promotion of wound repair and eradication of skin and soft tissue infections. PMID:20725551

  14. Nanoparticle Ag-enhanced textured-powder Bi-2212/Ag wire technology

    NASA Astrophysics Data System (ADS)

    Kellams, J. N.; McIntyre, P.; Pogue, N.; Vandergrifft, J.

    2015-12-01

    A new approach to the preparation of cores for Bi-2212/Ag wire is being developed. Nanoparticle Ag is homogeneously dispersed in Bi-2212 fine powder, and the mixture is uniaxially compressed to form highly textured, cold-sintered core rods. The rods can be assembled in a silver matrix, drawn to form multifilament wire, and restacked and drawn to form multifilament wire. Preliminary studies using tablet geometry demonstrate that a nonmelt heat treatment produces densification, grain growth, intergrowth among grains, and macroscopic current transport. The status of the development is reported.

  15. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and

  16. Fifteen Years Later: Has Positive Programming Become the Expected Technology for Addressing Problem Behavior? A Commentary on Homer et. al. (1990)

    ERIC Educational Resources Information Center

    Snell, Martha E.

    2005-01-01

    The author found it very satisfying to reread "Toward a technology of 'nonaversive' behavioral support," written in 1990 by Rob Horner and seven of his colleagues. Their predictions of the critical themes for advancing positive behavior support (PBS) ring true. Fifteen years have passed since the publication of this article, and much has happened…

  17. Industrial Arts and Technology, Past, Present, and Future; Addresses and Proceedings of the American Industrial Arts Association's Annual Convention (29th, Philadelphia, 1967).

    ERIC Educational Resources Information Center

    American Industrial Arts Association, Washington, DC.

    Manuscripts of 158 individual conference presentations are included. Speeches in each general session were centered on one of the following major topics--(1) Philosophical Bases of Industrial Arts--Four Poles, (2) Industrial Arts and the National Image, (3) The Cultural and Educational Heritage of Our Technological Society, (4) How and Where Can…

  18. Awards and Addresses Summary

    PubMed Central

    2008-01-01

    Each year at the annual ASHG meeting, addresses are given in honor of the society and a number of award winners. A summary of each of these addresses is given below. On the next pages, we have printed the Presidential Address and the addresses for the William Allan Award. The other addresses, accompanied by pictures of the speakers, can be found at www.ashg.org.

  19. Application of Response Surface Methodology for the Technological Improvement of Solid Lipid Nanoparticles.

    PubMed

    Dal Pizzol, Carine; O'Reilly, Andre; Winter, Evelyn; Sonaglio, Diva; de Campos, Angela Machado; Creczynski-Pasa, Tânia Beatriz

    2016-02-01

    Solid lipid nanoparticles (SLN) are colloidal particles consisting of a matrix composed of solid (at room and body temperatures) lipids dispersed in aqueous emulsifier solution. During manufacture, their physicochemical properties may be affected by several formulation parameters, such as type and concentration of lipid, proportion of emulsifiers and amount of solvent. Thus, the aim of this work was to study the influence of these variables on the preparation of SLN. A D-optimal Response Surface Methodology design was used to establish a mathematical model for the optimization of SLN. A total of 30 SLN formulations were prepared using the ultrasound method, and then characterized on the basis of their physicochemical properties, including particle size, polydispersity index (PI) and Zeta Potential (s). Particle sizes ranged between 107 and 240 nm. All SLN formulations showed negative sigma and PI values below 0.28. Prediction of the optimal conditions was performed using the desirability function targeting the reduction of all responses. The optimized SLN formulation showed similar theoretical and experimental values, confirming the sturdiness and predictive ability of the mathematical model for SLN optimization. PMID:27433573

  20. Magnetic content addressable memories

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenye

    Content Addressable Memories are designed with comparison circuits built into every bit cell. This parallel structure can increase the speed of searching from O(n) (as with Random Access Memories) to O(1), where n is the number of entries being searched. The high cost in hardware limits the application of CAM within situations where higher searching speed is extremely desired. Spintronics technology can build non-volatile Magnetic RAM with only one device for one bit cell. There are various technologies involved, like Magnetic Tunnel Junctions, off-easy-axis programming method, Synthetic Anti-Ferromagnetic tri-layers, Domain Wall displacement, Spin Transfer Torque tri-layers and etc. With them, particularly the Tunnel Magneto-Resistance variation in MTJ due to difference in magnetization polarity of the two magnets, Magnetic CAM can be developed with reduced hardware cost. And this is demonstrated by the discussion in this dissertation. Six MCAM designs are discussed. In the first design, comparand (C), local information (S) and their complements are stored into 4 MTJs connected in XOR gate pattern. The other five designs have one or two stacks for both information storage and comparison, and full TMR ratio can be taken advantage of. Two challenges for the five are specifically programming C without changing S and selectively programming a cell out of an array. The solutions to specific programming are: by confining the programming field for C in a ring structure design; by using field programming and spin polarized current programming respectively for C and S in the SAF+DW and SAF+STT tri-layer design; by making use of the difference in thresholds between direct mode and toggle mode switching in the SAF+SAF design. The problem of selective programming is addressed by off-easy-axis method and by including SAF tri-layers. Cell with STT tri-layers for both C and S can completely avoid the problems of specific and selective programming, but subject to the limit of

  1. The DOE Vadose Zone Science and Technology Roadmap: A National Program to Address Characeterization, Monitoring and Simulation of Subsurface Contaminant Fate and Transport

    SciTech Connect

    Kowall, Stephen Jacob

    2001-02-01

    The vadose zone comprises the region lying between the earth’s surface and the top of the regional seasonal aquifer. Until recently contamination in the vadose zone was believed to remain relatively immobile. Thus, little attention was paid to understanding the nature of the vadose zone or the potential pathways for contaminants to migrate through it to the water table or other accessible environments. However, recent discoveries of contaminants migrating considerable distances through the vadose zone at several Department of Energy (DOE) sites have changed many assumptions both about the nature and function of the vadose zone and the importance we place on understanding this region. As a result of several vadose zone surprises, DOE Environmental Management (EM) tasked the Idaho National Engineering and Environmental Laboratory (INEEL) to lead the development of a vadose zone science and technology roadmap. The roadmap is focused on identifying research spanning the next 25 years necessary to be able to better predict the fate and transport of contaminants in the vadose zone. This in turn will provide the basis for reducing scientific uncertainty in environmental remediation and, especially, vadose zone related long-term stewardship decisions across the DOE complex. Vadose zone issues are now recognized as a national problem affecting other federal agencies as well as state and municipal sites with similar problems. Over the next few decades, dramatic and fundamental advances in computing, communication, electronics and micro-engineered systems will transform our understanding of many aspects of the scientific and technical challenges we face today. The roadmap will serve to develop a common perspective on possible future science and technology needs in an effort to help make better R&D investment decisions.

  2. Assessing Nanoparticle Toxicity

    NASA Astrophysics Data System (ADS)

    Love, Sara A.; Maurer-Jones, Melissa A.; Thompson, John W.; Lin, Yu-Shen; Haynes, Christy L.

    2012-07-01

    Nanoparticle toxicology, an emergent field, works toward establishing the hazard of nanoparticles, and therefore their potential risk, in light of the increased use and likelihood of exposure. Analytical chemists can provide an essential tool kit for the advancement of this field by exploiting expertise in sample complexity and preparation as well as method and technology development. Herein, we discuss experimental considerations for performing in vitro nanoparticle toxicity studies, with a focus on nanoparticle characterization, relevant model cell systems, and toxicity assay choices. Additionally, we present three case studies (of silver, titanium dioxide, and carbon nanotube toxicity) to highlight the important toxicological considerations of these commonly used nanoparticles.

  3. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication

    NASA Astrophysics Data System (ADS)

    Teoh, Wey Yang; Amal, Rose; Mädler, Lutz

    2010-08-01

    Combustion of appropriate precursor sprays in a flame spray pyrolysis (FSP) process is a highly promising and versatile technique for the rapid and scalable synthesis of nanostuctural materials with engineered functionalities. The technique was initially derived from the fundamentals of the well-established vapour-fed flame aerosols reactors that was widely practised for the manufacturing of simple commodity powders such as pigmentary titania, fumed silica, alumina, and even optical fibers. In the last 10 years however, FSP knowledge and technology was developed substantially and a wide range of new and complex products have been synthesised, attracting major industries in a diverse field of applications. Key innovations in FSP reactor engineering and precursor chemistry have enabled flexible designs of nanostructured loosely-agglomerated powders and particulate films of pure or mixed oxides and even pure metals and alloys. Unique material morphologies such as core-shell structures and nanorods are possible using this essentially one step and continuous FSP process. Finally, research challenges are discussed and an outlook on the next generation of engineered combustion-made materials is given.

  4. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication.

    PubMed

    Teoh, Wey Yang; Amal, Rose; Mädler, Lutz

    2010-08-01

    Combustion of appropriate precursor sprays in a flame spray pyrolysis (FSP) process is a highly promising and versatile technique for the rapid and scalable synthesis of nanostuctural materials with engineered functionalities. The technique was initially derived from the fundamentals of the well-established vapour-fed flame aerosols reactors that was widely practised for the manufacturing of simple commodity powders such as pigmentary titania, fumed silica, alumina, and even optical fibers. In the last 10 years however, FSP knowledge and technology was developed substantially and a wide range of new and complex products have been synthesised, attracting major industries in a diverse field of applications. Key innovations in FSP reactor engineering and precursor chemistry have enabled flexible designs of nanostructured loosely-agglomerated powders and particulate films of pure or mixed oxides and even pure metals and alloys. Unique material morphologies such as core-shell structures and nanorods are possible using this essentially one step and continuous FSP process. Finally, research challenges are discussed and an outlook on the next generation of engineered combustion-made materials is given. PMID:20820719

  5. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics.

    PubMed

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A

    2014-01-01

    RNA interference (RNAi) gene silencing by small interfering RNAs (siRNAs) offers a potent and highly specific therapeutic strategy; however, enabling technologies that overcome extracellular and intracellular barriers are required. Polycation-based nanoparticles (termed polyplexes) composed of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA. PMID:25409611

  6. Addressivity in cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  7. Comparison of some morphological and absorption properties of the nanoparticles Au/TiO2 embedded films prepared by different technologies on the substrates for application in the plasmonic solar cell

    NASA Astrophysics Data System (ADS)

    Dao, Khac An; Thuy Nguyen, Thi; Huong Nguyen, Thi Mai; Nguyen, Duy Thien

    2015-03-01

    The nanoparticle Au/TiO2 embedded system plays a very important role in the plasmonic solar cell. The features of the nanoparticle embedded system will determine light enhancement, light absorption, scattering and localized surface plasmon resonance (LSPR), aiming to enhance the efficiency of the plasmatic solar cell. The characterizations of nanoparticles Au/TiO2 embedded system consist of many parameters: the sizes of nanoparticles (Au, TiO2), the weight ratio of Au to TiO2, the thickness of the single layer or multilayer of Au/TiO2, the arrangements of Au and TiO2 nanoparticles in integrated-matrix system, the light absorption, scattering and LSPR capacities of the Au/TiO2 system. These parameters, however, depend on the technological conditions, the structure of plasmonic solar cell as well as the used substrate materials. This paper presents some technological developments for nanoparticles Au/TiO2 embedded systems by different methods, including the preparation of the mixer Au/TiO2 solutions and fabrication of the nanoparticle Au/TiO2 systems with different Au percentages on several substrates (glass/ITO and AAO(Al)/Si…), and measured results of the morphological, structural and optical properties using FESEM, EDX, UV-vis spectroscopy. The comparisons of experiment results between different technology conditions and substrates (glass/ITO, AAO(Al)/Si…) are also shown and discussed with the aim of choosing the suitable technological process and technological conditions for application in the plasmonic solar cell.

  8. Addressing Social Issues.

    ERIC Educational Resources Information Center

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  9. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  10. Address of the President

    ERIC Educational Resources Information Center

    Ness, Frederic W.

    1976-01-01

    The president of the Association of American Colleges addresses at the 62nd annual meeting the theme of the conference: "Looking to the Future--Liberal Education in a Radically Changing Society." Contributions to be made by AAC are examined. (LBH)

  11. Addressing Sexual Harassment

    ERIC Educational Resources Information Center

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  12. Space sciences - Keynote address

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.

    1990-01-01

    The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.

  13. Detection of food-borne pathogens by nanoparticle technology coupled to a low-cost cell reader

    NASA Astrophysics Data System (ADS)

    Noiseux, Isabelle; Bouchard, Jean-Pierre; Gallant, Pascal; Bourqui, Pascal; Cao, Honghe; Vernon, Marci; Johnson, Roger; Chen, Shu; Mermut, Ozzy

    2010-02-01

    The detection, identification and quantification of pathogenic microorganisms at low cost are of great interest to the agro-food industry. We have developed a simple, rapid, sensitive, and specific method for detection of food-borne pathogens based on use of nanoparticles alongside a low cost fluorescence cell reader for the bioassay. The nanoparticles are coupled with antibodies that allow specific recognition of the targeted Listeria in either a liquid or food matrix. The bioconjugated nanoparticles (FNP) contain thousands of dye molecules enabling significant amplification of the fluorescent signal emitted from each bacterium. The developed fluorescence Cell Reader is an LED-based reader coupled with suitable optics and a camera that acquires high resolution images. The dedicated algorithm allowed the counting of each individual nanoparticles-fluorescent bacterial cells thus enabling highly sensitive reading. The system allows, within 1 hour, the recovery and counting of 104 to 108 cfu/mL of Listeria in pure culture. However, neither the Cell Reader nor the algorithm can differentiate between the FNPs specifically-bound to the target and the residual unbound FNPs limiting sensitivity of the system. Since FNPs are too small to be washed in the bioassay, a dual tagging approach was implemented to allow online optical separation of the fluorescent background caused by free FNPs.

  14. Excerpts from keynote address

    SciTech Connect

    Creel, G.C.

    1995-06-01

    Excerpts from the keynote principally address emissions issues in the fossil power industry as related to heat rate improvements. Stack emissions of both sulfur and nitrogen oxides are discussed, and a number of examples are given: (1) PEPCO`s Potomac River Station, and (2) Morgantown station`s NOX reduction efforts. Circulating water emissions are also briefly discussed, as are O & M costs of emission controls.

  15. Holographic content addressable storage

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  16. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  17. Addressing Environmental Health Inequalities.

    PubMed

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), "Addressing Environmental Health Inequalities-Proceedings from the ISEE Conference 2015", we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  18. Nanoparticle-Based Modulation of the Immune System.

    PubMed

    Fang, Ronnie H; Zhang, Liangfang

    2016-06-01

    The immune system is an incredibly complex biological network that plays a significant role in almost all disease pathogenesis. With an increased understanding of how this vital system operates, there has been a great emphasis on leveraging, manipulating, and/or supplementing endogenous immunity to better prevent or treat different disease states. More recently, the advent of nanotechnology has ushered in a plethora of new nanoparticle-based platforms that can be used to improve existing immunomodulation modalities. As the ability to engineer at the nanoscale becomes increasingly sophisticated, nanoparticles can be finely tuned to effect the desired immune responses, leading to exciting new avenues for addressing pressing issues in public health. In this review, we give an overview of the different areas in which nanoparticle technology has been applied toward modulating the immune system and highlight the recent advances within each. PMID:27146556

  19. NANODEVICE: Novel Concepts, Methods, and Technologies for the Production of Portable, Easy-to-use Devices for the Measurement and Analysis of Airborne Engineered Nanoparticles in Workplace Air

    NASA Astrophysics Data System (ADS)

    Sirviö, Sari; Savolainen, Kai

    2011-07-01

    NANODEVICE is a research project funded by the European Commission in the context of the 7th Framework Programme. The duration is 48 months starting 1st of April 2009. Due to their unique properties, engineered nanoparticles (ENP) are now used for a myriad of novel applications, and have a great economic and technological importance. However, some of these properties, especially their surface reactivity, have raised health concerns due to their potential health effects. There is currently a shortage of field-worthy, cost-effective ways - especially in real time - for reliable assessment of exposure levels to ENP in workplace air. NANODEVICE will provide new information on the physico-chemical properties of engineered nanoparticles (ENP) and information about their toxicology. The main emphasis of the project is in the development of novel measuring devices to assess the exposure to ENP's from workplace air. The purpose of the project is also to promote the safe use of ENP through guidance, standards and education, implementing of safety objectives in ENP production and handling, and promotion of safety related collaborations through an international nanosafety forum. The main project goal is to develop innovative concepts and reliable methods for characterizing ENP in workplace air with novel, portable and easy-to-use devices suitable for workplaces.

  20. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  1. Bax: Addressed to kill.

    PubMed

    Renault, Thibaud T; Manon, Stéphen

    2011-09-01

    The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane. PMID:21641962

  2. Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticles.

    PubMed

    Kinge, Sachin; Gang, Tian; Naber, Wouter J M; Boschker, Hans; Rijnders, Guus; Reinhoudt, David N; van der Wiel, Wilfred G

    2009-09-01

    Magnetic nanoparticles are of great scientific and technological interest. The application of ferromagnetic nanoparticles for high-density data storage has great potential, but energy efficient synthesis of uniform, isolated, and patternable nanoparticles that remain ferromagnetic at room temperature is not trivial. Here, we present a low-temperature solution synthesis method for FePtAu nanoparticles that addresses all those issues and therefore can be regarded as an important step toward applications. We show that the onset of the chemically ordered face-centered tetragonal (L1(0)) phase is obtained for thermal annealing temperatures as low as 150 degrees C. Large uniaxial magnetic anisotropy (10(7) erg/cm(3)) and a high long-range order parameter have been obtained. Our low-temperature solution annealing leaves the organic ligands intact, so that the possibility for postanneal monolayer formation and chemically assisted patterning on a surface is maintained. PMID:19691342

  3. Photoswitchable fluorescent nanoparticles and their emerging applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanlin; Zhang, Kaiquan; Wang, Jie; Tian, Zhiyuan; Li, Alexander D. Q.

    2015-11-01

    Although fluorescence offers ultrasensitivity, real-world applications of fluorescence techniques encounter many practical problems. As a noninvasive means to investigate biomolecular mechanisms, pathways, and regulations in living cells, the intrinsic heterogeneity and inherent complexity of biological samples always generates optical interferences such as autofluorescence. Therefore, innovative fluorescence technologies are needed to enhance measurement reliability while not compromising sensitivity. In this review, we present current strategies that use photoswitchable nanoparticles to address these real-world challenges. The unique feature in these photoswitchable nanoparticles is that fundamental molecular photoswitches are playing the critical role of fluorescence modulation rather than traditional methods like modulating the light source. As a result, new innovative technologies that have recently emerged include super-resolution imaging, frequency-domain imaging, antiphase dual-color correlation, etc. Some of these methods improve imaging resolution down to the nanometer level, while others boost the detection sensitivity by orders of magnitude and confirm the nanoparticle probes unambiguously. These enhancements, which are not possible with non-photoswitching molecular probes, are the central topics of this review.

  4. Theoretical Approaches to Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof

    Nanoparticles can be viewed as wave resonators. Involved waves are, for example, carrier waves, plasmon waves, polariton waves, etc. A few examples of successful theoretical treatments that follow this approach are given. In one, an effective medium theory of a nanoparticle composite is presented. In another, plasmon polaritonic solutions allow to extend concepts of radio technology, such as an antenna and a coaxial transmission line, to the visible frequency range.

  5. Integrating Technology in Program Development for Children and Youth with Emotional or Behavioral Disorders. Fourth CCBD Mini-Library Series: Addressing the Diverse Needs of Children and Youth with Emotional/Behavioral Disorders--Programs That Work.

    ERIC Educational Resources Information Center

    Wilder, Lynn K., Ed.; Black, Sharon, Ed.

    This monograph presents research-based solutions to the integration of technology in programs serving students with emotional and/or behavior disorders. Chapters include: (1) "Introduction: Technology, the Great Equalizer" (Lynn K. Wilder) which considers challenges and solutions to the technology challenge; (2) "Project PEGS! Interactive CDs for…

  6. Quantification of intracellular payload release from polymersome nanoparticles

    PubMed Central

    Scarpa, Edoardo; Bailey, Joanne L.; Janeczek, Agnieszka A.; Stumpf, Patrick S.; Johnston, Alexander H.; Oreffo, Richard O. C.; Woo, Yin L.; Cheong, Ying C.; Evans, Nicholas D.; Newman, Tracey A.

    2016-01-01

    Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid nanoparticles, there is very little data available on intracellular release of molecules encapsulated in membranous carriers, such as polymersomes. Here, we addressed this by developing a quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM disruption and cytosolic release of fluorescein. By combining absorbance measurements with flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell resolution. We found that 173 ± 38 polymersomes released their payload per cell, with significant heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for quantification of the release of compounds from nanoparticles provides fundamental information on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic nature of population distribution in homogeneous cell populations, a factor that must be taken into account in clinical use of this technology. PMID:27404770

  7. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  8. Nanosecond Dynamics in Pt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vila, F. D.; Moore, J. M.; Rehr, J. J.

    2014-03-01

    Understanding the physical and chemical behavior of supported catalysts is of fundamental and technological importance. However, due to the complex nature of their structure and dynamics at operando temperatures, their nanoscale behavior remains poorly understood. We have shown that DFT/MD calculations provide fundamental insight into the few ps dynamic structure of the nanoparticles, but such methods can be very computationally intensive.[2,3] In order to examine relaxation dynamics in the ns regime here we present finite temperature MD simulations based on a modified Sutton-Chen (SC) model potential, supplemented with Lennard-Jones potentials for the interaction with the support. We find that bulk SC parameters tend to produce nanoparticles with less fluxional dynamics than those in ab initio simulations. To address this issue, we have determined modified SC parameters that capture the DFT dynamics. Nanosecond simulations reveal regimes controlled by internal particle melting and activation of surface mobility. The approach is illustrated for nano-catalysts of Pt/ γ-alumina and compared with ab initio DFT/MD results. Supported in part by DOE grant DE-FG02-03ER15476 (F.D.V and J.J.R) and by NSF grant PHY-1262811, REU Site: University of Washington Physics (J.M.M.), with computer support from DOE - NERSC.

  9. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  10. 2014 ASHG Awards and Addresses

    PubMed Central

    2015-01-01

    Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these addresses is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.

  11. 2013 ASHG Awards and Addresses

    PubMed Central

    2014-01-01

    Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these addresses is given below. On the following pages, we have printed the Presidential Address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.

  12. Imaging through plasmonic nanoparticles

    PubMed Central

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-01-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  13. Imaging through plasmonic nanoparticles.

    PubMed

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J; Cui, Yao; Hogan, Nathaniel J; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J

    2016-05-17

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  14. Imaging through plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  15. Synthetic pathways to make nanoparticles fluorescent

    NASA Astrophysics Data System (ADS)

    Sokolova, Viktoriya; Epple, Matthias

    2011-05-01

    In biosciences, it is often necessary to follow the pathway of nanoparticles within cells or tissues. The nanoparticles can be used as labeled sensors which may, e.g., address functionalities within a cell, carry other specific agents like drugs or be magnetic for tumor thermotherapy. In the context of nanotoxicology, the fate of a given nanoparticle is of interest. As many methods in cell biology are based on fluorescence detection, there is a strong demand to make nanoparticles fluorescent. Different ways to introduce fluorescence are reviewed and exemplified with typical kinds of nanoparticles, i.e. polymers, silica and calcium phosphate.

  16. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    PubMed

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance. PMID:27455628

  17. Silver nanoparticles as potential antibacterial agents.

    PubMed

    Franci, Gianluigi; Falanga, Annarita; Galdiero, Stefania; Palomba, Luciana; Rai, Mahendra; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-01-01

    Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials. PMID:25993417

  18. Industrial Arts: Preparation for Life in a Technological World." Addresses and Proceedings of the 41st National and 8th International Annual Conference of the American Industrial Arts Association, (San Antonio, Texas, February 26-March 2, 1979).

    ERIC Educational Resources Information Center

    American Industrial Arts Association, Washington, DC.

    Included in this document are the addresses and proceedings of the 41st National and 8th International Annual Conference of the American Industrial Arts Association. The proceedings are organized by the following subject groups: curriculum, drafting, electricity/electronics, elementary school industrial arts, energy/power, evaluation, futurology,…

  19. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  20. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. PMID:20659510

  1. Nanoparticles and cars - analysis of potential sources

    PubMed Central

    2012-01-01

    Urban health is potentially affected by particle emissions. The potential toxicity of nanoparticles is heavily debated and there is an enormous global increase in research activity in this field. In this respect, it is commonly accepted that nanoparticles may also be generated in processes occurring while driving vehicles. So far, a variety of studies addressed traffic-related particulate matter emissions, but only few studies focused on potential nanoparticles. Therefore, the present study analyzed the literature with regard to nanoparticles and cars. It can be stated that, to date, only a limited amount of research has been conducted in this area and more studies are needed to 1) address kind and sources of nanoparticles within automobiles and to 2) analyse whether there are health effects caused by these nanoparticles. PMID:22726351

  2. Inorganic Nanoparticles in Cancer Therapy

    PubMed Central

    Bhattacharyya, Sanjib; Kudgus, Rachel A.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-01-01

    Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies. PMID:21104301

  3. [Toxicity of nanoparticles on reproduction].

    PubMed

    Greco, F; Courbière, B; Rose, J; Orsière, T; Sari-Minodier, I; Bottero, J-Y; Auffan, M; Perrin, J

    2015-01-01

    Nanoparticles (NPs) are sized between 1 and 100nm. Their size allows new nanoscale properties of particular interest for industrial and scientific purpose. Over the past twenty years, nanotechnology conquered many areas of use (electronic, cosmetic, textile…). While, human is exposed to an increasing number of nanoparticles sources, health impacts and, particularly on reproductive function, remains poorly evaluated. Indeed, traceability of nanoparticles use is lacking and nanotoxicology follows different rules than classical toxicology. This review focuses on the impact of NPs on health and particularly on fertility and addresses potential risks of chronic exposure to NPs on human fertility. PMID:25533638

  4. Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology.

    PubMed

    Sarmast, Mostafa K; Salehi, H

    2016-07-01

    Profound interest and progress has been made since the invention of nanotechnology in 1959. However, its application in plant tissue culture and biotechnology has not been fully acknowledged in parallel with other facets of this technology. In this manuscript, the AgNPs effects on plant tissue culture and biotechnology encompass their antimicrobial effects and their mechanisms of action addressed to some extends. Moreover, their effects on seedling growth also reviewed. Most of the presented papers in the field of plant science have focused on antimicrobial effects of silver nanoparticles but its interesting inhibitory effects of plant senescence phytohormone ethylene, most likely can open a new window for future research. PMID:27146282

  5. Antimicrobial precious-metal nanoparticles and their use in novel materials.

    PubMed

    Senior, Katharina; Müller, Stefanie; Schacht, Veronika J; Bunge, Michael

    2012-12-01

    Nanotechnology offers powerful new approaches to controlling unwanted microorganisms and other potential biohazards. Engineered nanoparticles with antifungal, antimicrobial, and antiviral properties are now being developed for a variety of applications, including manufacture and maintenance of sterile surfaces, prevention and control of biological contamination, food and water safety, and treatment of infectious diseases and cancer. The great potential of antimicrobial precious-metal nanoparticles is reflected by the high number of recent publications and patent applications, which is summarized, at least in part, in this paper. This review should provide an overview and offer guidance to the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology, and may also be of interest to a broader scientific audience. Furthermore, this review covers specific topics in research and development addressing the effects of nanoparticles on microorganisms as well as novel nanotechnology-based approaches for controlling potentially pathogenic microorganisms. PMID:23013409

  6. Toxicity of Engineered Nanoparticles in the Environment

    PubMed Central

    Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.

    2014-01-01

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995

  7. Addressing Public Concerns about GMOs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introduction of genetic engineering technology to agriculture has raised concerns in the public sector regarding the safety of applying this technology to the food supply. Concerns focus on two major issues: human/animal health and environmental risks. Such concerns have arisen in part because...

  8. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems. PMID:21537142

  9. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  10. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  11. Keynote Address: Rev. Mark Massa

    ERIC Educational Resources Information Center

    Massa, Mark S.

    2011-01-01

    Rev. Mark S. Massa, S.J., is the dean and professor of Church history at the School of Theology and Ministry at Boston College. He was invited to give a keynote to begin the third Catholic Higher Education Collaborative Conference (CHEC), cosponsored by Boston College and Fordham University. Fr. Massa's address posed critical questions about…

  12. State of the Lab Address

    ScienceCinema

    King, Alex

    2013-03-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  13. State of the Lab Address

    SciTech Connect

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synthesis and photoluminescence properties of Nd2O3 nanoparticles modified by sodium bis(2-ethylhexyl) sulfosuccinate

    NASA Astrophysics Data System (ADS)

    Ren, Jian-Hua; Zhao, Tong-Gang; Liu, Jian-Hua; Kong, Juan; He, Jia-Xin; Guo, Lin

    2008-12-01

    This paper reports that Nd2O3 nanoparticles modified by AOT(sodium bis(2-ethylhexyl) sulfosuccinate) were prepared using microemulsion method in the system of water and propanol/AOT/toluene. Transmission electron microscopy shows that the Nd2O3 nanoparticles take the shape of sphere with 18 nm and 31 nm with different preparation. The organic sol of Nd2O3 nanoparticles is very stable at room temperature. X-ray diffraction results show that the product has hexagonal phase structure. Two ultraviolet emission band at 344 nm and 361 nm corresponding to the transition of 4D3/2 → 4 I9/2 and 2P3 /2 →4 I11/2 or 4D3/2 → 4 I13/2 were observed.

  15. Studies on the biodistribution of dextrin nanoparticles

    NASA Astrophysics Data System (ADS)

    Gonçalves, C.; Ferreira, M. F. M.; Santos, A. C.; Prata, M. I. M.; Geraldes, C. F. G. C.; Martins, J. A.; Gama, F. M.

    2010-07-01

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a γ-emitting 153Sm3 + radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  16. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  17. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Matching Alternative Addresses: a Semantic Web Approach

    NASA Astrophysics Data System (ADS)

    Ariannamazi, S.; Karimipour, F.; Hakimpour, F.

    2015-12-01

    Rapid development of crowd-sourcing or volunteered geographic information (VGI) provides opportunities for authoritatives that deal with geospatial information. Heterogeneity of multiple data sources and inconsistency of data types is a key characteristics of VGI datasets. The expansion of cities resulted in the growing number of POIs in the OpenStreetMap, a well-known VGI source, which causes the datasets to outdate in short periods of time. These changes made to spatial and aspatial attributes of features such as names and addresses might cause confusion or ambiguity in the processes that require feature's literal information like addressing and geocoding. VGI sources neither will conform specific vocabularies nor will remain in a specific schema for a long period of time. As a result, the integration of VGI sources is crucial and inevitable in order to avoid duplication and the waste of resources. Information integration can be used to match features and qualify different annotation alternatives for disambiguation. This study enhances the search capabilities of geospatial tools with applications able to understand user terminology to pursuit an efficient way for finding desired results. Semantic web is a capable tool for developing technologies that deal with lexical and numerical calculations and estimations. There are a vast amount of literal-spatial data representing the capability of linguistic information in knowledge modeling, but these resources need to be harmonized based on Semantic Web standards. The process of making addresses homogenous generates a helpful tool based on spatial data integration and lexical annotation matching and disambiguating.

  19. Nanoparticle Reactions on Chip

    NASA Astrophysics Data System (ADS)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  20. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Montes Castillo, Milka Odemariz

    Extraordinary chemical and physical properties exhibited by nanomaterials, as compared to their bulk counterparts, have made the area of nanotechnology a growing realm in the past three decades. It is the nanoscale size (from 1 to 100 nm) and the morphologies of nanomaterials that provide several properties and applications not possible for the same material in the bulk. Magnetic and optical properties, as well as surface reactivity are highly dependent on the size and morphology of the nanomaterial. Diverse nanomaterials are being widely used in molecular diagnostics as well as in medicine, electronic and optical devices. Among the most studied nanomaterials, gold nanoparticles are of special interest due to their multifunctional capabilities. For instance, spherical gold nanoparticles measuring 15-20 nm in diameter have been studied due to their insulin binding properties. Also, thiol functionalized gold nanoparticles between 5 and 30 nm are used in the detection of DNA. Thus, harnessing the shape and size of gold nanoparticles plays an important role in science and technology. The synthesis of gold nanoparticles via the reduction of gold salts, using citrate or other reducing agents, has been widely studied. In recent years, algae, fungi, bacteria, and living plants have been used to reduce trivalent gold (Au3+) to its zero oxidation state (Au 0) forming gold nanoparticles of different sizes and shapes. In addition, plant biomasses have also been studied for their gold-reducing power and nanoparticle formation. Although there is information about the synthesis of the gold nanoparticles by biologically based materials; to our knowledge, the study of the use of alfalfa extracts has not been reported. This innovation represents a significant improvement; that is an environmentally friendly method that does not use toxic chemicals. Also, the problem of extracting the formed gold nanoparticles from biomaterials is addressed in this research but still remains to be

  1. Gold Nanoparticles for Nucleic Acid Delivery

    PubMed Central

    Ding, Ya; Jiang, Ziwen; Saha, Krishnendu; Kim, Chang Soo; Kim, Sung Tae; Landis, Ryan F; Rotello, Vincent M

    2014-01-01

    Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and RNA-interference technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell. PMID:24599278

  2. Final Report on Internet Addressable Lightswitch

    SciTech Connect

    Rubinstein, Francis; Pettler, Peter

    2001-08-27

    This report describes the work performed to develop and test a new switching system and communications network that is useful for economically switching lighting circuits in existing commercial buildings. The first section of the report provides the general background of the IBECS (Integrated Building Environmental Communications System) research and development work as well as the context for the development of the new switching system. The research and development effort that went into producing the first proof-of-concept (the IBECS Addressable Power Switch or APS) and the physical prototype of that concept is detailed in the second section. In the third section of the report, we detail the refined Powerline Carrier Based IBECS Title 24 Wall Switch system that evolved from the APS prototype. The refined system provided a path for installing IBECS switching technology in existing buildings that may not be already wired for light level switching control. The final section of the report describes the performance of the IBECS Title 24 Switch system as applied to a small demonstration in two offices at LBNL's Building 90. We learned that the new Powerline Carrier control systems (A-10 technology) that have evolved from the early X-10 systems have solved most of the noise problems that dogged the successful application of X-10 technologies in commercial buildings. We found that the new A-10 powerline carrier control technology can be reliable and effective for switching lighting circuits even in electrically noisy office environments like LBNL. Thus we successfully completed the task objectives by designing, building and demonstrating a new switching system that can provide multiple levels of light which can be triggered either from specially designed wall switches or from a digital communications network. By applying commercially available powerline carrier based technologies that communicate over the in-place lighting wiring system, this type of control can be

  3. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  4. Addressing the workforce pipeline challenge

    SciTech Connect

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  5. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  6. Identifying and addressing vaccine hesitancy.

    PubMed

    Kestenbaum, Lori A; Feemster, Kristen A

    2015-04-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as "vaccine hesitant." This phenomenon has developed due to the confluence of multiple social, cultural, political, and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  7. Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Löhr, Konrad; Karabudak, Engin; Reis, Wieland; Mikhael, Jules; Peukert, Wolfgang; Wohlleben, Wendel; Cölfen, Helmut

    2014-09-23

    The worldwide trend in nanoparticle technology toward increasing complexity must be directly linked to more advanced characterization methods of size, shape and related properties, applicable to many different particle systems in science and technology. Available techniques for nanoparticle characterization are predominantly focused on size characterization. However, simultaneous size and shape characterization is still an unresolved major challenge. We demonstrate that analytical ultracentrifugation with a multiwavelength detector is a powerful technique to address multidimensional nanoparticle analysis. Using a high performance optical setup and data acquisition software, information on size, shape anisotropy and optical properties were accessible in one single experiment with unmatched accuracy and resolution. A dynamic rotor speed gradient allowed us to investigate broad distributions on a short time scale and differentiate between gold nanorod species including the precise evaluation of aggregate formation. We report how to distinguish between different species of single-wall carbon nanotubes in just one experiment using the wavelength-dependent sedimentation coefficient distribution without the necessity of time-consuming purification methods. Furthermore, CdTe nanoparticles of different size and optical properties were investigated in a single experiment providing important information on structure-property relations. Thus, multidimensional information on size, density, shape and optical properties of nanoparticulate systems becomes accessible by means of analytical ultracentrifugation equipped with multiwavelength detection. PMID:25130765

  8. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  9. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  10. Addressing concerns and achieving expectations

    SciTech Connect

    Miller, C.L.

    1995-12-01

    Approximately 2-1/2 years ago many of us were gathered here in Prague at a similar conference with a similar name, {open_quotes}Energy and Environment: Transitions in Eastern Europe.{close_quotes} Over 300 professionals from 26 nations attended. The objective of the conference was to: Facilitate the Solution of Long and Short Term Energy and Environmental Problems in Eastern Europe by Bringing Together People, ideas and technologies which could be applied to specific problems in a logical step-by-step manner. It was conceded at the time that the long term solution would consist of thoughtfully integrated steps and that the conference was the first step. We are here in the Czech Republic again this week to continue what was started. As before, this conference continues to: (1) Provide a forum to identify and discuss cost-effective environmentally acceptable energy and environmental technology options and their associated socioeconomic issues. (2) Stimulate the Formation of business partnerships (3) Identify key barrier issues hindering technology applications and identify implementation pathways that eliminate or avoid obstacles to progress.

  11. Commercial Nanoparticles for Stem Cell Labeling and Tracking

    PubMed Central

    Wang, Yaqi; Xu, Chenjie; Ow, Hooisweng

    2013-01-01

    Stem cell therapy provides promising solutions for diseases and injuries that conventional medicines and therapies cannot effectively treat. To achieve its full therapeutic potentials, the homing process, survival, differentiation, and engraftment of stem cells post transplantation must be clearly understood. To address this need, non-invasive imaging technologies based on nanoparticles (NPs) have been developed to track transplanted stem cells. Here we summarize existing commercial NPs which can act as contrast agents of three commonly used imaging modalities, including fluorescence imaging, magnetic resonance imaging and photoacoustic imaging, for stem cell labeling and tracking. Specifically, we go through their technologies, industry distributors, applications and existing concerns in stem cell research. Finally, we provide an industry perspective on the potential challenges and future for the development of new NP products. PMID:23946821

  12. Addressing viral resistance through vaccines

    PubMed Central

    Laughlin, Catherine; Schleif, Amanda; Heilman, Carole A

    2015-01-01

    Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections. PMID:26604979

  13. Addressing failures in exascale computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  14. Light addressable photoelectrochemical cyanide sensor

    SciTech Connect

    Licht, S.; Myung, N.; Sun, Y.

    1996-03-15

    A sensor is demonstrated that is capable of spatial discrimination of cyanide with use of only a single stationary sensing element. Different spatial regions of the sensing element are light activated to reveal the solution cyanide concentration only at the point of illumination. In this light addressable photoelectrochemical (LAP) sensor the sensing element consists of an n-CdSe electrode immersed in solution, with the open-circuit potential determined under illumination. In alkaline ferro-ferri-cyanide solution, the open-circuit photopotential is highly responsive to cyanide, with a linear response of (120 mV) log [KCN]. LAP detection with a spatial resolution of {+-}1 mm for cyanide detection is demonstrated. The response is almost linear for 0.001-0.100 m cyanide with a resolution of 5 mV. 38 refs., 7 figs., 1 tab.

  15. Addressing Failures in Exascale Computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  16. Remediation tradeoffs addressed with simulated annealing optimization

    SciTech Connect

    Rogers, L. L., LLNL

    1998-02-01

    Escalation of groundwater remediation costs has encouraged both advances in optimization techniques to balance remediation objectives and economics and development of innovative technologies to expedite source region clean-ups. We present an optimization application building on a pump-and-treat model, yet assuming a prior removal of different portions of the source area to address the evolving management issue of more aggressive source remediation. Separate economic estimates of in-situ thermal remediation are combined with the economic estimates of the subsequent optimal pump-and-treat remediation to observe tradeoff relationships of cost vs. highest remaining contamination levels (hot spot). The simulated annealing algorithm calls the flow and transport model to evaluate the success of a proposed remediation scenario at a U.S.A. Superfund site contaminated with volatile organic compounds (VOCs).

  17. Extreme space weather studies: Addressing societal needs

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.

    2014-12-01

    Extreme space weather events can adversely impact the operations of critical modern-day technological infrastructure such as high-voltage electric power transmission grids. Understanding of coupled magnetosphere-ionosphere dynamics under extreme solar wind driving conditions is still a major challenge mainly because of a lack of data during such time intervals. This presentation will highlight some of the past and on-going investigations on extreme space weather events, and how these investigations are used to address societal needs. Particularly, I will describe how first principles physics-based 3-D global MHD models are playing a major role in advancing our knowledge on extreme geomagnetically induced currents. These MHD models represent a very important component of attempts to understand the response of the magnetosphere-ionosphere system to varying solar wind conditions.

  18. Information Technology for Education.

    ERIC Educational Resources Information Center

    Snyder, Cathrine E.; And Others

    1990-01-01

    Eight papers address technological, behavioral, and philosophical aspects of the application of information technology to training. Topics include instructional technology centers, intelligent training systems, distance learning, automated task analysis, training system selection, the importance of instructional methods, formative evaluation and…

  19. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  20. Strategies for the automatic interpretation of handwritten addresses

    NASA Astrophysics Data System (ADS)

    Rovner, Richard M.; Gillies, Andrew M.; Ganzberger, Margaret J.; Hepp, Daniel J.

    1994-02-01

    This paper describes the technologies and strategies underlying a state-of-the-art system for automatic handwritten address interpretation. The system is capable of interpreting both street addresses and post office box addresses. The input to the system is a grayscale image of a handwritten address and the goal is to determine the ZIP+4 code corresponding to the destination address on the mail piece. Processing is accomplished through an integrated series of steps involving preprocessing, numeral field recognition (ZIP codes, street numbers, post office box numbers), national postal database retrieval, word and phrase recognition, database record matching, and a decision strategy. In a formal test, this system encoded 38.7 percent of the mail pieces, with an encode error rate of 8.4 percent. Adjusting system parameters designed to tradeoff encode rate for error rate produces an encode rate of 33.8 percent with a 3.9 percent encode error rate.

  1. Authentic Literacy Assessment: NASA Technology Addressing Adult Illiteracy.

    ERIC Educational Resources Information Center

    Yaden, David B. Jr.; And Others

    1994-01-01

    This article gives a brief overview of issues in adult literacy; an assessment of workplace literacy; and components, concepts, and steps of the NASA Adult Literacy Evaluator project. The Adult Literacy Evaluator project applies NASA's technical experience to the problem of adult literacy and workplace literacy by finding ways to use interactive…

  2. The study of single nanoparticle and molecule physics

    NASA Astrophysics Data System (ADS)

    Bohnsack, Tiffany Eva

    We intend to use cross-linked, polymeric nanoparticles as a device to store information when they are deformed (1) or in their native undeformed (0) state. To do this, information about the interaction between the nanoparticles and different surfaces must be determined. The substrates tested include a high energy mica surface and a low energy silanized silicon wafer. The nanoparticles collapse on the mica substrate, but remain robust and structured on the silanized wafer, yet an extreme amount of crosslinking is required for the nanoparticles to retain their original spherical shape regardless of the substrate surface energy. The nanoparticle behavior was also observed at elevated temperatures to reveal that the height of the extremely cross-linked nanoparticles slowly decreases. The temperature where a rapid size change occurs was well below the bulk glass transition temperature, suggesting unique phenomena at the nanoscale. The formation of ordered nanoparticle arrays is another essential aspect of molecular technology and can be produced by using single-wall carbon nanotubes as a template. Single wall carbon nanotubes serve as nucleation sites to focus nanoparticles toward them through strong van der Waals forces that are enhanced from geometrical effects. This interaction drives the nanoparticles to collect onto the nanotubes, which creates an alignment of nanoparticles onto carbon nanotubes. In final studies the nanoparticles were robustly attached to the surface through polymer film embedment. Embedding the nanoparticles into a cross-linked thin polymer film locks the nanoparticles in place to prevent disruption of the nanoparticles during deformation.

  3. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  4. Gender: addressing a critical focus.

    PubMed

    Thornton, L; Wegner, M N

    1995-01-01

    The definition of gender was addressed at the Fourth World Conference on Women (Beijing, China). After extensive debate, the definition developed by the UN Population Fund in 1995 was adopted: "a set of qualities and behaviors expected from a female or male by society." The sustainability of family planning (FP) programs depends on acknowledgment of the role gender plays in contraceptive decision-making and use. For example, programs must consider the fact that women in many cultures do not make FP decisions without the consent of their spouse. AVSC is examining providers' gender-based ideas about clients and the effects of these views on the quality of reproductive health services. Questions such as how service providers can encourage joint responsibility for contraception without requiring spousal consent or how they can make men feel comfortable about using a male method in a society where FP is considered a woman's issue are being discussed. Also relevant is how service providers can discuss sexual matters openly with female clients in cultures that do not allow women to enjoy their sexuality. Another concern is the potential for physical violence to a client as a result of the provision of FP services. PMID:12294397

  5. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed. PMID:26906002

  6. OPENING ADDRESS: Heterostructures in Semiconductors

    NASA Astrophysics Data System (ADS)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  7. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  8. Breakthrough: Fighting Cancer with Nanoparticles

    ScienceCinema

    Rozhkova, Elena

    2013-04-19

    Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

  9. Breakthrough: Fighting Cancer with Nanoparticles

    SciTech Connect

    Rozhkova, Elena

    2012-01-01

    Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

  10. An address geocoding solution for Chinese cities

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehu; Ma, Haoming; Li, Qi

    2006-10-01

    We introduce the challenges of address geocoding for Chinese cities and present a potential solution along with a prototype system that deal with these challenges by combining and extending current geocoding solutions developed for United States and Japan. The proposed solution starts by separating city addresses into "standard" addresses which meet a predefined address model and non-standard ones. The standard addresses are stored in a structured relational database in their normalized forms, while a selected portion of the non-standard addresses are stored as aliases to the standard addresses. An in-memory address index is then constructed from the address database and serves as the basis for real-time address matching. Test results were obtained from two trials conducted in the city Beijing. On average 80% matching rate were achieved. Possible improvements to the current design are also discussed.

  11. GEOSS: Addressing Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  12. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?

    PubMed Central

    Alkilany, Alaaldin M.

    2010-01-01

    Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems. PMID:21170131

  13. Redispersible drug nanoparticles prepared without dispersant by electro-spray drying.

    PubMed

    Ho, Hwanki; Lee, Jonghwi

    2012-06-01

    The redispersibility of drug nanoparticles is critical in the formulation development of oral solid dosage forms from drug nanosuspensions. To address this issue, various drying techniques such as, spray drying, fluidized bed drying, etc. have been developed based on freeze drying. In this work, redispersible dried powders were successfully prepared from drug nanosuspensions without the use of dispersant by applying an electrical potential to the nozzle during the spray drying process. The applied voltage, not the concentration of the nanosuspension, was critical in determining the redispersibility. Despite the high electric field, the particle morphology and crystallinity were not dependent on the applied voltage, which suggests that the drug crystals were not damaged. This novel technique could broaden the applicability of spray drying technology and allow for novel formulations of drug nanoparticles. PMID:22010908

  14. Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T1 shortening

    PubMed Central

    Bruckman, Michael A.; Yu, Xin; Steinmetz, Nicole F.

    2013-01-01

    Magnetic resonance imaging (MRI) is a noninvasive imaging technique capable of obtaining high-resolution anatomical images of the body. Major drawbacks of MRI are the low contrast agent sensitivity and inability to distinguish healthy tissue from diseased tissue, making early detection challenging. To address this technological hurdle, paramagnetic contrast agents have been developed to increase the longitudinal relaxivity (R1), leading to an increased signal-to-noise ratio. This review focuses on methods and principles that enabled the design and engineering of nanoparticles to deliver contrast agents with enhanced ionic relaxivities. Different engineering strategies and nanoparticle platforms will be compared in terms of their manufacturability, biocompatibility properties, and their overall potential to make an impact in clinical MR imaging. PMID:24158750

  15. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor.

    PubMed

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. PMID:27524096

  16. 15 CFR 280.321 - Notification of changes of address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Notification of changes of address. 280.321 Section 280.321 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND...

  17. 15 CFR 280.321 - Notification of changes of address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Notification of changes of address. 280.321 Section 280.321 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND...

  18. 15 CFR 280.321 - Notification of changes of address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Notification of changes of address. 280.321 Section 280.321 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND...

  19. 15 CFR 280.321 - Notification of changes of address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Notification of changes of address. 280.321 Section 280.321 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND...

  20. 15 CFR 280.321 - Notification of changes of address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Notification of changes of address. 280.321 Section 280.321 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND...

  1. Teaching Writing in a Digital Age: Addressing Issues of Access

    ERIC Educational Resources Information Center

    Cottrill, Brittany B.

    2010-01-01

    The way people write and communicate has changed both inside and outside the university, and because of this writing instructors are professionally responsible for addressing these changes in the classroom. Technologies have affected writing for thousands of years. From the invention of the printing press to the Internet, challenges to writing…

  2. Nanoparticles for the Treatment of Wounds.

    PubMed

    Oyarzun-Ampuero, Felipe; Vidal, Alejandra; Concha, Miguel; Morales, Javier; Orellana, Sandra; Moreno-Villoslada, Ignacio

    2015-01-01

    The treatment of skin wounds represents an important research area due to the important physiological and aesthetic role of this tissue. During the last years, nanoparticles have emerged as important platforms to treat skin wounds. Silver, gold, and copper nanoparticles, as well as titanium and zinc oxide nanoparticles, have shown potential therapeutic effects on wound healing. Due to their specific characteristics, nanoparticles such as nanocapsules, polymersomes, solid lipid nanoparticles, and polymeric nanocomplexes are ideal vehicles to improve the effect of drugs (antibiotics, growth factors, etc.) aimed at wound healing. On the other hand, if active excipients are added during the formulation, such as hyaluronate or chitosan, the nanomedicine could significantly improve its potential. In addition, the inclusion of nanoparticles in different pharmaceutical materials may enhance the beneficial effects of the formulations, and allow achieving a better dose control. This paper aims at reviewing significant findings in the area of nanoparticles and wound treatment. Among the reviewed topics, we underline formulations comprising inorganic, polymeric, surfactant self-assembled, and lipid nanosystems. Among the drugs included in the nanoformulations, the paper refers to antibiotics, natural extracts, proteins, and growth factors, among others. Finally, the paper also addresses nanoparticles embedded in secondary vehicles (fibers, dressings, hydrogels, etc.) that could improve their application and/or upgrade the release profile of the active. PMID:26323420

  3. Recent advances in benefits and hazards of engineered nanoparticles.

    PubMed

    Radad, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2012-11-01

    Over recent decades, engineered nanoparticles are increasingly produced as the result of the rapid development in nanotechnology. They are currently used in a wide range of industrial and public sectors including healthcare, agriculture, transport, energy, materials, and information and communication technologies. As the result, an increasing concern has been raised over the potential impacts of engineered nanoparticles to human health. In the light of this, it is the purpose of the present review to discuss: (1) novel properties of engineered nanoparticles particularly in biomedical sciences, (2) most recently reported adverse effects of manufactured nanoparticles on human health and (3) different aspects of toxicological risk assessment of these nanoparticles. PMID:22964156

  4. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy.

    PubMed

    Cassim, Shiraz M; Giustini, Andrew J; Baker, Ian; Hoopes, P Jack

    2011-02-23

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values. PMID:24619487

  5. Development of novel magnetic nanoparticles for hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2011-03-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values.

  6. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy

    PubMed Central

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2013-01-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values. PMID:24619487

  7. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-07-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  8. Methods and Technologies Branch (MTB)

    Cancer.gov

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  9. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  10. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  11. Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids.

    PubMed

    Richner, Patrizia; Kress, Stephan J P; Norris, David J; Poulikakos, Dimos

    2016-03-21

    Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O (1 μm) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and out-of-plane structures of similar sizes. Despite the demonstrated capabilities, our fundamental understanding of important aspects of the physics of NanoDrip printing needs further improvement. Here we address the topics of charge content and transport in NanoDrip printing. We employ quantum dot and gold nanoparticle dispersions in combination with a specially designed, auxiliary, asymmetric electric field, targeting the understanding of charge locality (particles vs. solvent) and particle distribution in the deposits as indicated by the dried nanoparticle patterns (footprints) on the substrate. We show that droplets of alternating charge can be spatially separated when applying an ac field to the nozzle. The nanoparticles within a droplet are distributed asymmetrically under the influence of the auxiliary lateral electric field, indicating that they are the main carriers. We also show that the ligand length of the nanoparticles in the colloid affects their mobility after deposition (in the sessile droplet state). PMID:26928324

  12. New methods for lipid nanoparticles preparation.

    PubMed

    Corrias, Francesco; Lai, Francesco

    2011-09-01

    Lipid nanoparticles have attracted many researchers during recent years due to the excellent tolerability and advantages compared to liposomes and polymeric nanoparticles. High pressure homogenization is the main technique used to prepare solid lipid nanoparticles (SLN) encapsulating different type of drugs, however this method involves some critical process parameters. For this reason and in order to overcome patented methods, different production techniques for lipid nanoparticles have been widely investigated in recent years (last decade). The paper reviews new methods for lipid nanoparticles preparation, and their recent applications in pharmaceutical field, especially focusing on coacervation, microemulsions templates, supercritical fluid technology, phase-inversion temperature (PIT) techniques. References of the most relevant literature and patents published by various research groups on these fields are provided. PMID:21834772

  13. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  14. Programming chemistry in DNA-addressable bioreactors

    PubMed Central

    Fellermann, Harold; Cardelli, Luca

    2014-01-01

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647

  15. Fundamental and applied localized surface plasmon resonance spectroscopy studies from nanoparticle arrays to single nanoparticles

    NASA Astrophysics Data System (ADS)

    Bingham, Julia Marie

    The overarching theme of this work is to understand how the localized surface plasmon resonance (LSPR) of metallic nanoparticles can be utilized for sensing applications. The work presented here describes the use of both nanoparticle arrays and single nanoparticles. Specifically, nanoparticle arrays demonstrate sensing capabilities for inhibin A, prostate specific antigen (PSA), gas and vapors, and the dye, Nile Red. A new wide-field imaging apparatus is developed to characterize multiple single nanoparticles simultaneously as well as correlate the nanoparticle structural details using transmission electron microscopy (TEM), ultimately to develop single nanoparticle sensors. From these studies, LSPR spectroscopy is shown to be a valuable tool for sensor development. In the studies utilizing nanoparticle arrays, LSPR spectroscopy proves to be a feasible technique to detect inhibin A and PSA using a sandwich assay format. However, binding constants are determined to be several orders of magnitude lower than expected for PSA. It is hypothesized that the method to immobilize the capture antibody affected the affinity for PSA. Using a high resolution LSPR spectrometer, gas and vapor sensing on the basis of small refractive index (RI) changes is demonstrated. Nile Red is used to investigate the interaction between the polarity-dependent dye absorbance and the RI dependent LSPR of Ag nanoparticles. A wide-field LSPR imaging method using a liquid crystal tunable filter is used to measure the scattering spectra of multiple Ag nanoparticles in parallel and the RI response of multiple single nanoparticles is determined. This method also provides the ability to characterize moving Ag nanoparticles by measuring the scattering spectra of the particles while simultaneously tracking their motion. Consequently, single particle diffusion coefficients are determined. As an example, several single Ag nanoprisms are tracked, the LSPR scattering spectrum of each moving particle is

  16. I. Textural/Structural tuning and nanoparticle stabilization of copper-containing nanocomposite materials. II. Generation of reducing agents for automotive exhaust gas purification via the processing of hydrocarbons in a PACT (plasma and catalysis integrated technologies) reactor

    NASA Astrophysics Data System (ADS)

    Xing, Yu

    This research consists of two parts. The first part deals with the preparation and properties of copper-containing nanocomposite materials. For studies of textural tuning, structural tuning, or material sintering, copper/aluminum and copper/zinc nanocomposites were prepared via various inorganic synthesis methods including conventional coprecipitation methods and a novel urea-gelation/thermal-modification method that produces narrow distributions of pore sizes, high surface areas, and significantly higher specific metal loadings. Solid-solid reaction analysis and differential scanning calorimetry (DSC) analysis were developed for the determination of the mixing homogeneities of the copper/aluminum nanocomposites. A sintering experiment at 250-600°C for 350 h under methanol-steam reforming conditions was carried out to compare the stability of supported Cu0 nanoparticles. The mixing homogeneities of CuO/Al2O3 nanocomposites significantly affected the thermal stability of their reduced Cu0 crystallites. Creation of relatively narrow distributions of pore sizes with relatively small major pore diameters (e.g., 3.5 nm) can also be used for the stabilization of supported Cu0 nanoparticles. The supported nanoparticles with a relatively small initial size cannot ensure good thermal stability. A "hereditary" character on the homogeneity of copper/aluminum nanocomposites was revealed. Stepwise reduction and reoxidation were studied for the structural tuning and purification of Cu-Al-O spinels with isotropic and gradual unit-cell contractions. The second part of the research deals with the processing of hydrocarbons. Conversion of a model hydrocarbon (n-hexane or n-octane) in an AC discharge PACT (plasma and catalysis integrated technologies) reactor was verified to be an effective method to instantly produce reducing agents (e.g., hydrogen or/and light alkanes and alkenes), at room temperature and atmospheric pressure for automotive exhaust gas purification. Effects of

  17. 32 CFR 516.7 - Mailing addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Mailing addresses. 516.7 Section 516.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION General § 516.7 Mailing addresses. Mailing addresses for organizations referenced...

  18. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  19. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  20. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  1. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  2. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  3. 47 CFR 13.10 - Licensee address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Licensee address. 13.10 Section 13.10 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.10 Licensee address. In accordance with § 1.923 of this chapter all applications must specify an address where...

  4. CCCC Chair's Address: Representing Ourselves, 2008

    ERIC Educational Resources Information Center

    Glenn, Cheryl

    2008-01-01

    This article presents the text of the author's address at the fifty-ninth annual convention of the Conference on College Composition and Communication (CCCC) in March 2008. In her address, the author picks up strands of previous Chairs' addresses and weaves them through the fabric of her remarks. What she hopes will give sheen to the fabric is her…

  5. 75 FR 49813 - Change of Address

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... COMMISSION 11 CFR Parts 9405, 9407, 9409, 9410, 9420, and 9428 Change of Address AGENCY: United States... Assistance Commission (EAC) is amending its regulations to reflect a change of address for its headquarters. This technical amendment is a nomenclature change that updates and corrects the address for...

  6. 32 CFR 516.7 - Mailing addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Mailing addresses. 516.7 Section 516.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION General § 516.7 Mailing addresses. Mailing addresses for organizations referenced...

  7. Targeted PRINTRTM nanoparticles for effective cancer therapy

    NASA Astrophysics Data System (ADS)

    McGowan, Kelly Marie

    Conventional therapeutics for the treatment of cancer are often faced with challenges such as systemic biodistribution within the body, drug degradation in vivo, low bioavailability at the site of disease, and off-target toxicity. As such, particulate drug delivery systems have been developed with the aim of minimizing these limitations of current therapies. Through the PRINTRTM (Particle Replication in Non-wetting Templates) technology, hydrogel nanoparticles, prepared from biocompatible poly(ethylene glycol) and acid-sensitive silyl ether crosslinkers, were functionalized and conjugated with targeting ligands for the folate receptor (FR), HER2 receptor, and transferrin receptor (TfR). By conjugating specific ligands to nanoparticles to impart specificity, highly selective targeting and internalization (>80%) of nanoparticles were demonstrated in various cancer cell lines. The extent of cellular uptake of targeted nanoparticles was dependent on the surface characteristics of the nanoparticles, particle concentration, and kinetics. Because a negative surface charge reduces nonspecific cellular uptake, attaching monoclonal antibodies to the surface of negatively charged PRINT nanoparticles facilitated specific binding of the antibodies to cellular surface receptors that subsequently triggered receptor-mediated endocytosis. Additionally, the multivalent nature of nanoparticles influenced cellular uptake. Specifically, nanoparticles with a higher valence internalized more rapidly and efficiently than those with a lower valence. Nanoparticles that selectively target and accumulate within diseased cells have the potential of minimizing drug degradation under physiological conditions, enhancing bioavailability at the tumor, improving the efficacy of the drug, and reducing toxicity from systemic biodistribution. Drug delivery through targeted nanoparticles was achieved by loading nanoparticles with silyl ether-modified gemcitabine prodrugs. Covalently reacting the prodrug

  8. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  9. Molecular Imaging with Theranostic Nanoparticles

    PubMed Central

    Jokerst, Jesse V.; Gambhir, Sanjiv S.

    2011-01-01

    Conspectus Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one

  10. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  11. 2005 critical review summary - nanoparticles and the environment

    SciTech Connect

    Chang-Yu Wu; Pratim Biswas

    2005-06-01

    The 35th annual A&WMA Critical Review addresses the broad topic of nanoparticles and the environment. Complementing recent treatments of this topic in the literature, the review offers a broad overview of environmental origins, consequences, and applications of nanoparticles, or particles with diameters in the range of 1 to 50 or 100 nanometers. The four key elements discussed in the review are (1) sources of nanoparticles, (2) their control, (3) the application of nanoparticles in environmental and energy sectors, and (4) exposure and health effects. 18 refs., 4 figs., 1 tab.

  12. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  13. Nanoparticle ligand presentation for targeting solid tumors.

    PubMed

    Duskey, Jason T; Rice, Kevin G

    2014-10-01

    Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success. PMID:24927668

  14. Transport, Targeting and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Lowry, Gregory V.; Majetich, Sara; Sholl, David; Tilton, Robert D.; Matyjaszewski, Krzysztof; Liu, Yueqiang; Sarbu, Traian; Almusallam, Abdulwahab; Redden, George D.; Meakin, Paul; Rollins, Harry W.

    2004-03-31

    Recently, laboratory and field studies have demonstrated that zero-valent iron nanoparticles (colloids) can rapidly transform dissolved chlorinated organic solvents into non-toxic compounds. This technology also has the potential to address Dense Non- Aqueous Phase Liquid (DNAPL) contamination, one of DOE's primary contamination problems. This project develops and tests polymer-modified reactive nanoscale Fe0 particles for in situ delivery to chlorinated solvents that are present as DNAPLs in the subsurface. The surfaces of reactive Fe0-based nanoparticles are modified with amphiphilic block copolymers to maintain a stable suspension of the particles in water for transport in a porous matrix and to create an affinity for the water-DNAPL interface. Ultimately this will provide an improved technology to locate and eliminate DNAPL, a recalcitrant and persistent source for groundwater contamination by chlorinated solvents. Candidate polymers have been synthesized and attached to 20 nm SiO2 particles using Atom Transfer Radical Polymerization (ATRP). The physical properties (hydrodynamic radius, stability, TCE-water partitioning behavior, mobility in a porous matrix) of these nanostructures have been determined. The particles (dp {approx}102 nm) are water soluble and partition to the TCE-water interface. The physical and chemical properties (e.g. oxide phase and thickness) of Fe0 nanoparticles synthesized using different techniques and the effects of these properties on particle reactivity and efficiency have been evaluated. Numerical models (Brownian Dynamics) have been developed to predict the aqueous diffusivities of these particle-polymer nanostructures.

  15. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  16. Phytofabrication of nanoparticles through plant as nanofactories

    NASA Astrophysics Data System (ADS)

    Mittal, Jitendra; Batra, Amla; Singh, Abhijeet; Mohan Sharma, Madan

    2014-12-01

    In recent years, nanoscience and nanotechnology have emerged as a new area of fundamental science and are receiving global attention due to their extensive applications. Conventionally nanoparticles were manufactured by physical and chemical techniques. The recent development and implementation of new technologies have led to a new trend, the nano-revolution unfolding the role of plants in bio- and green synthesis of nanoparticles which seems to have drawn a quite unequivocal attention to the synthesis of stable nanoparticles. Although nanoparticles can be synthesized through many conventional methods, biological route of the synthesis is more competent than the physical and chemical techniques. Biologically synthesized nanoparticles have enjoyed an upsurge of applications in various sectors. Hence, the present study envisions biosynthesis of nanoparticles from plants which are emerging as nanofactories. Hence, the present review summarizes the literature reported thus far and envisions plants as emerging sources of nanofactories along with applications, the mechanism behind phytosynthesis of nanoparticles and the mechanism of antibacterial action of nanoparticles.

  17. TOPICAL REVIEW: Nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.

    2009-12-01

    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several technological processes including H2 production and storage as well as antibacterial effect, gas sensors and fuel cells is discussed. The mechanism of H2 production from catalytic photoelectrochemical and photocatalytic degradation reactions of some organic dyes is discussed. Finally, the future outlook of NP catalysts in various disciplines is presented.

  18. Nanoparticles--production and role in biotransformation.

    PubMed

    Mohapatra, D P; Gassara, F; Brar, S K

    2011-02-01

    Renewed interest has arisen in the manufacture of nanoparticles due to their unusually enhanced physico-chemical properties and biological activities compared to the bulk parent materials. The industrial scale production and wide variety of application of nanoparticles has resulted in broad range applications in biotechnology, more recently in the increase in efficiency of biotransformation processes. Biotransformation processes utilized to form different bio-products and nanoparticles demonstrate various roles in the bio-products formation. In order to address the issue, it is necessary to understand the different methods available for synthesis of nanoparticles and their effects on biotransformation process, an efficient process for utilization of nanoparticles. In this review, an overview of physical, chemical and biological methods for synthesis of nanoparticles and their role in biotransformation process on formation of different bio-products, such as bioethanol, biohydrogen, biodiesel, enzymes and bioplastics is outlined. In fact, the nanoparticles are going to prove revolutionary in the field of biotransformation by improving the efficiency and yield and often widening the application range. PMID:21456120

  19. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  20. Technology in Residence.

    ERIC Educational Resources Information Center

    Fox, Jordan

    1999-01-01

    Discusses the necessity for incorporating current technology in today's college residence halls to meet the more diverse and continued activities of its students. Technology addressed covers data networking and telecommunications, heating and cooling systems, and fire-safety systems. (GR)

  1. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  2. Multi Sensor Approach to Address Sustainable Development

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2007-01-01

    The main objectives of Earth Science research are many folds: to understand how does this planet operates, can we model her operation and eventually develop the capability to predict such changes. However, the underlying goals of this work are to eventually serve the humanity in providing societal benefits. This requires continuous, and detailed observations from many sources in situ, airborne and space. By and large, the space observations are the way to comprehend the global phenomena across continental boundaries and provide credible boundary conditions for the mesoscale studies. This requires a multiple sensors, look angles and measurements over the same spot in accurately solving many problems that may be related to air quality, multi hazard disasters, public health, hydrology and more. Therefore, there are many ways to address these issues and develop joint implementation, data sharing and operating strategies for the benefit of the world community. This is because for large geographical areas or regions and a diverse population, some sound observations, scientific facts and analytical models must support the decision making. This is crucial for the sustainability of vital resources of the world and at the same time to protect the inhabitants, endangered species and the ecology. Needless to say, there is no single sensor, which can answer all such questions effectively. Due to multi sensor approach, it puts a tremendous burden on any single implementing entity in terms of information, knowledge, budget, technology readiness and computational power. And, more importantly, the health of planet Earth and its ability to sustain life is not governed by a single country, but in reality, is everyone's business on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to bear this colossal responsibility. So far, each developed country within their means has proceeded along satisfactorily in implementing

  3. Computational strategies to address chromatin structure problems.

    PubMed

    Perišić, Ognjen; Schlick, Tamar

    2016-01-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin's dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber's structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure. PMID:27345617

  4. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  5. Wind vs. Biofuels: Addressing Climate, Health and Energy

    SciTech Connect

    Professor Mark Jacobson

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  6. Wind versus Biofuels for Addressing Climate, Health, and Energy

    SciTech Connect

    Jacobson, Mark Z.

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  7. Novel Duplicate Address Detection with Hash Function.

    PubMed

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the "Hash_64" field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution. PMID:26991901

  8. Novel Duplicate Address Detection with Hash Function

    PubMed Central

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the “Hash_64” field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution. PMID:26991901

  9. Biosensors based on inorganic nanoparticles with biomimetic properties: Biomedical applications and in vivo cytotoxicity measurements

    NASA Astrophysics Data System (ADS)

    Ispas, Cristina R.

    The rapid progress of nanotechnology and advanced nanomaterials production offer significant opportunities for designing powerful biosensing devices with enhanced performances. This thesis introduces ceria (CeO 2) nanoparticles and its congeners as a new class of materials with huge potential in bioanalytical and biosensing applications. Unique redox, catalytic and oxygen storage/release properties of ceria nanoparticles, originating from their dual oxidation state are used to design biomedical sensors with high sensitivity and low oxygen dependency. This thesis describes a new approach for fabrication of implantable microbiosensors designed for monitoring neurological activity in physiological conditions. Understanding the mechanisms involved in neurological signaling and functioning is of great physiological importance. In this respect, the development of effective methods that allow accurate detection and quantification of biological analytes (i.e. L-glutamate and glucose) associated with neurological processes is of paramount importance. The performance of most analytical techniques currently used to monitor L-glutamate and glucose is suboptimal and only a limited number of approaches address the problem of operation in oxygen-restricted conditions, such as ischemic brain injury. Over the past couple of years, enzyme based biosensors have been used to investigate processes related to L-glutamate release/uptake and the glucose cycle within the brain. However, most of these sensors, based on oxidoreductase enzymes, do not work in conditions of limited oxygen availability. This thesis presents the development of a novel sensing technology for the detection of L-glutamate and glucose in conditions of oxygen deprivation. This technology provides real-time assessment of the concentrations of these analytes with high sensitivity, wide linear range, and low oxygen dependence. The fabrication, characterization and optimization of enzyme microbiosensors are discussed

  10. Overview of chemical imaging methods to address biological questions.

    PubMed

    da Cunha, Marcel Menezes Lyra; Trepout, Sylvain; Messaoudi, Cédric; Wu, Ting-Di; Ortega, Richard; Guerquin-Kern, Jean-Luc; Marco, Sergio

    2016-05-01

    Chemical imaging offers extensive possibilities for better understanding of biological systems by allowing the identification of chemical components at the tissue, cellular, and subcellular levels. In this review, we introduce modern methods for chemical imaging that can be applied to biological samples. This work is mainly addressed to the biological sciences community and includes the bases of different technologies, some examples of its application, as well as an introduction to approaches on combining multimodal data. PMID:26922256

  11. The synthesis and characterization of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  12. Physiologically important metal nanoparticles and their toxicity.

    PubMed

    Sengupta, Jayeeta; Ghosh, Sourav; Datta, Poulami; Gomes, Aparna; Gomes, Antony

    2014-01-01

    Nanotechnology has been setting benchmarks for the last two decades, but the origins of this technology reach back to ancient history. Today, nanoparticles of both metallic and non-metallic origin are under research and development for applications in various fields of biology/therapeutics. Physiologically important metals are of concern because they are compatible with the human system in terms of absorption, assimilation, excretion, and side effects. There are several physiologically inorganic metals that are present in the human body with a wide range of biological activities. Some of these metals are magnesium, chromium, manganese, iron, cobalt, copper, zinc, selenium and molybdenum. These metals are synthesized in the form of nanoparticles by different physical and chemical methods. Physiologically important nanoparticles are currently under investigation for their bio-medical applications as well as for therapeutics. Along with the applicative aspects of nanoparticles, another domain that is of great concern is the risk assessment of these nanoparticles to avoid unnecessary hazards. It has been seen that these nanoparticles have been shown to possess toxicity in biological systems. Conventional physical and chemical methods of metal nanoparticle synthesis may be one possible reason for nanoparticle toxicity that can be overcome by synthesis of nanoparticles from biological sources. This review is an attempt to establish metal nanoparticles of physiological importance to be the best candidates for future nanotechnological tools and medicines, owing to the acceptability and safety in the human body. This can only be successful if these particles are synthesized with a better biocompatibility and low or no toxicity. PMID:24730316

  13. Surface free energy of alkali and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-09-01

    This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data.

  14. Educational Technology in China

    ERIC Educational Resources Information Center

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  15. Technology and Education.

    ERIC Educational Resources Information Center

    O'Loughlin, Michael

    1985-01-01

    Discussed are possible ways in which new technology will affect society, particularly its impact on the distribution of power and economic wealth. Also considered are the impact of technological change on educational goals, education about technology, and use of technology in education. Implications for the future are addressed. (JN)

  16. Educational Technology: Leadership Perspectives.

    ERIC Educational Resources Information Center

    Kearsley, Greg, Ed.; Lynch, William, Ed.

    This book addresses the topic of leadership in the use of educational technology. The four chapters of the first part discuss some of the issues associated with leadership in the use of educational technology. They include: (1) "Educational Technology Leadership in the Age of Technology: The New Skills" (Greg Kearsley and William Lynch); (2)…

  17. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Official address. 0.2 Section 0.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2 Official address. The principal office of the Commission is at Washington, DC. All communications to...

  18. 40 CFR 374.6 - Addresses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Addresses. 374.6 Section 374.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS PRIOR NOTICE OF CITIZEN SUITS § 374.6 Addresses. Administrator, U.S. Environmental Protection Agency, 1200...

  19. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Official address. 0.2 Section 0.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2... 20580, unless otherwise specifically directed. The Commission's Web site address is www.ftc.gov....

  20. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Official address. 0.2 Section 0.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2... 20580, unless otherwise specifically directed. The Commission's Web site address is www.ftc.gov....

  1. 10 CFR 218.34 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Addresses. 218.34 Section 218.34 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Procedures § 218.34 Addresses. All..., Economic Regulatory Administration, Department of Energy, 2000 M Street, NW., Washington, DC 20461, and...

  2. History Forum Addresses Creation/Evolution Controversy.

    ERIC Educational Resources Information Center

    Schweinsberg, John

    1997-01-01

    A series of programs entitled Creationism and Evolution: The History of a Controversy was presented at the University of Alabama in Huntsville. The controversy was addressed from an historical and sociological, rather than a scientific perspective. Speakers addressed the evolution of scientific creationism, ancient texts versus sedimentary rocks…

  3. Public Address Systems. Specifications - Installation - Operation.

    ERIC Educational Resources Information Center

    Palmer, Fred M.

    Provisions for public address in new construction of campus buildings (specifications, installations, and operation of public address systems), are discussed in non-technical terms. Consideration is given to microphones, amplifiers, loudspeakers and the placement and operation of various different combinations. (FS)

  4. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Addresses. 80.174 Section 80.174... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample required under § 80.161(b)(2) shall be sent to: Manager, Fuels and Technical Analysis Group,...

  5. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false RUS addresses. 1730.3 Section 1730.3 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain forms referred to in this part...

  6. Forms of Address in Chilean Spanish

    ERIC Educational Resources Information Center

    Bishop, Kelley; Michnowicz, Jim

    2010-01-01

    The present investigation examines possible social and linguistic factors that influence forms of address used in Chilean Spanish with various interlocutors. A characteristic of the Spanish of Chile is the use of a variety of forms of address for the second person singular, "tu", "vos", and "usted", with corresponding verb conjugations (Lipski…

  7. 40 CFR 374.6 - Addresses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Addresses. 374.6 Section 374.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS PRIOR NOTICE OF CITIZEN SUITS § 374.6 Addresses. Administrator, U.S. Environmental Protection Agency, 1200...

  8. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  9. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  10. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  11. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  12. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  13. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  14. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  15. Tradition and Change in Swedish Address Forms.

    ERIC Educational Resources Information Center

    Mitchell, Stephen A.

    In most European languages, choice of address form classifies the relation between speakers. The first theoretical framework for analyzing address form usage was established by Brown and Gilman (1960) in their investigation of the semantics of pronoun use in a wide variety of Indo-European languages, which concluded that Europeans use the informal…

  16. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Address. 504.5 Section 504.5 Agriculture Regulations... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to.... University St., Peoria, Illinois 61604; (309) 685-4011....

  17. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Address. 504.5 Section 504.5 Agriculture Regulations... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to.... University St., Peoria, Illinois 61604; (309) 685-4011....

  18. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Address. 504.5 Section 504.5 Agriculture Regulations... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to.... University St., Peoria, Illinois 61604; (309) 685-4011....

  19. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Address. 504.5 Section 504.5 Agriculture Regulations... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to.... University St., Peoria, Illinois 61604; (309) 685-4011....

  20. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Address. 504.5 Section 504.5 Agriculture Regulations... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to.... University St., Peoria, Illinois 61604; (309) 685-4011....

  1. 25 CFR 2.14 - Record address.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Record address. 2.14 Section 2.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROCEDURES AND PRACTICE APPEALS FROM ADMINISTRATIVE ACTIONS § 2.14 Record address. (a) Every interested party who files a document in connection with an...

  2. 25 CFR 2.14 - Record address.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Record address. 2.14 Section 2.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROCEDURES AND PRACTICE APPEALS FROM ADMINISTRATIVE ACTIONS § 2.14 Record address. (a) Every interested party who files a document in connection with an...

  3. Construction Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in construction technology. Addressed in the individual units of the guide are the following topics: basic types of construction and the impact of construction on society, preconstruction, personnel…

  4. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  5. Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.

    PubMed

    Long, Nguyen Viet; Yang, Yong; Teranishi, Toshiharu; Thi, Cao Minh; Cao, Yanqin; Nogami, Masayuki

    2015-12-01

    In this review, we have presented the latest results and highlights on biomedical applications of a class of noble metal nanoparticles, such as gold, silver and platinum, and a class of magnetic nanoparticles, such as cobalt, nickel and iron. Their most important related compounds are also discussed for biomedical applications for treating various diseases, typically as cancers. At present, both physical and chemical methods have been proved very successful to synthesize, shape, control, and produce metal- and oxide-based homogeneous particle systems, e.g., nanoparticles and microparticles. Therefore, we have mainly focused on functional magnetic nanoparticles for nanomedicine because of their high bioadaptability to the organs inside human body. Here, bioconjugation techniques are very crucial to link nanoparticles with conventional drugs, nanodrugs, biomolecules or polymers for biomedical applications. Biofunctionalization of engineered nanoparticles for biomedicine is shown respective to in vitro and in vivo analysis protocols that typically include drug delivery, hyperthermia therapy, magnetic resonance imaging (MRI), and recent outstanding progress in sweep imaging technique with Fourier transformation (SWIFT) MRI. The latter can be especially applied using magnetic nanoparticles, such as Co-, Fe-, Ni-based nanoparticles, α-Fe2O3, and Fe3O4 oxide nanoparticles for analysis and treatment of malignancies. Therefore, this review focuses on recent results of scientists, and related research on diagnosis and treatment methods of common and dangerous diseases by biomedical engineered nanoparticles. Importantly, nanosysems (nanoparticles) or microsystems (microparticles) or hybrid micronano systems are shortly introduced into nanomedicine. Here, Fe oxide nanoparticles ultimately enable potential and applicable technologies for tumor-targeted imaging and therapy. Finally, we have shown the latest aspects of the most important Fe-based particle systems, such as Fe,

  6. Nanoparticle puzzles and research opportunities that go beyond state of the art.

    PubMed

    Jee, Ah-Young; Lou, Kai; Jang, Hyun-Sook; Nagamanasa, K Hima; Granick, Steve

    2016-01-01

    We present an overview of current progress and research challenges in the field of nanoparticle assembly, touching on the following topics: (1) historical perspective; (2) consideration of what is a nanoparticle; (3) contrast between nanoparticle self-assembly and top-down construction; (4) opportunities for nanoparticles with more intelligent sub-structures; (5) opportunities for nanoparticle systems cued to interact subtly in space and time. In this personal and subjective account, certain holy grails for nanoparticle science and technology are identified. PMID:26948241

  7. Carbogenically coated silica nanoparticles and their forensic applications.

    PubMed

    Fernandes, D; Krysmann, M J; Kelarakis, A

    2016-07-01

    Carbogenically coated silica nanoparticles (C-SiO2) exhibit color-tunability and carry great promise for two important forensic applications. First, the C-SiO2 nanopowders are ideal for fingerprint development, yielding strong contrast against multicoloured and patterned backgrounds. Second, spontaneous nanoparticle aggregation leads to non-duplicable, inexpensive nanotags that can support sustainable technologies to combat counterfeiting. PMID:27294695

  8. New generation of content addressable memories for associative processing

    NASA Astrophysics Data System (ADS)

    Lewis, H. G., Jr.; Giambalov, Paul

    2000-05-01

    Content addressable memories (CAMS) store both key and association data. A key is presented to the CAN when it is searched and all of the addresses are scanned in parallel to find the address referenced by the key. When a match occurs, the corresponding association is returned. With the explosion of telecommunications packet switching protocols, large data base servers, routers and search engines a new generation of dense sub-micron high throughput CAMS has been developed. The introduction of this paper presents a brief history and tutorial on CAMS, their many uses and advantages, and describes the architecture and functionality of several of MUSIC Semiconductors CAM devices. In subsequent sections of the paper we address using Associative Processing to accommodate the continued increase in sensor resolution, number of spectral bands, required coverage, the desire to implement real-time target cueing, and the data flow and image processing required for optimum performance of reconnaissance and surveillance Unmanned Aerial Vehicles (UAVs). To be competitive the system designer must provide the most computational power, per watt, per dollar, per cubic inch, within the boundaries of cost effective UAV environmental control systems. To address these problems we demonstrate leveraging DARPA and DoD funded Commercial Off-the-Shelf technology to integrate CAM based Associative Processing into a real-time heterogenous multiprocessing system for UAVs and other platforms with limited weight, volume and power budgets.

  9. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy.

    PubMed

    Taylor, Jack; Huefner, Anna; Li, Li; Wingfield, Jonathan; Mahajan, Sumeet

    2016-08-15

    Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed. PMID:27479539

  10. Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation.

    PubMed

    Baranes, Koby; Shevach, Michal; Shefi, Orit; Dvir, Tal

    2016-05-11

    Engineered 3D neuronal networks are considered a promising approach for repairing the damaged spinal cord. However, the lack of a technological platform encouraging axonal elongation over branching may jeopardize the success of such treatment. To address this issue we have decorated gold nanoparticles on the surface of electrospun nanofiber scaffolds, characterized the composite material, and investigated their effect on the differentiation, maturation, and morphogenesis of primary neurons and on an immature neuronal cell line. We have shown that the nanocomposite scaffolds have encouraged a longer outgrowth of the neurites, as judged by the total length of the branching trees and the length and total distance of neurites. Moreover, neurons grown on the nanocomposite scaffolds had less neurites originating out of the soma and lower number of branches. Taken together, these results indicate that neurons cultivated on the gold nanoparticle scaffolds prefer axonal elongation over forming complex branching trees. We envision that such cellular constructs may be useful in the future as implantable cellular devices for repairing damaged neuronal tissues, such as the spinal cord. PMID:26674672

  11. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release.

    PubMed

    Fonseca, A S; Maragkidou, A; Viana, M; Querol, X; Hämeri, K; de Francisco, I; Estepa, C; Borrell, C; Lennikov, V; de la Fuente, G F

    2016-09-15

    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles <30nm in diameter being formed during the thermal treatment. In addition, ultrafine and nano-sized airborne particles were generated and emitted into workplace air during sintering process on a statistically significant level. These results evidence the risk of occupational exposure to ultrafine and nanoparticles during tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal. PMID:26848012

  12. Single Molecule Photobleaching (SMPB) Technology for Counting of RNA, DNA, Protein and Other Molecules in Nanoparticles and Biological Complexes by TIRF Instrumentation

    PubMed Central

    Zhang, Hui; Guo, Peixuan

    2014-01-01

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The Single Molecule Photobleaching (SMPB) technology for direct counting developed by our team (Shu et al, EMBO J, 2007, 26:527; Zhang et al, RNA, 2007, 13:1793) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. PMID:24440482

  13. Biosynthesis of nanoparticles using microbes- a review.

    PubMed

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. PMID:25001188

  14. Biosynthesis of gold nanoparticles: A green approach.

    PubMed

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed. PMID:27236049

  15. Nanoparticles in dermatology.

    PubMed

    Papakostas, Dimitrios; Rancan, Fiorenza; Sterry, Wolfram; Blume-Peytavi, Ulrike; Vogt, Annika

    2011-10-01

    Recent advances in the field of nanotechnology have allowed the manufacturing of elaborated nanometer-sized particles for various biomedical applications. A broad spectrum of particles, extending from various lipid nanostructures such as liposomes and solid lipid nanoparticles, to metal, nanocrystalline and polymer particles have already been tested as drug delivery systems in different animal models with remarkable results, promising an extensive commercialization in the coming years. Controlled drug release to skin and skin appendages, targeting of hair follicle-specific cell populations, transcutaneous vaccination and transdermal gene therapy are only a few of these new applications. Carrier systems of the new generation take advantage of improved skin penetration properties, depot effect with sustained drug release and of surface functionalization (e.g., the binding to specific ligands) allowing specific cellular and subcellular targeting. Drug delivery to skin by means of microparticles and nanocarriers could revolutionize the treatment of several skin disorders. However, the toxicological and environmental safety of micro- and nanoparticles has to be evaluated using specific toxicological studies prior to a wider implementation of the new technology. This review aims to give an overview of the most investigated applications of transcutaneously applied particle-based formulations in the fields of cosmetics and dermatology. PMID:21837474

  16. Toxicity of silver and gold nanoparticles on marine microalgae.

    PubMed

    Moreno-Garrido, Ignacio; Pérez, Sara; Blasco, Julián

    2015-10-01

    The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field. PMID:26002248

  17. Carbon Nanoparticle-based Fluorescent Bioimaging Probes

    PubMed Central

    Bhunia, Susanta Kumar; Saha, Arindam; Maity, Amit Ranjan; Ray, Sekhar C.; Jana, Nikhil R.

    2013-01-01

    Fluorescent nanoparticle-based imaging probes have advanced current labelling technology and are expected to generate new medical diagnostic tools based on their superior brightness and photostability compared with conventional molecular probes. Although significant progress has been made in fluorescent semiconductor nanocrystal-based biological labelling and imaging, the presence of heavy metals and the toxicity issues associated with heavy metals have severely limited the application potential of these nanocrystals. Here, we report a fluorescent carbon nanoparticle-based, alternative, nontoxic imaging probe that is suitable for biological staining and diagnostics. We have developed a chemical method to synthesise highly fluorescent carbon nanoparticles 1–10 nm in size; these particles exhibit size-dependent, tunable visible emission. These carbon nanoparticles have been transformed into various functionalised nanoprobes with hydrodynamic diameters of 5–15 nm and have been used as cell imaging probes. PMID:23502324

  18. Engineering tailored nanoparticles with microbes: quo vadis?

    PubMed

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-01-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies. PMID:26271947

  19. Multistate resistive switching in silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Sandouk, Eric J.; Gimzewski, James K.; Stieg, Adam Z.

    2015-08-01

    Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current-voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal-insulator-metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films’ resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells.

  20. Nanoparticle-based theranostic agents

    PubMed Central

    Xie, Jin; Lee, Seulki; Chen, Xiaoyuan

    2010-01-01

    Theranostic nanomedicine is emerging as a promising therapeutic paradigm. It takes advantage of the high capacity of nanoplatforms to ferry cargo and loads onto them both imaging and therapeutic functions. The resulting nanosystems, capable of diagnosis, drug delivery and monitoring of therapeutic response, are expected to play a significant role in the dawning era of personalized medicine, and much research effort has been devoted toward that goal. A convenience in constructing such function-integrated agents is that many nanoplatforms are already, themselves, imaging agents. Their well developed surface chemistry makes it easy to load them with pharmaceutics and promote them to be theranostic nanosystems. Iron oxide nanoparticles, quantum dots, carbon nanotubes, gold nanoparticles and silica nanoparticles, have been previously well investigated in the imaging setting and are candidate nanoplatforms for building up nanoparticle-based theranostics. In the current article, we will outline the progress along this line, organized by the category of the core materials. We will focus on construction strategies and will discuss the challenges and opportunities associated with this emerging technology. PMID:20691229

  1. Radiolabeled Nanoparticles for Multimodality Tumor Imaging

    PubMed Central

    Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai

    2014-01-01

    Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237

  2. Enzymatically Controlled Vacancies in Nanoparticle Crystals.

    PubMed

    Barnaby, Stacey N; Ross, Michael B; Thaner, Ryan V; Lee, Byeongdu; Schatz, George C; Mirkin, Chad A

    2016-08-10

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable "bonds" that link nanoparticle "atoms" into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale "bond" affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same, but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom. PMID:27428463

  3. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 2: Radiolabeled Probes

    PubMed Central

    Stendahl, John C.; Sinusas, Albert J.

    2016-01-01

    Nanoparticulate imaging agents and therapeutics have proven to be valuable tools in preclinical cardiovascular disease research. Because of their distinct properties and significant functional versatility, nanoparticulate imaging agents afford certain capabilities that are typically not provided by traditional small molecule agents. This review is the second in a two-part series covering nanoparticulate imaging agents and theranostics. It highlights current examples of radiolabeled nanoparticulate probes in preclinical cardiovascular research and demonstrates their utility in applications such as blood pool imaging and molecular imaging of ischemia, angiogenesis, atherosclerosis, and inflammation. These agents provide valuable insight into the molecular and cellular mechanisms of cardiovascular disease and illustrate both the limitations and the significant potential of nanoparticles in diagnostic and therapeutic applications. Further technologic development to improve performance, address safety concerns, and fulfil regulatory obligations is required for clinical translation of these emergent technologies. PMID:26294304

  4. Spectral Induced Polarization Measurements of Nanoparticles in Laboratory Column Experiments

    EPA Science Inventory

    Nano sized materials are prevalent in consumer goods, manufacturing, industrial processes, and remediation technologies. The intentional and accidental introduction of nanoparticles (NP) into the subsurface pose a potential risk to the environment and public health. This resea...

  5. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  6. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BIOLOGICAL PRODUCTS: GENERAL General Provisions § 600.2 Mailing addresses. (a) Licensed biological products... applications (BLAs) and their amendments and supplements, adverse experience reports, biological product deviation reports, fatality reports, and other correspondence. Biological products samples must not be...

  7. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BIOLOGICAL PRODUCTS: GENERAL General Provisions § 600.2 Mailing addresses. (a) Licensed biological products... applications (BLAs) and their amendments and supplements, adverse experience reports, biological product deviation reports, fatality reports, and other correspondence. Biological products samples must not be...

  8. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BIOLOGICAL PRODUCTS: GENERAL General Provisions § 600.2 Mailing addresses. (a) Licensed biological products... applications (BLAs) and their amendments and supplements, adverse experience reports, biological product deviation reports, fatality reports, and other correspondence. Biological products samples must not be...

  9. Addressing Your Child's Weight at the Doctor

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  10. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  11. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  12. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  13. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Roberts, Joseph J. P.

    Chapter One provides a general introduction of the research on metal oxide nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. Emphasis is given to the different synthetic route for producing small (<10 nm) MOx nanoparticles with narrow size distributions. Different methods for modifying their surface with small organic molecules are discussed with focus given to silanes and phosphates. Furthermore, functionalizing surface modified nanoparticles for specific functions is addressed, with markers for analytically relevant nanoscale quantification being the primary focus. Chapter Two describes in detail the thermal degradation synthesis used for the generation of small MOx nanoparticles. It demonstrates the versatile of the synthesis by successfully synthesizing ZrO 2 and IrO2 nanoparticles. Preliminary work involving the formation of Bi2S3, Bi2O3, and RuO2 nanomaterials is also addressed. The solvothermal synthesis of indium tin oxide (ITO) is also shown for comparison to ITO produced by thermal degradation. Chapter Three details the surface modification of ITO nanoparticles and subsequent electrochemical tagging with a ferrocene moiety. ITO nanoparticles were synthesized via thermal degradation. These nanoparticles underwent a ligand exchange with a covalently binding mondentate silane terminated with a primary amine. Acyl chloride coupling between the amine and chlorocarbonylferrocene provided an electrochemical tag to quantify the level of surface modification. Electrochemisty of the quasi-diffusing nanoparticles was evaluated via cyclic voltammetry (CV), chronoamperometry (CA), and mircodisk electrode (microE) experiments. Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well as electrochemical tagging of ZrO 2 and IrO2 nanoparticles. An unbound azo-dye was synthesized and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple between a spectroscopic tag

  14. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection.

    PubMed

    Liu, Aihua; Wu, Liyou; He, Zhili; Zhou, Jizhong

    2011-10-01

    Increasing the sensitivity in DNA microarray hybridization can significantly enhance the capability of microarray technology for a wide range of research and clinical diagnostic applications, especially for those with limited sample biomass. To address this issue, using reverse microemulsion method and surface chemistry, a novel class of homogenous, photostable, highly fluorescent streptavidin-functionalized silica nanoparticles was developed, in which Alexa Fluor 647 (AF647) molecules were covalently embedded. The coating of bovine serum albumin on the resultant fluorescent particles can greatly eliminate nonspecific background signal interference. The thus-synthesized fluorescent nanoparticles can specifically recognize biotin-labeled target DNA hybridized to the microarray via streptavidin-biotin interaction. The response of this DNA microarray technology exhibited a linear range within 0.2 to 10 pM complementary DNA and limit of detection of 0.1 pM, enhancing microarray hybridization sensitivity over tenfold. This promising technology may be potentially applied to other binding events such as specific interactions between proteins. PMID:21822973

  15. Earth abundant bimetallic nanoparticles for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Senn, Jonathan F., Jr.

    Polymer exchange membrane fuel cells have the potential to replace current fossil fuel-based technologies in terms of emissions and efficiency, but CO contamination of H2 fuel, which is derived from steam methane reforming, leads to system inefficiency or failure. Solutions currently under development are bimetallic nanoparticles comprised of earth-abundant metals in different architectures to reduce the concentration of CO by PROX during fuel cell operation. Chapter One introduces the Pt-Sn and Co-Ni bimetallic nanoparticle systems, and the intermetallic and core-shell architectures of interest for catalytic evaluation. Application, theory, and studies associated with the efficacy of these nanoparticles are briefly reviewed. Chapter Two describes the concepts of the synthetic and characterization methods used in this work. Chapter Three presents the synthetic, characterization, and catalytic findings of this research. Pt, PtSn, PtSn2, and Pt 3Sn nanoparticles have been synthesized and supported on gamma-Al2O3. Pt3Sn was shown to be an effective PROX catalyst in various gas feed conditions, such as the gas mixture incorporating 0.1% CO, which displayed a light-off temperatures of ˜95°C. Co and Ni monometallic and CoNi bimetallic nanoparticles have been synthesized and characterized, ultimately leading to the development of target Co Ni core-shell nanoparticles. Proposed studies of catalytic properties of these nanoparticles in preferential oxidation of CO (PROX) reactions will further elucidate the effects of different crystallographic phases, nanoparticle-support interactions, and architecture on catalysis, and provide fundamental understanding of catalysis with nanoparticles composed of earth abundant metals in different architectures.

  16. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  17. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  18. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  19. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  20. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  1. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  2. Applications of nanoparticles for diagnosis and therapy of cancer

    PubMed Central

    Baetke, Sarah C.; Lammers, Twan; Kiessling, Fabian

    2015-01-01

    During the last decades, a plethora of nanoparticles have been developed and evaluated and a real hype has been created around their potential application as diagnostic and therapeutic agents. Despite their suggestion as potential diagnostic agents, only a single diagnostic nanoparticle formulation, namely iron oxide nanoparticles, found its way into clinical routine so far. This fact is primarily due to difficulties in achieving appropriate pharmacokinetic properties and a reproducible synthesis of monodispersed nanoparticles. Furthermore, concerns exist about their biodegradation, elimination and toxicity. The majority of nanoparticle formulations that are currently routinely used in the clinic are employed for therapeutic purposes. These therapeutic nanoparticles aim to more efficiently deliver a (chemo-) therapeutic drug to the pathological site, while avoiding its accumulation in healthy organs and tissues, and are predominately based on the “enhanced permeability and retention” (EPR) effect. Furthermore, based on their ability to integrate diagnostic as well as therapeutic entities within a single nanoparticle formulation, nanoparticles hold great promise for theranostic purposes, and are considered to be highly useful for personalizing nanomedicine-based treatments. In this review article, we present applications of diagnostic and therapeutic nanoparticles, summarize frequently used non-invasive imaging techniques, and describe the role of EPR in the accumulation of nanotheranostic formulations. In this context, the clinical potential of nanotheranostics and image-guided drug delivery for individualized and improved (chemo-) therapeutic interventions is addressed. PMID:25969868

  3. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  4. Silicon nanoparticles: applications in cell biology and medicine

    PubMed Central

    O’Farrell, Norah; Houlton, Andrew; Horrocks, Benjamin R

    2006-01-01

    In this review, we describe the synthesis, physical properties, surface functionalization, and biological applications of silicon nanoparticles (also known as quantum dots). We compare them against current technologies, such as fluorescent organic dyes and heavy metal chalcogenide-based quantum dots. In particular, we examine the many different methods that can be used to both create and modify these nanoparticles and the advantages they may have over current technologies that have stimulated research into designing silicon nanoparticles for in vitro and in vivo applications. PMID:17722279

  5. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  6. Light addressable potentiometric sensor with an array of sensing regions

    NASA Astrophysics Data System (ADS)

    Liang, Weiguo; Han, JingHong; Zhang, Hong; Chen, Deyong

    2001-09-01

    This paper describes the mechanism of light addressable poteniometric sensors (LAPS) from the viewpoints of Semiconductor Physics, and introduces the fabrication of a multi-parameter LAPS chip. The MEMS technology is applied to produce a matrix of sensing regions on the wafer. By doing that, the cross talk among these regions is reduced, and the precision of the LAPS is increased. An IR-LED matrix is used as the light source, and the flow-injection method is used to input samples. The sensor system is compact and highly integrated. The measure and control system is composed of a personal computer, a lock-in amplifier, a potentiostat, a singlechip system, and an addressing circuit. Some experiments have been done with this device. The results show that this device is very promising for practical use.

  7. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2012-01-01

    Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier. PMID:22212900

  8. Nanoparticle amplification via photothermal unveiling of cryptic collagen binding sites

    PubMed Central

    Lo, Justin H.; von Maltzahn, Geoffrey; Douglass, Jacqueline; Park, Ji-Ho; Sailor, Michael J.; Ruoslahti, Erkki

    2013-01-01

    The success of nanoparticle-based cancer therapies ultimately depends on their ability to selectively and efficiently accumulate in regions of disease. Outfitting nanoparticles to actively target tumor-specific markers has improved specificity, yet it remains a challenge to amass adequate therapy in a selective manner. To help address this challenge, we have developed a mechanism of nanoparticle amplification based on stigmergic (environment-modifying) signalling, in which a “Signalling” population of gold nanorods induces localized unveiling of cryptic collagen epitopes, which are in turn targeted by “Responding” nanoparticles bearing gelatin-binding fibronectin fragments. We demonstrate that this two-particle system results in significantly increased, selective recruitment of responding particles. Such amplification strategies have the potential to overcome limitations associated with single-particle targeting by leveraging the capacity of nanoparticles to interact with their environment to create abundant new binding motifs. PMID:24177171

  9. Dynamic Covalent Nanoparticle Building Blocks.

    PubMed

    Kay, Euan R

    2016-07-25

    Rational and generalisable methods for engineering surface functionality will be crucial to realising the technological potential of nanomaterials. Nanoparticle-bound dynamic covalent exchange combines the error-correcting and environment-responsive features of equilibrium processes with the stability, structural precision, and vast diversity of covalent chemistry, defining a new and powerful approach for manipulating structure, function and properties at nanomaterial surfaces. Dynamic covalent nanoparticle (DCNP) building blocks thus present a whole host of possibilities for constructing adaptive systems, devices and materials that incorporate both nanoscale and molecular functional components. At the same time, DCNPs have the potential to reveal fundamental insights regarding dynamic and complex chemical systems confined to nanoscale interfaces. PMID:27312526

  10. Singular electrostatic energy of nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.

    2016-02-01

    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

  11. Addressing Cyberbullying as a Media Literacy Issue

    ERIC Educational Resources Information Center

    Bhat, Christine Suniti; Chang, Shih-Hua; Linscott, Jamie A.

    2010-01-01

    Background: The Asian region accounts for the highest number of internet and mobile cell phones consumers among the regions of the world. As the use of information and communications technology becomes more and more widespread, the misuse of such technology becomes a concern. Cyberbullying, or bullying using information and communications…

  12. Shared address collectives using counter mechanisms

    SciTech Connect

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  13. Initiative Addresses Subsurface Energy and Environment Problems

    NASA Astrophysics Data System (ADS)

    Bodvarsson, Gudmundur S.; Majer, Ernest L.; Wang, Joseph S. Y.; Colwell, Frederick; Redden, George

    2006-01-01

    Members of the geoscience community are cooperating in conceptualizing fundamental, crosscutting research to address major obstacles to solving energy and environmental problems related to the subsurface, through the SECUREarth initiative, which began in 2004. Addressing problems, such as reliable nuclear waste storage and safe carbon dioxide (CO2) sequestration, are critical to maintaining an economical and safe energy supply and clean environment. A recent workshop in Golden, Colo., helped to further the development of the SECUREarth (Scientific Energy/Environmental Crosscutting Underground Research for Urgent Solutions to Secure the Earth's Future) initiative by identifying the key scientific challenges in the geosciences, as well as to target possible approaches for overcoming roadblocks.

  14. Frequency addressable beams for land mobile communications

    NASA Technical Reports Server (NTRS)

    Thompson, J. D.; Dubellay, G. G.

    1988-01-01

    Satellites used for mobile communications need to serve large numbers of small, low cost terminals. The most important parameters affecting the capacity of such systems are the satellite equivalent isotropically radiated power (EIRP) and gain to noise temperature ratio (G/T) and available bandwidth. Satellites using frequency addressed beams provide high EIRP and G/T with high-gain antenna beams that also permit frequency reuse over the composite coverage area. Frequency addressing is easy to implement and compatible with low-cost terminals and offers higher capacity than alternative approaches.

  15. Cheaper Adjoints by Reversing Address Computations

    DOE PAGESBeta

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  16. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    PubMed Central

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  17. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation.

    PubMed

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-08-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  18. Addressing Society's Preparedness for the Approaching Solar Maximum

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2010-07-01

    As the next solar maximum approaches, increased solar activity could damage technology on which society relies, with potentially serious consequences for national security, aviation, emergency response, communications, navigation, spacecraft, and electric power grids. To discuss the state of preparedness, describe recent progress, and address future needs, approximately 200 researchers and stakeholders from government agencies, academia, and industry, including international participants, met in June at the 2010 Space Weather Enterprise Forum in Washington, D. C. The conference's theme was "Building an informed and resilient society—The decade ahead."

  19. STS-85 Cmdr Brown addresses media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Commander Curtis L. Brown, Jr., addresses the news media at a briefing at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  20. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  1. Reliable SERS substrates by the controlled assembly of nanoparticles

    NASA Astrophysics Data System (ADS)

    Rabin, Oded

    2012-06-01

    Reliable SERS-based chemical sensors are attainable with the proper design of nanostructures on the enhancing surface. This proceeding addresses techniques for the immobilization and assembly of metal nanoparticles on substrates and the analysis of the reliability of these techniques with respect to producing effective SERS-based sensors. The fabrication methods that will be addressed are: the "vertical deposition" of nanoparticles on topography-textured substrates using capillary forces; the electrophoretic deposition of nanoparticles in templates prepared by e-beam lithography; and the assembly of nanoparticles through electrostatic interactions between the particles and microphase segregated block-copolymer films. Notably, the use of self-assembly makes these methods economically favorable. Our studies address both large area substrates and localized nanoscale structures. The properly-designed self-assembly approaches do not compromise the accuracy of the calculated enhancement factors, since no assumptions are made regarding the volume of the hot-spots. The reliability of the fabrication techniques is evaluated through the distribution of the enhancement factor values measured in hundreds of sensing sites. Correlations between Raman enhancement, geometry of aggregation and plasmon resonances will be presented. Optimizations of the SERS enhancement and the SERS substrate reliability were achieved through two strategies: (1) by controlling the inter-particle distance between metal nanoparticles in a two-dimensional lattice, and (2) by controlling the number and position of nanoparticles in small isolated clusters.

  2. Phytosynthesis of nanoparticles: concept, controversy and application

    PubMed Central

    2014-01-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles. PMID:24910577

  3. Phytosynthesis of nanoparticles: concept, controversy and application

    NASA Astrophysics Data System (ADS)

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-05-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles.

  4. Probing stem cell behavior using nanoparticle-based approaches.

    PubMed

    Patel, Sahishnu; Lee, Ki-Bum

    2015-01-01

    Stem cells hold significant clinical potential to treat numerous debilitating diseases and injures that currently have no treatment plan. While several advances have been made in developing stem cell platforms and methods to induce their differentiation, there are two critical aspects need to be addressed: (1) efficient delivery of nucleic acids and small molecules for stem cell differentiation, and (2) effective, noninvasive, and real-time tracking of transplanted stem cells. To address this, there has been a trend of utilizing various types of nanoparticles to not only deliver biomolecules to targeted site but also track the location of transplanted stem cells in real time. Over the past decade, various types of nanoparticles, including magnetic nanoparticles, silica nanoparticles, quantum dots, and gold nanoparticles, have been developed to serve as vehicles for targeted biomolecule delivery. In addition of being biocompatible without causing adverse side effect to stem cells, these nanoparticles have unique chemical and physical properties that allow tracking and imaging in real time using different imaging instruments that are commonly found in hospitals. A summary of the landmark and progressive demonstrations that utilize nanoparticles for stem cell application is described. PMID:25903468

  5. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  6. A Technology Checkup.

    ERIC Educational Resources Information Center

    Sydow, James A.; Kirkpatrick, Clark M.

    1996-01-01

    A technology audit compares a school district's plans and expectations for technology with actual deployment and use. The audit addresses information systems; operational environment; administrative, teaching, and learning applications; student, finance, and human resources systems; technology; infrastructure; office automation and productivity…

  7. The Technology Age Classroom.

    ERIC Educational Resources Information Center

    Cannings, Terence R., Ed.; Finkel, LeRoy, Ed.

    This collection of 111 readings on educational technology is intended for use in formal teacher training courses or inservice programs for teachers. The articles, most of which focus on computer technology, were originally published in journals in the field of educational technology. The articles are arranged in eight chapters that address: (1)…

  8. Microplastics: addressing ecological risk through lessons learned.

    PubMed

    Syberg, Kristian; Khan, Farhan R; Selck, Henriette; Palmqvist, Annemette; Banta, Gary T; Daley, Jennifer; Sano, Larissa; Duhaime, Melissa B

    2015-05-01

    Plastic litter is an environmental problem of great concern. Despite the magnitude of the plastic pollution in our water bodies, only limited scientific understanding is available about the risk to the environment, particularly for microplastics. The apparent magnitude of the problem calls for quickly developing sound scientific guidance on the ecological risks of microplastics. The authors suggest that future research into microplastics risks should be guided by lessons learned from the more advanced and better understood areas of (eco) toxicology of engineered nanoparticles and mixture toxicity. Relevant examples of advances in these two fields are provided to help accelerate the scientific learning curve within the relatively unexplored area of microplastics risk assessment. Finally, the authors advocate an expansion of the "vector effect" hypothesis with regard to microplastics risk to help focus research of microplastics environmental risk at different levels of biological and environmental organization. PMID:25655822

  9. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    in order to fully describe nanoparticle ransport. References 1. Molnar, I.L., et al., Method for Obtaining Silver Nanoparticle Concentrations within a Porous Medium via Synchrotron X-ray Computed Microtomography. Environmental Science & Technology, 2014. 48(2): p. 1114-1122.

  10. Federal Offices That Address Women's Issues.

    ERIC Educational Resources Information Center

    Weber, Patricia A.; And Others

    This directory contains a listing of federal offices that address women's issues. Among the departments and agencies included are: the executive branch and the executive agencies departments of agriculture, commerce, defense (Air Force, Army, Coast Guard, Marine Corps, National Guard and Navy), education, health and human services, housing and…

  11. Preservice Educators' Confidence in Addressing Sexuality Education

    ERIC Educational Resources Information Center

    Wyatt, Tammy Jordan

    2009-01-01

    This study examined 328 preservice educators' level of confidence in addressing four sexuality education domains and 21 sexuality education topics. Significant differences in confidence levels across the four domains were found for gender, academic major, sexuality education philosophy, and sexuality education knowledge. Preservice educators…

  12. 50 CFR 228.8 - Mailing address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Mailing address. 228.8 Section 228.8 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... the Presiding Officer, c/o Assistant Administrator, National Marine Fisheries Service, 1315...

  13. Latitude and Longitude. AIR Presidential Address.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    This speech addresses the problem of higher education's response to the forces of change and argues for a reinventing of higher education rather than repeatedly amending core teaching and research activities to fit new social and economic situations. Three higher education organizational dynamics (recruitment, budgeting, and handling outside…

  14. Violence Goes to School. Keynote Address.

    ERIC Educational Resources Information Center

    Levin, Jack

    1998-01-01

    Increased juvenile violence in schools has led to suggested solutions that are politically expedient but fail to address what makes violence so appealing. Instead of school uniforms, conflict resolution programs, or media rating systems, a grass roots approach of alternative programs, parental involvement, and youth support systems could repair…

  15. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  16. Addressing Gender Differences in Young Adolescents.

    ERIC Educational Resources Information Center

    Butler, Deborah A.; Manning, M. Lee

    The current interest in identifying gender differences in young adolescents suggests a need to focus on how gender differences affect teaching and learning situations and on how middle level school educators can address these differences. This book explains what gender differences are, how gender differences affect learning, how both girls and…

  17. Addressing South Africa's Engineering Skills Gaps

    ERIC Educational Resources Information Center

    Hall, Jonathan; Sandelands, Eric

    2009-01-01

    Purpose: This paper aims to provide a case study of how engineering skills gaps are being addressed by Murray & Roberts in South Africa. Design/methodology/approach: The paper focuses on skills challenges in South Africa from a reflective practitioner perspective, exploring a case example from an industry leader. Findings: The paper explores how…

  18. 76 FR 80903 - Mandatory Declassification Review Addresses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... of the Secretary Mandatory Declassification Review Addresses AGENCY: Department of Defense. ACTION... Declassification Review requests may be sent. This notice benefits the public in advising them where to send such requests for declassification review. FOR FURTHER INFORMATION CONTACT: Mr. Robert Storer, (571)...

  19. 50 CFR 228.8 - Mailing address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Mailing address. 228.8 Section 228.8 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... the Presiding Officer, c/o Assistant Administrator, National Marine Fisheries Service, 1315...

  20. Naming and Address in Afghan Society.

    ERIC Educational Resources Information Center

    Miran, M. Alam

    Forms of address in Afghan society reflect the relationships between the speakers as well as the society's structure. In Afghan Persian, or Dari, first, second, and last names have different semantic dimensions. Boys' first names usually consist of two parts or morphemes, of which one may be part of the father's name. Girls' names usually consist…

  1. Addressing Student Debt in the Classroom

    ERIC Educational Resources Information Center

    Perkins, David; Johnston, Tim; Lytle, Rick

    2016-01-01

    Student debt is a national concern. The authors address debt in the classroom to enhance students' understanding of the consequences of debt and the need for caution when financing their education. However, student feedback indicates this understanding has a delayed effect on borrowing behavior and underscores the importance of making difficult…

  2. Native Women at Risk: Addressing Cancer Prevention.

    ERIC Educational Resources Information Center

    Thiemann, Kay M. B.

    1994-01-01

    Discusses outcomes of a conference that brought together representatives from Indian tribes, state health departments, the Indian Health Service, the Mayo Clinic, and the American Cancer Society, to address the high rate of cervical cancer among American Indian women. Describes barriers to health care and plans to promote cancer screening among…

  3. Autocheck: Addressing the Problem of Rural Transportation.

    ERIC Educational Resources Information Center

    Payne, Guy A.

    This paper describes a project implemented by a social worker from the Glynn County School District in rural Georgia to address transportation problems experienced by students and their families. The project aims to assist families who are unable to keep appointments or attend other important events due to unreliable transportation. A county needs…

  4. Problem Solvers: Solutions--The Inaugural Address

    ERIC Educational Resources Information Center

    Dause, Emily

    2014-01-01

    Fourth graders in Miss Dause's and Mrs. Hicks's mathematics classes at South Mountain Elementary School in Dillsburg, Pennsylvania, worked with the data from the Inauagural Address problem that was previously published published in the February 2013 issue of "Teaching Children Mathematics". This activity allowed students to…

  5. EMAIL -- E-mail address searching

    NASA Astrophysics Data System (ADS)

    Bly, M. J.; Mellor, G. R.

    One of the most common activities on networked computers is the sending and receiving of personal electronic mail (email). Starlink nodes are connected to the worldwide Internet network. This document describes how to find email addresses to communicate with other astronomers and astronomy groups in the UK and the rest of the world.

  6. Address Systems in "The Plum Plum Pickers"

    ERIC Educational Resources Information Center

    Geuder, Patricia A.

    1975-01-01

    The address systems in Raymond Barrio's "The Plum Plum Pickers" imply sociolinguistic differences between the Chicano and the Anglo characters. The kinds of sociolinguistic situations, the number of dyadic patterns, and the quantity of the dyadic patterns strongly suggest the differences. (Author)

  7. How Sociology Texts Address Gun Control

    ERIC Educational Resources Information Center

    Tonso, William R.

    2004-01-01

    William R. Tonso has chosen an issue that he knows something about to examine how sociology textbooks address controversy. Appealing for gun control is fashionable, but it is at odds with a fondness that ordinary Americans have for their firearms--one that is supported by a growing body of research on deterrence to crime. There are two sides to…

  8. 40 CFR 374.6 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Addresses. 374.6 Section 374.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND... Administrator, Region VII, U.S. Environmental Protection Agency, 726 Minnesota Avenue, Kansas City, KS...

  9. 40 CFR 374.6 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Addresses. 374.6 Section 374.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND... Administrator, Region VII, U.S. Environmental Protection Agency, 726 Minnesota Avenue, Kansas City, KS...

  10. Opening Address of Chairman Michael Pertschuk.

    ERIC Educational Resources Information Center

    Pertschuk, Michael

    Presented to a symposium sponsored by the Federal Trade Commission (FTC) to consider some of the issues involved in the continuing growth of a few large companies in the field of communication, this address cites statements of concern, made by the Supreme Court and by some periodicals, that excessive concentrations of power threaten First…

  11. 37 CFR 301.2 - Official addresses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 301.2 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS GENERAL...., and be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial... Royalty Board, Library of Congress, James Madison Memorial Building, 101 Independence Avenue,...

  12. 37 CFR 301.2 - Official addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 301.2 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS GENERAL...., and be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial... Royalty Board, Library of Congress, James Madison Memorial Building, 101 Independence Avenue,...

  13. 37 CFR 301.2 - Official addresses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 301.2 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS GENERAL...., and be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial... Royalty Board, Library of Congress, James Madison Memorial Building, 101 Independence Avenue,...

  14. 37 CFR 301.2 - Official addresses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 301.2 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS GENERAL...., and be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial... Royalty Board, Library of Congress, James Madison Memorial Building, 101 Independence Avenue,...

  15. The Conversational Frame in Public Address.

    ERIC Educational Resources Information Center

    Branham, Robert James; Pearce, W. Barnett

    1996-01-01

    Explores the diverse forms and motives of the conversational frame in public address. Argues that, by framing their remarks and transactions with their listeners as conversational, orators may attempt to reconstruct or seem to reconstruct speaker-audience relationships and to position themselves and their audiences within networks of reciprocal…

  16. Rational Rhymes for Addressing Common Childhood Issues

    ERIC Educational Resources Information Center

    Warren, Jeffrey M.

    2011-01-01

    Music-based interventions are valuable tools counselors can use when working with children. Specific types of music-based interventions, such as songs or rhymes, can be especially pertinent in addressing the thoughts, feelings, and behaviors of children. Rational-emotive behavior therapy (REBT) provides a therapeutic framework that encourages…

  17. Chemical Address Tags of Fluorescent Bioimaging Probes

    PubMed Central

    Shedden, Kerby; Rosania, Gus R.

    2010-01-01

    Chemical address tags can be defined as specific structural features shared by a set of bioimaging probes having a predictable influence on cell-associated visual signals obtained from these probes. Here, using a large image dataset acquired with a high content screening instrument, machine vision and cheminformatics analysis have been applied to reveal chemical address tags. With a combinatorial library of fluorescent molecules, fluorescence signal intensity, spectral, and spatial features characterizing each one of the probes' visual signals were extracted from images acquired with the three different excitation and emission channels of the imaging instrument. With multivariate regression, the additive contribution from each one of the different building blocks of the bioimaging probes towards each measured, cell-associated image-based feature was calculated. In this manner, variations in the chemical features of the molecules were associated with the resulting staining patterns, facilitating quantitative, objective analysis of chemical address tags. Hierarchical clustering and paired image-cheminformatics analysis revealed key structure-property relationships amongst many building blocks of the fluorescent molecules. The results point to different chemical modifications of the bioimaging probes that can exert similar (or different) effects on the probes' visual signals. Inspection of the clustered structures suggests intramolecular charge migration or partial charge distribution as potential mechanistic determinants of chemical address tag behavior. PMID:20104576

  18. Comprehensive Planning To Address Homelessness. City Initiatives.

    ERIC Educational Resources Information Center

    Zawisza, Kris

    This packet contains documents that provide information about the planning and implementation of a comprehensive plan to address homelessness in cities throughout the U.S. Information on the following components of a comprehensive strategy are included: (1) "Task Forces"; (2) "Assessment Studies"; (3) "Emergency Services"; (4) "Transitional…

  19. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  20. 40 CFR 98.9 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... submitted to the following address: (a) For U.S. mail. Director, Climate Change Division, 1200 Pennsylvania Ave., NW., Mail Code: 6207J, Washington, DC 20460. (b) For package deliveries. Director, Climate Change Division, 1310 L St, NW., Washington, DC 20005....

  1. 40 CFR 98.9 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submitted to the following address: (a) For U.S. mail. Director, Climate Change Division, 1200 Pennsylvania Ave., NW., Mail Code: 6207J, Washington, DC 20460. (b) For package deliveries. Director, Climate Change Division, 1310 L St, NW., Washington, DC 20005....

  2. 37 CFR 251.1 - Official addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Copyright Arbitration Royalty Panels (CARPs) must be addressed as follows: (a) If hand delivered by a... Friday between 8:30 a.m. and 5 p.m. (b) If hand delivered by a commercial courier (excluding Federal...) located at Second and D Street, NE., Washington, DC. The CCAS will accept items from couriers with...

  3. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum

    NASA Astrophysics Data System (ADS)

    Aromal, S. Aswathy; Vidhu, V. K.; Philip, Daizy

    2012-01-01

    The synthesis of metal nanoparticles of different sizes, shapes, chemical composition and controlled monodispersity is an important area of research in nanotechnology because of their interesting physical properties and technological applications. Present work describes an eco-friendly method for the synthesis of spherical gold nanoparticles using aqueous extract of Macrotyloma uniflorum. The effects of quantity of extract, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles with fcc phase is evident from HRTEM images, SAED and XRD patterns. Synthesized nanoparticles have size in the range 14-17 nm. FTIR spectrum indicates the presence of different functional groups present in the bio-molecule capping the nanoparticles. The possible mechanism leading to the formation of gold nanoparticles is suggested.

  4. Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation

    NASA Astrophysics Data System (ADS)

    Etheridge, Michael L.

    The current work focused on the ability of magnetic nanoparticles to produce heat in the presence of an applied alternating magnetic field. Magnetic nanoparticle hyperthermia applications utilize this behavior to treat cancer and this approach has received clinical approval in the European Union, but significant developments are necessary for this technology to have a chance for wider-spread acceptance. Here then we begin by investigating some of the important limitations of the current technology. By characterizing the ability of superparamagnetic and ferromagnetic nanoparticles to heat under a range of applied fields, we are able to determine the optimal field settings for clinical application and make recommendations on the highest impact strategies to increase heating. In addition, we apply these experimentally determined limits to heating in a series of heat transfer models, to demonstrate the therapeutic impact of nanoparticle concentration, target volume, and delivery strategy. Next, we attempt to address one of the key questions facing the field- what is the impact of biological aggregation on heating? Controlled aggregate populations are produced and characterized in ionic and protein solutions and their heating is compared with nanoparticles incubated in cellular suspensions. Through this investigation we are able to demonstrate that aggregation is responsible for up to a 50% decrease in heating. However, more importantly, we are able to demonstrate that the observed reductions in heating correlate with reductions in longitudinal relaxation (T1) measured by sweep imaging with Fourier transformation (SWIFT) magnetic resonance imaging (MRI), providing a potential platform to account for these aggregation effects and directly predict heating in a clinical setting. Finally, we present a new application for magnetic nanoparticle heating, in the thawing of cryopreserved biomaterials. A number of groups have demonstrated the ability to rapidly cool and preserve

  5. Keynote Address for 6th International Symposium on Digital Earth

    NASA Technical Reports Server (NTRS)

    Bambacus, Myra

    2009-01-01

    NASA is committed to collaborating with not only our National Partners but also with our International Partners to help make our world a better place. We do this through the sharing of our discoveries and working together so that we can address uncertainties in predictions and forecasts that impact how we live on our home planet. NASA is committed to a Digital Earth as it enables our research to focus on cross disciplinary analysis. The mainstream Information Technologies along with the Digital Earth concepts have allowed this interdisciplinary research that is so critical to societal benefits. The technologies have been discovered and in many cases implemented, but we must forge ahead together to continue to advance all that is possible to fully extend our earth observations for the sake of humankind.

  6. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOEpatents

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  7. Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids

    NASA Astrophysics Data System (ADS)

    Richner, Patrizia; Kress, Stephan J. P.; Norris, David J.; Poulikakos, Dimos

    2016-03-01

    Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O (1 μm) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and out-of-plane structures of similar sizes. Despite the demonstrated capabilities, our fundamental understanding of important aspects of the physics of NanoDrip printing needs further improvement. Here we address the topics of charge content and transport in NanoDrip printing. We employ quantum dot and gold nanoparticle dispersions in combination with a specially designed, auxiliary, asymmetric electric field, targeting the understanding of charge locality (particles vs. solvent) and particle distribution in the deposits as indicated by the dried nanoparticle patterns (footprints) on the substrate. We show that droplets of alternating charge can be spatially separated when applying an ac field to the nozzle. The nanoparticles within a droplet are distributed asymmetrically under the influence of the auxiliary lateral electric field, indicating that they are the main carriers. We also show that the ligand length of the nanoparticles in the colloid affects their mobility after deposition (in the sessile droplet state).Advancing open atmosphere printing technologies to produce features in the nanoscale range has important and broad applications ranging from electronics to photonics, plasmonics and biology. Recently an electrohydrodynamic printing regime has been demonstrated in a rapid dripping mode (termed NanoDrip), where the ejected colloidal droplets from nozzles of diameters of O (1 μm) can controllably reach sizes an order of magnitude smaller than the nozzle and can generate planar and

  8. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.

    PubMed

    Lewandowski, Wiktor; Wójcik, Michał; Górecka, Ewa

    2014-05-19

    Nanoparticle ordered aggregates are promising candidates for future application in a variety of sensing, optical and electronic technologies, mainly based on collective interactions between individual nano-building blocks. Physicochemical properties of such assemblies depend on nanoparticle spacing, therefore a lot of effort throughout the last years was put on development of assembly methods allowing control over aggregates structure. In this minireview we describe efficient self-assembly process based on the utilization of liquid-crystalline ligands grafted onto nanoparticle surface. We show strategies used to synthesize liquid-crystalline nanoparticles as well as discuss parameters influencing structural and thermal characteristic of aggregates. It is also demonstrated that the liquid-crystalline approach offers access to dynamic self-assembly and metamaterials with anisotropic plasmonic properties, which makes this strategy unique among others. PMID:24789440

  9. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    PubMed Central

    Alili, Lirija; Chapiro, Swetlana; Marten, Gernot U.; Schmidt, Annette M.; Zanger, Klaus; Brenneisen, Peter

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles. PMID:26090418

  10. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  11. Thermo-optical properties of gold nanoparticles in colloidal systems

    NASA Astrophysics Data System (ADS)

    Ortega, M. A.; Rodriguez, L.; Castillo, J.; Piscitelli, V.; Fernandez, A.; Echevarria, L.

    2008-10-01

    In this work, we report the thermo-optical properties of nanoparticles in colloidal suspensions. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy pumping at 532 nm with a 10 ns pulse laser-Nd-YAG system. The obtained nanoparticles were stabilized in the time by surfactants (sodium dodecyl sulfate or SDS) in water with different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM) and UV-visible techniques. The plasmonic resonance bands in gold nanoparticles are responsible for the light optical absorption, and the positions of the absorption maximum and bandwidth in the UV-visible spectra are given by the morphological characteristics of these systems. The thermo-optical constants such as thermal diffusion, thermal diffusivity, and (dn/dT) are functions of the nanoparticle sizes and the dielectric function of the media. For these reasons, the thermal lens (TL) signal is also dependent on nanoparticle sizes. An analysis of the TL signal of the nanoparticles reveals the existence of an inverse dependence between the thermo-optical functions and the size. This methodology can be used in order to evaluate these systems and characterize nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors, and other technological applications such as cooling systems.

  12. Surface Characterization of Nanoparticles: Critical Needs and Significant Challenges.

    SciTech Connect

    Baer, Donald R.

    2011-03-01

    There is a growing recognition that nanoparticles and other nanostructured materials are sometimes inadequately characterized and that this may limit or even invalidate some of the conclusions regarding particle properties and behavior. A number of international organizations are working to establish the essential measurement requirements that enable adequate understanding of nanoparticle properties for both technological applications and for environmental health issues. Our research on the interaction of iron metal-core oxide-shell nanoparticles with environmental contaminants and studies of the behaviors of ceria nanoparticles, with a variety of medical, catalysis and energy applications, have highlighted a number of common nanoparticle characterization challenges that have not been fully recognized by parts of the research community. This short review outlines some of these characterization challenges based on our research observations and using other results reported in the literature. Issues highlighted include: 1) the importance of surfaces and surface characterization, 2) nanoparticles are often not created equal - subtle differences in synthesis and processing can have large impacts; 3) nanoparticles frequently change with time having lifetime implications for products and complicating understanding of health and safety impacts; 4) the high sensitivity of nanoparticles to their environment complicates characterization and applications in many ways; 5) nanoparticles are highly unstable and easily altered (damaged) during analysis.

  13. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  14. Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles.

    PubMed

    Chen, Feng; Goel, Shreya; Hernandez, Reinier; Graves, Stephen A; Shi, Sixiang; Nickles, Robert J; Cai, Weibo

    2016-05-01

    Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future. PMID:27062146

  15. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  16. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the gamma-proteobacterium, Shewanella oneidensis

    SciTech Connect

    Doktycz, Mitchel John; Moon, Ji Won; Meyer III, Harry M; Hensley, Dale K; Phelps, Tommy Joe; Pelletier, Dale A

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size- and shape-dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs has become a priority. In the present article we report for the first time on the efficient generation of extracellular silver sulfide (Ag{sub 2}S) nanoparticles by the metal-reducing bacterium Shewanella oneidensis. The particles are reasonably monodispersed and homogeneously shaped. They are produced under ambient temperatures and pressures at high yield, 85% theoretical maximum. UV-visible and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical and surface properties, purity and crystallinity of the synthesized particles. Further characterization revealed that the particles consist of spheres with a mean diameter of 9 {+-} 3.5 nm, and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these biogenic Ag{sub 2}S nanoparticles on Gram-negative (Escherichia coli and S. oneidensis) and Gram-positive (Bacillus subtilis) bacterial systems, as well as eukaryotic cell lines including mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells, showed that the particles were non-inhibitory and non-cytotoxic to any of these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag{sub 2}S nanoparticles. These particles are dispersible and biocompatible, thus providing excellent potential for use in optical imaging, electronic devices and solar cell applications.

  17. The Sustainable Hydrogen Economy: Addressing the Challenges Ahead

    NASA Astrophysics Data System (ADS)

    Turner, John A.

    2006-10-01

    It is rapidly becoming apparent that energy is one of the most important issues facing our world today; in fact, in today's society energy is as important as food and water. Humankind finds itself faced the challenge of how to continue to power society, particularly in the face of the rapidly growing economies of emerging nations like India and China, and yet answer questions of sustainability, energy security, geopolitics and global environment. One of the major issues facing America and most other countries in the world is how to supply a transportation fuel, an energy carrier to replace gasoline. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions and energy security. The ``Hydrogen Economy'' then is the production of hydrogen, its distribution and utilization as an energy carrier. While the vision of a hydrogen economy has been around for over 130 years, the most recent push to use hydrogen as an energy carrier came as part of a US Presidential Initiative, announced in the 2003 State of the Union Address. It is important that we consider hydrogen in tandem with other technologies as an alternative to the once-abundant hydrocarbon resources on which our society depends. This talk will introduce sustainable energy systems, including fuel cell technology and discuss the vision, the barriers and possible pathways for the production and implementation of hydrogen into the energy infrastructure.

  18. Increasing hope by addressing clients' outcome expectations.

    PubMed

    Swift, Joshua K; Derthick, Annie O

    2013-09-01

    Addressing clients' outcome expectations is an important clinical process that can lead to a strong therapeutic alliance, more positive treatment outcomes, and decreased rates of premature termination from psychotherapy. Five interventions designed to foster appropriate outcome expectations are discussed, including presenting a convincing treatment rationale, increasing clients' faith in their therapists, expressing faith in clients, providing outcome education, and comparing progress with expectations. Clinical examples and research support are provided for each. PMID:24000836

  19. Innovative Legal Approaches to Address Obesity

    PubMed Central

    Pomeranz, Jennifer L; Teret, Stephen P; Sugarman, Stephen D; Rutkow, Lainie; Brownell, Kelly D

    2009-01-01

    Context: The law is a powerful public health tool with considerable potential to address the obesity issue. Scientific advances, gaps in the current regulatory environment, and new ways of conceptualizing rights and responsibilities offer a foundation for legal innovation. Methods: This article connects developments in public health and nutrition with legal advances to define promising avenues for preventing obesity through the application of the law. Findings: Two sets of approaches are defined: (1) direct application of the law to factors known to contribute to obesity and (2) original and innovative legal solutions that address the weak regulatory stance of government and the ineffectiveness of existing policies used to control obesity. Specific legal strategies are discussed for limiting children's food marketing, confronting the potential addictive properties of food, compelling industry speech, increasing government speech, regulating conduct, using tort litigation, applying nuisance law as a litigation strategy, and considering performance-based regulation as an alternative to typical regulatory actions. Finally, preemption is an overriding issue and can play both a facilitative and a hindering role in obesity policy. Conclusions: Legal solutions are immediately available to the government to address obesity and should be considered at the federal, state, and local levels. New and innovative legal solutions represent opportunities to take the law in creative directions and to link legal, nutrition, and public health communities in constructive ways. PMID:19298420

  20. Addressing language barriers to healthcare in India.

    PubMed

    Narayan, Lalit

    2013-01-01

    In spite of a growing recognition of the importance of doctor-patient communication, the issue of language barriers to healthcare has received very little attention in India. The Indian population speaks over 22 major languages with English used as the lingua franca for biomedicine. Large-scale internal migration has meant that health workers are encountering increasing instances of language discordance within clinical settings. Research done predominantly in the West has shown language discordance to significantly affect access to care, cause problems of comprehension and adherence, and decrease the satisfaction and quality of care. Addressing language barriers to healthcare in India requires a stronger political commitment to providing non-discriminatory health services, especially to vulnerable groups such as illiterate migrant workers. Research will have to address three broad areas: the ways in which language barriers affect health and healthcare, the efficacy of interventions to overcome language barriers, and the costs of language barriers and efforts to overcome them. There is a need to address such barriers in health worker education and clinical practice. Proven strategies such as hiring multilingual healthcare workers, providing language training to health providers, employing in situ translators or using telephone interpretation services will have to be evaluated for their appropriateness to the Indian context. Internet-based initiatives, the proliferation of mobile phones and recent advances in machine translation promise to contribute to the solution. PMID:24758452

  1. Addressable parallel cavity-based quantum memory

    NASA Astrophysics Data System (ADS)

    Vetlugin, Anton N.; Sokolov, Ivan V.

    2014-09-01

    We elaborate theoretically a model of addressable parallel cavity-based quantum memory for light able to store multiple transverse spatial modes of the input light signal of finite duration and, at the same time, a time sequence of the signals by side illumination. Having in mind possible applications for, e.g., quantum repeaters, we reveal the addressability of our memory, that is, its handiness for the read-out on demand of a given transverse quantized signal mode and of a given signal from the time sequence. The addressability is achieved by making use of different spatial configurations of pump wave during the write-in and the readout. We also demonstrate that for the signal durations of the order of few cavity decay times, better efficiency is achieved when one excites the cavity with zero light-matter coupling and finally performs fast excitation transfer from the intracavity field to the collective spin. On the other hand, the light-matter coupling control in time, based on dynamical impedance matching, allows to store and retrieve time restricted signals of the on-demand smooth time shape.

  2. Aboriginal health promotion through addressing employment discrimination.

    PubMed

    Ferdinand, Angeline S; Paradies, Yin; Perry, Ryan; Kelaher, Margaret

    2014-01-01

    The Localities Embracing and Accepting Diversity (LEAD) program aimed to improve the mental health of Aboriginal Victorians by addressing racial discrimination and facilitating social and economic participation. As part of LEAD, Whittlesea Council adopted the Aboriginal Employment Pathways Strategy (AEPS) to increase Aboriginal employment and retention within the organisation. The Aboriginal Cultural Awareness Training Program was developed to build internal cultural competency and skills in recruiting and retaining Aboriginal staff. Analysis of surveys conducted before (pre; n=124) and after (post; n=107) the training program indicated a significant increase in participant understanding across all program objectives and in support of organisational policies to improve Aboriginal recruitment and retention. Participants ended the training with concrete ideas about intended changes, as well as how these changes could be supported by their supervisors and the wider organisation. Significant resources have since been allocated to implementing the AEPS over 5 years. In line with principles underpinning the National Aboriginal and Torres Strait Islander Health Plan 2013-23, particularly the focus on addressing racism as a determinant of health, this paper explores the AEPS and training program as promising approaches to health promotion through addressing barriers to Aboriginal employment. Possible implications for other large organisations are also considered. PMID:25155236

  3. Global-Address Space Networking (GASNet) Library

    SciTech Connect

    Welcome, Michael L.; Bell, Christian S.

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address space languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.

  4. Global-Address Space Networking (GASNet) Library

    Energy Science and Technology Software Center (ESTSC)

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address spacemore » languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.« less

  5. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  6. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  7. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  8. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    James, A. M.

    1984-01-01

    Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.

  9. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Quinlivan, John T.; Wilson, Robert D.; Smith, Peter J.; Johnson, Ronald W.

    1984-01-01

    Toppics addressed include: advanced composites on Boeing commercial aircraft; composite wing durability; damage tolerance technology development; heavily loaded wing panel design; and pressure containment and damage tolerance in fuselages.

  10. Biological Synthesis of Nanoparticles from Plants and Microorganisms.

    PubMed

    Singh, Priyanka; Kim, Yu-Jin; Zhang, Dabing; Yang, Deok-Chun

    2016-07-01

    Nanotechnology has become one of the most promising technologies applied in all areas of science. Metal nanoparticles produced by nanotechnology have received global attention due to their extensive applications in the biomedical and physiochemical fields. Recently, synthesizing metal nanoparticles using microorganisms and plants has been extensively studied and has been recognized as a green and efficient way for further exploiting microorganisms as convenient nanofactories. Here, we explore and detail the potential uses of various biological sources for nanoparticle synthesis and the application of those nanoparticles. Furthermore, we highlight recent milestones achieved for the biogenic synthesis of nanoparticles by controlling critical parameters, including the choice of biological source, incubation period, pH, and temperature. PMID:26944794

  11. Assembly of surface engineered nanoparticles for functional materials

    NASA Astrophysics Data System (ADS)

    Yu, Xi

    Nanoparticles are regarded as exciting new building blocks for functional materials due to their fascinating physical properties because of the nano-confinement. Organizing nanoparticles into ordered hierarchical structures are highly desired for constructing novel optical and electrical artificial materials that are different from their isolated state or thermodynamics random ensembles. My research integrates the surface chemistry of nanoparticles, interfacial assembly and lithography techniques to construct nanoparticle based functional structures. We designed and synthesized tailor-made ligands for gold, semiconductor and magnetic nanoparticle, to modulate the assembly process and collective properties of the assembled structures, by controlling the key parameters such as particle-interface interaction, dielectric environments and inter-particle coupling etc. Top-down technologies such as micro contact printing, photolithography and nanoimprint lithography are used to guide the assembly into arbitrarily predesigned structures for potential device applications.

  12. Transport and Dispersion of Nanoparticles in Periodic Nanopost Arrays

    SciTech Connect

    He, Kai; Retterer, Scott T; Srijanto, Bernadeta R; Conrad, Jacinta; Krishnamoorti, Ramanan

    2014-01-01

    Nanoparticles transported through highly confined porous media exhibit faster breakthrough than small molecule tracers. Despite important technological applications in advanced materials, human health, energy, and environment, the microscale mechanisms leading to early breakthrough have not been identified. Here, we measure dispersion of nanoparticles at the singleparticle scale in regular arrays of nanoposts and show that for highly confined flows of dilute suspensions of nanoparticles the longitudinal and transverse velocities exhibit distinct scaling behaviors. The distributions of transverse particle velocities become narrower and more non-Gaussian when the particles are strongly confined. As a result, the transverse dispersion of highly confined nanoparticles at low P clet numbers is significantly less important than longitudinal dispersion, leading to early breakthrough. This finding suggests a fundamental mechanism by which to control dispersion and thereby improve efficacy of nanoparticles applied for advanced polymer nanocomposites, drug delivery, hydrocarbon production, and environmental remediation.

  13. Cryomilling for the fabrication of doxorubicin-containing silica-nanoparticle/polycaprolactone nanocomposite films

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Lim, Jing; Han, Yiyuan; Wang, Lifeng; Chong, Mark Seow Khoon; Teoh, Swee-Hin; Xu, Chenjie

    2016-01-01

    Bionanocomposites need to have a homogeneous distribution of nanomaterials in the polymeric matrix to achieve consistent mechanical and biological functions. However, a significant challenge lies in achieving the homogeneous distribution of nanomaterials, particularly through a solvent-free approach. This report introduces a technology to address this need. Specifically, cryomilling, a solvent-free, low-temperature processing method, was applied to generate a bionanocomposite film with well-dispersed nanoparticles. As a proof-of-concept, polycaprolactone (PCL) and doxorubicin-containing silica nanoparticles (Si-Dox) were processed through cryomilling and subsequently heat pressed to form the PCL/Si-Dox (cPCL/Si-Dox) film. Homogeneous distribution of Si-Dox was observed under both confocal imaging and atomic force microscopy imaging. The mechanical properties of cPCL/Si-Dox were comparable to those of the pure PCL film. Subsequent in vitro release profiles suggested that sustained release of Dox from the cPCL/Si-Dox film was achievable over 50 days. When human cervical cancer cells were seeded directly on these films, uptake of Dox was observed as early as day 1 and significant inhibition of cell growth was recorded on day 5.Bionanocomposites need to have a homogeneous distribution of nanomaterials in the polymeric matrix to achieve consistent mechanical and biological functions. However, a significant challenge lies in achieving the homogeneous distribution of nanomaterials, particularly through a solvent-free approach. This report introduces a technology to address this need. Specifically, cryomilling, a solvent-free, low-temperature processing method, was applied to generate a bionanocomposite film with well-dispersed nanoparticles. As a proof-of-concept, polycaprolactone (PCL) and doxorubicin-containing silica nanoparticles (Si-Dox) were processed through cryomilling and subsequently heat pressed to form the PCL/Si-Dox (cPCL/Si-Dox) film. Homogeneous

  14. Exposure assessment and risk management of engineered nanoparticles: Investigation in semiconductor wafer processing

    NASA Astrophysics Data System (ADS)

    Shepard, Michele N.

    Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From

  15. Nanoparticles at the interface between atmosphere and hydrosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Huckele, S.; Niessner, R.

    2012-04-01

    In the light of increasing use of engineered nanoparticles and reports of reports of adverse effects of nanoparticles on aquatic ecosystems and possible health issues, assessment of the transport of nanoparticles is of high importance. In this study we address the transport of airborne nanoparticles through the unsaturated zone in an urban environment. Aquifers and soils are the primary filter systems to remove engineered nanoparticles. These effects are used e.g., for bank filtration. Recent flooding events, on the other hand, show the limited capacity of this filter. While engineered nanoparticles are tailored to specific applications, one has to assume that they nonetheless interact with dissolved organic matter (DOM) present in surface water and top soil in larger quantities. A coating with DOM has a stabilizing effect on most nanoparticles. Thus, a transport of engineered nanoparticles through the soil seems likely. A monitoring program was performed at the Munich vadose zone field laboratory, a shaft reaching from the top soil to the groundwater table at 10 m below the ground surface. Wet and dry deposition were collected and analyzed to assess the input function. Seepage water was collected and analyzed in nine depths to assess the transport of nanoparticles. For all samples the size distribution and the elemental composition of the particles was measured using ultrafiltration, AF4, and ICP/MS. Nanoparticles deposited during dry periods may accumulate on the plant leaves and on the top soil. Here a first interaction with organic matter occurs. Heavy rainfall after a dry period will mobilize the nanoparticles. Through cracks in the top soil, preferential flow can transport the surface modified particles to the groundwater. During winter, particles are deposited on the snow cover. Sublimation of snow may lead to relatively high concentrations in the remaining snow. Cracks in the top soil caused by freezing ease the transport of nanoparticles together with the

  16. Addressing Extremes within the WCRP - GEWEX Framework

    NASA Astrophysics Data System (ADS)

    van Oevelen, P. J.; Stewart, R.; Detemmerman, V.

    2008-12-01

    For large international coordination programs such as the Global Energy and Water Cycle Experiment (GEWEX) as part of the World Climate Research Programme (WCRP) it is difficult to strike a good balance between enabling as much international involvement as is possible and desirable and the achievability of the objectives. WCRP has decided that "Extremes Research" is one of several areas where it would like to see its efforts strengthened and scientific research pushed forward. The foci that are being selected should be phrased such that they are practical and achievable within a time span of 1 to 3 years. Preferably these foci build upon the expertise from cross WCRP activities and are not restricted to single core project activities. In this presentation an overview will be given of the various activities within GEWEX that are related to extremes and which ones would be most ideal to be addressed as WCRP foci from a GEWEX perspective. The rationale and context of extreme research will be presented as well links to other national and international programs. "Extremes Research" as a topic is attractive since it has a high societal relevance and impact. However, numerous definitions of extremes exist and they are being used in widely varying contexts making it not always clear of what exactly is being addressed. This presentation will give an outlook on what can be expected research wise in the near future based upon the outcomes of the Extremes Workshop organised last June in Vancouver in the context of the Coordinated Energy and water cycle Observations Project (CEOP) as part of GEWEX. In particular it will be shown how these activities, which will only address certain types of extremes, can be linked to adaptation and mitigation efforts taking place in other organisations and by national and international bodies.

  17. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  18. Nanoparticles and direct immunosuppression.

    PubMed

    Ngobili, Terrika A; Daniele, Michael A

    2016-05-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  19. Silver nanoparticles and their orthopaedic applications.

    PubMed

    Brennan, S A; Ní Fhoghlú, C; Devitt, B M; O'Mahony, F J; Brabazon, D; Walsh, A

    2015-05-01

    Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications. PMID:25922449

  20. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  1. Preparation and Characterization of PEG-albumin-curcumin Nanoparticles Intended to Treat Breast Cancer

    PubMed Central

    Thadakapally, R.; Aafreen, Arshiya; Aukunuru, J.; Habibuddin, M.; Jogala, S.

    2016-01-01

    The aim of present research was to prepare novel serum stable long circulating polymeric nanoparticles for curcumin with a modification to the well known and novel nanoparticle albumin bound technology. polyethylene glycol-albumin-curcumin nanoparticles were prepared using serum albumin and poly ethylene glycol using desolvation technique. Nanoparticles were characterized for encapsulation efficiency, particle size and surface morphology. Drug excipient compatibility was determined using fourier transform infrared spectroscopy. Physical state of the drug in the formulations was known by differential scanning colorimetry. In vitro release and solubility of the drug from nanoparticles were determined. In vivo Drug release, tissue uptake and kupffer cell uptake was determined with optimized nanoformulation in rats after intravenous administration. Cell viability assay was determined using breast cancer cell line MD-MB-231. Entrapment efficiency for prepared nanoparticle was above 95%. The polyethylene glycol-albumin-curcumin nanoparticles exhibited an interesting release profile with small initial burst followed by slower and controlled release. Solubility of the drug from the formulation was increased. A sustained release of drug from nanoparticles was observed for 35 days in both in vitro and in vivo studies with the optimized formulation. Polyethylene glycol-albumin-curcumin nanoparticles showed lesser liver and kupffer cell uptake as compared to that of curcumin-albumin nanoparticles suggesting the bestowment of stealthness to nanoparticles with pegylation. Also, the antiproliferative activity of polyethylene glycol-albumin-curcumin nanoparticle formulation was more as compared to native curcumin. Polyethylene glycol-albumin-curcumin nanoparticles thus developed can be conveniently used in breast cancer with improved efficacy compared to conventional therapies and as an alternate to nanoparticle albumin bound technology which is used in producing Abraxane, albumin

  2. Photosensitive biosensor array system using optical addressing without an addressing circuit on array biochips

    NASA Astrophysics Data System (ADS)

    Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong

    2010-09-01

    This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.

  3. Integrated Lyrical Writing: Addressing Writing via Ballads

    ERIC Educational Resources Information Center

    Lytle, Alan

    2011-01-01

    Using songs in a language class takes advantage of the natural connection between students and music. This article describes a project that develops writing and speaking through song, using technology to help build students' knowledge of U.S. culture as well as their ability to communicate using descriptive, narrative, and expository rhetorical…

  4. A Task Force to Address Bullying.

    PubMed

    Keller, Ronald; Budin, Wendy C; Allie, Tammy

    2016-02-01

    Bullying in the workplace can create a dysfunctional environment that is associated with serious physical and psychological harm to the person being bullied. Nurses' experience with bullying has gained considerable attention in recent years, and warrants further discussion. Nurse leaders need to develop and implement effective bullying prevention initiatives that will foster the functioning of a professional and productive staff in a healthy work environment. The aim of this article is to review workplace bullying as experienced by nurses, and describe how nurses at a Magnet-designated academic medical center developed and implemented a bullying task force to address the problem. PMID:26817556

  5. Best Practices in Hiring: Addressing Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Simpson, Caroline E.

    2012-01-01

    Research has shown that implementing certain hiring practices will increase diversity in the workplace while enhancing academic quality. All of these practices rely on addressing the issue of 'unconscious bias.' A brief overview of unconscious bias--what it is, how it works, and simple measures to counter it--will be presented. Successful strategies, actions, and recommendations for implementing best recruiting and hiring practices, which have been proven to enhance academic excellence by ensuring a deep and diverse applicant pool, will also be presented.

  6. Addressing the water budget with SMOS

    NASA Astrophysics Data System (ADS)

    Kerr, Y. H.; AlBitar, A.; Tomer, S. K.; Merlin, O.; Pellarin, T.

    2012-12-01

    SMOS, a L Band radiometer using aperture synthesis to achieve a good spatial resolution, was successfully launched on November 2, 2009. It was developed and made under the leadership of the European Space Agency (ESA) as an Earth Explorer Opportunity mission. It is a joint program with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric,radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent enabling to infer both soil moisture and vegetation water content. SMOS achieves an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) with multi angular-dual polarized (or fully polarized) brightness temperatures over the globe and with a revisit time smaller than 3 days. SMOS as been now acquiring data for almost 2 years. The data quality exceeds what was expected, showing very good sensitivity and stability. The data is however very much impaired by man made emission in the protected band, leading to degraded measurements in several areas including parts of Europe and of China. However, many different international teams are now addressing cal val activities in various parts of the world, with notably large field campaigns either on the long time scale or over specific targets to address the specific issues. In parallel different teams are now starting addressing data use in various fields including hydrology. It requires coupling with other models and or disaggregation to address soil moisture distribution over watersheds. Significant new results were obtained for floods and drought events, together with new potential applications in terms of precipitation monitoring This paper thus gives an overview of the science goals of the SMOS mission, a description of its main elements, and a taste of the first results including

  7. Addressing the challenges of emerging infectious disease.

    PubMed

    Pinner, R W

    1996-01-01

    Through the recent examples of diphtheria in the former Soviet Union, plague in India, and trends in pneumonia mortality in the United States, the author, in this article, illustrates issues in emerging infectious diseases. The Centers for Disease Control's plan, Addressing Emerging Infectious Disease Threats: A Prevention Strategy for the United States, is summarized. Initial efforts to implement this plan are described, with particular focus on the development of Emerging Infections Programs, which are conducting epidemiologic and laboratory projects on several infectious diseases, including invasive bacterial diseases, unexplained deaths, foodborne diseases, and ehrlichiosis in four population-based sites in the United States. PMID:8571983

  8. Versions to Address Business Process Flexibility Issue

    NASA Astrophysics Data System (ADS)

    Chaâbane, Mohamed Amine; Andonoff, Eric; Bouaziz, Rafik; Bouzguenda, Lotfi

    This paper contributes to address an important issue in business process management: the Business Process (BP) flexibility issue. First, it defends that versions are an interesting solution to deal with both a priori (when designing BPs) and a posteriori (when executing BPs) flexibility. It also explains why previous contributions about versions of BPs are incomplete, and need to be revisited. Then, the paper presents a meta-model for BP versions, which combines five perspectives -the functional, process, informational, organizational and operation perspectives- for BP modelling, and which allows a comprehensive description of versionalized BPs.

  9. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a

  10. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  11. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  12. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  13. Immunogenicity and ecotoxicity of engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa Ann

    The growing use of nanoscale materials in commercially available products and therapeutics has created an urgent need to determine the toxicity of these materials so that they may be designed and employed safely. As nanoparticles have unique physical and chemical properties, the challenges in determining their physiological and environmental impact have been numerous. It is, therefore, the goal of my thesis work to employ sensitive analytical tools to fundamentally understand the how nanoparticles interact with immunologically and ecologically relevant models. My project approaches nanotoxicity studies starting with a relevant model system exposed to well-characterized nanoparticles to (1) determine if cells/organisms survive exposure using traditional toxicological assays and, if the majority survives exposure, (2) use sensitive analytical tools to determine if there are changes to critical cell/organism function. If perturbation of function is detected, (3) the mechanism or cause of changes in cell function should be determined, including assessment of nanoparticle uptake and localization. Once a mechanism of interaction is determined, this process could begin again with a modified particle that may address the toxic response. Chapter Two describes the impact of metal oxide (TiO2 and SiO2) nanoparticles on mast cells, critical immune system cells, and utilizes the sensitive technique of carbon-fiber microelectrode amperometry (CFMA) to monitor changes in the important mast cell function of exocytosis. Chapter Three expands upon Chapter Two and examines in more detail the mechanism by which TiO2 nanoparticles impact exocytotic cell function, completing the process nanotoxicity described above. From these studies, it was determined that, while nanoparticles do not decrease the viability of mast cells, there are significant changes to exocytosis upon nanoparticle exposure, and in the case of TiO2, these changes in exocytosis are correlated to nanoparticle

  14. Addressing Science Use Cases with HELIO

    NASA Astrophysics Data System (ADS)

    Bentley, R. D.; Aboudarham, J.; Csillaghy, A.; Jacquey, C.; Hapgood, M. A.; Messerotti, M.; Gallagher, P.; Bocchialini, K.; Hurlburt, N. E.; Roberts, D.; Sanchez Duarte, L.

    2009-12-01

    The Heliophysics Integrated Observatory (HELIO) is a new VO project funded under the EC's Seventh Framework Programme (FP7). It includes thirteen partners scattered over six countries and is led by University College London. HELIO is designed to support the heliophysics community and is based on a Service Oriented Architecture. The services developed by and integrated into HELIO can be used to address a wide range of science problems; they can be used individually or as part of a work-flow driven search engine that can use a propagation (or other) model to help locate obervations that describe interesting phenomena. We will describe and discuss how the components of HELIO could be used to address science use cases, particularly how a user can adapt the work flow to their own science interests. Networking is one of the three Activities of the HELIO Integrated Infrastructure Initiatives (I3) project. Within this activity we plan to involve the community in all aspects of the design and testing of the HELIO system, including determining which data and metadata should be included, how the quality and content of metadata can be included, etc. We are investigating ways of making HELIO "domain-aware" so that researchers who are specialists in one of the communities that constitute heliophysics can easily identify, access and use data they need from the other communities. We will discuss how the community can help us develop this capability.

  15. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  16. Framework for Address Cooperative Extended Transactions

    Energy Science and Technology Software Center (ESTSC)

    1997-12-01

    The Framework for Addressing Cooperative Extended Transactions (FACET) is an object-oriented software framework for building models of complex, cooperative behaviors of agents. it can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET canmore » also address other complex behaviors such as biological life cycles or manufacturing processes. FACET includes generic software objects representing the fundamental classes of agent -- Person and Organization - with mechanisms for resource management, including resolution of conflicting requests for participation and/or use of the agent's resources. The FACET infrastructure supports stochastic behavioral elements and coping mechanisms by which specified special conditions and events can cause an active cooperative process to be preempted, diverting the participants onto appropriate alternative behavioral pathways.« less

  17. Addressing medical errors in hand surgery.

    PubMed

    Johnson, Shepard P; Adkinson, Joshua M; Chung, Kevin C

    2014-09-01

    Influential think tanks such as the Institute of Medicine have raised awareness about the implications of medical errors. In response, organizations, medical societies, and hospitals have initiated programs to decrease the incidence and prevent adverse effects of these errors. Surgeons deal with the direct implications of adverse events involving patients. In addition to managing the physical consequences, they are confronted with ethical and social issues when caring for a harmed patient. Although there is considerable effort to implement system-wide changes, there is little guidance for hand surgeons on how to address medical errors. Admitting an error by a physician is difficult, but a transparent environment where patients are notified of errors and offered consolation and compensation is essential to maintain physician-patient trust. Furthermore, equipping hand surgeons with a guide for addressing medical errors will help identify system failures, provide learning points for safety improvement, decrease litigation against physicians, and demonstrate a commitment to ethical and compassionate medical care. PMID:25154576

  18. Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process

    PubMed Central

    Šuštar, Vid; Bedina-Zavec, Apolonija; Štukelj, Roman; Frank, Mojca; Bobojević, Goran; Janša, Rado; Ogorevc, Eva; Kruljc, Peter; Mam, Keriya; Šimunič, Boštjan; Manček-Keber, Mateja; Jerala, Roman; Rozman, Blaž; Veranič, Peter; Hägerstrand, Henry; Kralj-Iglič, Veronika

    2011-01-01

    Background Shedding of nanoparticles from the cell membrane is a common process in all cells. These nanoparticles are present in body fluids and can be harvested by isolation. To collect circulating nanoparticles from blood, a standard procedure consisting of repeated centrifugation and washing is applied to the blood samples. Nanoparticles can also be shed from blood cells during the isolation process, so it is unclear whether nanoparticles found in the isolated material are present in blood at sampling or if are they created from the blood cells during the isolation process. We addressed this question by determination of the morphology and identity of nanoparticles harvested from blood. Methods The isolates were visualized by scanning electron microscopy, analyzed by flow cytometry, and nanoparticle shapes were determined theoretically. Results The average size of nanoparticles was about 300 nm, and numerous residual blood cells were found in the isolates. The shapes of nanoparticles corresponded to the theoretical shapes obtained by minimization of the membrane free energy, indicating that these nanoparticles can be identified as vesicles. The concentration and size of nanoparticles in blood isolates was sensitive to the temperature during isolation. We demonstrated that at lower temperatures, the nanoparticle concentration was higher, while the nanoparticles were on average smaller. Conclusion These results indicate that a large pool of nanoparticles is produced after blood sampling. The shapes of deformed blood cells found in the isolates indicate how fragmentation of blood cells may take place. The results show that the contents of isolates reflect the properties of blood cells and their interaction with the surrounding solution (rather than representing only nanoparticles present in blood at sampling) which differ in different diseases and may therefore present a relevant clinical parameter. PMID:22128248

  19. Center for Assistive Technology & Environmental Access

    MedlinePlus

    ... through the application of assistive and universally designed technologies in real world environments, products and devices. More ... address and college name * The Center for Assistive Technology and Environmental Access Georgia Institute of Technology (GT) ...

  20. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  1. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  2. Plasmonic and silicon spherical nanoparticle antireflective coatings.

    PubMed

    Baryshnikova, K V; Petrov, M I; Babicheva, V E; Belov, P A

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  3. On School Educational Technology Leadership

    ERIC Educational Resources Information Center

    Davies, Patricia M.

    2010-01-01

    This analysis of the literatures on school educational technology leadership addresses definitions of school technology leaders and leadership, their role in educational change, and why schools are now changing as a result of 21st century advancements in technology. The literatures disagree over the definition of educational technology leadership.…

  4. Technology in the National Interest.

    ERIC Educational Resources Information Center

    Meares, Carol Ann; Sargent, John F., Jr.

    This document addresses goals set forth by "Technology for America's Economic Growth: A New Direction To Build Economic Strength". It highlights the important role technology plays in the American economy and the challenges faced in an increasingly competitive, technology-based global economy. This document describes Federal technology initiatives…

  5. Nanoparticles: functionalization and multifunctional applications in biomedical sciences.

    PubMed

    Subbiah, R; Veerapandian, M; Yun, K S

    2010-01-01

    Rapid innovations in nanomedicine have increased the likelihood that engineered nanomaterials will eventually come in contact with humans and the environment. The advent of nanotechnology has created strong interest in many fields such as biomedical sciences and engineering field. Central to any significant advances in nanomaterial based applications will be the development of functionalized nanoparticles, which are believed to hold promise for use in fields such as pharmaceutical and biomedical sciences. Early clinical results have suggested that functionalization of nanoparticles with specific recognition chemical moieties indeed yields multifunctional nanoparticles with enhanced efficacy, while simultaneously reducing side effects, due to properties such as targeted localization in tumors and active cellular uptake. A prerequisite for advancing this area of research is the development of chemical methods to conjugate chemical moieties onto nanoparticles in a reliable manner. In recent years a variety of chemical methods have been developed to synthesize functionalized nanoparticles specifically for drug delivery, cancer therapy, diagnostics, tissue engineering and molecular biology, and the structure-function relationship of these functionalized nanoparticles has been extensively examined. With the growing understanding of methods to functionalize nanoparticles and the continued efforts of creative scientists to advance this technology, it is likely that functionalized nanoparticles will become an important tool in the above mentioned areas. Therefore, the aim of this review is to provide basic information on nanoparticles, describe previously developed methods to functionalize nanoparticles and discuss their potential applications in biomedical sciences. The information provided in this review is important in regards to the safe and widespread use of functionalized nanoparticles particularly in the biomedicine field. PMID:21062250

  6. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    SciTech Connect

    Khan, Shadab Ali; Ahmad, Absar

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  7. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    PubMed

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. PMID:26986857

  8. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.

    PubMed

    Shen, Xibo; Song, Chen; Wang, Jinye; Shi, Dangwei; Wang, Zhengang; Liu, Na; Ding, Baoquan

    2012-01-11

    Construction of three-dimensional (3D) plasmonic architectures using structural DNA nanotechnology is an emerging multidisciplinary area of research. This technology excels in controlling spatial addressability at sub-10 nm resolution, which has thus far been beyond the reach of traditional top-down techniques. In this paper, we demonstrate the realization of 3D plasmonic chiral nanostructures through programmable transformation of gold nanoparticle (AuNP)-dressed DNA origami. AuNPs were assembled along two linear chains on a two-dimensional rectangular DNA origami sheet with well-controlled positions and particle spacing. By rational rolling of the 2D origami template, the AuNPs can be automatically arranged in a helical geometry, suggesting the possibility of achieving engineerable chiral nanomaterials in the visible range. PMID:22148355

  9. Characterization of copper nanoparticles synthesized by a novel microbiological method

    NASA Astrophysics Data System (ADS)

    Varshney, Ratnika; Bhadauria, Seema; Gaur, M. S.; Pasricha, Renu

    2010-12-01

    The exploitation of various biomaterials for the biosynthesis of nanoparticles is considered as green technology as it does not involve any harmful chemicals. The present study reports the synthesis of copper nanoparticles which involves non-pathogenic bacterial strain Pseudomonas stutzeri, isolated from soil. These copper nanoparticles are further characterized for size and shape distributions by ultraviolet-visible spectroscopy, x-ray diffraction, and high resolution transmission electron microscopy techniques. The results showed that the particles are spherical and quite stable in nature and shows surface plasmon resonance clearly featured in the optical spectra in visible region.

  10. Nanoparticle-stabilized CO₂ foam for CO₂ EOR application

    SciTech Connect

    Liu, Ning; Lee, Robert; Yu, Jianjia; Li, Liangxiong; Bustamante, Elizabeth; Khalil, Munawar; Mo, Di; Jia, Bao; Wang, Sai; San, Jingshan; An, Cheng

    2015-01-31

    The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportation of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.

  11. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    NASA Astrophysics Data System (ADS)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  12. Post-coupling strategy enables true receptor-targeted nanoparticles

    PubMed Central

    Chen, Jianmeizi; Jorgensen, Michael R; Thanou, Maya; Miller, Andrew D

    2011-01-01

    A key goal of our research is the targeted delivery of functional biopharmaceutical agents of interest, such as small interfering RNA (siRNA), to selected cells by means of receptor-mediated nanoparticle technologies. Recently, we described how pH-triggered, PEGylated siRNA-nanoparticles (pH triggered siRNA-ABC nanoparticles) were able to mediate the passive targeting of siRNA to liver cells in vivo. In addition, PEGylated siRNA nanoparticles enabled for long-term circulation (LTC siRNA-ABC nanoparticles, LEsiRNA nanoparticles) were shown to do the same to tumour cells in vivo. Further gains in the efficiency of siRNA delivery are expected to require active targeting with nanoparticles targeted for delivery and cellular uptake by means of attached biological ligands. Here we report on the development of a new synthetic chemistry and a bioconjugation methodology that allows for the controlled formulation of PEGylated nanoparticles which surface-present integrin-targeting peptides unambiguously and so enable integrin receptor-mediated cellular uptake. Furthermore, we present delivery data that provide a clear preliminary demonstration of physical principles that we propose should underpin successful, bonefide receptor-mediated targeted delivery of therapeutic and/or imaging agents to cells. PMID:22091319

  13. Addressing health literacy in patient decision aids

    PubMed Central

    2013-01-01

    Background Effective use of a patient decision aid (PtDA) can be affected by the user’s health literacy and the PtDA’s characteristics. Systematic reviews of the relevant literature can guide PtDA developers to attend to the health literacy needs of patients. The reviews reported here aimed to assess: 1. a) the effects of health literacy / numeracy on selected decision-making outcomes, and b) the effects of interventions designed to mitigate the influence of lower health literacy on decision-making outcomes, and 2. the extent to which existing PtDAs a) account for health literacy, and b) are tested in lower health literacy populations. Methods We reviewed literature for evidence relevant to these two aims. When high-quality systematic reviews existed, we summarized their evidence. When reviews were unavailable, we conducted our own systematic reviews. Results Aim 1: In an existing systematic review of PtDA trials, lower health literacy was associated with lower patient health knowledge (14 of 16 eligible studies). Fourteen studies reported practical design strategies to improve knowledge for lower health literacy patients. In our own systematic review, no studies reported on values clarity per se, but in 2 lower health literacy was related to higher decisional uncertainty and regret. Lower health literacy was associated with less desire for involvement in 3 studies, less question-asking in 2, and less patient-centered communication in 4 studies; its effects on other measures of patient involvement were mixed. Only one study assessed the effects of a health literacy intervention on outcomes; it showed that using video to improve the salience of health states reduced decisional uncertainty. Aim 2: In our review of 97 trials, only 3 PtDAs overtly addressed the needs of lower health literacy users. In 90% of trials, user health literacy and readability of the PtDA were not reported. However, increases in knowledge and informed choice were reported in those studies

  14. STS-79 John Blaha address news media

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist John E. Blaha addresses news media gathered for the flight crew's late night arrival at the KSC Shuttle Landing Facility. A veteran space traveler who served as either commander or pilot on his four previous Shuttle flights, Blaha is taking a mission specialist's slot on STS-79 because he will be transferring to the Russian Space Station Mir for an extended stay. American astronaut Shannon Lucid will take his place aboard the Space Shuttle Atlantis for the return trip home. Final preparations are under way for launch of Atlantis on Mission STS-79, with liftoff scheduled to occur during an approximately seven-minute window opening at 4:54 a.m. EDT, Sept.16.

  15. Combined hepatocellular cholangiocarcinoma: Controversies to be addressed

    PubMed Central

    Wang, An-Qiang; Zheng, Yong-Chang; Du, Juan; Zhu, Cheng-Pei; Huang, Han-Chun; Wang, Shan-Shan; Wu, Liang-Cai; Wan, Xue-Shuai; Zhang, Hao-Hai; Miao, Ruo-Yu; Sang, Xin-Ting; Zhao, Hai-Tao

    2016-01-01

    Combined hepatocellular cholangiocarcinoma (CHC) accounts for 0.4%-14.2% of primary liver cancer cases and possesses pathological features of both hepatocellular carcinoma and cholangiocarcinoma. Since this disease was first described and classified in 1949, the classification of CHC has continuously evolved. The latest definition and classification of CHC by the World Health Organization is based on the speculation that CHC arises from hepatic progenitor cells. However, there is no evidence demonstrating the common origin of different components of CHC. Furthermore, the definition of CHC subtypes is still ambiguous and the identification of CHC subtype when a single tumor contains many components has remained unresolved. In addition, there is no summary on the newly recognized histopathology features or the contribution of CHC components to prognosis and outcome of this disease. Here we provide a review of the current literature to address these questions. PMID:27182157

  16. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  17. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  18. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  19. Presidential address, 2001. Advice to young surgeons

    PubMed Central

    MacFarlane, John K.

    2002-01-01

    In his 2001 presidential address to the Canadian Association of General Surgeons, the author offers advice to young surgeons, based on his lifetime experience as a surgical educator, researcher and practitioner. He offers the following samples of wisdom for young surgeons: they should be prepared for a lifetime of learning and be willing and able to adapt to new advances; they should listen to their patients as they describe their presenting complaints and not be tempted to interrupt; they should take time in an emergency situation and remember that split-second decisions can affect the patient for a lifetime; they should be willing to take advice from fellow professionals; they should take time to maintain a quality family life and take adequate time away from the workplace; they should be active be a role model in their community; and, finally, they should get involved and adopt an advocacy role in their profession. PMID:11939654

  20. How is environmental conflict addressed by SIA?

    SciTech Connect

    Barrow, C.J.

    2010-09-15

    The fields of Environmental Conflict Management (ECM), Environmental Conflict Resolution (ECR), and Peace and Conflict Impact Assessment (PCIA) have become well established; however, as yet there has not been much use of Social Impact Assessment (SIA) to manage environmental conflicts. ECM, ECR and PCIA are mainly undertaken when problems are advanced or, more likely, have run their course (post-conflict). This paper examines how conflict is addressed by SIA and whether there is potential to develop it for more proactive assessment of conflicts (pre-conflict or while things develop). SIA has the potential to identify and clarify the cause(s) of environmental and natural resources conflicts, and could possibly enable some avoidance or early mitigation. A promising approach may be for 'conflict-aware' SIA to watch for critical conflict stages or thresholds and to monitor stakeholders. Effective conflict-aware SIA might also significantly contribute to efforts to achieve sustainable development.