Sample records for nanoparticles 50-100 nm

  1. Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity.

    PubMed

    Zhang, Qinli; Wang, Haiyang; Ge, Cuicui; Duncan, Jeremy; He, Kaihong; Adeosun, Samuel O; Xi, Huaxin; Peng, Huiting; Niu, Qiao

    2017-09-01

    Although nanomaterials have the potential to improve human life, their sideline effects on human health seem to be inevitable and still are unknown. Some studies have investigated the genotoxicity of alumina nanoparticles (AlNPs); however, this effect is still unclear due to insufficient evaluation and conflicting results. Using a battery of standard genotoxic assays, the present study offers evidence of the genotoxicity associated with aluminum oxide (alumina) at NP sizes of 50 and 13 nm, when compared with bulk alumina (10 μm). The genotoxicity induced by alumina at bulk and NP sizes was evaluated with Ames test, comet test, micronucleus assay and sperm deformity test. The mechanism related to the induction of reactive oxygen species was explored as well. Our results showed that AlNPs (13 and 50nm) were able to enter cells and induced DNA damage, micronucleus in bone marrow, sperm deformation and reactive oxygen species induction in a time-, dose- and size-dependent manner. Therefore, we conclude that AlNPs (13 and 50nm), rather than bulk alumina, induce markers of genotoxicity in mice, with oxidative stress as a potential mechanism driving these genotoxic effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Self-Assembly of Ordered Hybrid Materials with over 100 nm Domain Spacings and up to 15 nm Nanoparticles using Bottle Brush Block Copolymers

    NASA Astrophysics Data System (ADS)

    Song, Dongpo; Lin, Ying; Qian, Gang; Wang, Xinyu; Liu, Xiaohui; Li, Cheng; Watkins, James

    2014-03-01

    The preparation of well-ordered nanocomposites using block copolymers and nanoparticles (NPs) with precise control over their spatial organization at different length scales remains challenging, especially for NP cores up to 10 nm in diameter and for domain spacings greater than 100 nm. In this work, these challenges have been overcome using amphiphilic bottle brush block copolymers as templates for the self-assembly of ordered, periodic hybrid materials with domain spacings more than 130 nm using functionalized NPs with core diameters up to 15 nm. CdSe NPs of 10 nm or gold NPs of 15 nm bearing 11-mercaptoundecyl-hydroquinone or poly(4-vinylphenol) ligands were selectively incorporated within (polynorbornene-g-polystyrene)-b- (polynorbornene-g-polyethylene oxide) copolymers by taking advantage of hydrogen bonding between the ligand and PEO domain. Well-ordered composites with cylindrical and lamellar morphologies and NP loadings of up to 30 wt% in the target domains were achieved. This strategy provides a simple and robust means to create ordered hybrid materials of large domain spacings allowing for relatively large functional nanoparticles. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-1025020).

  3. Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy

    PubMed Central

    Ding, Yu; Li, Chunqiang

    2016-01-01

    Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724

  4. Parallel fabrication of sub-50-nm uniformly sized nanoparticles by deposition through a patterned silicon nitride nanostencil.

    PubMed

    Yan, X-M; Contreras, A M; Koebel, M M; Liddle, J A; Somorjai, G A

    2005-06-01

    Using low-pressure chemical vapor deposition of silicon dioxide, we have reduced the size of 56-nm features in a silicon nitride membrane, called a stencil, down to 36 nm. Sub-50-nm uniformly sized nanoparticles are fabricated by electron-beam deposition of Pt through the stencil mask. A self-assembled monolayer (SAM) of tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane was used to reduce Pt clogging of the nanosize holes during deposition as well as to protect the stencil during the postdeposition Pt removal. X-ray photoelectron spectroscopy shows that the SAM protects the stencil efficiently during this postdeposition removal of Pt.

  5. Wide-Field Imaging of Single-Nanoparticle Extinction with Sub-nm2 Sensitivity

    NASA Astrophysics Data System (ADS)

    Payne, Lukas M.; Langbein, Wolfgang; Borri, Paola

    2018-03-01

    We report on a highly sensitive wide-field imaging technique for quantitative measurement of the optical extinction cross section σext of single nanoparticles. The technique is simple and high speed, and it enables the simultaneous acquisition of hundreds of nanoparticles for statistical analysis. Using rapid referencing, fast acquisition, and a deconvolution analysis, a shot-noise-limited sensitivity down to 0.4 nm2 is achieved. Measurements on a set of individual gold nanoparticles of 5 nm diameter using this method yield σext=(10.0 ±3.1 ) nm2, which is consistent with theoretical expectations and well above the background fluctuations of 0.9 nm2 .

  6. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  7. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation

    PubMed Central

    2013-01-01

    We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer. PMID:24138985

  8. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation.

    PubMed

    Attri, Asha; Kumar, Ajit; Verma, Shammi; Ojha, Sunil; Asokan, Kandasami; Nair, Lekha

    2013-10-18

    We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.

  9. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Attri, Asha; Kumar, Ajit; Verma, Shammi; Ojha, Sunil; Asokan, Kandasami; Nair, Lekha

    2013-10-01

    We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.

  10. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro

    PubMed Central

    Ha, Shin-Woo; Sikorski, James A.; Weitzmann, M. Neale; Beck, George R.

    2014-01-01

    Silica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ~50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method. Nineteen different cell lines representing all major organ types were used to investigate an in vitro lethal concentration (LC) and results revealed little toxicity in any cell type analyzed. To calculate an in vitro therapeutic index we quantified the effective concentration at 50% response (EC50) for nanoparticle-stimulated mineral deposition activity using primary bone marrow stromal cells (BMSCs). The EC50 for BMSCs was not substantially altered by surface or magnetic core. The calculated Inhibitory concentration 50% (IC50) for pre-osteoclasts was similar to the osteoblastic cells. These results demonstrate the pharmacological potential of certain silica-based nanomaterial formulations for use in treating bone diseases based on a favorable in vitro therapeutic index. PMID:24333519

  11. Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268

  12. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro.

    PubMed

    Ha, Shin-Woo; Sikorski, James A; Weitzmann, M Neale; Beck, George R

    2014-04-01

    Silica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ∼ 50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method. Nineteen different cell lines representing all major organ types were used to investigate an in vitro lethal concentration (LC) and results revealed little toxicity in any cell type analyzed. To calculate an in vitro therapeutic index we quantified the effective concentration at 50% response (EC50) for nanoparticle-stimulated mineral deposition activity using primary bone marrow stromal cells (BMSCs). The EC50 for BMSCs was not substantially altered by surface or magnetic core. The calculated Inhibitory concentration 50% (IC50) for pre-osteoclasts was similar to the osteoblastic cells. These results demonstrate the pharmacological potential of certain silica-based nanomaterial formulations for use in treating bone diseases based on a favorable in vitro therapeutic index. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 100-nm gate lithography for double-gate transistors

    NASA Astrophysics Data System (ADS)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  14. Core-size regulated aggregation/disaggregation of citrate-coated gold nanoparticles (5-50 nm) and dissolved organic matter: Extinction, emission, and scattering evidence

    NASA Astrophysics Data System (ADS)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2018-01-01

    Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual

  15. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation

    NASA Astrophysics Data System (ADS)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2017-03-01

    The interaction of macromolecules with gold nanoparticles (GNPs) is of interest in the emerging field of biomedical and environmental detection devices. However, the physicochemical properties, including spectra, of GNPs in aqueous solution in the absence of metal-macromolecular interactions must first be considered before their activity in biological and environmental systems can be understood. The specific objective of this research was to experimentally illuminate the role of nanoparticle core size on the spectral (simultaneous consideration of extinction, emission, and scattering) versus aggregation behaviors of citrate-coated GNPs (CT-GNPs). It is difficult to find in the literature systematic simultaneous presentation of scattering, emission, and extinction spectra, including the UV range, and thus the present work will aid those who would use such particles for spectroscopic related separations or sensors. The spectroscopic behavior of CT-GNPs with different core sizes (5, 10, 30, and 50 nm) was studied in ultra-pure water at pH 6.0-6.5 employing UV-visible extinction, excitation-emission matrix (EEM), resonance Rayleigh scattering, and dynamic light scattering (DLS) spectroscopies. The CT-GNP-5 and CT-GNP-10 samples aggregated, absorbed light, and emitted light. In contrast, the CT-GNP-30 and CT-GNP-50 samples did not aggregate and did not emit light, but scattered light intensely. Multimodal peaks were observed in the intensity-based DLS spectra of CT-GNP-5 and CT-GNP-10 samples. Monomodal peaks in the volume-based DLS spectra overestimated particle diameters by 60% and 30% for the CT-GNP-5 and CT-GNP-10 samples, respectively, but underestimated diameters by 10% and 4% for the CT-GNP-30 and CT-GNP-50 samples. The volume-based DLS spectra indicated that dimer and trimer aggregates contributed most to the overall volume of particles in the 5- and 10-nm CT-GNPs, whereas the CT-GNP-30 and CT-GNP-50 samples did not aggregate. Here, we discuss the potential

  16. REAP (raster e-beam advanced process) using 50-kV raster e-beam system for sub-100-nm node mask technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.

    2002-07-01

    A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.

  17. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  18. Triton X-100 functionalized Fe3O4 nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gawali, Santosh L.; Madan, Devendra P.; Barick, K. C.; Somani, R.; Hassan, P. A.

    2018-04-01

    We report the preparation of Triton X-100 functionalized Fe3O4 nanoparticles (TXMNPs) and investigated their potential application in hyperthermia therapy. The formation of highly crystalline, spinel-structured Fe3O4 nanoparticles of average size of about 10 nm was evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy and zeta-potential measurements suggest the successful functionalization of nanoparticles with TX-100. These TXMNPs exhibit good colloidal stabilization in aqueous medium and show protein resistance characteristic in physiological medium. They showed excellent heating efficacy under AC magnetic field (AMF) with specific absorption rate (SAR) values of 146 and 260 W/g of Fe for 1.25 and 0.625 mg/ml of Fe, respectively at an applied AMF of 507 Oe and frequency of 300 kHz. Thus, these nanoparticles can be used as effective thermoseed for hyperthermia treatment of cancer.

  19. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liberman, V.; Sworin, M.; Kingsborough, R. P.

    2013-02-07

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficientsmore » for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.« less

  20. Three-dimensional controlled growth of monodisperse sub-50nm heterogeneous nanocrystals

    PubMed Central

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M.; Piper, James A.; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA−) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA− to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom–up scalable approach. PMID:26743184

  1. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.

    PubMed

    Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun

    2016-10-12

    We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.

  2. Experimental study on thermal conductivity of solution combustion synthesized MgO nanoparticles dispersed in water and ethylene glycol (50:50) binary mixture

    NASA Astrophysics Data System (ADS)

    Suseel Jai Krishnan, S.; P. K., Nagarajan

    2017-05-01

    In this present investigation, experiments were conducted on the magnesia nanoparticles (8-18 nm) synthesized by the solution combustion method, which was dispersed in the binary mixture of water-ethylene glycol (50:50) to prepare stable MgO-water-ethylene glycol (50:50) nanofluids through continuous 26h ultrasonication. The effect of nanoparticle concentration (0 to 0.2 vol%) and temperature (25°C to 60°C) on the thermal conductivity of the nanofluids was investigated. The results clearly indicate that an increase in the nanoparticle concentration increases the thermal conductivity of the nanofluid. Similarly the thermal conductivity of the nanofluid increases with increase in temperature. The enhanced thermal conductivity in the nanofluids may be due to either or both, the Brownian movement and the nano-interfacial layering. The maximum enhancement of 16% was obtained at 0.2 vol% nanoparticle concentration and at 60°C. An accurate correlation, modeling the thermal conductivity as a function of nanoparticle concentration and temperature was also proposed based on the experimental data.

  3. Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats

    PubMed Central

    Kim, Yu-Ri; Park, Jong-Il; Lee, Eun Jeong; Park, Sung Ha; Seong, Nak-won; Kim, Jun-Ho; Kim, Geon-Yong; Meang, Eun-Ho; Hong, Jeong-Sup; Kim, Su-Hyon; Koh, Sang-Bum; Kim, Min-Seok; Kim, Cheol-Su; Kim, Soo-Ki; Son, Sang Wook; Seo, Young Rok; Kang, Boo Hyon; Han, Beom Seok; An, Seong Soo A; Yun, Hyo-In; Kim, Meyoung-Kon

    2014-01-01

    Nanoparticles (NPs) are used commercially in health and fitness fields, but information about the toxicity and mechanisms underlying the toxic effects of NPs is still very limited. The aim of this study is to investigate the toxic effect(s) of 100 nm negatively (ZnOAE100[−]) or positively (ZnOAE100[+]) charged zinc oxide (ZnO) NPs administered by gavage in Sprague Dawley rats, to establish a no observed adverse effect level, and to identify target organ(s). After verification of the primary particle size, morphology, hydrodynamic size, and zeta potential of each test article, we performed a 90-day study according to Organisation for Economic Co-operation and Development test guideline 408. For the 90-day study, the high dose was set at 500 mg/kg and the middle and low doses were set at 125 mg/kg and 31.25 mg/kg, respectively. Both ZnO NPs had significant changes in hematological and blood biochemical analysis, which could correlate with anemia-related parameters, in the 500 mg/kg groups of both sexes. Histopathological examination showed significant adverse effects (by both test articles) in the stomach, pancreas, eye, and prostate gland tissues, but the particle charge did not affect the tendency or the degree of the lesions. We speculate that this inflammatory damage might result from continuous irritation caused by both test articles. Therefore, the target organs for both ZnOAE100(−) and ZnOAE100(+) are considered to be the stomach, pancreas, eye, and prostate gland. Also, the no observed adverse effect level for both test articles was identified as 31.25 mg/kg for both sexes, because the adverse effects were observed at all doses greater than 125 mg/kg. PMID:25565830

  4. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.

    PubMed

    Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C

    2017-02-15

    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.

  5. Sub-100 nm Gold Nanomatryoshkas Improve Photo-thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors

    PubMed Central

    Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-01-01

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  6. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles

    PubMed Central

    Wei, Xi; Syed, Abeer; Mao, Pan; Han, Jongyoon; Song, Yong-Ak

    2016-01-01

    Polydimethylsiloxane (PDMS) is the prevailing building material to make microfluidic devices due to its ease of molding and bonding as well as its transparency. Due to the softness of the PDMS material, however, it is challenging to use PDMS for building nanochannels. The channels tend to collapse easily during plasma bonding. In this paper, we present an evaporation-driven self-assembly method of silica colloidal nanoparticles to create nanofluidic junctions with sub-50 nm pores between two microchannels. The pore size as well as the surface charge of the nanofluidic junction is tunable simply by changing the colloidal silica bead size and surface functionalization outside of the assembled microfluidic device in a vial before the self-assembly process. Using the self-assembly of nanoparticles with a bead size of 300 nm, 500 nm, and 900 nm, it was possible to fabricate a porous membrane with a pore size of ~45 nm, ~75 nm and ~135 nm, respectively. Under electrical potential, this nanoporous membrane initiated ion concentration polarization (ICP) acting as a cation-selective membrane to concentrate DNA by ~1,700 times within 15 min. This non-lithographic nanofabrication process opens up a new opportunity to build a tunable nanofluidic junction for the study of nanoscale transport processes of ions and molecules inside a PDMS microfluidic chip. PMID:27023724

  7. Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers

    PubMed Central

    Schmidt, Dirk Oliver; Raab, Nicolas; Santhanam, Venugopal; Dittmann, Regina; Simon, Ulrich

    2017-01-01

    Resistively switching devices are promising candidates for the next generation of non-volatile data memories. Such devices are up to now fabricated mainly by means of top-down approaches that apply thin films sandwiched between electrodes. Recent works have demonstrated that resistive switching (RS) is also feasible on chemically synthesized nanoparticles (NPs) in the 50 nm range. Following this concept, we developed this approach further to the sub-10 nm range. In this work, we report RS of sub-10 nm TiO2 NPs that were self-assembled into monolayers and transferred onto metallic substrates. We electrically characterized these monolayers in regard to their RS properties by means of a nanorobotics system in a scanning electron microscope, and found features typical of bipolar resistive switching. PMID:29113050

  8. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish

    PubMed Central

    Ispas, Cristina; Andreescu, Daniel; Patel, Avni; Goia, Dan V.; Andreescu, Silvana; Wallace, Kenneth N.

    2009-01-01

    Metallic nanoparticles such as nickel are used in catalytic, sensing and electronic applications, but health and environmental affects have not been fully investigated. While some metal nanoparticles result in toxicity, it is also important to determine whether nanoparticles of the same metal but of different size and shape changes toxicity. Three different size nickel nanoparticle (Ni NPs) of 30, 60, and 100 nm and larger particle clusters of aggregated 60 nm entities with a dendritic structure were synthesized and exposed to zebrafish embryos assessing mortality and developmental defects. Ni NPs exposure was compared to soluble nickel salts. All three 30, 60, and 100 nm Ni NPs are equal to or less toxic than soluble nickel while dendritic clusters were more toxic. With each Ni NP exposure, thinning of the intestinal epithelium first occurs around the LD10 continuing into the LD50. LD50 exposure also results in skeletal muscle fiber separation. Exposure to soluble nickel does not cause intestinal defects while skeletal muscle separation occurs at concentrations well over LD50. These results suggest that configuration of nanoparticles may affect toxicity more than size and defects from Ni NPs exposure occur by different biological mechanisms than soluble nickel. PMID:19746736

  9. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung

    2009-04-01

    In general, gold nanoparticles are recognized as being as nontoxic. Still, there have been some reports on their toxicity, which has been shown to depend on the physical dimension, surface chemistry, and shape of the nanoparticles. In this study, we carry out an in vivo toxicity study using 13 nm-sized gold nanoparticles coated with PEG (MW 5000). In our findings the 13 nm sized PEG-coated gold nanoparticles were seen to induce acute inflammation and apoptosis in the liver. These nanoparticles were found to accumulate in the liver and spleen for up to 7 days after injection and to have longmore » blood circulation times. In addition, transmission electron microscopy showed that numerous cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages contained the PEG-coated gold nanoparticles. These findings of toxicity and kinetics of PEG-coated gold nanoparticles may have important clinical implications regarding the safety issue as PEG-coated gold nanoparticles are widely used in biomedical applications.« less

  10. Characterization and electrochemical response of DNA functionalized 2nm gold nanoparticles confined in a nanochannel array.

    PubMed

    Peinetti, Ana S; Ceretti, Helena; Mizrahi, Martín; González, Graciela A; Ramírez, Silvana A; Requejo, Félix G; Montserrat, Javier M; Battaglini, Fernando

    2018-06-01

    Polyvalent gold nanoparticle oligonucleotide conjugates are subject of intense research. Even though 2nm diameter AuNPs have been previously modified with DNA, little is known about their structure and electrochemical behavior. In this work, we examine the influence of different surface modification strategies on the interplay between the meso-organization and the molecular recognition properties of a 27-mer DNA strand. This DNA strand is functionalized with different sulfur-containing moieties and immobilized on 2nm gold nanoparticles confined on a nanoporous alumina, working the whole system as an electrode array. Surface coverages were determined by EXAFS and the performance as recognition elements for impedance-based sensors is evaluated. Our results prove that low DNA coverages on the confined nanoparticles prompt to a more sensitive response, showing the relevance in avoiding the DNA strand overcrowding. The system was able to determine a concentration as low as 100pM of the complementary strand, thus introducing the foundations for the construction of label-free genosensors at the nanometer scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles.

    PubMed

    Itoh, Naoki; Yamamoto, Eiichi; Santa, Tomofumi; Funatsu, Takashi; Kato, Masaru

    2016-06-01

    Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality. We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome(Ⓡ) and DOXIL(Ⓡ)). These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time. The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.

  12. In vitro toxicity of nanoparticles in BRL 3A rat liver cells.

    PubMed

    Hussain, S M; Hess, K L; Gearhart, J M; Geiss, K T; Schlager, J J

    2005-10-01

    This study was undertaken to address the current deficient knowledge of cellular response to nanosized particle exposure. The study evaluated the acute toxic effects of metal/metal oxide nanoparticles proposed for future use in industrial production methods using the in vitro rat liver derived cell line (BRL 3A). Different sizes of nanoparticles such as silver (Ag; 15, 100 nm), molybdenum (MoO(3); 30, 150 nm), aluminum (Al; 30, 103 nm), iron oxide (Fe(3)O(4); 30, 47 nm), and titanium dioxide (TiO(2); 40 nm) were evaluated for their potential toxicity. We also assessed the toxicity of relatively larger particles of cadmium oxide (CdO; 1 microm), manganese oxide (MnO(2); 1-2 microm), and tungsten (W; 27 microm), to compare the cellular toxic responses with respect to the different sizes of nanoparticles with different core chemical compositions. For toxicity evaluations, cellular morphology, mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH) levels, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were assessed under control and exposed conditions (24h of exposure). Results showed that mitochondrial function decreased significantly in cells exposed to Ag nanoparticles at 5-50 microg/ml. However, Fe(3)O(4), Al, MoO(3) and TiO(2) had no measurable effect at lower doses (10-50 microg/ml), while there was a significant effect at higher levels (100-250 microg/ml). LDH leakage significantly increased in cells exposed to Ag nanoparticles (10-50 microg/ml), while the other nanoparticles tested displayed LDH leakage only at higher doses (100-250 microg/ml). In summary the Ag was highly toxic whereas, MoO(3) moderately toxic and Fe(3)O(4), Al, MnO(2) and W displayed less or no toxicity at the doses tested. The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape

  13. Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles.

    PubMed

    Smith, Candice A; Simpson, Carrie A; Kim, Ganghyeok; Carter, Carly J; Feldheim, Daniel L

    2013-05-28

    The use of gold nanoparticles as imaging agents and therapeutic delivery systems is growing rapidly. However, a significant limitation of gold nanoparticles currently is their low absorption efficiencies in the gastrointestinal (GI) tract following oral administration. In an attempt to identify ligands that facilitate gold nanoparticle absorption in the GI tract, we have studied the oral bioavailability of 2.0 nm diameter gold nanoparticles modified with the small molecules p-mercaptobenzoic acid and glutathione, and polyethylene glycols (PEG) of different lengths and charge (neutral and anionic). We show that GI absorption of gold nanoparticles modified with the small molecules tested was undetectable. However, the absorption of PEGs depended upon PEG length, with the shortest PEG studied yielding gold nanoparticle absorptions that are orders-of-magnitude larger than observed previously. As the oral route is the most convenient one for administering drugs and diagnostic reagents, these results suggest that short-chain PEGs may be useful in the design of gold nanoparticles for the diagnosis and treatment of disease.

  14. Analysis of SiO2 nanoparticles binding proteins in rat blood and brain homogenate.

    PubMed

    Shim, Kyu Hwan; Hulme, John; Maeng, Eun Ho; Kim, Meyoung-Kon; An, Seong Soo A

    2014-01-01

    A multitude of nanoparticles, such as titanium oxide (TiO2), zinc oxide, aluminum oxide, gold oxide, silver oxide, iron oxide, and silica oxide, are found in many chemical, cosmetic, pharmaceutical, and electronic products. Recently, SiO2 nanoparticles were shown to have an inert toxicity profile and no association with an irreversible toxicological change in animal models. Hence, exposure to SiO2 nanoparticles is on the increase. SiO2 nanoparticles are routinely used in numerous materials, from strengthening filler for concrete and other construction composites, to nontoxic platforms for biomedical application, such as drug delivery and theragnostics. On the other hand, recent in vitro experiments indicated that SiO2 nanoparticles were cytotoxic. Therefore, we investigated these nanoparticles to identify potentially toxic pathways by analyzing the adsorbed protein corona on the surface of SiO2 nanoparticles in the blood and brain of the rat. Four types of SiO2 nanoparticles were chosen for investigation, and the protein corona of each type was analyzed using liquid chromatography-tandem mass spectrometry technology. In total, 115 and 48 plasma proteins from the rat were identified as being bound to negatively charged 20 nm and 100 nm SiO2 nanoparticles, respectively, and 50 and 36 proteins were found for 20 nm and 100 nm arginine-coated SiO2 nanoparticles, respectively. Higher numbers of proteins were adsorbed onto the 20 nm sized SiO2 nanoparticles than onto the 100 nm sized nanoparticles regardless of charge. When proteins were compared between the two charges, higher numbers of proteins were found for arginine-coated positively charged SiO2 nanoparticles than for the negatively charged nanoparticles. The proteins identified as bound in the corona from SiO2 nanoparticles were further analyzed with ClueGO, a Cytoscape plugin used in protein ontology and for identifying biological interaction pathways. Proteins bound on the surface of nanoparticles may affect

  15. A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation

    NASA Astrophysics Data System (ADS)

    Rogers, James V.; Parkinson, Christopher V.; Choi, Young W.; Speshock, Janice L.; Hussain, Saber M.

    2008-04-01

    The use of nanotechnology and nanomaterials in medical research is growing. Silver-containing nanoparticles have previously demonstrated antimicrobial efficacy against bacteria and viral particles. This preliminary study utilized an in vitro approach to evaluate the ability of silver-based nanoparticles to inhibit infectivity of the biological select agent, monkeypox virus (MPV). Nanoparticles (10 80 nm, with or without polysaccharide coating), or silver nitrate (AgNO3) at concentrations of 100, 50, 25, and 12.5 μg/mL were evaluated for efficacy using a plaque reduction assay. Both Ag-PS-25 (polysaccharide-coated, 25 nm) and Ag-NP-55 (non-coated, 55 nm) exhibited a significant ( P ≤ 0.05) dose-dependent effect of test compound concentration on the mean number of plaque-forming units (PFU). All concentrations of silver nitrate (except 100 μg/mL) and Ag-PS-10 promoted significant ( P ≤ 0.05) decreases in the number of observed PFU compared to untreated controls. Some nanoparticle treatments led to increased MPV PFU ranging from 1.04- to 1.8-fold above controls. No cytotoxicity (Vero cell monolayer sloughing) was caused by any test compound, except 100 μg/mL AgNO3. These results demonstrate that silver-based nanoparticles of approximately 10 nm inhibit MPV infection in vitro, supporting their potential use as an anti-viral therapeutic.

  16. Silver metal nanoparticles study for biomedical and green house applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.

    2017-02-01

    Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.

  17. Deposition of functional nanoparticle thin films by resonant infrared laser ablation.

    NASA Astrophysics Data System (ADS)

    Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen

    2008-03-01

    We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.

  18. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  19. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  20. [Health effects of nanoparticles and nanomaterials (II) methods for measurement of nanoparticles and their presence in the air].

    PubMed

    Fujitani, Yuji; Hirano, Seishiro

    2008-05-01

    The mass concentrations of airborne particles in the atmospheric, indoor, and industrial environments are regulated by air quality standards. Epidemiological studies show that there are significant positive correlations between particle mass concentrations and adverse health effects. In this context nanoparticles in the air, which are defined as particles with a diameter (Dp) of less than 50 nm or 100 nm for engineered ones, are gaining increasing attention despite a small contribution to the mass of total airborn particles. Contrary to the mass concentration the number concentrations of atmospheric nanoparticles are quite high in most cases. Moreover there is limited toxicological information on nanoparticles, although the deposition rate of nanoparticles in the respiratory region is known to be relatively high. Accordingly there are a lot of debates about what metric is best to depict the size distribution of nanoparticles, number, surface area, or mass. In this paper, we report methods for measurement of nanoparticles on the basis of those metrics. We also report sources of nanoparticle in the environment and occupational settings. The high number concentration of nanoparticles of 20-30 nm modal diameters have been documented at roadsides. Diesel-powered vehicles are major sources of those nanoparticles in the urban atmosphere. Engineered nanoparticles generate in some occupational settings in the handling processes such as bagging and cleaning with vacuum cleaners.

  1. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography.

    PubMed

    Stehlin, Fabrice; Bourgin, Yannick; Spangenberg, Arnaud; Jourlin, Yves; Parriaux, Olivier; Reynaud, Stéphanie; Wieder, Fernand; Soppera, Olivier

    2012-11-15

    Deep-UV lithography using high-efficiency phase mask has been developed to print 100 nm period grating on sol-gel based thin layer. High efficiency phase mask has been designed to produce a high-contrast interferogram (periodic fringes) under water immersion conditions for 244 nm laser. The demonstration has been applied to a new developed immersion-compatible sol-gel layer. A sol-gel photoresist prepared from zirconium alkoxides caped with methacrylic acids was developed to achieve 50 nm resolution in a single step exposure. The nanostructures can be thermally annealed into ZrO(2). Such route considerably simplifies the process for elaborating nanopatterned surfaces of transition metal oxides, and opens new routes for integrating materials of interest for applications in the field of photocatalysis, photovoltaic, optics, photonics or microelectronics.

  2. 25 Gbps 850 nm photodiode for emerging 100 Gb ethernet applications

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Rue, Jim; Becker, Don; Datta, Shubhashish; McFaul, Will

    2011-06-01

    The IEEE Std 802.3ba-2010 for 40 Gb and 100 Gb Ethernet was released in July, 2010. This standard will continue to evolve over the next several years. Two of the challenging transmit/receive architectures contained in this standard are the 100GBASE-LR4 (<10 km range) and 100GBASE-ER4 (<40 km range). Although presently envisioned for 1310 nm optical wavelengths, both of these 4 lane, 25.78 GBaud formats may be adopted for the impending 850 nm short reach optical backplane market, whose range is below 150 m. Driven by major computer server companies, such as IBM, HP and Oracle, the 850 nm Active Optical Cable (AOC) market is presently undergoing an increase of serial rates up to 25 Gbaud to enhance backplane interconnectivity. With AOCs up to 16 channels, the potential for up to 400 Gbps backhaul composite data rates will soon be possible. We report a 25 Gbps photodiode with quantum efficiency ~ 0.6 at 850 nm. This InGaAs/InP device was optimized for high quantum efficiency at 850 nm. When pigtailed with multimode fiber and integrated with an application-specific RF amplifier, the resultant photoreceiver will provide multiple functionalities for these 100 Gb Ethernet markets.

  3. Achieving sub-50nm controlled diameter of aperiodic Si nanowire arrays by ultrasonic catalyst removal for photonic applications

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2018-05-01

    We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.

  4. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.

    PubMed

    Zucker, R M; Daniel, K M; Massaro, E J; Karafas, S J; Degn, L L; Boyes, W K

    2013-10-01

    The cellular uptake of different sized silver nanoparticles (AgNP) (10, 50, and 75 nm) coated with polyvinylpyrrolidone (PVP) or citrate on a human derived retinal pigment epithelial cell line (ARPE-19) was detected by flow cytometry following 24-h incubation of the cells with AgNP. A dose dependent increase of side scatter and far red fluorescence was observed with both PVP and citrate-coated 50 nm or 75 nm silver particles. Using five different flow cytometers, a far red fluorescence signal in the 700-800 nm range increased as much as 100 times background as a ratio comparing the intensity measurements of treated sample and controls. The citrate-coated silver nanoparticles (AgNP) revealed slightly more side scatter and far red fluorescence than did the PVP coated silver nanoparticles. This increased far red fluorescence signal was observed with 50 and 75 nm particles, but not with 10 nm particles. Morphological evaluation by dark field microscopy showed silver particles (50 and 75 nm) clumped and concentrated around the nucleus. One possible hypothesis to explain the emission of far red fluorescence from cells incubated with silver nanoparticles is that the silver nanoparticles inside cells agglomerate into small nano clusters that form surface plasmon resonance which interacts with laser light to emit a strong far red fluorescence signal. The results demonstrate that two different parameters (side scatter and far red fluorescence) on standard flow cytometers can be used to detect and observe metallic nanoparticles inside cells. The strength of the far red fluorescence suggests that it may be particularly useful for applications that require high sensitivity. © Published 2013 Wiley-Periodicals, Inc. Published 2013 Wiley‐Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  5. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  6. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  7. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  8. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  9. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods

    NASA Astrophysics Data System (ADS)

    Raeesi, Vahid; Chan, Warren C. W.

    2016-06-01

    Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome.Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside

  10. Initial benchmarking of a new electron-beam raster pattern generator for 130-100 nm maskmaking

    NASA Astrophysics Data System (ADS)

    Sauer, Charles A.; Abboud, Frank E.; Babin, Sergey V.; Chakarian, Varoujan; Ghanbari, Abe; Innes, Robert; Trost, David; Raymond, Frederick, III

    2000-07-01

    The decision by the Semiconductor Industry Association (SIA) to accelerate the continuing evolution to smaller linewidths is consistent with the commitment by Etec Systems, Inc. to rapidly develop new technologies for pattern generation systems with improved resolution, critical dimension (CD) uniformity, positional accuracy, and throughput. Current pattern generation designs are inadequate to meet the more advanced requirements for masks, particularly at or below the 100 nm node. Major changes to all pattern generation tools will be essential to meet future market requirements. An electron-beam (e-beam) system that is designed to meet the challenges for 130 - 100 nm device generation with extendibility to the 70-nm range will be discussed. This system has an architecture that includes a graybeam writing strategy, a new state system, and improved thermal management. Detailed changes include a pulse width modulated blanking system, per-pixel deflection, retrograde scanning multipass writing, and a column with a 50 kV accelerating voltage that supports a dose of up to 45 (mu) C/cm2 with minimal amounts of resist heating. This paper examines current issues, our approach to meeting International Technology Roadmap for Semiconductors (ITRS) requirements, and some preliminary results from a new pattern generator.

  11. Functionalizing large nanoparticles for small gaps in dimer nanoantennas

    NASA Astrophysics Data System (ADS)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P.; Tinnefeld, Philip

    2016-04-01

    The process of functionalizing gold nanoparticles with DNA commonly competes with nanoparticle aggregation, especially for larger particles of more than 80 nm diameter. Longer DNA strands reduce the tendency for aggregation but commonly lead to larger gaps when applied in certain geometrical arrangements such as gap nanoantennas. Here, we demonstrate that reversing the polarization of one of the strands for hybridization (yielding a zipper-like geometry) is sterically possible with uncompromised yields. Using the single dye molecule’s fluorescence lifetime as an indicator of the proximity of the nanoparticle in combination with electrodynamic simulations, we determine the distance between the nanoparticle and the dye placed in a DNA origami pillar. Importantly, compared to the common shear geometry smaller distances between the connected structures are obtained which are independent of the length of the DNA connector. Using the zipper geometry, we then arranged nanoparticles of 100 and 150 nm diameter on DNA origami and formed gap nanoantennas. We find that the previously reported trend of increased fluorescence enhancement of ATTO647N with increasing particle size for 20-100 nm nanoparticles is stopped. Gap nanoantennas built with 150 nm nanoparticles exhibit smaller enhancement than those with 100 nm nanoparticles. These results are discussed with the aid of electrodynamic simulations.

  12. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  13. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro.

    PubMed

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-12

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  14. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  15. Enhanced absorption of TM waves in conductive nanoparticles structure

    NASA Astrophysics Data System (ADS)

    Mousa, H. M.; Shabat, M. M.; Ouda, A. K.; Schaadt, D. M.

    2018-05-01

    This paper tackles anti-reflection coating structure for silicon solar cell where conductive nanoparticle (CNP) film is sandwiched between a semi-infinite glass cover and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. We also illustrated the dependence of the absorption, transmission and reflection coefficients on several angles of incidence of the transverse magnetic polarized (TM) waves. We found out that reflection decreases by the increase of incident angle to 50∘. If nanoparticles are suitably located and sized at gab width of 3.5 nm, unit cell of 250 nm and CNP layer thickness of 150 nm, the absorptivity of the structure achieves 100%.

  16. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.

    PubMed

    De Jong, Wim H; Hagens, Werner I; Krystek, Petra; Burger, Marina C; Sips, Adriënne J A M; Geertsma, Robert E

    2008-04-01

    A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.

  17. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

    NASA Astrophysics Data System (ADS)

    Pandey, Pratibha; Merwyn, S.; Agarwal, G. S.; Tripathi, B. K.; Pant, S. C.

    2012-01-01

    Copper (II) oxide multi-armed nanoparticles composed of 500-1000 nm long radiating nanospicules with 100-200 nm width near the base and 50-100 nm width at the tapered ends and 25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 °C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, s taphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 μg/mL nano CuO killed 3 × 108 CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 × 106 CFU/mL E. coli were killed by 100 and 10 μg/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

  18. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  19. Evolution of size distribution and structure of Si and SiO2 nanoparticles: laser-assisted formation and fragmentation

    NASA Astrophysics Data System (ADS)

    Eidelman, K.; Gudkov, D.; Segbefia, O.; Ageev, E.; Krivonosov, A.; Matuhina, A.

    2017-11-01

    In this work, Si and SiO2, nanoparticles (NPs) was prepared by pulsed laser ablation (PLA) in distilled water. The radiation of a ytterbium fiber laser (repetition rate f = 50 kHz, wavelength λ = 1064 nm and pulse duration τ = 8 ns and 100 ns) at different laser intensities was utilized to ablate the Si target (99.999%, cubic, 7×7 mm2) under liquid layer to synthesize and to fragment the silicon colloidal NPs. Studies of morphology and size distribution of silica NPs were conducted using Transmission Electron Microscopy (TEM). The NPs of crystalline and amorphous phases were founded. Most of the NPs in the nano colloids were found to have dimensions less than 100 nm, and a few of them were between 100 nm and 700 nm. Dependence of average NP size on the number of laser passes was revealed. The average size of the nanoparticles obtained by TEM was confirmed by dynamic light scattering (DLS) measurements.

  20. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  1. Laser heating of gold nanoparticles: photothermal cancer cell therapy

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Karashanova, D.

    2012-06-01

    In this work an application of gold nanoparticles in in-vitro photothermal cancer cell therapy is demonstrated. Gold nanoparticles with different diameters - 40, 100 and 200 nm are mixed with HeLa cancer cells. After incubation, the nanoparticles are found to be deposited on the cell's membrane or enter into the cells. Pulsed laser radiation at wavelength of 532 nm delivered by Nd:YAG system is used to irradiate the samples. The experiments are performed at fluences in the range from 50 mJ/cm2 up to the established safety standard for medical lasers of 100 mJ/cm2. The cell viability as a function of the particle dimensions and laser fluence is estimated. The nanoparticles heating and cooling dynamics is traced by a numerical model based on heat diffusion equation combined with Mie theory for calculation of the optical properties of nanoparticles. The particle response to the nanosecond laser heating is investigated experimentally as gold colloids are irradiated at different fluences. The threshold fluences for particle's melting and boiling are defined. We show that at the presented fluence range the particles are decomposed into smaller fragments and even short irradiation time leads to decrease of cell viability.

  2. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core. Structure, dissolution in cell culture media, and biological impact on macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.

    Widespread use of silver nanoparticles raises questions of environmental impact and toxicity. Both silver particles and silver ions formed by particle dissolution may impact biological systems. Therefore it is important to understand the characteristics of silver nanoparticles and their stability in relevant media. The synthesis route can impact physical and chemical characteristics of the particles and we report the characterization and solution stability of three types of silver nanoparticles (20 nm particles with and without gold cores and 110 nm particles with gold cores) in cell culture media with serum proteins: FBS10%/RPMI. These nanoparticles were synthesized in aqueous solution andmore » characterized using both in situ and ex situ analysis methods. Dissolution studies were carried at particle concentrations from 1 µg/ml to 50 µg/ml. Particles with gold cores had smaller crystallite size and higher apparent solubility than pure silver particles. A dissolution model was found to describe the time variation of particle size and amount of dissolved silver for particle loadings above 9 µg/ml. An effective solubility product obtained from fitting the data was higher for the 20 nm gold core particles in comparison to the pure silver or 110 nm particles. Dissolution of the nanoparticles was enhanced by presence of serum proteins contained in fetal bovine serum. In addition, the protocol of the dispersion in the medium was found to influence particle agglomeration and dissolution. Results show that particle structure can impact the concentration of dissolved silver and the dose to which cells would be exposed during in vitro studies.« less

  3. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core. Structure, dissolution in cell culture media, and biological impact on macrophages

    DOE PAGES

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; ...

    2015-07-15

    Widespread use of silver nanoparticles raises questions of environmental impact and toxicity. Both silver particles and silver ions formed by particle dissolution may impact biological systems. Therefore it is important to understand the characteristics of silver nanoparticles and their stability in relevant media. The synthesis route can impact physical and chemical characteristics of the particles and we report the characterization and solution stability of three types of silver nanoparticles (20 nm particles with and without gold cores and 110 nm particles with gold cores) in cell culture media with serum proteins: FBS10%/RPMI. These nanoparticles were synthesized in aqueous solution andmore » characterized using both in situ and ex situ analysis methods. Dissolution studies were carried at particle concentrations from 1 µg/ml to 50 µg/ml. Particles with gold cores had smaller crystallite size and higher apparent solubility than pure silver particles. A dissolution model was found to describe the time variation of particle size and amount of dissolved silver for particle loadings above 9 µg/ml. An effective solubility product obtained from fitting the data was higher for the 20 nm gold core particles in comparison to the pure silver or 110 nm particles. Dissolution of the nanoparticles was enhanced by presence of serum proteins contained in fetal bovine serum. In addition, the protocol of the dispersion in the medium was found to influence particle agglomeration and dissolution. Results show that particle structure can impact the concentration of dissolved silver and the dose to which cells would be exposed during in vitro studies.« less

  4. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  5. Effect of silver on the shape of palladium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dikshita, E-mail: dgmonugupta@gmail.com; Barman, P. B.; Hazra, S. K.

    We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared bymore » the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.« less

  6. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure.

    PubMed

    Martínez-Fernández, Domingo; Barroso, Didac; Komárek, Michael

    2016-01-01

    The application of nanomaterials in commercially available products is increasing rapidly for agriculture, phytoremediation and biotechnology. Since plants suppose the first sink for the accumulation of nanoparticles from the environment, emerging studies have focused on the general consequences for plants and their effects on the biomass production. However, effects on the root surface, as well as blockage of nutrients and water uptake by the roots, may also occur. This experiment was designed to prove if the plant water relations can be affected by the adsorption of nanoparticles on the root surface, causing a consequent stress for the plants. With this goal, plants of Helianthus annuus were previously grown in a hydroponic culture, and at age of 55 days, their roots were exposed to three different concentrations of nanomaghemite (NM) in the hydroponic solution for 5 days: control without NM; 50 and 100 mg l(-1) NM. The main effect was related to the reduction of the root hydraulic conductivity (Lo) and the nutrients uptake. The concentrations of the macronutrients Ca, K, Mg and S in the shoot were reduced relative to the control plants, which resulted in lower contents of chlorophyll pigments. Although stress was not detected in the plants, after the analysis of stress markers like the accumulation of proline or ascorbate in the tissues, reduction of the root functionality by nanoparticles has been identified here, manifested as the effect of NM on Lo. The treatment with 50 mg l(-1) NM significantly reduced the Lo, by up to 57% of its control value, and it was reduced by up to 26% at 100 mg l(-1) NM. These results will be an important factor to take into account with regard to the applicability of NM for long-term use in crops, particularly during privative water conditions.

  7. The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water (Paris, France).

    PubMed

    da Rocha, Alice; Sivry, Yann; Gelabert, Alexandre; Beji, Zyed; Benedetti, Marc F; Menguy, Nicolas; Brayner, Roberta

    2015-05-01

    This study aims to characterize nanoparticles with different compositions and structures as well as seeing their evolutions over time in a natural environment such as Seine river water (Paris, France). Face centered cubic (fcc) and hexagonal (hcp) CdS as well as hexagonal (hcp) ZnO nanoparticles were synthesized by the Polyol method. CdS nanoparticles (i) cfc structure: are agglomerated, present 100 nm length with heterogeneous diameter and 10 m2 g(-1) specific surface area (S(g)) from Brunauer Emett and Teller (BET) measurements; (ii) hcp structure: 20 nm and S(g) = 67 m2 g(-1). ZnO hcp nanoparticles presents 50 nm length and 15 nm diameter and S(g) = 54 m2 g(-1). These results are in agreement with X-ray diffraction (XRD), and small angle X-ray scattering (SAXs). After 48 h interaction with Seine river water, cryo-TEM analysis showed that ZnO nanoparticles form spherical agglomerates with 300 nm diameter; CdS nanoparticles (fcc) are agglomerated presenting large diameters (> 500 nm); and CdS nanoparticles (hcp) are not agglomerated and present the same characteristics of the starting material. After 168h of contact with Seine river water, CdS (fcc) presents only 14% of dissolution, CdS (hcp) presents both 60% dissolution and 30% reprecipitation in a cadmium carbonate form and finally almost 90% of ZnO nanoparticles are dissolved.

  8. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Daigle, Hugh

    2017-01-01

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from 3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of 500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of 330 nm.

  9. Amorphous iron–chromium oxide nanoparticles with long-term stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less

  10. 50 CFR 100.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Definitions. 100.4 Section 100.4 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL... continuing natural populations and species mix of plants and animals in relation to their ecosystem...

  11. 50 CFR 100.4 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Definitions. 100.4 Section 100.4 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL... continuing natural populations and species mix of plants and animals in relation to their ecosystem...

  12. 50 CFR 100.4 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Definitions. 100.4 Section 100.4 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL... continuing natural populations and species mix of plants and animals in relation to their ecosystem...

  13. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria.

    PubMed

    Kumari, Madhuree; Pandey, Shipra; Giri, Ved Prakash; Bhattacharya, Arpita; Shukla, Richa; Mishra, Aradhana; Nautiyal, C S

    2017-04-01

    Spherical, rectangular, penta, and hexagonal silver nanoparticles of different dimensions were biosynthesized in an eco-friendly manner by biocontrol agent, Trichoderma viride by manipulating physical parameters, pH, temperature, and reaction time. The particles were characterized by UV-vis spectroscopy; Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Fourier Transform Infra-red Spectroscopy (FTIR). Shape and size dependent antimicrobial activity of nanoparticles against human pathogens was observed. Maximum inhibition was found with spherical nanoparticles (2-5 nm) showing 40, 51, 43, 53.9 and 55.8% against Shigella sonnei, Escherichia coli, Serratia marcescens, Staphylococcus. aureus and Pseudomonas aeruginosa respectively, where as pentagonal and hexagonal nanoparticles (50-100 nm) demonstrated 32, 41, 31, 42.84 and 42.80% of inhibition as compared to control. Nanoparticles of different geometry and dimension established enhanced antagonistic activity against pathogens with all the tested antibiotics. Excellent antimicrobial efficacy was obtained with spherical nanoparticles of 2-5 nm with ampicillin and penicillin. Shape and size played major role in enhancing antimicrobial potential of silver nanoparticles, both singly and synergistically with antibiotics which can be exploited to combat the spread of multidrug resistant pathogens. Copyright © 2016. Published by Elsevier Ltd.

  14. 50 CFR 100.2 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Authority. 100.2 Section 100.2 Wildlife... Authority. The Secretary of the Interior and Secretary of Agriculture issue the regulations in this part pursuant to authority vested in Title VIII of the Alaska National Interest Lands Conservation Act (ANILCA...

  15. Nanoparticles based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Sharma, Navneet K.

    2018-05-01

    Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.

  16. Comparative study between REAP 200 and FEP171 CAR with 50-kV raster e-beam system for sub-100-nm technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Lem, Homer Y.; Dean, Robert L.; Osborne, Stephen; Mueller, Mark; Abboud, Frank E.

    2003-08-01

    In this paper, a process established with a positive-tone chemically amplified resist (CAR) from TOK REAP200 and Fujifilm Arch FEP171 and 50kV MEBES system is discussed. This TOK resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. In the mask industries, the most popular positive tone CAR is FEP171, which is a high activation energy type CAR. REAP (Raster E-beam Advanced Process) 200 is low activation energy type and new acetal protecting polymer. In this study, we compared to these different type resists in terms of contrast, PAB and PEB latitude, resist profile, footing, T-topping, PED stability, LER, Global CDU (Critical Dimension Uniformity) and resolution. The REAP200 Resist obtained 75nm isolated lines and spaces, 90nm dense patterns with vertical profile, and a good stability of delay time.

  17. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes.

    PubMed

    Liu, Yuexian; Li, Wei; Lao, Fang; Liu, Ying; Wang, Liming; Bai, Ru; Zhao, Yuliang; Chen, Chunying

    2011-11-01

    The fate of nanomaterials with different sizes and charges in mitotic cells is of great importance but seldom explored. Herein we investigate the intracellular fate of negatively charged carboxylated polystyrene (COOH-PS) and positively charged amino-modified polystyrene (NH(2)-PS) nanoparticles of three different diameters (50, 100 and 500 nm) on cancer HeLa cells and normal NIH 3T3 cells during the cell cycles. The results showed that all the fluorescent PS nanoparticles differing in size and/or charge did not interact with chromosome reorganization and cytoskeleton assembly during the mitotic process in live cells. They neither disturbed chromosome reorganization nor affected the cytoskeleton reassembly in both normal and cancer cells. However, NH(2)-PS at the size of 50 nm caused G1 phase delay and a decrease of cyclin (D, E) expression, respectively. Moreover, NH(2)-PS displayed higher cellular toxicity and NH(2)-PS of 50 nm disturbed the integrity of cell membranes. Both cationic and anionic PS nanoparticles had a more pronounced effect on normal NIH 3T3 cells than cancer HeLa cell. Our research provides insight into the dynamic fate, intracellular behavior, and the effects of nanoparticles on spindle and chromosomes during cell division, which will enable the optimization of design and selection of much safer nanoparticles for lower risk to human health and widely medical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Assessment of the In Vivo Toxicity of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Hung, Yao-Ching; Liau, Ian; Huang, G. Steve

    2009-08-01

    The environmental impact of nanoparticles is evident; however, their toxicity due to their nanosize is rarely discussed. Gold nanoparticles (GNPs) may serve as a promising model to address the size-dependent biological response to nanoparticles because they show good biocompatibility and their size can be controlled with great precision during their chemical synthesis. Naked GNPs ranging from 3 to 100 nm were injected intraperitoneally into BALB/C mice at a dose of 8 mg/kg/week. GNPs of 3, 5, 50, and 100 nm did not show harmful effects; however, GNPs ranging from 8 to 37 nm induced severe sickness in mice. Mice injected with GNPs in this range showed fatigue, loss of appetite, change of fur color, and weight loss. Starting from day 14, mice in this group exhibited a camel-like back and crooked spine. The majority of mice in these groups died within 21 days. Injection of 5 and 3 nm GNPs, however, did not induce sickness or lethality in mice. Pathological examination of the major organs of the mice in the diseased groups indicated an increase of Kupffer cells in the liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen. The pathological abnormality was associated with the presence of gold particles at the diseased sites, which were verified by ex vivo Coherent anti-Stoke Raman scattering microscopy. Modifying the surface of the GNPs by incorporating immunogenic peptides ameliorated their toxicity. This reduction in the toxicity is associated with an increase in the ability to induce antibody response. The toxicity of GNPs may be a fundamental determinant of the environmental toxicity of nanoparticles.

  19. DUV phase mask for 100 nm period grating printing

    NASA Astrophysics Data System (ADS)

    Jourlin, Y.; Bourgin, Y.; Reynaud, S.; Parriaux, O.; Talneau, A.; Karvinen, P.; Passilly, N.; Zain, A. Md.; De La Rue, R. M.

    2008-04-01

    Whereas microelectronic lithography is heading to the 32 nm node and discussing immersion and double-patterning strategies, there is much which can be done with the 45 nm node in microoptics for white light processing. For instance, one of the most demanding applications in terms of achievable period is the LCD lossless polarizer, which can transmit the TM polarization and reflect the TE polarization evenly all through the visible spectrum - provided that a 1D metal grid of 100 nm period can be fabricated. The manufacture of such polarizing panels cannot resort to the step & repeat cameras of microelectronics since the substrates are too large, too thin, too wavy and full of contaminants. There is therefore a need for specific fabrication techniques. It is one of these techniques that a subgroup of partners belonging to two of the Networks of Excellence of the European Community, NEMO and ePIXnet, have decided to explore together.

  20. 50 CFR 100.23 - Rural determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Rural determinations. 100.23 Section 100.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Determinations § 100.23 Rural determinations. (a) The Board has determined all communities and areas to be rural...

  1. 50 CFR 100.23 - Rural determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Rural determinations. 100.23 Section 100.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Determinations § 100.23 Rural determinations. (a) The Board has determined all communities and areas to be rural...

  2. 50 CFR 100.23 - Rural determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Rural determinations. 100.23 Section 100.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Determinations § 100.23 Rural determinations. (a) The Board has determined all communities and areas to be rural...

  3. 50 CFR 100.23 - Rural determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Rural determinations. 100.23 Section 100.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Determinations § 100.23 Rural determinations. (a) The Board has determined all communities and areas to be rural...

  4. 50 CFR 100.19 - Special actions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Special actions. 100.19 Section 100.19... § 100.19 Special actions. (a) Emergency special actions. In an emergency situation, if necessary to... recommendations on the proposed emergency special action. Such a Council recommendation, if any, will be subject...

  5. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    PubMed Central

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315

  6. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.

    PubMed

    Boutopoulos, Christos; Hatef, Ali; Fortin-Deschênes, Matthieu; Meunier, Michel

    2015-07-21

    Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs laser pulses. We demonstrate that 100 nm AuNPs can generate multiple, highly confined (radius down to 550 nm) and transient (life time < 50 ns) nanobubbles. The latter is of significant importance for future development of in vivo AuNP-assisted laser nanosurgery and theranostic applications, where AuNP fragmentation should be avoided to prevent side effects, such as cytotoxicity and immune system's response. The experimental results have been correlated with theoretical modeling to provide an insight to the AuNP-safe cavitation mechanism as well as to investigate the deformation mechanism of the AuNPs at high laser fluences.

  7. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    PubMed

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  8. 50 CFR 100.19 - Special actions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Special actions. 100.19 Section 100.19... § 100.19 Special actions. (a) The Board may restrict, close, or reopen the taking of fish and wildlife.... Requests for Special Action that do not meet these conditions will be rejected; however, a rejected Special...

  9. Laser assisted anticancer activity of benzimidazole based metal organic nanoparticles.

    PubMed

    Praveen, P A; Ramesh Babu, R; Balaji, P; Murugadas, A; Akbarsha, M A

    2018-03-01

    Recent studies showed that the photothermal therapy can be effectively used for the targeted cancerous cells destruction. Hence, in the present study, benzimidazole based metal organic complex nanoparticles, dichloro cobalt(II) bis-benzimidazole (Co-BMZ) and dichloro copper(II) bis-benzimidazole (Cu-BMZ), were synthesized by reprecipitation method and their anti-cancer activity by means of photothermal effect has been studied. Transmission electron microscopy analysis shows that the particle size of Cu-BMZ is ∼100nm and Co-BMZ is in the range between 100 and 400 nm. Zeta potential analysis ensures the stability of the synthesized nanoparticles. It is found that the nonlinear absorption of the nanoparticles increases with increase in laser power intensity. Phototoxicity of human lung cancer (A549) and the normal mouse embryonic fibroblast (NIH-3T3) cells was studied using a 650 nm laser. Even though both the cell lines were affected by laser irradiation, A549 cells show higher cell destruction and lower IC 50 values than the normal cells. Docking studies were used to analyse the interaction site and the results showed that the Cu-BMZ molecules have higher dock score than the Co-BMZ molecules. The obtained results indicate that Cu-BMZ samples have lesser particle size, higher nonlinear absorption and higher interaction energy than the Co-BMZ samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  11. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  12. Synthesizing nanoparticles by mimicking nature

    EPA Science Inventory

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketpl...

  13. Selectivity of Glycine for Facets on Gold Nanoparticles.

    PubMed

    Shao, Qing; Hall, Carol K

    2018-04-05

    The performance of nanoparticles in medical applications depends on their interactions with various molecules. Despite extensive research on this subject, it remains unclear where on an inhomogeneous nanoparticle molecules prefer to adsorb. Here we investigate the selectivity of glycine molecules for facets on five bare gold nanoparticles with diameters from 1.0 to 5.0 nm. Well-tempered metadynamics simulations are conducted to calculate the adsorption free-energy landscapes of a glycine molecule on various locations for the five gold nanoparticles in explicit water. We also calculate the glycine molecule's adsorption free energies on the five gold nanoparticles in vacuum and on three flat gold surfaces as a reference. The simulation results show that glycine molecules prefer to adsorb on the (110) facet for the 1.0 and 2.0 nm nanoparticles, the edges for the 3.0 nm nanoparticle, and the (111) facet for the 4.0 and 5.0 nm nanoparticles in water. The effect of water solvent on the selectivity is investigated through comparing the adsorption free-energy landscapes for glycine molecules on the nanoparticles in water and in vacuum. The area of the facet plays a key role in determining the selectivity of glycine molecules for the different facets, especially the shift of the selectivity as the nanoparticle diameter changes. Our simulations suggest that nanoparticle size and shape can be engineered to control the preferred adsorption location of molecules.

  14. Synthesis and Characterization of Composite Hydroxyapatite-Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Charlena; Nuzulia, N. A.; Handika

    2017-03-01

    Hydroxyapatite (HAp) is commonly used as bone implant coating recently; however, the material has disadvantage such as lack of antibacterial properties, that can cause an bacterial infection. Addition of silver nanoparticles is expected to be able to provide antibacterial properties. Silver nanoparticles was obtained by reduction of AgNO3 using glucose monohydrate with microwave heating at 100p for 4 minutes. The composite of hydroxyapatite-silver nanoparticles was synthesized using chemical methods by coprecipitation suspension of Ca(OH)2 with (NH4)HPO4, followed by adding silver nanoparticles solution. The size of the synthesized silver nanoparticles was 30-50 nm and exhibited good antibacterial activity. Nevertheless, when it was composited with HAp to form HAp-AgNPs, there was no antibacterial activity due to very low concentration of silver nanoparticles. This was indicated by the absence of silver nanoparticles diffraction patterns. Infrared spectra indicated the presence of chemical shift and the results of scanning electron microscope showed size of the HAp-AgNPs composite was smaller than that of the HAp. This showed the interaction between HAp and the silver nanoparticles.

  15. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    PubMed Central

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  16. 50 CFR 100.23 - Rural determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Rural determinations. 100.23 Section 100... area—including Kenai, Soldotna, Sterling, Nikiski, Salamatof, Kalifonsky, Kasilof, and Clam Gulch; (6... Pass; (9) Valdez; and (10) Wasilla/Palmer area—including Wasilla, Palmer, Sutton, Big Lake, Houston...

  17. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.

    PubMed

    Wagner, Andrew J; Bleckmann, Charles A; Murdock, Richard C; Schrand, Amanda M; Schlager, John J; Hussain, Saber M

    2007-06-28

    Nanomaterials, with dimensions in the 1-100 nm range, possess numerous potential benefits to society. However, there is little characterization of their effects on biological systems, either within the environment or on human health. The present study examines cellular interaction of aluminum oxide and aluminum nanomaterials, including their effect on cell viability and cell phagocytosis, with reference to particle size and the particle's chemical composition. Experiments were performed to characterize initial in vitro cellular effects of rat alveolar macrophages (NR8383) after exposure to aluminum oxide nanoparticles (Al2O3-NP at 30 and 40 nm) and aluminum metal nanoparticles containing a 2-3 nm oxide coat (Al-NP at 50, 80, and 120 nm). Characterization of the nanomaterials, both as received and in situ, was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and/or CytoViva150 Ultra Resolution Imaging (URI)). Particles showed significant agglomeration in cell exposure media using DLS and the URI as compared to primary particle size in TEM. Cell viability assay results indicate a marginal effect on macrophage viability after exposure to Al2O3-NP at doses of 100 microg/mL for 24 h continuous exposure. Al-NP produced significantly reduced viability after 24 h of continuous exposure with doses from 100 to 250 microg/mL. Cell phagocytotic ability was significantly hindered by exposure to 50, 80, or 120 nm Al-NP at 25 microg/mL for 24 h, but the same concentration (25 microg/mL) had no significant effect on the cellular viability. However, no significant effect on phagocytosis was observed with Al2O3-NP. In summary, these results show that Al-NP exhibit greater toxicity and more significantly diminish the phagocytotic ability of macrophages after 24 h of exposure when compared to Al2O3-NP.

  18. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  19. Probing plasmon resonances of individual aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi

    2018-01-01

    The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.

  20. Acute and Cumulative Effects of Unmodified 50-nm Nano-ZnO on Mice.

    PubMed

    Kong, Tao; Zhang, Shu-Hui; Zhang, Ji-Liang; Hao, Xue-Qin; Yang, Fan; Zhang, Cai; Yang, Zi-Jun; Zhang, Meng-Yu; Wang, Jie

    2018-01-02

    Nanometer zinc oxide (nano-ZnO) is widely used in diverse industrial and agricultural fields. Due to the extensive contact humans have with these particles, it is crucial to understand the potential effects that nano-ZnO have on human health. Currently, information related to the toxicity and mechanisms of nano-ZnO is limited. The aim of the present study was to investigate acute and cumulative toxic effects of 50-nm unmodified ZnO in mice. This investigation will seek to establish median lethal dose (LD50), a cumulative coefficient, and target organs. The acute and cumulative toxicity was investigated by Karber's method and via a dose-increasing method, respectively. During the experiment, clinical signs, mortality, body weights, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. The LD50 was 5177-mg/kg·bw; the 95% confidence limits for the LD50 were 5116-5238-mg/kg·bw. It could be concluded that the liver, kidney, lung, and gastrointestinal tract were target organs for the 50-nm nano-ZnO acute oral treatment. The cumulative coefficient (K) was 1.9 which indicated that the cumulative toxicity was apparent. The results also indicated that the liver, kidney, lung, and pancrea were target organs for 50-nm nano-ZnO cumulative oral exposure and might be target organs for subchronic and chronic toxicity of oral administered 50-nm ZnO.

  1. Sub-100-nm trackwidth development by e-beam lithography for advanced magnetic recording heads

    NASA Astrophysics Data System (ADS)

    Chang, Jei-Wei; Chen, Chao-Peng

    2006-03-01

    Although semiconductor industry ramps the products with 90 nm much quicker than anticipated [1], magnetic recording head manufacturers still have difficulties in producing sub-100 nm read/write trackwidth. Patterning for high-aspectratio writer requires much higher depth of focus (DOF) than most advanced optical lithography, including immersion technique developed recently [2]. Self-aligning reader with its stabilized bias requires a bi-layer lift-off structure where the underlayer is narrower than the top image layer. As the reader's trackwidth is below 100nm, the underlayer becomes very difficult to control. Among available approaches, e-beam lithography remains the most promising one to overcome the challenge of progressive miniaturization. In this communication, the authors discussed several approaches using ebeam lithography to achieve sub-100 nm read/write trackwidth. Our studies indicated the suspended resist bridge design can not only widen the process window for lift-off process but also makes 65 nm trackwidth feasible to manufacture. Necked dog-bone structure seems to be the best design in this application due to less proximity effects from adjacent structures and minimum blockages for ion beam etching. The trackwidth smaller than 65 nm can be fabricated via the combination of e-beam lithography with auxiliary slimming and/or trimming. However, deposit overspray through undercut becomes dominated in such a small dimension. To minimize the overspray, the effects of underlayer thickness need to be further studied.

  2. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  3. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  4. Optical track width measurements below 100 nm using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; See, C. W.; Somekh, M. G.; Yacoot, A.; Choi, E.

    2005-12-01

    This paper discusses the feasibility of using artificial neural networks (ANNs), together with a high precision scanning optical profiler, to measure very fine track widths that are considerably below the conventional diffraction limit of a conventional optical microscope. The ANN is trained using optical profiles obtained from tracks of known widths, the network is then assessed by applying it to test profiles. The optical profiler is an ultra-stable common path scanning interferometer, which provides extremely precise surface measurements. Preliminary results, obtained with a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the system is capable of measuring a 50 nm track width, with a standard deviation less than 4 nm.

  5. New approach for pattern collapse problem by increasing contact area at sub-100nm patterning

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Koo; Jung, Jae Chang; Lee, Min Suk; Lee, Sung K.; Kim, Sam Young; Hwang, Young-Sun; Bok, Cheol K.; Moon, Seung-Chan; Shin, Ki S.; Kim, Sang-Jung

    2003-06-01

    To accomplish minimizing feature size to sub 100nm, new light sources for photolithography are emerging, such as ArF(193nm), F2(157nm), and EUV(13nm). However as the pattern size decreases to sub 100nm, a new obstacle, that is pattern collapse problem, becomes most serious bottleneck to the road for the sub 100 nm lithography. The main reason for this pattern collapse problem is capillary force that is increased as the pattern size decreases. As a result there were some trials to decrease this capillary force by changing developer or rinse materials that had low surface tension. On the other hands, there were other efforts to increase adhesion between resists and sub materials (organic BARC). In this study, we will propose a novel approach to solve pattern collapse problems by increasing contact area between sub material (organic BARC) and resist pattern. The basic concept of this approach is that if nano-scale topology is made at the sub material, the contact area between sub materials and resist will be increased. The process scheme was like this. First after coating and baking of organic BARC material, the nano-scale topology (3~10nm) was made by etching at this organic BARC material. On this nano-scale topology, resist was coated and exposed. Finally after develop, the contact area between organic BARC and resist could be increased. Though nano-scale topology was made by etching technology, this 20nm topology variation induced large substrate reflectivity of 4.2% and as a result the pattern fidelity was not so good at 100nm 1:1 island pattern. So we needed a new method to improve pattern fidelity problem. This pattern fidelity problem could be solved by introducing a sacrificial BARC layer. The process scheme was like this. First organic BARC was coated of which k value was about 0.64 and then sacrificial BARC layers was coated of which k value was about 0.18 on the organic BARC. The nano-scale topology (1~4nm) was made by etching of this sacrificial BARC layer

  6. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  7. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    NASA Astrophysics Data System (ADS)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  8. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  9. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL...

  10. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL...

  11. 41 CFR 109-50.100 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Scope of subpart. 109-50.100 Section 109-50.100 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL...

  12. 50 CFR 100.13 - Board/agency relationships.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Board/agency relationships. 100.13 Section 100.13 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Structure § 100.13 Board/agency relationships. (a) General. (1) The Board, in making decisions or...

  13. 50 CFR 100.13 - Board/agency relationships.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Board/agency relationships. 100.13 Section 100.13 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Structure § 100.13 Board/agency relationships. (a) General. (1) The Board, in making decisions or...

  14. 50 CFR 100.15 - Rural determination process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Rural determination process. 100.15 Section 100.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Structure § 100.15 Rural determination process. (a) The Board shall determine if an area or community in...

  15. 50 CFR 100.15 - Rural determination process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Rural determination process. 100.15 Section 100.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Structure § 100.15 Rural determination process. (a) The Board shall determine if an area or community in...

  16. 50 CFR 100.15 - Rural determination process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Rural determination process. 100.15 Section 100.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Structure § 100.15 Rural determination process. (a) The Board shall determine if an area or community in...

  17. 50 CFR 100.15 - Rural determination process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Rural determination process. 100.15 Section 100.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Structure § 100.15 Rural determination process. (a) The Board shall determine if an area or community in...

  18. 50 CFR 100.12 - Local advisory committees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Local advisory committees. 100.12 Section... Structure § 100.12 Local advisory committees. (a) The Board shall establish such local Federal Advisory... in § 100.11. (b) Local Federal Advisory Committees, if established by the Board, shall operate in...

  19. 50 CFR 100.12 - Local advisory committees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Local advisory committees. 100.12 Section... Structure § 100.12 Local advisory committees. (a) The Board shall establish such local Federal Advisory... in § 100.11. (b) Local Federal Advisory Committees, if established by the Board, shall operate in...

  20. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser

    NASA Astrophysics Data System (ADS)

    Boutopoulos, Christos; Hatef, Ali; Fortin-Deschênes, Matthieu; Meunier, Michel

    2015-07-01

    Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs laser pulses. We demonstrate that 100 nm AuNPs can generate multiple, highly confined (radius down to 550 nm) and transient (life time < 50 ns) nanobubbles. The latter is of significant importance for future development of in vivo AuNP-assisted laser nanosurgery and theranostic applications, where AuNP fragmentation should be avoided to prevent side effects, such as cytotoxicity and immune system's response. The experimental results have been correlated with theoretical modeling to provide an insight to the AuNP-safe cavitation mechanism as well as to investigate the deformation mechanism of the AuNPs at high laser fluences.Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs

  1. Electrostatically confined nanoparticle interactions and dynamics.

    PubMed

    Eichmann, Shannon L; Anekal, Samartha G; Bevan, Michael A

    2008-02-05

    We report integrated evanescent wave and video microscopy measurements of three-dimensional trajectories of 50, 100, and 250 nm gold nanoparticles electrostatically confined between parallel planar glass surfaces separated by 350 and 600 nm silica colloid spacers. Equilibrium analyses of single and ensemble particle height distributions normal to the confining walls produce net electrostatic potentials in excellent agreement with theoretical predictions. Dynamic analyses indicate lateral particle diffusion coefficients approximately 30-50% smaller than expected from predictions including the effects of the equilibrium particle distribution within the gap and multibody hydrodynamic interactions with the confining walls. Consistent analyses of equilibrium and dynamic information in each measurement do not indicate any roles for particle heating or hydrodynamic slip at the particle or wall surfaces, which would both increase diffusivities. Instead, lower than expected diffusivities are speculated to arise from electroviscous effects enhanced by the relative extent (kappaa approximately 1-3) and overlap (kappah approximately 2-4) of electrostatic double layers on the particle and wall surfaces. These results demonstrate direct, quantitative measurements and a consistent interpretation of metal nanoparticle electrostatic interactions and dynamics in a confined geometry, which provides a basis for future similar measurements involving other colloidal forces and specific biomolecular interactions.

  2. Femtosecond dynamics of monolayer MoS2-Ag nanoparticles hybrid probed at 532 nm

    NASA Astrophysics Data System (ADS)

    Xu, Xuefeng; Shi, Ying; Liu, Xiaochun; Sun, Mengtao

    2018-01-01

    In this communication, plasmon-exciton couplings of monolayer MoS2/Ag nanoparticles (NPs) hybrids with different sizes are investigated, using transient absorption spectra. Ultrafast dynamics of coupling interactions inside these hybrid structures are carefully examined at 532 nm, which can well interpret the apllication of plasmon-exciton coupling for the co-driven chemical reactions excited at 532 nm. Our experimental results can promote the deeper understanding on the physical mechanism of plasmon-excition interaction, and applications in different fields.

  3. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm.

    PubMed

    Grassian, Vicki H; O'shaughnessy, Patrick T; Adamcakova-Dodd, Andrea; Pettibone, John M; Thorne, Peter S

    2007-03-01

    Nanotechnology offers great promise in many industrial applications. However, little is known about the health effects of manufactured nanoparticles, the building blocks of nanomaterials. Titanium dioxide (TiO(2)) nanoparticles with a primary size of 2-5 nm have not been studied previously in inhalation exposure models and represent some of the smallest manufactured nanoparticles. The purpose of this study was to assess the toxicity of these nanoparticles using a murine model of lung inflammation and injury. The properties of TiO(2) nanoparticles as well as the characteristics of aerosols of these particles were evaluated. Mice were exposed to TiO(2) nanoparticles in a whole-body exposure chamber acutely (4 hr) or subacutely (4 hr/day for 10 days). Toxicity in exposed mice was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase (LDH) activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Lungs were also evaluated for histopathologic changes Mice exposed acutely to 0.77 or 7.22 mg/m(3) nanoparticles demonstrated minimal lung toxicity or inflammation. Mice exposed subacutely (8.88 mg/m(3)) and necropsied immediately and at week 1 or 2 postexposure had higher counts of total cells and alveolar macrophages in the BAL fluid compared with sentinels. However, mice recovered by week 3 postexposure. Other indicators were negative. Mice subacutely exposed to 2-5 nm TiO(2) nanoparticles showed a significant but moderate inflammatory response among animals at week 0, 1, or 2 after exposure that resolved by week 3 postexposure.

  4. Green synthesis of Ag nanoparticles for water treatment (antimicrobial on Eschirichia coli)

    NASA Astrophysics Data System (ADS)

    Darus, Mazlina Mat; Mahusin, Wan Norazwani

    2017-05-01

    Green synthesis approach was used to synthesis silver (Ag) nanoparticles. In this study, a one-step method was employed via hydrothermal technique. Samples are synthesized at different temperatures and times. All samples were characterized by Field Emission Scanning Electron Microscopy (FESEM). The morphology of the as-synthesized Ag samples are consists of nanoparticles and nanoplates with the diameter is in the range of 45 - 140 nm. The Ag nanoparticles were tested on Gram-Negative bacteria, Eschirichia coli (E.coli) which represent as an indicator for water pollution by using disc diffusion methods. Different concentrations of Ag nanoparticles were used to treat E.coli which is at 25 µg/ml, 50 µg/ml and 100 µg/ml respectively. The results show that for every samples, the inhibition zone of the E.coli increased as the concentration of Ag nanoparticles increased. Ag nanoparticles which synthesized at 100 °C/ 8 hrs exhibits the most optimum inhibition zone for the growth of E.coli due to its smaller size and the triangular nanoplate shaped. The diameter of the inhibition zone is between 6.17 ± 0.03 to 8.03 ± 0.03 mm.

  5. Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graak, Pinki; Devi, Ranjna; Kumar, Dinesh

    2016-05-06

    Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.

  6. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Catalano, E.; Di Benedetto, A.

    2017-05-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m-1) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml-1) is fully in agreement with cancer therapy and biomedical applications.

  7. Size dependence of magneto-optical activity in silver nanoparticles with dimensions between 10 and 60 nm studied by MCD spectroscopy.

    PubMed

    Shiratsu, Taisuke; Yao, Hiroshi

    2018-02-07

    Size-dependent magneto-optical activity in Ag nanoparticles with dimensions from 10 to 60 nm is demonstrated with magnetic circular dichroism (MCD) spectroscopy. The Ag nanoparticles are prepared on the basis of a seeded-growth strategy using sodium citrate and/or tannic acid as reducing agents in aqueous solution. The obtained nanoparticles are roughly spherical, but those larger than ∼28 nm have a slight diversity of shapes with quasi-spherical polyhedrons. They exhibit a derivative-like MCD response in the localized surface plasmon resonance (LSPR) region, which originates from two circular modes of surface magnetoplasmons. With an increase in the nanoparticle diameter, the bisignated MCD signal is strongly distorted and weakened. Such a distortion for large-sized Ag nanoparticles can be phenomenologically simulated on the basis of both spectral inhomogeneity and MCD signal lobe asymmetry. Then the maximum value of MCD amplitude (MCD max ), which is obtained by normalization of the amplitude to the LSPR peak absorbance, first increases with increasing particle diameter and then decreases with a maximum for the 23 nm nanoparticle. Interestingly, the MCD max values are inversely correlated with the spectral bandwidth of LSPR extinction. This behaviour is discussed from a viewpoint of inhomogeneous effects of both spectral and size/shape distributions. We believe the present results will advance the design and application of optical devices based on magnetoplasmonics.

  8. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin

    2014-01-01

    Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict

  9. Enhancement in c-Si solar cells using 16 nm InN nanoparticles

    NASA Astrophysics Data System (ADS)

    Imtiaz Chowdhury, Farsad; Alnuaimi, Aaesha; Alkis, Sabri; Ortaç, Bülend; Aktürk, Selçuk; Alevli, Mustafa; Dietz, Nikolaus; Kemal Okyay, Ali; Nayfeh, Ammar

    2016-05-01

    In this work, 16 nm indium nitride (InN) nanoparticles (NPs) are used to increase the performance of thin-film c-Si HIT solar cells. InN NPs were spin-coated on top of an ITO layer of c-Si HIT solar cells. The c-Si HIT cell is a stack of 2 μm p type c-Si, 4-5 nm n type a-Si, 15 nm n+ type a-Si and 80 nm ITO grown on a p+ type Si substrate. On average, short circuit current density (Jsc) increases from 19.64 mA cm-2 to 21.54 mA cm-2 with a relative improvement of 9.67% and efficiency increases from 6.09% to 7.09% with a relative improvement of 16.42% due to the presence of InN NPs. Reflectance and internal/external quantum efficiency (IQE/EQE) of the devices were also measured. Peak EQE was found to increase from 74.1% to 81.3% and peak IQE increased from 93% to 98.6% for InN NPs coated c-Si HIT cells. Lower reflection of light due to light scattering is responsible for performance enhancement between 400-620 nm while downshifted photons are responsible for performance enhancement from 620 nm onwards.

  10. Silymarin-Loaded Eudragit Nanoparticles: Formulation, Characterization, and Hepatoprotective and Toxicity Evaluation.

    PubMed

    El-Nahas, Amira E; Allam, Ahmed N; Abdelmonsif, Doaa A; El-Kamel, Amal H

    2017-11-01

    The objectives of this study were to formulate, characterize silymarin-loaded Eudragit nanoparticles (SNPs) and evaluate their hepatoprotective and cytotoxic effects after oral administration. SNPs were prepared by nanoprecipitation technique and were evaluated for particle size, entrapment efficiency, TEM, solid-state characterization, and in vitro drug release. The hepatoprotective activity was evaluated after oral administration of selected SNPs in carbon tetrachloride-intoxicated rats. Potential in vivo acute cytotoxicity study was also assessed. The selected SNPs contained 50 mg silymarin and 50 mg Eudragit polymers (1:1 w/w Eudragit RS 100 & Eudragit LS 100). Morphology of the selected SNPs (particle size of 84.70 nm and entrapment efficiency of 83.45% with 100% drug release after 12 h) revealed spherical and uniformly distributed nanoparticles. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state and absence of chemical interaction. The hepatoprotective evaluation of the selected SNPs in CCl 4 -intoxicated rats revealed significant improvement in the activities of different biochemical parameters (P ≤ 0.01) compared to the marketed product. The histopathological studies suggested that the selected SNPs produced better hepatoprotective effect in CCl 4 -intoxicated rats compared with the commercially marketed product. Toxicity study revealed no evident toxic effect for blank or silymarin-loaded nanoparticles at the dose level of 50 mg/kg body weight. The obtained results suggested that the selected SNPs were safe and potentially offered enhancement in the pharmacological hepatoprotective properties of silymarin.

  11. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  12. Wide band gap gallium arsenide nanoparticles fabricated using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, D., E-mail: dvjainnov@gmail.com; Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007

    2016-05-23

    In this paper, we have reported the fabrication of gallium arsenide (GaAs) nanoparticles on quartz placed at distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively from top of anode. The fabrication has been carried out by highly energetic and high fluence ions of GaAs produced by hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. GaAs nanoparticles have mean size of about 23 nm, 16 nm and 14 nm for deposition at a distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively. The nanoparticles are crystalline in nature as evident from X-ray diffraction patterns. The band gap of nanoparticles is found tomore » increase from 1.425 eV to 5.37 eV at 4.0 cm distance, which further increases as distance increases. The wide band gap observed for fabricated GaAs nanoparticles suggest the possible applications of nanoparticles in laser systems.« less

  13. Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity.

    PubMed

    Devi, Guruviah Karthiga; Sathishkumar, Kannaiyan

    2017-03-01

    The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform-infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20-50nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.

  14. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application

    NASA Astrophysics Data System (ADS)

    Gao, Nan; Huang, Pengcheng; Wu, Fangying

    2018-03-01

    In this study, we have developed a method for rapid, highly efficient and selective detection of melamine. The negatively charged citrate ions form an electrostatic layer on gold nanoparticles (AuNPs) and keep the NPs dispersed and stable. When citrate-capped AuNPs were further modified with Triton X-100, it stabilized the AuNPs against the conditions of high ionic strength and a broad pH range. However, the addition of melamine caused the destabilization and aggregation of NPs. This may be attributed to the interaction between melamine and the AuNPs through the ligand exchange with citrate ions on the surface of AuNPs leading Triton X-100 to be removed. As a result, the AuNPs were unstable, resulting in the aggregation. The aggregation induced a wine red-to-blue color change, and a new absorption peak around 630 nm appeared. Triton X-100-AuNPs could selectively detect melamine at the concentration as low as 5.1 nM. This probe was successfully applied to detect melamine in milk. Furthermore, paper-based quantitative detection system using this colorimetric probe was also demonstrated by integrating with a smartphone.

  15. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  16. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo

    NASA Astrophysics Data System (ADS)

    Ke, Li-jing; Gao, Guan-zhen; Shen, Yong; Zhou, Jian-wu; Rao, Ping-fan

    2015-11-01

    Many herbal medicines and compositions are clinically effective but challenged by its safety risks, i.e., aconitine (AC) from aconite species. The combined use of Radix glycyrrhizae (licorice) with Radix aconite L. effectively eliminates toxicity of the later while increasing efficacy. In this study, a boiling-stable 31-kDa protein (namely GP) was purified from licorice and self-assembled into nanoparticles (206.2 ± 2.0 nm) at pH 5.0, 25 °C. The aconitine-encapsulated GP nanoparticles (238.2 ± 1.2 nm) were prepared following the same procedure and tested for its toxicity by intraperitoneal injection on ICR mouse ( n = 8). Injection of GP-AC nanoparticles and the mixed licorice-aconite decoction, respectively, caused mild recoverable toxic effects and no death, while the aconitine, particle-free GP-AC mixture and aconite decoction induced sever toxic effects and 100 % death. Encapsulation of poisonous alkaloids into self-assembled herbal protein nanoparticles contributes to toxicity attenuation of combined use of herbs, implying a prototype nanostructure and a universal principle for the safer clinical applications of herbal medicines.

  17. Engineered Defects for Investigation of Laser-Induced Damage of Fused Silica at 355nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamza, A V; Siekhaus, W J; Rubenchik, A M

    2001-12-18

    Embedded gold and mechanical deformation in silica were used to investigate initiation of laser-induced damage at 3.55-nm (7.6 ns). The nanoparticle-covered surfaces were coated with between 0 and 500 nm of SiO{sub 2} by e-beam deposition. The threshold for observable damage and initiation site morphology for these ''engineered'' surfaces was determined. The gold nanoparticle coated surfaces with 500nm SiO{sub 2} coating exhibited pinpoint damage threshold of <0.7 J/cm{sup 2} determined by light scattering and Nomarski microscopy. The gold nanoparticle coated surfaces with the 100nm SiO{sub 2} coatings exhibited what nominally appeared to be film exfoliation damage threshold of 19 J/cm{supmore » 2} via light scattering and Nomarski microscopy. With atomic force microscopy pinholes could be detected at fluences greater than 7 J/cm{sup 2} and blisters at fluences greater than 3 J/cm{sup 2} on the 100 nm-coated surfaces. A series of mechanical indents and scratches were made in the fused silica substrates using a nano-indentor. Plastic deformation without cracking led to damage thresholds of -25 J/cm{sup 2}, whereas indents and scratches with cracking led to damage thresholds of only {approx}5 J/cm{sup 2}. Particularly illuminating was the deterministic damage of scratches at the deepest end of the scratch, as if the scratch acted as a waveguide.« less

  18. 100μJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing

    2017-02-01

    We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.

  19. Cytotoxicity evaluation of gold nanoparticles on microalga Dunaliella salina in microplate test system

    NASA Astrophysics Data System (ADS)

    Chumakov, Daniil; Prilepskii, Artur; Dykman, Lev; Khlebtsov, Boris; Khlebtsov, Nikolai; Bogatyrev, Vladimir

    2018-04-01

    Gold nanoparticles are intensively studied in biomedicine. Assessment of their biocompatibility is highly important. Currently there is lack of evidence, concerning nanotoxicity of ultrasmall gold nanoparticles < 5 nm. Existing data are rather contradictory. The aim of that study was to evaluate the toxicity of 2 nm colloidal gold, using microalga Dunaliella salina. Cellular barriers of that microalga are very similar to animal cells so it might be considered as a valuable model for nanotoxicity testing. Chlorophyll content as a test-function was used. Spectrophotometric method for chlorophyll determination in vivo in suspensions of D.salina cultures was applied. Calculated EC50 48h value of ionic gold was 25.8 +/- 0.3 mg Au/L. EC50 value of phosphine-stabilized gold nanoclusters was 32.2 +/-1.1 mg Au/L. It was not possible to calculate EC50 for 15 nm citrate gold nanoparticles, as they were non-toxic at all concentrations tested. These results are confirmed by fluorescent -microscopic monitoring of the same probes. It was shown that 10-fold growth of phosphine-stabilized gold nanoparticles (from 2.3 +/- 0.9 nm to 21.1 +/- 7.5 nm) led to 7-fold decrease of their toxicity.

  20. Metal-Folded Single-Chain Nanoparticle: Nanoclusters and Self-Assembled Reduction-Responsive Sub-5-nm Discrete Subdomains.

    PubMed

    Cao, Hui; Cui, Zhigang; Gao, Pan; Ding, Yi; Zhu, Xuechao; Lu, Xinhua; Cai, Yuanli

    2017-09-01

    Easy access to discrete nanoclusters in metal-folded single-chain nanoparticles (metal-SCNPs) and independent ultrafine sudomains in the assemblies via coordination-driven self-assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1 H NMR, dynamic light scattering, and NMR diffusion-ordered spectroscopy results demonstrate self-assembly into metal-SCNPs (>70% imidazole-units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self-assembly of metal-SCNPs (pH 4.6-5.0) and shrinkage (pH 5.0-5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6-7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub-5-nm subdomains in metal-SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media-tunable discrete ultrafine interiors in metal-SCNPs and assemblies have hence been achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Rapid chromatographic separation of dissoluble Ag(I) and silver-containing nanoparticles of 1-100 nanometer in antibacterial products and environmental waters.

    PubMed

    Zhou, Xiao-Xia; Liu, Rui; Liu, Jing-Fu

    2014-12-16

    Sensitive and rapid methods for speciation analysis of nanoparticulate Ag (NAg) and Ag(I) in complex matrices are urgently needed for understanding the environmental effects and biological toxicity of silver nanoparticles (AgNPs). Herein we report the development of a universal liquid chromatography (LC) method for rapid and high resolution separation of dissoluble Ag(I) from nanoparticles covering the entire range of 1-100 nm in 5 min. By using a 500 Å poresize amino column, and an aqueous mobile phase containing 0.1% (v/v) FL-70 (a surfactant) and 2 mM Na2S2O3 at a flow rate of 0.7 mL/min, all the nanoparticles of various species such as Ag and Ag2S were eluted in one fraction, while dissoluble Ag(I) was eluted as a baseline separated peak. The dissoluble Ag(I) was quantified by the online coupled ICP-MS with a detection limit of 0.019 μg/L. The NAg was quantified by subtracting the dissoluble Ag(I) from the total Ag content, which was determined by ICP-MS after digestion of the sample without LC separation. While the addition of FL-70 and Na2S2O3 into the mobile phase is essential to elute NAg and Ag(I) from the column, the use of 500 Å poresize column is the key to baseline separation of Ag(I) from ∼ 1 nm AgNPs. The feasibility of the proposed method was demonstrated in speciation analysis of dissoluble Ag(I) and NAg in antibacterial products and environmental waters, with very good chromatographic repeatability (relative standard deviations) in both peak area (<2%) and retention time (<0.6%), excellent spiked recoveries in the range of 84.7-102.7% for Ag(I) and 81.3-106.3% for NAg. Our work offers a novel approach to rapid and baseline separation of dissoluble metal ions from their nanoparticulate counterparts covering the whole range of 1-100 nm.

  2. Localized, plasmon-mediated heating from embedded nanoparticles in nanocomposites

    NASA Astrophysics Data System (ADS)

    Maity, Somsubhra; Downen, Lori; Bochinski, Jason; Clarke, Laura

    2010-03-01

    Metallic nanoparticles exhibit a surface plasmon resonance which, when excited with visible light, results in a dramatic increase in the nanoparticle temperature. Previously such localized heating has been primarily employed in biomedical research and other experiments involving aqueous environments. In this work, we investigated use of the nanoparticles in solid phase to re-shape, bond, melt, and otherwise process nanofibrous mats of ˜200 nm diameter nanofibers doped with ˜80 nm spherical gold nanoparticles. Under low light intensities (100 mW/cm^2 @ 532 nm) and dilute nanoparticle loading (˜0.15% volume fraction), irradiation of a few minutes melted nanofibrous mats of poly (ethylene oxide) (Tm = 65 degree C). Control samples without gold nanoparticles displayed no melting. Because the heat is generated from within the material and only at the nanoparticle locations, this technique enables true nanoprocessing -- the non-contact, controlled application of heat at specific nano-sized locations within a material to effect desired local changes. Funded by CMMI-0829379.

  3. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    NASA Astrophysics Data System (ADS)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  4. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Storage and care. 128-50... Regulations System (Continued) DEPARTMENT OF JUSTICE 50-SEIZED PERSONAL PROPERTY 50.1-Storage and Care of Seized Personal Property § 128-50.100 Storage and care. (a) Each bureau shall be responsible for...

  5. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Storage and care. 128-50... Regulations System (Continued) DEPARTMENT OF JUSTICE 50-SEIZED PERSONAL PROPERTY 50.1-Storage and Care of Seized Personal Property § 128-50.100 Storage and care. (a) Each bureau shall be responsible for...

  6. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Storage and care. 128-50... Regulations System (Continued) DEPARTMENT OF JUSTICE 50-SEIZED PERSONAL PROPERTY 50.1-Storage and Care of Seized Personal Property § 128-50.100 Storage and care. (a) Each bureau shall be responsible for...

  7. 41 CFR 128-50.100 - Storage and care.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Storage and care. 128-50... Regulations System (Continued) DEPARTMENT OF JUSTICE 50-SEIZED PERSONAL PROPERTY 50.1-Storage and Care of Seized Personal Property § 128-50.100 Storage and care. (a) Each bureau shall be responsible for...

  8. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

    PubMed

    Lakatos, Mathias; Matys, Sabine; Raff, Johannes; Pompe, Wolfgang

    2015-11-01

    Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles

    PubMed Central

    Pan, Hanqing; Low, Serena; Weerasuriya, Nisala; Shon, Young-Seok

    2015-01-01

    This paper describes thermally induced reshaping and coarsening behaviors of gold nanorods and nanoparticles immobilized on the surface of graphene oxide. Cetyltrimethylammonium bromide-stabilized gold nanorods with an aspect ratio of ~3.5 (54:15 nm) and glutathione-capped gold nanoparticles with an average core size of ~3 nm were synthesized and self-assembled onto the surface of graphene oxide. The hybrid materials were then heated at different temperatures ranging from 50 to 300 °C. The effects of heat treatments were monitored using UV–vis spectroscopy and transmission electron microscopy (TEM). These results were directly compared with those of heat-treated free-standing gold nanorods and nanoparticles without graphene oxide to understand the heat-induced morphological changes of the nanohybrids. The obtained results showed that the gold nanorods would undergo a complete reshaping to spherical particles at the temperature of 50 °C when they are assembled on graphene oxide. In comparison, the complete reshaping of free-standing gold nanorods to spherical particles would ultimately require a heating of the samples at 200 °C. In addition, the spherical gold nanoparticles immobilized on graphene oxide would undergo a rapid coarsening at the temperature of 100–150 °C, which was lower than the temperature (150–200 °C) required for visible coarsening of free-standing gold nanoparticles. The results indicated that graphene oxide facilitates the reshaping and coarsening of gold nanorods and nanoparticles, respectively, during the heat treatments. The stripping and spillover of stabilizing ligands promoted by graphene oxide are proposed to be the main mechanism for the enhancements in the heat-induced transformations of nanohybrids. PMID:25611371

  10. Sorting and measurement of single gold nanoparticles in an optofluidic chip

    NASA Astrophysics Data System (ADS)

    Shi, Y. Z.; Xiong, S.; Zhang, Y.; Chin, L. K.; Wu, J. H.; Chen, T. N.; Liu, A. Q.

    2017-08-01

    Gold nanoparticles have sparked strong interest owing to their unique optical and chemical properties. Their sizedependent refractive index and plasmon resonance are widely used for optical sorting, biomedicine and chemical sensing. However, there are only few examples of optical separation of different gold nanoparticles. Only separating 100-200 nm gold nanoparticles using wavelength selected resonance of the extinction spectrum has been demonstrated. This paper reports an optofluidic chip for sorting single gold nanoparticles using loosely overdamped optical potential wells, which are created by building optical and fluidic barriers. It is the first demonstration of sorting single nanoparticles with diameters ranging from 60 to 100 nm in a quasi-Bessel beam with an optical trapping stiffness from 10-10 to 10-9 N/m. The nanoparticles oscillate in the loosely overdamped potential wells with a displacement amplitude of 3-7 μm in the microchannel. The sizes and refractive indices of the nanoparticles can be determined from their trapping positions using Drude and Mie theory, with a resolution of 0.35 nm/μm for the diameter, 0.0034/μm and 0.0017/μm for the real and imaginary parts of the refractive index, respectively. Here we experimentally demonstrate the sorting of bacteria and protozoa on the optofluidic chip. The chip has high potential for the sorting and characterization of nanoparticles in biomedical applications such as tumour targeting, drug delivery and intracellular imaging.

  11. Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography

    DTIC Science & Technology

    2004-05-07

    The basic idea is to use fiducial grids, fabricated using interference lithography (or a derivative thereof) to determine the placement of features...sensed, and corrections are fed back to the beam-control electronics to cancel errors in the beam’s position. The virtue of interference lithography ...Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography Project Period: March 1, 2001 – February 28, 2004 F i n a l R e p o r t Army Research

  12. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm.

    PubMed

    Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2016-10-12

    Impact electrochemistry provides a useful alternative technique for the detection of silver nanoparticles in solutions. The combined use of impact electrochemistry on screen-printed electrodes (SPEs) for the successful detection of silver nanoparticles provides an avenue for future on-site, point-of-care detection devices to be made for environmental, medicinal and biological uses. Here we discuss the use of screen-printed electrodes for the detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.

  13. Diode laser trabeculoplasty in open angle glaucoma: 50 micron vs. 100 micron spot size.

    PubMed

    Veljko, Andreić; Miljković, Aleksandar; Babić, Nikola

    2011-01-01

    The study was aimed at evaluating the efficacy of diode laser trabeculoplsaty in lowering intraocular pressure in patients with both primary open-angle glaucoma and exfoliation glaucoma by using different size of laser spot. This six-month, unmasked, controlled, prospective study included sixty-two patients with the same number of eyes, who were divided into two groups. Trabeculoplasty was performed with 50 micron and 100 micron laser spot size in the group I and group II, respectively. Other laser parameters were the same for both groups: the wave length of 532 nm, 0.1 second single emission with the power of 600-1200 mW was applied on the 180 degrees of the trabeculum. The mean intraocular pressure decrease in the 50 micron group (group 1) on day 7 was 24% from the baseline and after six-month follow-up period the intraocular pressure decrease was 29.8% (p < 0.001). In the 100 micron group (group II), the mean intraocular pressure decrease on day 7 was 26.5% and after six months it was 39% (p < 0.001).

  14. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  15. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications.

    PubMed

    Sahle, Fitsum Feleke; Gerecke, Christian; Kleuser, Burkhard; Bodmeier, Roland

    2017-01-10

    pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit ® L 100, Eudragit ® L 100-55, Eudragit ® S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10mM pH 7.5 buffer and released>80% of the drug within 7h. The acrylate nanoparticles dissolved in 40mM pH 7.5 buffer and released 65-70% of the drug within 7h. The nanoparticles remained intact in 10 and 40mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impedimetric Aptasensor for Ochratoxin A Determination Based on Au Nanoparticles Stabilized with Hyper-Branched Polymer

    PubMed Central

    Evtugyn, Gennady; Porfireva, Anna; Stepanova, Veronika; Kutyreva, Marianna; Gataulina, Alfiya; Ulakhovich, Nikolay; Evtugyn, Vladimir; Hianik, Tibor

    2013-01-01

    An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer. PMID:24287535

  17. Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid.

    PubMed

    Zhang, Da; Chang, Wan Cheng; Okajima, Takeyoshi; Ohsaka, Takeo

    2011-12-06

    particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively. © 2011 American Chemical Society

  18. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application.

    PubMed

    Foglia, Sabrina; Ledda, Mario; Fioretti, Daniela; Iucci, Giovanna; Papi, Massimiliano; Capellini, Giovanni; Lolli, Maria Grazia; Grimaldi, Settimio; Rinaldi, Monica; Lisi, Antonella

    2017-04-19

    Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.

  19. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration.

    PubMed

    Priwitaningrum, Dwi L; Blondé, Jean-Baptiste G; Sridhar, Adithya; van Baarlen, Joop; Hennink, Wim E; Storm, Gert; Le Gac, Séverine; Prakash, Jai

    2016-12-28

    Nanoparticle penetration through tumor tissue after extravasation is considered as a key issue for tumor distribution and therapeutic effects. Most tumors possess abundant stroma, a fibrotic tissue composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which acts as a barrier for nanoparticle penetration. There is however a lack of suitable in vitro systems to study the tumor stroma penetration of nanoparticles. In the present study, we developed and thoroughly characterized a 3D co-culture spheroidal array to mimic tumor stroma and investigated the penetration of silica and PLGA nanoparticles in these spheroids. First, we examined human breast tumor patient biopsies to characterize the content and organization of stroma and found a high expression of alpha-smooth muscle actin (α-SMA; 40% positive area) and collagen-1 (50% positive area). Next, we prepared homospheroids of 4T1 mouse breast cancer cells or 3T3 mouse fibroblasts alone as well as heterospheroids combining 3T3 and 4T1 cells in different ratios (1:1 and 5:1) using a microwell array platform. Confocal live imaging revealed that fibroblasts distributed and reorganized within 48h in heterospheroids. Furthermore, immunohistochemical staining and gene expression analysis showed a proportional increase of α-SMA and collagen in heterospheroids with higher fibroblast ratios attaining 35% and 45% positive area at 5:1 (3T3:4T1) ratio, in a good match with the clinical breast tumor stroma. Subsequently, we studied the penetration of high and low negatively charged fluorescent silica nanoparticles (30nm; red and 100 or 70nm; green; zeta potential: -40mV and -20mV) and as well as Cy5-conjugated pegylated PLGA nanoparticles (200nm, -7mV) in both homo- and heterospheroid models. Fluorescent microscopy on spheroid cryosections after incubation with silica nanoparticles showed that 4T1 homospheroids allowed a high penetration of about 75-80% within 24h, with higher penetration in case of the

  20. Domain wall structure and interactions in 50nm wide Cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Tu, Kun-Hua; Ojha, Shuchi; Ross, Caroline A.

    2018-05-01

    Arrays of cobalt nanowires with widths of 50nm, thickness of 5 and 20 nm and periodicity of 70 nm were fabricated by pattern transfer from a self-assembled block copolymer film. Transverse domain walls (DWs) were imaged by magnetic force microscopy, indicating repulsive interactions between DWs of the same sign in the 20 nm thick wires. Micromagnetic simulations were used to identify the interactions in the six distinct cases of a pair of transverse DWs in adjacent wires, considering all the possible combinations of head-to-head and tail-to-tail DWs and the orientation of the core magnetization. The boundary between repulsive and attractive DW interactions is mapped out for wires as a function of thickness, width and interwire spacing.

  1. The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation.

    PubMed

    Yamada, Ikuho; Nomura, Kazuki; Iwahashi, Hitoshi; Horie, Masanori

    2016-01-01

    Today, nanoparticles are used in many products. One of the most common nanoparticles is titanium dioxide (TiO2). These particles generate reactive oxygen species (ROS) upon UV irradiation. Although nanoparticles are very useful in many products, there are concerns about their biological and ecological effects when released into the environment. Thus, it was assessed that the effect of TiO2 nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation by using Escherichia coli and Saccharomyces cerevisiae. ROS generation was evaluated by adding TiO2 nanoparticles and methylene blue to distilled water. We also assessed growth inhibition by adding TiO2 nanoparticles and microbes in minimal agar medium. Moreover, microbial inactivation was assessed by adding TiO2 nanoparticles and microbes to PBS. Upon UV irradiation, TiO2-NOAAs decomposed methylene blue and generated ROS. TiO2-NOAAs also decomposed methylene blue in minimal agar medium under UV irradiation; however, they did not inhibit microbial growth. Surprisingly, TiO2-NOAAs in the medium protect microbes from UV irradiation as colony formation was observed only near TiO2-NOAAs. In PBS, TiO2-NOAAs did not inactivate microbes but instead protected microbes from lethal UV irradiation. These results suggest that the amount of ROS generated by TiO2-NOAAs is not enough to inactivate microbes. In fact, our results suggest that TiO2-NOAAs may protect microbes from UV irradiations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1-6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.

    PubMed

    Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc

    2017-04-11

    All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.

  3. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    NASA Astrophysics Data System (ADS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  4. 50 CFR 100.27 - Subsistence taking of fish.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Subsistence taking of fish. 100.27 Section 100.27 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL WILDLIFE MONUMENTS SUBSISTENCE MANAGEMENT REGULATIONS FOR PUBLIC LANDS IN ALASKA Subsistence Taking of Fish and Wildlife § 100.27...

  5. 50 CFR 100.27 - Subsistence taking of fish.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Subsistence taking of fish. 100.27 Section 100.27 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL WILDLIFE MONUMENTS SUBSISTENCE MANAGEMENT REGULATIONS FOR PUBLIC LANDS IN ALASKA Subsistence Taking of Fish and Wildlife § 100.27...

  6. 50 CFR 100.27 - Subsistence taking of fish.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Subsistence taking of fish. 100.27 Section 100.27 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL WILDLIFE MONUMENTS SUBSISTENCE MANAGEMENT REGULATIONS FOR PUBLIC LANDS IN ALASKA Subsistence Taking of Fish and Wildlife § 100.27...

  7. 50 CFR 100.27 - Subsistence taking of fish.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Subsistence taking of fish. 100.27 Section 100.27 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL WILDLIFE MONUMENTS SUBSISTENCE MANAGEMENT REGULATIONS FOR PUBLIC LANDS IN ALASKA Subsistence Taking of Fish and Wildlife § 100.27...

  8. Naturally occurring clay nanoparticles in Latosols of Brazil central region: detection and characterization

    NASA Astrophysics Data System (ADS)

    Dominika Dybowska, Agnieszka; Luciene Maltoni, Katia; Piella, Jordi; Najorka, Jens; Puntes, Victor; Valsami-Jones, Eugenia

    2015-04-01

    suspension (no change in average particle size up to several months of storage). Particle surface charge (in water) ranged from -31mV to -34.5mV (pH = 5.7 - 6.2), this reflects the predominantly negative surface charge of kaolinites in soil environment effectively screening the positive charge of Fe oxides. Kaolinites appeared as single crystals (pseudo hexagonal platelets) while Fe oxides occurred mostly as micro-aggregates, with individual particles often not morphologically distinct with particle size <10nm. In addition, several anatase (TiO2) nanoparticles were also found. Both kaolinites and Fe oxides nanoparticles were crystalline, as evidenced from XRD measurements and HRTEM imaging. Distinction between different crystalline forms of Fe oxides (mainly hematite and goethite) was only possible with XRD, which revealed also subtle differences in mineralogical composition of the clay fraction (<2µm) and nanofraction (<100nm). The kaolinite's crystallite size (calculated from XRD data) was found to range 14-17nm in the nanofraction and 26-50nm in the clay fraction. For hematite, it was 13nm in the nanofraction and ranged from 21-30nm in the clay fraction. Such small particles can be expected to play an important role in soil sorption processes with implications on nutrient and contaminant cycling. Identification and understanding of the properties of naturally occurring nanoparticles in soils can therefore help soil scientists to better understand retention/mobilization of nutrients and pollutants in soils.

  9. 1550 nm modulating retroreflector based on coated nanoparticles for free-space optical communication.

    PubMed

    Rosenkrantz, Etai; Arnon, Shlomi

    2015-06-10

    Nowadays, there is a renaissance in the field of space exploration. Current and future missions depend on astronauts and a swarm of robots for reconnaissance. In order to reduce the power consumption, weight, and size of the robots, an asymmetric communication system may be used. This is achieved by installing modulating retroreflectors (MRRs) on one side of the link and an interrogating laser on the other side. In this paper, we theoretically study an innovative device that can serve as an MRR in the infrared range of the spectrum. The device is based on a ferroelectric PZT thin film containing TiO2 coated Ag nanoparticles, which exhibit strong plasmonic resonance in the infrared range. After intensive analyses, which included calculations and simulations, we were able to design the device to operate at the 1550 nm wavelength. This is of great importance since the design of devices operating at 1550 nm as this wavelength is a mature technology widely used in free-space optics. Hence, this MRR can serve in asymmetric communication links relying on 1550 nm transmissions, which are also eye-safe. To the best of our knowledge, this is the first time coated metal nanoparticles have been proposed to modulate light in the infrared region. The performance of this device is unique, reaching a 17.5 dB modulation contrast with only a ±2 V operating voltage. This modulator may also be used for terrestrial communication such as fiber optics and optical interconnects in future data centers.

  10. Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.

    PubMed

    Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P

    2011-08-01

    The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  11. Inorganic fullerene-like nanoparticles of TiS 2

    NASA Astrophysics Data System (ADS)

    Margolin, Alexander; Popovitz-Biro, Ronit; Albu-Yaron, Ana; Rapoport, Lev; Tenne, Reshef

    2005-08-01

    Inorganic closed-cage nanoparticles of TiS 2 were synthesized using gas-phase synthesis. The reported nanoparticles are perfectly spherical with diameters centered between 60 and 80 nm, consisting from up to 80-100 concentric layers. The nucleation and growth mechanism was proposed for the formation of these nanoparticles. Tribological experiments emphasized the important role played by the spherical shape of the nanoparticles in providing rolling friction with a reduced friction coefficient and wear.

  12. Covering the optical spectrum through collective rare-earth doping of NaGdF4 nanoparticles: 806 and 980 nm excitation routes.

    PubMed

    Skripka, A; Marin, R; Benayas, A; Canton, P; Hemmer, E; Vetrone, F

    2017-05-17

    Today, at the frontier of biomedical research, the need has been clearly established for integrating disease detection and therapeutic function in one single theranostic system. Light-emitting nanoparticles are being intensively investigated to fulfil this demand, by continuously developing nanoparticle systems simultaneously emitting in both the UV/visible (light-triggered release and activation of drugs) and the near-infrared (imaging and tracking) spectral regions. In this work, rare-earth (RE) doped nanoparticles (RENPs) were synthesized via a thermal decomposition process and spectroscopically investigated as potential candidates as all-in-one optical imaging, diagnostic and therapeutic agents. These core/shell/shell nanoparticles (NaGdF 4 :Er 3+ ,Ho 3+ ,Yb 3+ /NaGdF 4 :Nd 3+ ,Yb 3+ /NaGdF 4 ) are optically excited by heating-free 806 nm light that, aside from minimizing the local thermal load, also allows to obtain a deeper sub-tissue penetration with respect to the still widely used 980 nm light. Moreover, these water-dispersed nanoplatforms offer interesting assets as triggers/probes for biomedical applications, by virtue of a plethora of emission bands (spanning the 380-1600 nm range). Our results pave the way to use these RENPs for UV/visible-triggered photodynamic therapy/drug release, while simultaneously tracking the nanoparticle biodistribution and monitoring their therapeutic action through the near-infrared signal that overlaps with biological transparency windows.

  13. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles

    PubMed Central

    Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.

    2011-01-01

    A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899

  14. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  15. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Montes Castillo, Milka Odemariz

    Extraordinary chemical and physical properties exhibited by nanomaterials, as compared to their bulk counterparts, have made the area of nanotechnology a growing realm in the past three decades. It is the nanoscale size (from 1 to 100 nm) and the morphologies of nanomaterials that provide several properties and applications not possible for the same material in the bulk. Magnetic and optical properties, as well as surface reactivity are highly dependent on the size and morphology of the nanomaterial. Diverse nanomaterials are being widely used in molecular diagnostics as well as in medicine, electronic and optical devices. Among the most studied nanomaterials, gold nanoparticles are of special interest due to their multifunctional capabilities. For instance, spherical gold nanoparticles measuring 15-20 nm in diameter have been studied due to their insulin binding properties. Also, thiol functionalized gold nanoparticles between 5 and 30 nm are used in the detection of DNA. Thus, harnessing the shape and size of gold nanoparticles plays an important role in science and technology. The synthesis of gold nanoparticles via the reduction of gold salts, using citrate or other reducing agents, has been widely studied. In recent years, algae, fungi, bacteria, and living plants have been used to reduce trivalent gold (Au3+) to its zero oxidation state (Au 0) forming gold nanoparticles of different sizes and shapes. In addition, plant biomasses have also been studied for their gold-reducing power and nanoparticle formation. Although there is information about the synthesis of the gold nanoparticles by biologically based materials; to our knowledge, the study of the use of alfalfa extracts has not been reported. This innovation represents a significant improvement; that is an environmentally friendly method that does not use toxic chemicals. Also, the problem of extracting the formed gold nanoparticles from biomaterials is addressed in this research but still remains to be

  16. Porous silicon nanoparticle as a stabilizing support for chondroitinase.

    PubMed

    Daneshjou, Sara; Dabirmanesh, Bahareh; Rahimi, Fereshteh; Khajeh, Khosro

    2017-01-01

    Chondroitinase ABCI (cABCI) from Proteus vulgaris is a drug enzyme that can be used to treat spinal cord injuries. One of the main problems of chondroitinase ABC1 is its low thermal stability. The objective of the current study was to stabilize the enzyme through entrapment within porous silicon (pSi) nanoparticles. pSi was prepared by an electrochemical etch of p-type silicon using hydrofluoric acid/ethanol. The size of nanoparticles were determined 180nm by dynamic light scattering and the mean pore diameter was in the range of 40-60nm obtained by scanning electron microscopy. Enzymes were immobilized on porouse silicon nanoparticles by entrapment. The capacity of matrix was 35μg enzyme per 1mg of silicon. The immobilized enzyme displayed lower V max values compared to the free enzyme, but Km values were the same for both enzymes. Immobilization significantly increased the enzyme stability at various temperatures (-20, 4, 25 and 37°C). For example, at 4°C, the free enzyme (in 10mM imidazole) retained 20% of its activity after 100min, while the immobilized one retained 50% of its initial activity. Nanoparticles loading capacity and the enzyme release rate showed that the selected particles could be a pharmaceutically acceptable carrier for chondroitinase. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction

    NASA Astrophysics Data System (ADS)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Rao, G. Venugopal; Krishnamoorthi, C.

    2016-11-01

    Indium-tin-oxide (ITO) (In0.95Sn0.05)2O3 and Cr doped indium-tin-oxide (In0.90Sn0.05Cr0.05)2O3 nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and -2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  18. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    PubMed

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  19. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific

    NASA Astrophysics Data System (ADS)

    Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.

    2015-09-01

    This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered

  20. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri

  1. Dextran Nanoparticle Synthesis and Properties

    PubMed Central

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A.; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W.; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier. PMID:26752182

  2. Dextran Nanoparticle Synthesis and Properties.

    PubMed

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.

  3. Synthesis and spectroscopic study of CdS nanoparticles using hydrothermal method

    NASA Astrophysics Data System (ADS)

    AL-Mamoori, Mohammed H. K.; Mahdi, Dunia K.; Al-Shrefi, Saif M.

    2018-05-01

    In this work, cadmium sulfide nanoparticles (powder) with diameter 50.8 nm was prepared using hydrothermal method. The structural and optical properties of CdS nanoparticles was studied by X-ray diffraction, FESEM, EDS, FTIR, UV-Diffuse Reflectance spectroscopy and Photoluminance spectrum. X-ray diffraction reveal the formation the purity of prepared phase of CdS particles with hexagonal wurtzite structure with particle size 31.8nm by using sheerer equation. The energy dispersion scattering (EDS) examination explains that the sample is composed of a large amount of Cd and S which are exactly CdS nanoparticles and there is a very small trace of (Zn) and (O) element observed because of there is a small pollutions in the measurement place of samples. FESEM shows the spherical shape of nanoparticles with around 50.8 nm diameter. The optical absorption spectral study identified the red shift of the sample in comparison to bulk ZnO in three dimensions. Photoluminance spectrum (PL) at room temperature showed that there are two luminescence peaks at 433.14 nm and 518.21nm. Samples demonstrate a sharp emission band at around 433.18 nm, which is attributed to the typical exciton luminescence. The broad band at 518.21nm which were attributed to the trapped luminescence. The green emission band at 518.21 nm was associated with the emission due to electronic transition from the conduction band to an accepter level due to interstitial sulphur ion.

  4. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo

    PubMed Central

    Xu, Qingguo; Boylan, Nicholas J.; Suk, Jung Soo; Wang, Ying-Ying; Nance, Elizabeth; Yang, Jeh-Chang; McDonnell, Peter; Cone, Richard; Duh, Elia J.; Hanes, Justin

    2013-01-01

    Intravitreal injection of biodegradable nanoparticles (NP) holds promise for gene therapy and drug delivery to the back of the eye. In some cases, including gene therapy, NP need to diffuse rapidly from the site of injection in order to reach targeted cell types in the back of the eye, whereas in other cases it may be preferred for the particles to remain at the injection site and slowly release drugs that may then diffuse to the site of action. We studied the movements of polystyrene (PS) nanoparticles of various sizes and surface chemistries in fresh bovine vitreous. PS NP as large as 510 nm rapidly penetrated the vitreous gel when coated with polyethylene glycol (PEG), whereas the movements of NP 1190 nm in diameter or larger were highly restricted regardless of surface chemistry owing to steric obstruction. PS NP coated with primary amine groups (–NH2) possessed positively charged surfaces at the pH of bovine vitreous (pH = 7.2), and were immobilized within the vitreous gel. In comparison, PS NP coated with –COOH (possessing negatively charged surfaces) in the size range of 100–200 nm and at particle concentrations below 0.0025% (w/v) readily diffused through the vitreous meshwork; at higher concentrations (~0.1% w/v), these nanoparticles aggregated within vitreous. Based on the mobility of different sized PS-PEG NP, we estimated the average mesh size of fresh bovine vitreous to be ~550 ± 50 nm. The bovine vitreous behaved as an impermeable elastic barrier to objects sized 1190 nm and larger, but as a highly permeable viscoelastic liquid to non-adhesive objects smaller than 510 nm in diameter. Guided by these studies, we next sought to examine the transport of drug- and DNA-loaded nanoparticles in bovine vitreous. Biodegradable NP with diameter of 227 nm, composed of a poly(lactic-co-glycolic acid) (PLGA)-based core coated with poly(vinyl alcohol) rapidly penetrated vitreous. Rod-shaped, highly-compacted CK30PEG10k/DNA with PEG coating (neutral surface

  5. Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium

    PubMed Central

    2015-01-01

    The ability to manipulate the size and surface properties of nanomaterials makes them a promising vector for improving drug delivery and efficacy. Inhalation is a desirable route of administration as nanomaterials preferentially deposit in the alveolar region, a large surface area for drug absorption. However, as yet, the mechanisms by which particles translocate across the alveolar epithelial layer are poorly understood. Here we show that human alveolar type I epithelial cells internalize nanoparticles, whereas alveolar type II epithelial cells do not, and that nanoparticles translocate across the epithelial monolayer but are unable to penetrate the tight junctions between cells, ruling out paracellular translocation. Furthermore, using siRNA, we demonstrate that 50 nm nanoparticles enter largely by passive diffusion and are found in the cytoplasm, whereas 100 nm nanoparticles enter primarily via clathrin- and also caveolin-mediated endocytosis and are found in endosomes. Functionalization of nanoparticles increases their uptake and enhances binding of surfactant which further promotes uptake. Thus, we demonstrate that uptake and translocation across the pulmonary epithelium is controlled by alveolar type I epithelial cells, and furthermore, we highlight a number of factors that should be considered when designing new nanomedicines in order to improve drug delivery to the lung. PMID:25360809

  6. Size dependent studies of metal nanoparticles with bio-fluorophores

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Ballary, Steffy; George, Sajan D.; Chidangil, Santhosh

    2017-06-01

    Interaction of noble metal nanoparticles (NPs) with fluorophores has been an important research area in the field of material science and biomedical field. In the proximity of a metal nanoparticle, there is a quenching or enhancement in the intrinsic fluorescence of the fluorophore . The conditional quenching of the fluorescence can be used for negative sensing whereas enhancement in the fluorescence can be used to gain greater sensitivity and high signal to noise ratio in the molecular sensing/imaging. The current work deals with the systematic studies to understand the fluorescence quenching for few bio-fluorophores (NADH and FAD) when interacted with different sized silver nano-particles of (10nm, 40nm and 100nm). Home assembled Laser Induced Fluorescence (LIF) set-up was used to study the fluorescence quenching of NADH and FAD for different sized silver nanoparticles.

  7. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  8. LABEL-FREE DETECTION OF Pb2+ USING SPECIFIC DNAZYME AND UNMODIFIED Au NANOPARTICLE PROBE

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; Zhao, Zike; Liu, Yaoqian; Lv, Lulu; Qi, Bing; Lin, Haixia; He, Lei; Sun, Shengli

    A simple and sensitive Pb2+ sensor is developed based on label-free 17E DNAzyme and unmodified Au nanoparticles. On this basis, Pb2+ concentration can be judged according to the color variation of Au nanoparticles. The detection limit is 100nM and linear range is 100nM-16μM. It can serve as a measurement tool for Pb2+ rapid detection, which provides reference for the development of sensors in environmental monitoring and food safety.

  9. Room-temperature ferromagnetic Zn1- x Ni x S nanoparticles

    NASA Astrophysics Data System (ADS)

    Kunapalli, Chaitanya Kumar; Shaik, Kaleemulla

    2018-05-01

    Nickel-doped zinc sulfide nanoparticles (Zn1- x Ni x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1- x Ni x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV-Vis-NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1- x Ni x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1- x Ni x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1- x Ni x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

  10. Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria.

    PubMed

    Klepac-Ceraj, Vanja; Patel, Niraj; Song, Xiaoqing; Holewa, Colleen; Patel, Chitrang; Kent, Ralph; Amiji, Mansoor M; Soukos, Nikolaos S

    2011-09-01

    Photodynamic therapy (PDT) is increasingly being explored for treatment of oral infections. Here, we investigate the effect of PDT on human dental plaque bacteria in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles with a positive or negative charge and red light at 665 nm. Dental plaque samples were obtained from 14 patients with chronic periodontitis. Suspensions of plaque microorganisms from seven patients were sensitized with anionic, cationic PLGA nanoparticles (50 µg/ml equivalent to MB) or free MB (50 µg/ml) for 20 min followed by exposure to red light for 5 min with a power density of 100 mW/cm2 . Polymicrobial oral biofilms, which were developed on blood agar in 96-well plates from dental plaque inocula obtained from seven patients, were also exposed to PDT as above. Following the treatment, survival fractions were calculated by counting the number of colony-forming units. The cationic MB-loaded nanoparticles exhibited greater bacterial phototoxicity in both planktonic and biofilm phase compared to anionic MB-loaded nanoparticles and free MB, but results were not significantly different (P > 0.05). Cationic MB-loaded PLGA nanoparticles have the potential to be used as carriers of MB for PDT systems. Copyright © 2011 Wiley-Liss, Inc.

  11. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    NASA Astrophysics Data System (ADS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  12. Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu

    2018-06-01

    Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.

  13. An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors.

    PubMed

    Karageorgis, Anastassia; Dufort, Sandrine; Sancey, Lucie; Henry, Maxime; Hirsjärvi, Samuli; Passirani, Catherine; Benoit, Jean-Pierre; Gravier, Julien; Texier, Isabelle; Montigon, Olivier; Benmerad, Mériem; Siroux, Valérie; Barbier, Emmanuel L; Coll, Jean-Luc

    2016-02-19

    Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines.

  14. Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity.

    PubMed

    Baker, Syed; Mohan Kumar, K; Santosh, P; Rakshith, D; Satish, S

    2015-02-05

    In present investigation extracellular synthesis of silver nanoparticles were synthesized using cell free supernatant of Pseudomonas veronii AS41G isolated from Annona squamosa L. The bacterium significantly reduced silver nitrate to generate silver nanoparticles which was characterized with hyphenated techniques. Synthesis of silver nanoparticles preliminary confirmed by UV-Visible spectrophotometry with the intense peak at 410nm, Further FTIR analysis revealed the possible role of biomolecules in the supernatant responsible for mediating the nanoparticles formation. The XRD spectra exhibited the characteristic Bragg peaks of 100, 111, 200, and 220 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. TEM microgram showed polydispersity of nanoparticles with size ranging from 5 to 50nm. Synthesized silver nanoparticles showed antibacterial activity against human and environmental pathogens including MRSA. The study enlightens the role of biosynthesized silver nanoparticles as an emerging alternative for drug resistant microorganisms. The obtained results are promising enough to pave the environmentally benign nanoparticle synthesis processes without use of any toxic chemicals and also envision the emerging role of endophytes towards synthesis of nanoparticles. With scanty reports available on P.veronii species, a new role has been reported in this study which will be very valuable for future researchers working on it. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Enhanced upconversion emission in colloidal (NaYF4:Er(3+))/NaYF4 core/shell nanoparticles excited at 1523 nm.

    PubMed

    Shao, Wei; Chen, Guanying; Damasco, Jossana; Wang, Xianliang; Kachynski, Aliaksandr; Ohulchanskyy, Tymish Y; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2014-03-15

    In this work, we report on efficient visible and near-IR upconversion emissions in colloidal hexagonal-phase core/shell NaYF4:Er(3+)/NaYF4 nanoparticles (∼38  nm) under IR laser excitation at 1523 nm. Varying amounts of Er(3+) dopants were introduced into the core NaYF4:Er(3+) nanoparticles, revealing an optimized Er(3+) concentration of 10% for the highest luminescent efficiency. An inert epitaxial shell layer of NaYF4 grown onto the core of the NaYF4:Er(3+) 10% nanoparticle increased its upconversion emission intensity fivefold due to suppression of surface-related quenching mechanisms, yielding the absolute upconversion efficiency to be as high as ∼3.9±0.3% under an excitation density of 18  W/cm(2). The dependence of the intensity of upconversion emission peaks on laser excitation density in the core/shell nanoparticle displayed "saturation effects" at low excitation density in the range of 1.5-18  W/cm(2), which again demonstrates high upconversion efficiency.

  16. Silica nanoparticle phytotoxicity to Arabidopsis thaliana.

    PubMed

    Slomberg, Danielle L; Schoenfisch, Mark H

    2012-09-18

    The phytotoxicity of silica nanoparticles (SiNPs) was evaluated as a function of particle size (14, 50, and 200 nm), concentration (250 and 1000 mg L(-1)), and surface composition toward Arabidopsis thaliana plants grown hydroponically for 3 and 6 weeks. Reduced development and chlorosis were observed for plants exposed to highly negative SiNPs (-20.3 and -31.9 mV for the 50 and 200 nm SiNPs, respectively) regardless of particle concentration when not controlling pH of the hydroponic medium, which resulted in increased alkalinity (~pH 8). Particles were no longer toxic to the plants at either concentration upon calcination or removal of surface silanols from the SiNP surface, or adjusting the pH of the growth medium to pH 5.8. The phytotoxic effects observed for the negatively charged 50 and 200 nm SiNPs were attributed to pH effects and the adsorption of macro- and micro-nutrients to the silica surface. Size-dependent uptake of the nanoparticles by the plants was confirmed using transmission electron microscopy (TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) with plant roots containing 32.0, 1.85, and 7.00 × 10(-3) mg Si·kg tissue(-1)/nm(3) (normalized for SiNP volume) for the 14, 50, and 200 nm SiNPs respectively, after 6 weeks exposure at 1000 ppm (pH 5.8). This study demonstrates that the silica scaffolds are not phytotoxic up to 1000 ppm despite significant uptake of the SiNPs (14, 50, and 200 nm) into the root system of A. thaliana.

  17. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However,more » care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.« less

  18. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  19. Preparation of sub 3 nm copper nanoparticles by microwave irradiation in the presence of triethylene tetramin

    NASA Astrophysics Data System (ADS)

    Tseng, Po-Hao; Wang, Yen-Zen; Hsieh, Tar-Hwa; Ho, Ko-Shan; Tsai, Cheng-Hsien; Chen, Kuan-Ting

    2018-02-01

    The preparation of sub 3 nm copper nanoparticles (CuNPs) in ethylene glycol (EG) using triethylene tetramine (TETA) as chelating and reducing agents via a rapid microwave (MW) irradiation is reported. The sub 3 nm CuNPs after MW irradiation are clearly seen from the electronic micrographs. The firm chelation of Cu2+ by TETA is illustrated by the dark blue color of Cu2+/TETA/EG solution and the redox reaction is confirmed by the appearance of red color of the mixtures. The optimal mole ratio of TETA/Cu 2+ is found to be 2.5/1 for preparing sub 3 nm CuNPs under the MW irradiation, operated at 800 W for 1 min. The plasmonic absorption λ max demonstrated in UV-vis spectra are found to close to 200 nm for sub 3 nm CuNPs, comparing to 500 ˜ 600 nm for regular, larger CuNPs. The extremely low Tm around 30 °C and the fusion/recrystallization sequence of sub 3 nm CuNPs can be directly measured by their differential scanning calorimetry thermograms.

  20. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors

    PubMed Central

    Diaz, Roberto Jose; McVeigh, Patrick Z.; O’Reilly, Meaghan A.; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C.; Rutka, James T.

    2014-01-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50 nm or 120 nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120 nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. PMID:24374363

  1. An Enhancing Effect of Gold Nanoparticles on the Lethal Action of 2450 MHz Electromagnetic Radiation in Microwave Oven

    PubMed Central

    Mollazadeh-Moghaddam, Kamyar; Moradi, Bardia Varasteh; Dolatabadi-Bazaz, Reza; Shakibae, Mojtaba; Shahverdi, Ahmad Reza

    2011-01-01

    Today, there is an increasing interest in the use of metal nanoparticles in health sciences. Amongst all nanoparticles, the gold nanoparticles have been known to kill the cancer cells under hyperthermic condition by near-infrared frequency electromagnetic waves. On the other hand, although there are different physiochemical methods for disinfection of microbial pollution, however applications of irradiated gold nanoparticles against microorganisms have not yet been investigated. In this study, gold nanoparticles were prepared using D-glucose and characterized (particle size <26 nm). In the next step, the enhancing effect of the non toxic level of gold nanoparticles (50 µg/mL) on the antimicrobial activity of 2450 MHz electromagnetic radiation generated at a microwave oven operated at low power (100 W), was investigated by time-kill course assay against Staphylococcus aureus (S.aureus) ATCC 29737. The results showed that application of gold nanoparticles can enhance the lethal effect of low power microwave in a very short exposure time (5 s). PMID:23407707

  2. 50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping

    NASA Astrophysics Data System (ADS)

    Chyla, Michal; Miura, Taisuke; Smrž, Martin; Severova, Patricie; Novak, Ondrej; Endo, Akira; Mocek, Tomas

    2014-02-01

    We are developing a 100-mJ Yb:YAG thin-disk regenerative amplifier operating at 1-kHz repetition rate pumped at zero-phonon-line (968.825-nm1) and delivering 1-2 ps pulses for EUV plasma sources applicable in science and industry. Recently we achieved the output energy of nearly 50-mJ from a single laser-head cavity with good beam quality (M2<1.2) as well as stable beam-pointing (<4μrad). Applying pulsed pumping with the pulse duration shorter than the upper state lifetime of Yb:YAG helps to reduce the ASE and thermal loading of the thin-disk.

  3. Structures of ˜100 nm Size Produced by Atom Lithography with Metastable He

    NASA Astrophysics Data System (ADS)

    Reeves, Jason; Corder, Christopher; Lu, Xiaoxu; Allred, Claire; Metcalf, Harold

    2010-03-01

    We have used neutral atom lithography with metastable 2^3S He (He*) to produce structures of size ˜100 nm. A beam of He* from our source is collimated by the bichromatic forceootnotetextM. Partlow et al., Phys. Rev. Lett. 93, 213004 (2004) and then by optical molasses. Atoms cross a standing wave of λ= 389 nm light tuned ˜80 MHz below the 2^3S1->3^3P2 transition and are focussed into lines striking a self assembled monolayer (SAM) of nonanethiol coated over a gold film on a single crystal Si wafer. The 20 eV internal energy of He* destroys the SAM molecules ultimately leaving a pattern of SAM on the gold. Subsequent etching of the unprotected region of the gold results in these featuresootnotetextC. Allred et al., submitted to J. Appl. Phys.^,ootnotetextC. Allred, Ph.D. Thesis, Stony Brook, NY (2009) - unpublished.. The lines are separated by 194.5 nm and they occupy about 60% of their spacing. AFM measurements of our first samples show their width to be ˜120 nm and their depth to be ˜10 nm.

  4. Structures of ˜100 nm Size Produced by Atom Lithography with Metastable He

    NASA Astrophysics Data System (ADS)

    Reeves, Jason; Corder, Christopher; Lu, Xiaoxu; Allred, Claire; Metcalf, Harold

    2010-03-01

    We have used neutral atom lithography with metastable 2^3S He (He*) to produce structures of size ˜100 nm. A beam of He* from our source is collimated by the bichromatic forcefootnotetextM. Partlow et al., Phys. Rev. Lett. 93, 213004 (2004) and then by optical molasses. Atoms cross a standing wave of λ= 389 nm light tuned ˜80 MHz below the 2^3S1->3^3P2 transition and are focussed into lines striking a self assembled monolayer (SAM) of nonanethiol coated over a gold film on a single crystal Si wafer. The 20 eV internal energy of He* destroys the SAM molecules ultimately leaving a pattern of SAM on the gold. Subsequent etching of the unprotected region of the gold results in these featuresfootnotetextC. Allred et al., submitted to J. Appl. Phys.^,footnotetextC. Allred, Ph.D. Thesis, Stony Brook, NY (2009) - unpublished.. The lines are separated by 194.5 nm and they occupy about 60% of their spacing. AFM measurements of our first samples show their width to be ˜120 nm and their depth to be ˜10 nm.

  5. On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas

    NASA Astrophysics Data System (ADS)

    Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.

    2017-01-01

    The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.

  6. An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors

    PubMed Central

    Karageorgis, Anastassia; Dufort, Sandrine; Sancey, Lucie; Henry, Maxime; Hirsjärvi, Samuli; Passirani, Catherine; Benoit, Jean-Pierre; Gravier, Julien; Texier, Isabelle; Montigon, Olivier; Benmerad, Mériem; Siroux, Valérie; Barbier, Emmanuel L.; Coll, Jean-Luc

    2016-01-01

    Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines. PMID:26892874

  7. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.

    PubMed

    Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter

    2016-06-01

    Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 50 CFR 100.5 - Eligibility for subsistence use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Eligibility for subsistence use. 100.5 Section 100.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... subsistence uses only if you are an Alaska resident of a rural area or rural community. The regulations in...

  9. 50 CFR 100.5 - Eligibility for subsistence use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Eligibility for subsistence use. 100.5 Section 100.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... subsistence uses only if you are an Alaska resident of a rural area or rural community. The regulations in...

  10. 50 CFR 100.5 - Eligibility for subsistence use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Eligibility for subsistence use. 100.5 Section 100.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... subsistence uses only if you are an Alaska resident of a rural area or rural community. The regulations in...

  11. 50 CFR 100.5 - Eligibility for subsistence use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Eligibility for subsistence use. 100.5 Section 100.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... subsistence uses only if you are an Alaska resident of a rural area or rural community. The regulations in...

  12. 50 CFR 100.5 - Eligibility for subsistence use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Eligibility for subsistence use. 100.5 Section 100.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... subsistence uses only if you are an Alaska resident of a rural area or rural community. The regulations in...

  13. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation.

    PubMed

    Song, Jieun; Kim, Dukhan; Lee, Dongil

    2011-11-15

    We report a facile synthetic route for size-controlled preparation of gold nanoparticles. Nearly monodisperse gold nanoparticles with core diameters of 1-6 nm were obtained by reducing AuP(Phenyl)(3)Cl with tert-butylamine borane in the presence of dodecanethiol in the solvent mixture of benzene and CHCl(3). Mechanism studies have shown that the size control is achieved by the solvent-controlled nucleation in which the nuclei concentration increases with increasing the fraction of CHCl(3), leading to smaller particles. It was also found that, following the solvent-controlled nucleation, particle growth occurs via ligand replacement of PPh(3) on the nuclei by Au(I)thiolate generated by the digestive etching of small particles. This synthetic strategy was successfully demonstrated with other alkanethiols of different chain length with which size-controlled, monodisperse gold nanoparticles were prepared in remarkable yield without requiring any postsynthesis treatments.

  14. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.

    PubMed

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-01-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.

  15. Temozolomide nanoparticles for targeted glioblastoma therapy.

    PubMed

    Fang, Chen; Wang, Kui; Stephen, Zachary R; Mu, Qingxin; Kievit, Forrest M; Chiu, Daniel T; Press, Oliver W; Zhang, Miqin

    2015-04-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with Temozolomide (TMZ). Treatment of GBMs remains a challenge, largely because of the fast degradation of TMZ, the inability to deliver an effective dose of TMZ to tumors, and a lack of target specificity that may cause systemic toxicity. Here, we present a simple method for synthesizing a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor-targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of <100 nm, exhibited sustained stability in cell culture media for up to 2 weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed a much higher stability at physiological pH, with a half-life 7-fold greater than that of free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2-6-fold higher uptake and a 50-90% reduction of IC50 72 h post-treatment as compared to nontargeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a large therapeutic dose of TMZ to GBM cells and could serve as a template for targeted delivery of other therapeutics.

  16. Phytosynthesis and Characterization of Silver Nanoparticles Using Callus of JATROPHA CURCAS: a Biotechnological Approach

    NASA Astrophysics Data System (ADS)

    Demissie, A. G.; Lele, S. S.

    2013-06-01

    The present study reports a rapid plant-based biosynthesis of silver nanoparticles using callus extract of Jatropha curcas L. The particle size and morphological analyses were carried out using Zetasizer, SEM, TEM. The physicochemical properties were monitored using UV-Vis spectroscopic, IR and DSC. The formation of silver nanoparticle was confirmed by using UV-Vis spectrophotometer and absorbance peaks at 421 nm. The silver nanoparticle was found to be a negatively charged with size ranging from 2 nm to 50 nm. The morphology of the nanoparticle is uniformly spherical and has a dispersion ratio of 0.14. The physicochemical study using DSC indicated significant thermal stability and crystalline nature of the nanoparticle. This intracellular biosynthesis of silver nanoparticles is simple, cheap and eco-friendly than other mechanical and chemical approaches.

  17. Adsorption of Amlodipine at the Surface of Tosyl─Carbon Nanoparticles for Electrochemical Sensing

    PubMed Central

    Amiri, Mandana; Imanzade, Hamideh

    2016-01-01

    The adsorption processes of amlodipine onto hydrophilic carbon nanoparticles (Emperor 2000TM) are investigated. The significant increase in voltammetric responses for pre-adsorbed amlodipine compared with those for solution confirms high affinity of amlodipine to carbon nanoparticles (possibly due to π-π stacking interaction between aromatic rings of amlodipine and surface-sulfonated carbon nanoparticles). To obtain the optimum of adsorption conditions, the effects of pH, agitation rate, and adsorption time are investigated. Under differential pulse voltammetry conditions, the peak current for the oxidation of amlodipine shows two linear relationships with concentration in the range from 1000 μM to 10.0 μM and 10.0 μM to 10.0 nM. The limit of detection is estimated to be 1.0 nM. Determination of amlodipine in real samples such as human serum and commercial tablets is demonstrated. PMID:27980564

  18. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  19. Effect of gold nanoparticle size and coating on labeling monocytes for CT tracking

    PubMed Central

    Chhour, Peter; Kim, Johoon; Benardo, Barbara; Tovar, Alfredo; Mian, Shaameen; Litt, Harold I.; Ferrari, Victor A.; Cormode, David P.

    2017-01-01

    With advances in cell therapies, interest in cell tracking techniques to monitor the migration, localization and viability of these cells continues to grow. X-ray computed tomography (CT) is a cornerstone of medical imaging but has been limited in cell tracking applications due to its low sensitivity towards contrast media. In this study, we investigate the role of size and surface functionality of gold nanoparticles for monocyte uptake to optimize the labeling of these cells for tracking in CT. We synthesized gold nanoparticles (AuNP) that range from 15 to 150 nm in diameter and examined several capping ligands, generating 44 distinct AuNP formulations. In vitro cytotoxicity and uptake experiments were performed with the RAW 264.7 monocyte cell line. The majority of formulations at each size were found to be biocompatible, with only certain 150 nm PEG functionalized particles reducing viability at high concentrations. High uptake of AuNP was found using small capping ligands with distal carboxylic acids (11-MUA and 16-MHA). Similar uptake values were found with intermediate sizes (50 and 75 nm) of AuNP when coated with 2000 MW poly(ethylene-glycol) carboxylic acid ligands (PCOOH). Low uptake values were observed with 15, 25, 100, and 150 nm PCOOH AuNP, revealing interplay between size and surface functionality. TEM and CT performed on cells revealed similar patterns of high gold uptake for 50 nm PCOOH and 75 nm PCOOH AuNP. These results demonstrate that highly negatively charged carboxylic acid coatings for AuNP provide the greatest internalization of AuNP in monocytes, with a complex dependency on size. PMID:28095688

  20. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  1. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles.

    PubMed

    Biswas, Sushmita; Liu, Xiaoying; Jarrett, Jeremy W; Brown, Dean; Pustovit, Vitaliy; Urbas, Augustine; Knappenberger, Kenneth L; Nealey, Paul F; Vaia, Richard A

    2015-03-11

    Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.

  2. GEANT 4 simulation of (99)Mo photonuclear production in nanoparticles.

    PubMed

    Dikiy, N P; Dovbnya, A N; Fedorchenko, D V; Khazhmuradov, M A

    2016-08-01

    GEANT 4 Monte-Carlo simulation toolkit is used to study the kinematic recoil method of (99)Mo photonuclear production. Simulation for bremsstrahlung photon spectrum with maximum photon energy 30MeV showed that for MoO3 nanoparticle escape fraction decreases from 0.24 to 0.08 when nanoparticle size increases from 20nm to 80nm. For the natural molybdenum and pure (100)Mo we obtained the lower values: from 0.17 to 0.05. The generation of accompanying molybdenum nuclei is significantly lower for pure (100)Mo and is about 3.6 nuclei per single (99)Mo nucleus, while natural molybdenum nanoparticle produce about 48 accompanying nuclei. Also, we have shown that for high-energy photons escape fraction of (99)Mo decreases, while production of unwanted molybdenum isotopes is significantly higher. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Controlling the ferroelectric and resistive switching properties of a BiFeO3 thin film prepared using sub-5 nm dimension nanoparticles.

    PubMed

    Shirolkar, Mandar M; Li, Jieni; Dong, Xiaolei; Li, Ming; Wang, Haiqian

    2017-10-04

    In recent years, BiFeO 3 has attracted significant attention as an interesting multiferroic material in the exploration of fundamental science and development of novel applications. Our previous study (Phys. Chem. Chem. Phys.18, 2016, 25409) highlighted the interesting physicochemical features of BiFeO 3 of sub-5 nm dimension. The study also accentuated the existence of weak ferroelectricity at sub-5 nm dimensions in BiFeO 3 . Based on this feature, we have prepared thin films using sub-5 nm BiFeO 3 nanoparticles and explored various physicochemical properties of the thin film. We report that during the formation of the thin film, the nanoparticles aggregated; particularly, annihilation of their nanotwinning nature was observed. Qualitatively, the Gibbs free energy change ΔG governed the abovementioned processes. The thin film exhibited an R3c phase and enhanced Bi-O-Fe coordination as compared to the sub-5 nm nanoparticles. Raman spectroscopy under the influence of a magnetic field shows a magnetoelectric effect, spin phonon coupling, and magnetic anisotropy. We report room-temperature ferroelectric behavior in the thin film, which enhances with the application of a magnetic field; this confirms the multiferroic nature of the thin film. The thin film shows polarization switching ability at multiple voltages and read-write operation at low bias (±0.5 V). Furthermore, the thin film shows negative differential-complementary resistive switching behavior in the nano-microampere current range. We report nearly stable 1-bit operation for 10 2 cycles, 10 5 voltage pulses, and 10 5 s, demonstrating the paradigm device applications. The observed results thus show that the thin films prepared using sub-5 nm BiFeO 3 nanoparticles are a promising candidate for future spintronics and memory applications. The reported approach can also be pertinent to explore the physicochemical properties and develop potential applications of several other nanoparticles.

  4. Mechanochemical Preparation of Stable Sub-100nm γ-Cyclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization.

    PubMed

    Van Guyse, Joachim F R; de la Rosa, Victor R; Hoogenboom, Richard

    2018-02-21

    Buckminster fullerene (C 60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C 60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C 60 that inhibit the aggregation found in native γCD-C 60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C 60 . These modifications have led to new sub-100nm nanostructures that show long-term stability in solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nylon-sputtered nanoparticles: fabrication and basic properties

    NASA Astrophysics Data System (ADS)

    Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H.

    2012-12-01

    Nylon-sputtered nanoparticles were prepared using a simple gas aggregation cluster source based on a planar magnetron (Haberland type) and equipped with a nylon target. Plasma polymer particles originated in an aggregation chamber and travelled to a main (deposition) chamber with a gas flow through an orifice. The deposited nanoparticles were observed to have a cauliflower-like structure. The nanoparticles were found to be nitrogen-rich with N/C ratio close to 0.5. An increase in rf power from 60 to 100 W resulted in a decrease in mean particle size from 210 to 168 nm whereas an increase in their residence time in the cluster source from 0.7 to 4.6 s resulted in an increase in the size from 73 to 231 nm.

  6. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  7. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    NASA Astrophysics Data System (ADS)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  8. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.

    PubMed

    Senesi, Andrew J; Eichelsdoerfer, Daniel J; Brown, Keith A; Lee, Byeongdu; Auyeung, Evelyn; Choi, Chung Hang J; Macfarlane, Robert J; Young, Kaylie L; Mirkin, Chad A

    2014-11-12

    The evolution of crystallite size and microstrain in DNA-mediated nanoparticle superlattices is dictated by annealing temperature and the flexibility of the interparticle bonds. This work addresses a major challenge in synthesizing optical metamaterials based upon noble metal nanoparticles by enabling the crystallization of large nanoparticles (100 nm diameter) at high volume fractions (34% metal). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    PubMed

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  11. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  12. Potential role of S100A8 in skin rejuvenation with the 1064-nm Q-switched Nd:YAG laser.

    PubMed

    Qin, Yan; Qin, Xiaofeng; Xu, Peng; Zhi, Yuanting; Xia, Weili; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2018-04-01

    The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.

  13. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  14. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments

    NASA Astrophysics Data System (ADS)

    Jardon, Samantha; García, Carlos G.; Quintanar, David; Nieto, José L.; Juárez, María de Lourdes; Mendoza, Susana E.

    2018-04-01

    The development of technologies that combine the advantages of nanomedicine with natural medicine represents a versatile approach to improve the safety and efficacy of drugs. Glycyrrhizinic acid (GA) is a natural compound that has a wide range of biological activities for the treatment of diseases. To establish a safe nanotransport system for this drug, two different nanoparticles with glycyrrhizinic acid, solid lipid nanoparticles (SLN-GA) and polymeric nanoparticles (PNPS-GA) were elaborated to obtain nanostructure sizes between 200 and 300 nm. The nanoparticles were evaluated at concentrations of 1.25-100 μl/ml using the MARC-145 cell line to determine the effects on cell morphology, cellular structure (actin filaments) and cell viability (mitochondrial and lysosomal) at 24 and 72 h post-exposure. The safety range of the nanoparticles was 50 µl/ml, to determine that PNPs-GA had an optimal safety profile and no cytotoxic effects, as there was no evidence of changes in morphology, internal cellular structures (stress fibers and the cell cortex formed by actin filaments) or viability under the experimental concentrations and conditions employed.

  15. [Synthesis of antibiotic loaded polylactic acid nanoparticles and their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus].

    PubMed

    Herrera, Mónica Tatiana; Artunduaga, Jhon Jhamilton; Ortiz, Claudia Cristina; Torres, Rodrigo Gonzalo

    2017-01-24

    Polymeric nanoparticles are promising nanotechnology tools to fight pathogenic bacteria resistant to conventional antibiotics. To synthesize polylactic acid nanoparticles loaded with ofloxacin and vancomycin, and to determine their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). We synthesized ofloxacin or vancomycin loaded polylactic acid nanoparticles by the emulsification-solvent evaporation method, and characterized them by dynamic light scattering, laser Doppler electrophoresis and scanning electron microscopy. We evaluated in vitro antibacterial activity of ofloxacin- and vancomycin-loaded polylactic acid nanoparticles against E. coli O157:H7 and MRSA using the broth microdilution method. Ofloxacin- and vancomycin-loaded polylactic acid nanoparticles registered a positive surface charge density of 21 mV and an average size lower than 379 nm. In vitro minimum inhibitory concentration (MIC50) of ofloxacin-polylactic acid nanoparticles was 0,001 μg/ml against E. coli O157:H7, i.e., 40 times lower than the free ofloxacin (MIC50: 0.04 μg/ml), indicating enhanced antibacterial activity while the in vitro MIC50 of vancomycin-polylactic acid nanoparticles was 0,005 μg/ml against MRSA, i.e., 100 times lower than that of free vancomycin (MIC50: 0.5 μg/ml). Polylactic acid nanoparticles loaded with ofloxacin and vancomycin showed a higher antibacterial activity. Polymeric nanoparticles are a possible alternative for drug design against pathogenic bacterial strains of public health interest.

  16. Respirator Performance against Nanoparticles under Simulated Workplace Activities

    PubMed Central

    Vo, Evanly; Zhuang, Ziqing; Horvatin, Matthew; Liu, Yuewei; He, Xinjian; Rengasamy, Samy

    2017-01-01

    Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10–400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10–100 nm), larger size particles (100–400 nm), and the ‘all size’ range (10–400 nm). All respirators provided better or similar performance levels for 10–100 nm particles as compared to larger 100–400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P<0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested. PMID:26180261

  17. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  18. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles.

    PubMed

    Jaffri, Shaan Bibi; Ahmad, Khuram Shahzad

    2018-06-13

    Present study has for the first time reported Prunus cerasifera leaf extract mediated zinc oxide nanoparticles in a green and one pot synthetic mode without utilization of any chemical reducing agents. Synthesized nanoparticles were analyzed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), fourier transmission infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-Vis peak was detected at 380 nm due to surface plasmon resonance (SPR). Variety of biomolecules were revealed by FTIR involved in reduction cum stabilization of zinc oxide nanoparticles. Wurtzite hexagonal geometry with an average crystallite size of 12 nm was obtained from XRD diffraction pattern. SEM exhibited size ranges of 80-100 nm and 60- 100 nm for 200 ℃ and 600 ℃ calcination temperatures. Synthesized nanoparticles were used as bio-cleaning photocatalysts against organic pollutants i.e. bromocresol green, bromophenol blue, methyl red and methyl blue, which yielded pseudo first order reaction kinetics (R 2 = 0.98, 0.92, 0.92, 0.90 respectively). Pollutants expressed higher degradation percentages in less than 14 min in direct solar irradiance. Moreover, synthesized nanoparticles were tested against resistant microbes i.e. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani, Lasiodiplodia theobromae, Xanthomonas axonopodis pv. citri and Psuedomonas syringae for development of new generation of antimicrobial agents.

  19. 50 CFR 665.100 - American Samoa bottomfish fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa bottomfish fisheries. [Reserved] 665.100 Section 665.100 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  20. 50 CFR 665.100 - American Samoa bottomfish fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false American Samoa bottomfish fisheries. [Reserved] 665.100 Section 665.100 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  1. Advances in superconductivity and Co3O4 nanoparticles as flux pinning center in (Bi, Pb)-2223/Ag superconductor tapes

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Jannah, A. N.

    2017-09-01

    Many new superconducting materials have been discovered in recent years. This includes hydrogen sulfide which superconducts at 203 K under high pressure and Fe-As based materials. To this date the copper oxide-based materials remain as the highest transition temperature superconductor under normal pressure. In this paper we discuss the use of nano-sized particle as pinning center in the Ag-sheathed high temperature superconductor tapes to enhance the transport properties. When the size d of the pinning center is between the coherence length ξ and the penetration depth λ (ξ < d < λ), a stronger interaction between the pinning center and flux lines leading to higher transport critical current density, Jc can be expected. The effect of nanoparticle with size between the coherence length and the penetration depth i.e. ξ < d < λ, Co3O4 on superconductor tapes is discussed in this paper. Three types of Bi(Pb)-Sr-Ca-Cu-O starting materials namely from co-precipitation method without Co3O4 and with 30 nm and 50 nm Co3O4 addition have been prepared. The composition of the 30 nm and 50 nm Co3O4 added samples is (Bi1.6Pb0.4)Sr2Ca2Cu3O10-(Co3O4)0.02 and (Bi1.6Pb0.4)Sr2Ca2Cu3O10-(Co3O4)0.01, respectively. The tapes (˜2-3 cm long) were heated at 845°C for 100 and 150 h. All nanoparticles added tapes showed higher Jc compared to the non-added tapes. By comparing the current results with our previously reported results, the tapes with 30 nm Co3O4 sintered for 50 h showed the highest Jc at all temperatures. This work also showed that smaller magnetic nanoparticles enhanced Jc better than larger particles, A longer sintering time (> 50 h) degraded Jc.

  2. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice

    NASA Astrophysics Data System (ADS)

    Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-03-01

    Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.

  4. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  5. Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress.

    PubMed

    Ghosh, Pintu; Lu, Jinsheng; Luo, Hao; Xu, Ziquan; Yan, Xiaoyuan; Wang, Yewu; Lu, Jun; Qiu, Min; Li, Qiang

    2018-05-15

    A technique to fabricate nanogaps with controllably variable gap width in silver (Ag) nanowires (NWs) by photothermal-induced stress utilizing a focused continuous-wave laser (532 nm) is presented. For the case of an Ag NW on gold thin film, a gap width starting from ∼20  nm is achieved with a critical minimum power (CMP) of about 160 mW, whereas in the case of an Ag NW placed on top of a zinc oxide NW, the attained gap width is as small as a few nm (<10  nm) with a CMP of only ∼100  mW. In both cases, the CMP is much lower as compared to the required CMP (∼280  mW) for an Ag NW placed on a bare silica substrate. The photothermal-induced stress combined with Rayleigh instability, melting, and sublimation of Ag aids in breaking the Ag NW. In particular, the former one plays a key role in attaining an extremely narrow gap. This technique to fabricate sub-100 nm nanogaps in metal NWs can be extensively implemented in fabrication and maintenance of nanomechanical, nanoplasmonic, and nanoelectronic devices.

  6. Mercury adsorption to gold nanoparticle and thin film surfaces

    NASA Astrophysics Data System (ADS)

    Morris, Todd Ashley

    Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.

  7. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.

    PubMed

    Yoo, Daehan; Gurunatha, Kargal L; Choi, Han-Kyu; Mohr, Daniel A; Ertsgaard, Christopher T; Gordon, Reuven; Oh, Sang-Hyun

    2018-06-13

    We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.

  8. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.

    PubMed

    Chhabra, Rahul; Moralez, Jesus G; Raez, Jose; Yamazaki, Takeshi; Cho, Jae-Young; Myles, Andrew J; Kovalenko, Andriy; Fenniri, Hicham

    2010-01-13

    A one-pot strategy for the nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles (NPs) on self-assembled rosette nanotubes (RNTs) is described. Tapping-mode atomic force microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and selected-area electron diffraction were used to establish the structure and organization of this hybrid material. Notably, we found that the Au NPs formed were nearly monodisperse clusters of Au(55) (1.4-1.5 nm) nestled in pockets on the RNT surface.

  10. Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Enghoff, M. B.; Svensmark, H.

    2012-12-01

    The role of ionization in the formation of clouds and aerosols has been debated for many years. A body of evidence exists that correlates cloud properties to galactic cosmic ray ionization; however these results are still contested. In recent years experimental evidence has also been produced showing that ionization can promote the nucleation of small aerosols at atmospheric conditions. The experiments showed that an increase in ionization leads to an increase in the formation of ultrafine aerosols (~3 nm), but in the real atmosphere such small particles have to grow by coagulation and condensation to become cloud condensation nuclei (CCN) in order to have an effect on clouds. However, numerical studies predict that variations in the count of ultra-fine aerosols will lead only to an insignificant change in the count of CCN. This is due to 1) the competition between the additional ultra-fine aerosols for the limited supply of condensable gases leading to a slower growth and 2) the increased loss rates of the additional particles during the longer growth-time. We investigated the growth of aerosols to CCN sizes using an 8 m3 reaction chamber made from electro-polished stainless steel. One side was fitted with a Teflon foil to allow ultraviolet light to illuminate the chamber, which was continuously flushed with dry purified air. Variable concentrations of water vapor, ozone, and sulfur dioxide could be added to the chamber. UV-lamps initiated photochemistry producing sulfuric acid. Ionization could be enhanced with two Cs-137 gamma sources (30 MBq), mounted on each side of the chamber. Figure 1 shows the evolution of the aerosols, following a nucleation event induced by the gamma sources. Previous to the event the aerosols were in steady state. Each curve represents a size bin: 3-10 nm (dark purple), 10-20 nm (purple), 20-30 nm (blue), 30-40 nm (light blue), 40-50 nm (green), 50-60 nm (yellow), and 60-68 nm (red). Black curves show a ~1 hour smoothing. The initial

  11. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae.

    PubMed

    Lim, Hyun-Ah; Mishra, Amrita; Yun, Soon-Il

    2011-01-01

    In the present study, the synthesis of gold and silver nanoparticles was investigated using the culture supernatant broth of the yeast Saccharomyces cerevisae. Gold nanoparticles were formed within 24 hours of gold ion coming in contact with the culture supernatant broth. In case of silver the reduction process took 48 hours. The synthesized nanoparticles were investigated by UV-Visible spectroscopy. Distinct surface plasmon peaks were observed at 540 nm and 415 nm for gold and silver nanoparticles respectively. Bio-TEM micrographs of the synthesized nanoparticles indicated that the particles were well dispersed and near spherical in shape. The size range of the gold and silver nanoparticles was around 20-100 nm and 5-20 nm respectively. XRD patterns showed the presence of three distinct peaks corresponding to gold and silver nanoparticles respectively. A pH range of 4 to 6 and 8 to 10 favored optimum synthesis of gold and silver nanoparticles respectively. The process of reduction being extra cellular could be used in future for downstream processing in an eco friendly manner.

  12. FITC labeled silica nanoparticles as efficient cell tags: uptake and photostability study in endothelial cells.

    PubMed

    Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-03-01

    The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.

  13. Synthesis of gold and silver nanoparticles using purified URAK.

    PubMed

    Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi

    2011-09-01

    This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Arsenic Adsorption and As (III) Oxidation on TiO2 Nanoparticles: Macroscopic and Spectroscopic Investigations

    EPA Science Inventory

    Engineered nanoparticles (NPs) (particle sizes ranging from 1-100 nm) have unique physical and chemical properties that differ fundamentally from their macro-sized counterparts. In addition to their smaller particle size, nanoparticles possess unique characteristics such as larg...

  15. Runners in their forties dominate ultra-marathons from 50 to 3,100 miles

    PubMed Central

    Zingg, Matthias Alexander; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald; Knechtle, Beat

    2014-01-01

    OBJECTIVES: This study investigated performance trends and the age of peak running speed in ultra-marathons from 50 to 3,100 miles. METHODS: The running speed and age of the fastest competitors in 50-, 100-, 200-, 1,000- and 3,100-mile events held worldwide from 1971 to 2012 were analyzed using single- and multi-level regression analyses. RESULTS: The number of events and competitors increased exponentially in 50- and 100-mile events. For the annual fastest runners, women improved in 50-mile events, but not men. In 100-mile events, both women and men improved their performance. In 1,000-mile events, men became slower. For the annual top ten runners, women improved in 50- and 100-mile events, whereas the performance of men remained unchanged in 50- and 3,100-mile events but improved in 100-mile events. The age of the annual fastest runners was approximately 35 years for both women and men in 50-mile events and approximately 35 years for women in 100-mile events. For men, the age of the annual fastest runners in 100-mile events was higher at 38 years. For the annual fastest runners of 1,000-mile events, the women were approximately 43 years of age, whereas for men, the age increased to 48 years of age. For the annual fastest runners of 3,100-mile events, the age in women decreased to 35 years and was approximately 39 years in men. CONCLUSION: The running speed of the fastest competitors increased for both women and men in 100-mile events but only for women in 50-mile events. The age of peak running speed increased in men with increasing race distance to approximately 45 years in 1,000-mile events, whereas it decreased to approximately 39 years in 3,100-mile events. In women, the upper age of peak running speed increased to approximately 51 years in 3,100-mile events. PMID:24626948

  16. Direct bandgap materials based on the thin films of SexTe100 − x nanoparticles

    PubMed Central

    2012-01-01

    In this study, we fabricated thin films of SexTe100 − x (x = 0, 3, 6, 9, 12, and 24) nanoparticles using thermal evaporation technique. The results obtained by X-ray diffraction show that the as-synthesized nanoparticles have polycrystalline structure, but their crystallinity decreases by increasing the concentration of Se. They were found to have direct bandgap (Eg), whose value increases by increasing the Se content. These results are completely different than those obtained in the films of SexTe100 − x microstructure counterparts. Photoluminescence and Raman spectra for these films were also demonstrated. The remarkable results obtained in these nanoparticles specially their controlled direct bandgap might be useful for the development of optical disks and other semiconductor devices. PMID:22978714

  17. Evaluation of Alpha and Gamma Aluminum Oxide Nanoparticle Accumulation, Toxicity and Depuration in Artemia Salina Larvae

    PubMed Central

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Daniels, James; Farah, Ibrahim O.; Bogatu, Corneliu

    2014-01-01

    In this study, Artemia salina (crustacean filter feeders) larvae were used as a test model to investigate the toxicity of aluminum oxide nanoparticles (Al2O3 NPs) on marine microorganisms. The uptake, toxicity and elimination of α-Al2O3 (50 nm and 3.5 μm) and γ-Al2O3 (5 nm and 0.4 μm) NPs were studied. Twenty-four and ninety-six hour exposures of different concentrations of Al2O3 NPs to Artemia larvae were conducted in a seawater medium. When suspended in water, Al2O3 NPs aggregated substantially with the sizes ranging from 6.3 nm to > 0.3 μm for spherical NPs, and from 250 to 756 nm for rod-shaped NPs. The phase contrast microscope images revealed that NPs deposited inside the guts as aggregates. ICP-MS analysis showed that large particles (3.5 μm α-Al2O3) were not taken up by Artemia, while fine NPs (0.4 μm γ-Al2O3) and ultra-fine NPs (5 nm γ-Al2O3 and 50 nm α-Al2O3) accumulated substantially. Differences in toxicity were detected as changing with NP size and morphology. The malondialdehyde (MDA) levels indicated that smaller γ-Al2O3 (5 nm) NPs were more toxic than larger γ-Al2O3 (0.4 μm) particulates in 96 h. The highest mortality was measured as 34% in 96 h for γ-Al2O3 NPs (5 nm) at 100 mg/L (LC50 > 100 mg/L). γ-Al2O3 NPs were more toxic than α-Al2O3 NPs at in all conditions. PMID:24753078

  18. Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae.

    PubMed

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Daniels, James; Farah, Ibrahim O; Bogatu, Corneliu

    2015-01-01

    In this study, Artemia salina (crustacean filter feeders) larvae were used as a test model to investigate the toxicity of aluminum oxide nanoparticles (Al2O3 NPs) on marine microorganisms. The uptake, toxicity, and elimination of α-Al2O3 (50 nm and 3.5 μm) and γ-Al2O3 (5 nm and 0.4 μm) NPs were studied. Twenty-four and ninety-six hour exposures of different concentrations of Al2O3 NPs to Artemia larvae were conducted in a seawater medium. When suspended in water, Al2O3 NPs aggregated substantially with the sizes ranging from 6.3 nm to >0.3 µm for spherical NPs and from 250 to 756 nm for rod-shaped NPs. The phase contrast microscope images showed that NPs deposited inside the guts as aggregates. Inductively coupled plasma mass spectrometry analysis showed that large particles (3.5 μm α-Al2O3) were not taken up by Artemia, whereas fine NPs (0.4 μm γ-Al2O3) and ultra-fine NPs (5 nm γ-Al2O3 and 50 nm α-Al2O3) accumulated substantially. Differences in toxicity were detected as changing with NP size and morphology. The malondialdehyde levels indicated that smaller γ-Al2O3 (5 nm) NPs were more toxic than larger γ-Al2O3 (0.4 µm) particulates in 96 h. The highest mortality was measured as 34% in 96 h for γ-Al2O3 NPs (5 nm) at 100 mg/L (LC50 > 100 mg/L). γ-Al2O3 NPs were more toxic than α-Al2O3 NPs at all conditions. © 2013 Wiley Periodicals, Inc.

  19. Laser ablation of sub-10 nm silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinovev, Alexander; Moore, Jerome F.; Baryshev, Sergey V.

    Laser ablation of silver nanoparticles (NPs) was studied with laser post-ionization (LPI) time-of-flight mass spectrometry (TOF MS). Silver NPs containing ~15 000 Ag atoms (4 nm radius) were deposited by soft landing (energy 3 eV/atom) onto indium tin oxide (ITO)/glass substrates. Laser ablation was performed using frequency-doubled Ti:sapphire nanosecond pulsed laser irradiation at three different wavelengths (371, 401, and 421 nm), whereas for post-ionization, pulses from an F 2 laser were used. Laser fluences and time delay dependencies of Ag and In signals were obtained. Using these data, the temperature of the desorption source as well as its time durationmore » were calculated. It was found that the peak temperature of NPs was above their melting point and they cooled down slowly, with temperature decay time of several hundreds of nanoseconds. This anomalous behavior was explained based on a model where the semiconducting ITO substrate is initially transparent to the desorption laser radiation but starts to adsorb it due to the temperature increase arising from heat exchange with NPs. Poor heat conduction in the ITO film creates conditions for long-lived hot spots on the surface and initiates further optical damage of the substrate. No difference in the ablation process due to plasmon resonance was detected, likely due to thermal expansion and melting of NPs during laser irradiation, which then broadens the plasmon absorption band enough to cover all wavelengths used. Here, these results clearly demonstrate that the process of NP interaction with laser radiation is governed not only by initial optical and thermophysical parameters of NPs and the surrounding media, but also by their alteration due to temperature increases during the irradiation process.« less

  20. Laser ablation of sub-10 nm silver nanoparticles

    DOE PAGES

    Zinovev, Alexander; Moore, Jerome F.; Baryshev, Sergey V.; ...

    2017-04-13

    Laser ablation of silver nanoparticles (NPs) was studied with laser post-ionization (LPI) time-of-flight mass spectrometry (TOF MS). Silver NPs containing ~15 000 Ag atoms (4 nm radius) were deposited by soft landing (energy 3 eV/atom) onto indium tin oxide (ITO)/glass substrates. Laser ablation was performed using frequency-doubled Ti:sapphire nanosecond pulsed laser irradiation at three different wavelengths (371, 401, and 421 nm), whereas for post-ionization, pulses from an F 2 laser were used. Laser fluences and time delay dependencies of Ag and In signals were obtained. Using these data, the temperature of the desorption source as well as its time durationmore » were calculated. It was found that the peak temperature of NPs was above their melting point and they cooled down slowly, with temperature decay time of several hundreds of nanoseconds. This anomalous behavior was explained based on a model where the semiconducting ITO substrate is initially transparent to the desorption laser radiation but starts to adsorb it due to the temperature increase arising from heat exchange with NPs. Poor heat conduction in the ITO film creates conditions for long-lived hot spots on the surface and initiates further optical damage of the substrate. No difference in the ablation process due to plasmon resonance was detected, likely due to thermal expansion and melting of NPs during laser irradiation, which then broadens the plasmon absorption band enough to cover all wavelengths used. Here, these results clearly demonstrate that the process of NP interaction with laser radiation is governed not only by initial optical and thermophysical parameters of NPs and the surrounding media, but also by their alteration due to temperature increases during the irradiation process.« less

  1. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    PubMed Central

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  2. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less

  3. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).

    PubMed

    Mahendra, C; Murali, M; Manasa, G; Ponnamma, Pooja; Abhilash, M R; Lakshmeesha, T R; Satish, A; Amruthesh, K N; Sudarshana, M S

    2017-09-01

    Zinc oxide nanoparticles synthesized through eco-friendly approach has gained importance among researchers due to its broad applications. In the present work, hexagonal wurtzite shape nanoparticles (below 100 nm size) were obtained using aqueous leaf extract of Cochlospermum religiosum which was confirmed through X-Ray diffraction (XRD) analysis. The synthesized ZnO-NPs showed an absorption peak at 305 nm which is one of the characteristic features of ZnO-NPs.The bio-fabricated ZnO-NPs were of high purity with an average size of ∼76 nm analyzed through Dynamic Light Scattering (DLS) analysis supporting the findings of XRD. The SEM images confirmed the same with agglomeration of smaller nanoparticles. The composition of aqueous leaf extract and ZnO-NPs was explored with Fourier Transform Infrared Spectroscopy (FT-IR). The plant extract as well as bio-fabricated ZnO-NPs offered significant inhibition against Gram-positive (B. subtilis and Staph. aureus) and Gram-negative (P. aeruginosa and E. coli) bacteria. The minimum inhibitory concentration (MIC) of bio-fabricated ZnO-NPs and plant extract was found between 4.8 and 625 μg/ml against test pathogens, which was authenticated with live and dead cell analysis. Apart from antibacterial potentiality, antimitotic activity was also observed with a mitotic index of 75.42% (ID 50 0.40 μg mL -1 ) and 61.41% (ID 50 0.58 μg mL -1 ) in ZnO-NPs and plant extract, respectively. The results affirm that plant extract and its mediated ZnO-NPs possess biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Challenges for Physical Characterization of Silver Nanoparticles Under Pristine and Environmentally Relevant Conditions

    EPA Science Inventory

    The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distrib...

  5. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  6. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  7. One-pot, exchange-free, room-temperature synthesis of sub-10 nm aqueous, noninteracting, and stable zwitterated iron oxide nanoparticles.

    PubMed

    Estephan, Zaki G; Hariri, Hanaa H; Schlenoff, Joseph B

    2013-02-26

    Stable aqueous dispersions of superparamagnetic iron oxide nanoparticles were synthesized in one step in the presence of a zwitterionic siloxane as the stabilizing/capping/solubilizing ligand. The hydrodynamic diameter of the particles was tuned by controlling the concentration of zwitterion siloxane, which ultimately yielded monodisperse nanoparticles small enough for renal filtration (<6 nm diameter). The zwitterated nanoparticles were readily dispersed and stable in aqueous media in the pH range 6-9 but exhibited lower magnetization values than nonzwitterated materials due to amorphous content and spin canting, typical for particles of such size. Turbidimetry and light scattering studies revealed no interaction between the particles and proteins, suggesting the materials will circulate well in vivo.

  8. Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: Antimicrobial, larvicidal and photocatalytic evaluations.

    PubMed

    Elemike, Elias E; Onwudiwe, Damian C; Ekennia, Anthony C; Ehiri, Richard C; Nnaji, Nnaemeka J

    2017-06-01

    Nanoscience and nanotechnology represent new and enabling platforms that promise to provide broad range of novel and improved technologies for environmental, biological and other scientific applications. This study reports the synthesis of silver nanoparticles mediated by aqueous leaf extract of Lippia citriodora at two different temperatures of 50°C and 90°C. The synthesis of colloidal silver nanoparticles (AgNPs) was monitored by the use of UV-visible spectroscopy at different temperatures and time intervals. The surface plasmon bands (SPBs) showed peaks between 417 and 421nm at 90°C and around 430nm at 50°C, indicating a red shift at lower temperature. Fourier transform infrared (FTIR) analysis of the nanoparticles showed the presence of similar peaks found in the spectra of the plant extract. The size of the AgNPs was confirmed by transmission electron microscopy (TEM) which indicated an average size of 23.8nm (90°C) and 25nm (50°C). The nanoparticles showed better antimicrobial activities when compared to the crude plant extract against several screened pathogens: Gram negative (Escherichia coli, and Salmonella typhi) and Gram positive (Bacillus subtilis and Staphylococcus aureus) strains and a fungi organism; Candida albicans. In addition, the AgNPs showed good larvicidal efficacy against early 4th instar of Culex quinquefasciatus (a vector of lymphatic filariasis). Finally, the nanoparticles exhibited photocatalytic properties on an industrial waste pollutant, methylene blue. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inclusion of Zinc Oxide Nanoparticles into Virus-Like Peptide Nanocapsules Self-Assembled from Viral β-Annulus Peptide

    PubMed Central

    Fujita, Seiya; Matsuura, Kazunori

    2014-01-01

    A viral β-annulus peptide connected with a zinc oxide (ZnO)-binding sequence (HCVAHR) at its N-terminal was synthesized, and the inclusion behavior of quantum-sized ZnO nanoparticles into the peptide nanocapsules formed by self-assembly of the peptide in water was investigated. Dynamic light scattering (DLS) measurements showed that ZnO nanoparticles (approximately 10 nm) in the presence of the peptide (0.1 mM) formed assemblies with an average size of 48 ± 24 nm, whereas ZnO nanoparticles in the absence of the peptide formed large aggregates. Transmission electron microscopy (TEM) observations of the ZnO nanoparticles in the presence of the peptide revealed that ZnO nanoparticles were encapsulated into the peptide nanocapsules with a size of approximately 50 nm. Fluorescence spectra of a mixture of the peptide and ZnO nanoparticles suggested that the ZnO surface and the peptide interact. Template synthesis of ZnO nanoparticles with the peptide nanocapsules afforded larger nanoparticles (approximately 40 nm), which are not quantum-sized ZnO. PMID:28344248

  10. Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on

  11. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity Against Cancer Cells

    PubMed Central

    Xiao, Ling; Gu, Luo; Howell, Stephen B.; Sailor, Michael J.

    2011-01-01

    Porous Si nanoparticles, prepared from electrochemically etched single crystal Si wafers, function as photosensitizers to generate 1O2 in ethanol and in aqueous media. The preparation conditions for the porous Si nanoparticles were optimized to maximize (1) the yield of material; (2) its quantum yield of 1O2 production; and (3) its in vitro degradation properties. The optimal formulation was determined to consist of nanoparticles 146 ± 7 nm in diameter, with nominal pore sizes of 12 ± 4 nm. The quantum yield for 1O2 production is 0.10 ± 0.02 in ethanol and 0.17 ± 0.01 in H2O. HeLa or NIH-3T3 cells treated with 100 µg/mL porous Si nanoparticles and exposed to 60 J/cm2 white light (infrared filtered, 100 mW/cm2 for 10 min) exhibit ~ 45% cell death, while controls containing no nanoparticles show 10% or 25% cell death, respectively. The dark control experiment yields < 10% cytotoxicity for either cell type. PMID:21452822

  12. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  13. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.

    PubMed

    Auffan, Mélanie; Rose, Jérôme; Bottero, Jean-Yves; Lowry, Gregory V; Jolivet, Jean-Pierre; Wiesner, Mark R

    2009-10-01

    The regulation of engineered nanoparticles requires a widely agreed definition of such particles. Nanoparticles are routinely defined as particles with sizes between about 1 and 100 nm that show properties that are not found in bulk samples of the same material. Here we argue that evidence for novel size-dependent properties alone, rather than particle size, should be the primary criterion in any definition of nanoparticles when making decisions about their regulation for environmental, health and safety reasons. We review the size-dependent properties of a variety of inorganic nanoparticles and find that particles larger than about 30 nm do not in general show properties that would require regulatory scrutiny beyond that required for their bulk counterparts.

  14. Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation.

    PubMed

    Goto, Kazufumi; Hayasaki, Yoshio

    2015-07-15

    In the twilight-field method for obtaining interference fringes with high contrast in in-line digital holography, only the intensity of the reference light is regulated to be close to the intensity of the object light, which is the ultra-weak scattered light from a nanoparticle, by using a low-frequency attenuation filter. Coherence of the light also strongly affects the contrast of the interference fringes. High coherence causes a lot of undesired coherent noise, which masks the fringes derived from the nanoparticles. Too-low coherence results in fringes with low contrast and a correspondingly low signal-to-noise ratio. Consequently, proper regulation of the coherence of the light source, in this study the spectral width, improves the minimum detectable size in holographic three-dimensional position measurement of nanoparticles. By using these methods, we were able to measure the position of a gold nanoparticle with a minimum diameter of 20 nm.

  15. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  16. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    PubMed Central

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  17. Gold nanoparticle imaging and radiotherapy of brain tumors in mice

    PubMed Central

    Hainfeld, James F; Smilowitz, Henry M; O'Connor, Michael J; Dilmanian, Farrokh Avraham; Slatkin, Daniel N

    2013-01-01

    Aim To test intravenously injected gold nanoparticles for x-ray imaging and radiotherapy enhancement of large, imminently lethal, intracerebral malignant gliomas. Materials & methods Gold nanoparticles approximately 11 nm in size were injected intravenously and brains imaged using microcomputed tomography. A total of 15 h after an intravenous dose of 4 g Au/kg was administered, brains were irradiated with 30 Gy 100 kVp x-rays. Results Gold uptake gave a 19:1 tumor-to-normal brain ratio with 1.5% w/w gold in tumor, calculated to increase local radiation dose by approximately 300%. Mice receiving gold and radiation (30 Gy) demonstrated 50% long term (>1 year) tumor-free survival, whereas all mice receiving radiation only died. Conclusion Intravenously injected gold nanoparticles cross the blood–tumor barrier, but are largely blocked by the normal blood–brain barrier, enabling high-resolution computed tomography tumor imaging. Gold radiation enhancement significantly improved long-term survival compared with radiotherapy alone. This approach holds promise to improve therapy of human brain tumors and other cancers. PMID:23265347

  18. Performance differences between sexes in 50-mile to 3,100-mile ultramarathons.

    PubMed

    Zingg, Matthias A; Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Anecdotal reports have assumed that women would be able to outrun men in long-distance running. The aim of this study was to test this assumption by investigating the changes in performance difference between sexes in the best ultramarathoners in 50-mile, 100-mile, 200-mile, 1,000-mile, and 3,100-mile events held worldwide between 1971 and 2012. The sex differences in running speed for the fastest runners ever were analyzed using one-way analysis of variance with subsequent Tukey-Kramer posthoc analysis. Changes in sex difference in running speed of the annual fastest were analyzed using linear and nonlinear regression analyses, correlation analyses, and mixed-effects regression analyses. The fastest men ever were faster than the fastest women ever in 50-mile (17.5%), 100-mile (17.4%), 200-mile (9.7%), 1,000-mile (20.2%), and 3,100-mile (18.6%) events. For the ten fastest finishers ever, men were faster than women in 50-mile (17.1%±1.9%), 100-mile (19.2%±1.5%), and 1,000-mile (16.7%±1.6%) events. No correlation existed between sex difference and running speed for the fastest ever (r (2)=0.0039, P=0.91) and the ten fastest ever (r (2)=0.15, P=0.74) for all distances. For the annual fastest, the sex difference in running speed decreased linearly in 50-mile events from 14.6% to 8.9%, remained unchanged in 100-mile (18.0%±8.4%) and 1,000-mile (13.7%±9.1%) events, and increased in 3,100-mile events from 12.5% to 16.9%. For the annual ten fastest runners, the performance difference between sexes decreased linearly in 50-mile events from 31.6%±3.6% to 8.9%±1.8% and in 100-mile events from 26.0%±4.4% to 24.7%±0.9%. To summarize, the fastest men were ~17%-20% faster than the fastest women for all distances from 50 miles to 3,100 miles. The linear decrease in sex difference for 50-mile and 100-mile events may suggest that women are reducing the sex gap for these distances.

  19. Performance differences between sexes in 50-mile to 3,100-mile ultramarathons

    PubMed Central

    Zingg, Matthias A; Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Anecdotal reports have assumed that women would be able to outrun men in long-distance running. The aim of this study was to test this assumption by investigating the changes in performance difference between sexes in the best ultramarathoners in 50-mile, 100-mile, 200-mile, 1,000-mile, and 3,100-mile events held worldwide between 1971 and 2012. The sex differences in running speed for the fastest runners ever were analyzed using one-way analysis of variance with subsequent Tukey–Kramer posthoc analysis. Changes in sex difference in running speed of the annual fastest were analyzed using linear and nonlinear regression analyses, correlation analyses, and mixed-effects regression analyses. The fastest men ever were faster than the fastest women ever in 50-mile (17.5%), 100-mile (17.4%), 200-mile (9.7%), 1,000-mile (20.2%), and 3,100-mile (18.6%) events. For the ten fastest finishers ever, men were faster than women in 50-mile (17.1%±1.9%), 100-mile (19.2%±1.5%), and 1,000-mile (16.7%±1.6%) events. No correlation existed between sex difference and running speed for the fastest ever (r2=0.0039, P=0.91) and the ten fastest ever (r2=0.15, P=0.74) for all distances. For the annual fastest, the sex difference in running speed decreased linearly in 50-mile events from 14.6% to 8.9%, remained unchanged in 100-mile (18.0%±8.4%) and 1,000-mile (13.7%±9.1%) events, and increased in 3,100-mile events from 12.5% to 16.9%. For the annual ten fastest runners, the performance difference between sexes decreased linearly in 50-mile events from 31.6%±3.6% to 8.9%±1.8% and in 100-mile events from 26.0%±4.4% to 24.7%±0.9%. To summarize, the fastest men were ~17%–20% faster than the fastest women for all distances from 50 miles to 3,100 miles. The linear decrease in sex difference for 50-mile and 100-mile events may suggest that women are reducing the sex gap for these distances. PMID:25653567

  20. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  1. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, P.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Al-Dhabi, Naif Abdullah

    2015-02-01

    The application of microorganisms for the synthesis of nanoparticles as an eco-friendly and promising approach is welcome due to its non-toxicity and simplicity. The aim of this study was to synthesize silver nanoparticle using Streptomyces sp. (09 PBT 005). 09 PBT 005 was isolated from the soil sample of the agriculture field in Vengodu, Thiruvannamalai district, Tamil Nadu, India. 09 PBT 005 was subjected to molecular characterization by 16S rRNA sequence analysis. It was found that 09 PBT 005 belonged to Streptomyces sp. The isolate Streptomyces sp. 09 PBT 005 was inoculated in fermentation medium and incubated at 30 ºC for 12 days in different pH conditions. The 0.02 molar concentration showed good antibacterial activity against Gram-positive and Gram-negative bacteria at pH-7. The synthesis of silver nanoparticles was investigated by UV-Vis spectroscopy, scanning electron microscopy and Fourier Transform Infrared analysis. The synthesized AgNPs sizes were found to be in the dimensions ranging between 198 and 595 nm. The cytotoxicity of the synthesized nanoparticles was studied against A549 adenocarcinoma lung cancer cell line. It showed 83.23 % activity at 100 μl with IC 50 value of 50 μl. This method will be useful in the biosynthesis of nanoparticles.

  2. Experimental study on the coalescence process of SiO2 supported colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.; Grimaldi, M. G.

    2015-11-01

    We report on an experimental study of the coalescence-driven grow process of colloidal Au nanoparticles on SiO2 surface. Nanoparticles with 30, 50, 80, 100 nm nominal diameters on a SiO2 substrate were deposited, from solutions, by the drop-casting method. Then, annealing processes, in the 573-1173 K temperature range and 900-3600 s time range, were performed. Using scanning electron microscopy analyses, the temporal evolution of the nanoparticles sizes has been studied. In particular, for all classes of nanoparticles, the experimental-obtained diameters distributions evidenced double-peak shapes (i. e. bimodal distributions): a first peak centered (and unchanged changing the annealing temperature and/or time) at the nominal diameter of the as-deposited nanoparticles, , and a second peak shifting at higher mean diameters, , increasing the annealing temperature and/or time. This observation suggested us a coalescence-driven growth process of a nanoparticles sub-population. As a consequence, the temporal evolution of (for each class of nanoparticles and each annealing temperature), within the well-established particles coalescence theoretical framework, has been analyzed. In particular, by the analyses of the experimental data using relations as prescribed by the theoretical model, a characteristic size-dependent activation energy for the Au nanoparticles coalescence process has been evaluated.

  3. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  4. Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Iwata, Masahiro; Katsuno, Junichi

    2017-06-01

    Spherical Ge nanoparticles with diameters of 20-80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

  5. Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity.

    PubMed

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O; Rivera, Hilsamar Félix

    2013-01-01

    Brine shrimp (Artemia salina) larvae were exposed to different sizes of zinc (Zn) and zinc oxide (ZnO) nanoparticles (NPs) to evaluate their toxicity in marine aquatic ecosystems. Acute exposure was conducted in seawater with 10, 50 and 100 mg L(-1) concentrations of the NPs for 24 h and 96 h. Phase contrast microscope images confirmed the accumulation of the NPs inside the guts. Artemia were unable to eliminate the ingested particles, which was thought to be due to the formation of massive particles in the guts. Although the suspensions of the NPs did not exhibit any significant acute toxicity within 24 h, mortalities increased remarkably in 96 h and escalated with increasing concentration of NP suspension to 42% for Zn NPs (40-60 nm) (LC50100 mg L(-1)) and to about 34% for ZnO NPs (10-30 nm) (LC50 > 100 mg L(-1)). The suspensions of Zn NPs were more toxic to Artemia than those of ZnO NPs under comparable regimes. This effect was attributed to higher Zn(2+) levels (ca. up to 8.9 mg L(-1)) released to the medium from Zn NPs in comparison to that measured in the suspensions of ZnO NPs (ca. 5.5 mg L(-1)). In addition, the size of the nanopowders appeared to contribute to the observed toxicities. Although the suspensions possessed aggregates of comparable sizes, smaller Zn NPs (40-60 nm) were relatively more toxic than larger Zn NPs (80-100 nm). Likewise, the suspensions of 10-30 nm ZnO NPs caused higher toxicity than those of 200 nm ZnO NPs. Lipid peroxidation levels were substantially higher in 96 h (p < 0.05), indicating that the toxic effects were due to the oxidative stress.

  6. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  7. TU-H-CAMPUS-TeP3-05: Evaluation of the Microscopic Dose Enhancement in the Nanoparticle-Enhanced Auger Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, W; Jung, S; Ye, S

    Purpose: The aim of this study is to apply Monte Carlo simulations to investigate the nanoparticle dose enhancement for Auger therapy. Methods: Two nanoparticle fabrications were considered: nanoshell and nanosphere. In the first step, a single nanoparticle was irradiated with Auger emitters. The electrons were scored in a phase space at the outer surface of the nanoparticle with Geant4-Penelope. In the second step, the previously recorded phase space was used as a source and placed at the center of a cell-size water phantom. The nanoscale dose was evaluated in water around the nanoparticle with Geant4-DNA. The dose enhancement factor (DEF)more » is defined as the ratio of doses with and without nanoparticles. The nanoparticles were replaced by corresponding water nanoparticle with the same size and volume source which represents typical situation of Auger emitters without nanoparticle. Various sizes/materials of nanoparticles and isotopes were considered. Results: Nanoshell - Microscopic dose was increased up to 130% at 20 – 100 nm distances from the surface of Au-{sup 125}I nanoshell. However, dose at less than 20 nm distance was reduced due to absorbed low energy electrons in gold nanoshell. The amounts and regions of the dose enhancement were dependent on nanoshell size, materials, and isotopes. Nanosphere - The increased amounts of electrons up to 300% and reduced average energy with nanosphere were observed compared with water nanoparticle. We observed localized dose enhancement (up to a factor 3.6) in the immediate vicinity (< 50 nm) of Au-{sup 125} I nanosphere. The dose enhancement patterns vary according to nanosphere sizes and isotopes. Conclusion: We conclude that Auger therapy with nanoparticles can lead to change of electron energy spectrum and dose enhancements at certain range. The dose enhancement patterns vary according to nanoparticle sizes, materials, and isotopes. This work was supported by the National Research Foundation of Korea (NRF

  8. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  9. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGES

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; ...

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeO x catalysts with very similar structural characteristics in CO oxidation.« less

  10. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    PubMed

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  11. Tuning of optical properties of CdS nanoparticles synthesized in a glass matrix

    NASA Astrophysics Data System (ADS)

    Popov, Ivan D.; Kuznetsova, Yulia V.; Rempel, Svetlana V.; Rempel, Andrey A.

    2018-03-01

    Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV-Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.

  12. On the feasibility of sub-100 nm rad emittance measurement in plasma accelerators using permanent magnetic quadrupoles

    NASA Astrophysics Data System (ADS)

    Li, F.; Wu, Y. P.; Nie, Z.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.

    2018-01-01

    Low emittance (sub-100 nm rad) measurement of electron beams in plasma accelerators has been a challenging issue for a while. Among various measurement schemes, measurements based on single-shot quad-scan using permanent magnetic quadrupoles (PMQs) has been recently reported with emittance as low as ˜200 nm Weingartner (2012 Phys. Rev. Spec. Top. Accel. Beams 15 111302). However, the accuracy and reliability of this method have not been systematically analyzed. Such analysis is critical for evaluating the potential of sub-100 nm rad emittance measurement using any scheme. In this paper, we analyze the effects of various nonideal physical factors on the accuracy and reliability using the PMQ method. These factors include aberration induced by a high order field, PMQ misalignment and angular fluctuation of incoming beams. Our conclusions are as follows: (i) the aberrations caused by high order fields of PMQs are relatively weak for low emittance measurement as long as the PMQs are properly constructed. A series of PMQs were manufactured and measured at Tsinghua University, and using numerical simulations their high order field effects were found to be negligible . (ii) The largest measurement error of emittance is caused by the angular misalignment between PMQs. For low emittance measurement of ˜100 MeV beams, an angular alignment accuracy of 0.1° is necessary. This requirement can be eased for beams with higher energies. (iii) The transverse position misalignment of PMQs and angular fluctuation of incoming beams only cause a translational and rotational shift of measured signals, respectively, therefore, there is no effect on the measured value of emittance. (iv) The spatial resolution and efficiency of the detection system need to be properly designed to guarantee the accuracy of sub-100 nm rad emittance measurement.

  13. Synthesis of sub-10 nm solid lipid nanoparticles for topical and biomarker detection applications

    NASA Astrophysics Data System (ADS)

    Calderón-Colón, Xiomara; Patchan, Marcia W.; Theodore, Mellisa L.; Le, Huong T.; Sample, Jennifer L.; Benkoski, Jason J.; Patrone, Julia B.

    2014-02-01

    Solid lipid nanoparticles (SLNs) are a promising platform for sensing in vivo biomarkers due to their biocompatibility, stability, and their ability to carry a wide range of active ingredients. The skin is a prominent target organ for numerous inflammatory and stress-related biomarkers, making it an excellent site for early detection of physiological imbalance and application of sensory nanoparticles. Though smaller particle size has generally been correlated with increased penetration of skin models, there has been little attention paid to the significance of other nanoparticle synthesis parameters with respect to their physical properties. In this study, we demonstrate the synthesis of sub-10 nm SLNs by the phase inversion temperature (PIT) method. These particles were specifically designed for topical delivery of hydrogen peroxide-detecting chemiluminescent dyes. A systematic design of experiments approach was used to investigate the role of the processing variables on SLN form and properties. The processing variables were correlated with the SLN properties (e.g., dye solubility, phase inversion temperature, particle size, polydispersity, melting point, and latent heat of melting). Statistical analysis revealed that the PIT method, while allowing total control over the thermal properties, resulted in well-controlled synthesis of ultra-small particles, while allowing great flexibility in the processing conditions and incorporated compounds.

  14. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors.

    PubMed

    Diaz, Roberto Jose; McVeigh, Patrick Z; O'Reilly, Meaghan A; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold B; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C; Rutka, James T

    2014-07-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50nm or 120nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. This study demonstrates the use of magnetic resonance image-guided transcranial focused ultrasound to open the BBB and enable spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS)-based molecular imaging for experimental tumor tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application.

    PubMed

    Vedhanayagam, Mohan; Nidhin, Marimuthu; Duraipandy, Natarajan; Naresh, Niranjan Dhanasekar; Jaganathan, Ganesh; Ranganathan, Mohan; Kiran, Manikantan Syamala; Narayan, Shoba; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan

    2017-06-01

    Nanoparticle mediated extracellular matrix may offer new and improved biomaterial to wound healing and tissue engineering applications. However, influence of nanoparticle size in extracellular matrix is still unclear. In this work, we synthesized different size of silver nanoparticles (AgNPs) comprising of 10nm, 35nm and 55nm using nutraceuticals (pectin) as reducing as well as stabilization agents through microwave irradiation method. Synthesized Ag-pectin nanoparticles were assimilated in the self-assemble process of collagen leading to fabricated collagen-Ag-pectin nanoparticle based scaffolds. Physico-chemical properties and biocompatibility of scaffolds were analyzed through FT-IR, SEM, DSC, mechanical strength analyzer, antibacterial activity and MTT assay. Our results suggested that 10nm sized Ag-pectin nanoparticles significantly increased the denaturation temperature (57.83°C) and mechanical strength (0.045MPa) in comparison with native collagen (50.29°C and 0.011MPa). The in vitro biocompatibility assay reveals that, collagen-Ag-pectin nanoparticle based scaffold provided higher antibacterial activity against to Gram positive and Gram negative as well as enhanced cell viability toward keratinocytes. This work opens up a possibility of employing the pectin caged silver nanoparticles to develop collagen-based nanoconstructs for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chitosan nanoparticles as a modified diclofenac drug release system

    NASA Astrophysics Data System (ADS)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  17. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    PubMed

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  18. Evolution of the magnetic properties of Co10Cu90 nanoparticles prepared by wet chemistry with thermal annealing.

    PubMed

    García, I; Echeberria, J; Kakazei, G N; Golub, V O; Saliuk, O Y; Ilyn, M; Guslienko, K Y; González, J M

    2012-09-01

    Nanoparticles of Co10Cu90 alloy have been prepared by sonochemical wet method. According to transmission electron microscopy, bimetallic particles with typical diameter of 50-100 nm consisting of nanocrystallites with average diameter of 15-20 nm were obtained. The samples were annealed at 300 degrees C and 450 degrees C. Zero field cooled and field cooled temperature dependences of magnetization in the temperature range of 5-400 K at 50 Oe, as well as magnetization hysteresis loops at 15, 100 and 305 K were measured by vibrating sample magnetometry. Presence of antiferromagnetic phase, most probably of the oxide Co3O4, was observed in as-prepared sample. The lowest coercivity was found for the CoCu sample annealed at-300 degrees C, whereas for as prepared sample and the one annealed at 450 degrees C it was significantly higher. The samples were additionally probed by continuous wave ferromagnetic resonance at room, temperature using a standard X-band electron spin resonance spectrometer. A good correspondence between evolution of the coercivity and the microwave resonance fields with annealing temperature was observed.

  19. Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin

    NASA Astrophysics Data System (ADS)

    Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.

    2013-04-01

    This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.

  20. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  1. Acute toxicity of nickel nanoparticles in rats after intravenous injection

    PubMed Central

    Magaye, Ruth R; Yue, Xia; Zou, Baobo; Shi, Hongbo; Yu, Hongsheng; Liu, Kui; Lin, Xialu; Xu, Jin; Yang, Cui; Wu, Aiguo; Zhao, Jinshun

    2014-01-01

    This study was carried out to add scientific data in regard to the use of metallic nanoparticles in nanomedicine. The acute toxicity of nickel (Ni) nanoparticles (50 nm), intravenously injected through the dorsal penile vein of Sprague Dawley rats was evaluated in this study. Fourteen days after injection, Ni nanoparticles induced liver and spleen injury, lung inflammation, and caused cardiac toxicity. These results indicate that precautionary measures should be taken with regard to the use of Ni nanoparticles or Ni compounds in nanomedicine. PMID:24648736

  2. Synthesis and Thermoluminescence of ZnS:Mn2+ Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Taghavinia, N.; Aminpour, M.

    2007-08-01

    The controlled chemical method has been used for synthesis of Mn doped ZnS nanoparticles. Optical absorption studies showed that increasing of surfactant density, from 0.0001 to 0.5 mol/lit., causes the size of nanoparticles to decrease from 4.8 nm to about 3 nm and the band gap width to increase from 4.15 to 4.50 eV. Also increasing the temperature during the synthesis process caused the nanoparticle size to be increased. As a new result we observed a thermoluminescence (TL) glow peak at about 475 K, with its intensity depending on concentration of the Mn dopant. Activation energy of this glow peak was obtained to be about 0.6eV. A discussion of the obtained results is also presented.

  3. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  4. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Suresh, Udaiyan; Murugan, Kadarkarai; Benelli, Giovanni; Nicoletti, Marcello; Barnard, Donald R; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Dinesh, Devakumar; Chandramohan, Balamurugan

    2015-04-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract

  5. Optical properties of BaTiO3 nanoparticles and silver nanoprisms in polymer host matrices

    NASA Astrophysics Data System (ADS)

    Requena, Sebastian

    Nanocomposites are materials comprised of a host matrix, such as glass or polymer, with embedded nanoparticles. Embedding nanoparticles into the host makes it possible to create materials with properties that are distinctly unique from those of their host and nanoparticle constituents. Nanocomposites can have superior mechanical, thermal, and optical properties compared to their host materials. We characterized the photoluminescent properties of BaTiO3 polymer nanocomposites and the effects of chemically modifying the nanoparticles surface on said properties. BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at ˜3.0 eV and multiple bands centered at ˜2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the ˜3.0 eV emission at low-temperature. On the other hand, polymer coating of the functionalized nanoparticles significantly enhances ˜3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at ˜2.5 eV. Chemical modification of the surface with 3APTS and PMMA presents a pathway to tune and control the photoluminescent properties of BTO nanoparticles. We also present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at ˜520 nm and the other with a dipole resonance at ˜650 nm, placed in different media. The silver nanoprisms were embedded in a polyvinyl alcohol (PVA) polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon

  6. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    PubMed Central

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; Baer, Donald R.; Smith, Jordan N.; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D.; Chen, Shu; Porter, Alexandra E.; Ryan, Mary P.

    2015-01-01

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies. PMID:26178265

  7. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages.

    PubMed

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H; Baer, Donald R; Smith, Jordan N; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D; Chen, Shu; Porter, Alexandra E; Ryan, Mary P

    2015-09-15

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies.

  8. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath

    NASA Astrophysics Data System (ADS)

    Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob

    2016-11-01

    Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100nm) and breath-holding time (3-20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26-50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1-10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs.

  9. Mercury removal in wastewater by iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  10. High-power diode laser modules from 410 nm to 2200 nm

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Kissel, Heiko; Flament, Marco; Wolf, Paul; Brand, Thomas; Biesenbach, Jens

    2010-02-01

    In this work we report on high-power diode laser modules covering a wide spectral range from 410 nm to 2200 nm. Driven by improvements in the technology of diode laser bars with non-standard wavelengths, such systems are finding a growing number of applications. Fields of application that benefit from these developments are direct medical applications, printing industry, defense technology, polymer welding and pumping of solid-sate lasers. Diode laser bars with standard wavelengths from 800 - 1000 nm are based on InGaAlAs, InGaAlP, GaAsP or InGaAs semiconductor material with an optical power of more than 100 W per bar. For shorter wavelengths from 630 - 690 nm InGaAlP semiconductor material is used with an optical power of about 5 W per bar. Extending the wavelength range beyond 1100 nm is realized by using InGaAs on InP substrates or with InAs quantum dots embedded in GaAs for wavelengths up to 1320 nm and (AlGaIn)(AsSb) for wavelengths up to 2200 nm. In these wavelength ranges the output power per bar is about 6 - 20 W. In this paper we present a detailed characterization of these diode laser bars, including measurements of power, spectral data and life time data. In addition, we will show different fiber coupled modules, ranging from 638 nm with 13 W output power (400 μm fiber, NA 0.22) up to 1940 nm with more than 50 W output power (600 μm fiber NA 0.22).

  11. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  12. Improved electrochemical property of nanoparticle polyoxovanadate K7NiV13O38 as cathode material for lithium battery

    NASA Astrophysics Data System (ADS)

    Ni, Erfu; Uematsu, Shinya; Quan, Zhen; Sonoyama, Noriyuki

    2013-06-01

    Molecular cluster ion compound K7NiV13O38 (KNiV) has been studied as a novel cathode material for lithium ion battery. The nanoparticles are prepared by a simple re-crystallization method adding different volumes of acetone to the water solution containing the dissolved KNiV. The KNiV re-crystallized from water/acetone ratio of 1:5 shows the most uniform particle size distribution and the smallest particles with thickness of 100 nm and width of 150 nm. The nanoparticle KNiV shows significant improvement in initial discharge capacity and capacity retention after 50 cycles compared to the as-prepared micro-sized particles at various current densities. Ex situ XRD patterns demonstrate that the discharge-charge process proceeds with amorphous KNiV, which is independent from the crystal structure. Ex situ FT-IR spectra indicate that [NiV13O38]7- cluster ion is stable and reacts reversibly with lithium ion in the discharge-charge process.

  13. Emission analysis on the effect of nanoparticles on neat biodiesel in unmodified diesel engine.

    PubMed

    Pandian, Amith Kishore; Ramakrishnan, Ramesh Bapu Bathey; Devarajan, Yuvarajan

    2017-10-01

    Biodiesels derived from the mahua seeds are established as a promising alternative for the diesel fuel owing to its non-edible nature and improved properties. TiO 2 nanoparticle in powder form is added to neat mahua oil biodiesel (BD100) to examine its effect on emission characteristics. TiO 2 nanoparticle is chosen as an additive owing to its catalytic effect, higher surface energy, and larger surface to volume ratio. TiO 2 nanoparticle with an average size of 60 nm was synthesized by sol-gel route. TiO 2 nanoparticles are added with mahua biodiesel (BD100) at 100 and 200 ppm. Mahua oil biodiesel doped with 100 and 200 ppm of TiO 2 nanoparticles are referred as BD100T100 and BD100T200. A constant speed diesel engine is employed for the experimental trail. Engine is fueled with diesel, BD100, BD100T100, and BD100T200, respectively. Experimental result confirmed that the modified fuels (BD100T200 and BD100T100) showed a significant reduction in all the emissions. Further, the addition of TiO 2 nanoparticle (200 ppm) to mahua biodiesel gave respective reduction of 9.3, 5.8, 6.6, and 2.7% in carbon monoxide, hydrocarbon, nitrogen oxide, and smoke emissions when compared to neat mahua biodiesel.

  14. Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.

    PubMed

    Li, Shuo; Bandy, Jason A; Hamers, Robert J

    2018-02-14

    Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.

  15. Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Jabir, Majid S.; Abdulameer, Farah A.

    2018-03-01

    Carbon nanoparticles (CNPs) decorated with cupric oxide nanoparticles (CuO NPs) were prepared by laser ablation in water, and their antibacterial activity was examined. X-ray diffraction measurements demonstrated the presence of carbon phases and different CuO phases, and results were confirmed by Fourier transform infrared analysis. Energy- Dispersive spectra showed the presence of C, O, and Cu in the final product. Transmission electron micrographs revealed that the CNPs were 10-80 nm in size and spherical; after being decorated with CuO NPs, particles became 5-50 nm in size and uniform in shape. The absorption spectrum of decorated Nanoparticles indicated the appearance of a new peak at 254-264 nm in addition to the fundamental peak at 228 nm. We then examined the antibacterial activity of the decorated CNPs for both gram-negative and -positive bacteria using the agar-well-diffusion method. The mode of action was determined using acridine orange-ethidium bromide staining to detect reactive oxygen species, and bacterial morphological change was studied by scanning electron microscopy. Results showed that CNPs decorated with 43% CuO NPs had the highest antibacterial activity for gram-positive bacteria. The CNPs acted on the cytoplasmic membrane and nucleic acid of bacteria, which led to a loss of cell-wall integrity, increased cell-wall permeability, and nucleic acid damage. The results offer a novel way to synthesis Carbon nanoparticles decorated with cupric oxide nanoparticles and could use them as novel antibacterial agent in future for pharmaceutical and biomedical applications.

  16. Evaluation of a novel personal nanoparticle sampler.

    PubMed

    Zhou, Yue; Irshad, Hammad; Tsai, Chuen-Jinn; Hung, Shao-Ming; Cheng, Yung-Sung

    2014-02-01

    This work investigated the performance in terms of collection efficiency and aspiration efficiency of a personal sampler capable of collecting ultrafine particles (nanoparticles) in the occupational environment. This sampler consists of a cyclone for respirable particle classification, micro-orifice impactor stages with an acceleration nozzle to achieve nanoparticle classification and a backup filter to collect nanoparticles. Collection efficiencies of the cyclone and impactor stages were determined using monodisperse polystyrene latex and silver particles, respectively. Calibration of the cyclone and impactor stages showed 50% cut-off diameters of 3.95 μm and 94.7 nm meeting the design requirements. Aspiration efficiencies of the sampler were tested in a wind tunnel with wind speeds of 0.5, 1.0, and 1.5 m s(-1). The test samplers were mounted on a full size mannequin with three orientations toward the wind direction (0°, 90°, and 180°). Monodisperse oleic acid aerosols tagged with sodium fluorescein in the size range of 2 to 10 μm were used in the test. For particles smaller than 2 μm, the fluorescent polystyrene latex particles were generated by using nebulizers. For comparison of the aspiration efficiency, a NIOSH two-stage personal bioaerosol sampler was also tested. Results showed that the orientation-averaged aspiration efficiency for both samplers was close to the inhalable fraction curve. However, the direction of wind strongly affected the aspiration efficiency. The results also showed that the aspiration efficiency was not affected by the ratio of free-stream velocity to the velocity through the sampler orifice. Our evaluation showed that the current design of the personal sampler met the designed criteria for collecting nanoparticles100 nm in occupational environments.

  17. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  18. A High-Yield Synthesis of Chalcopyrite CuIn S 2 Nanoparticles with Exceptional Size Control

    DOE PAGES

    Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; ...

    2009-01-01

    We repormore » t high-yield and efficient size-controlled syntheses of Chalcopyrite CuIn S 2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100 ° C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100 ° C to 200 ° C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1 H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuIn S 2 nanoparticles.« less

  19. Supercritical fluid technology of nanoparticle coating for new ceramic materials.

    PubMed

    Aymonier, Cyril; Elissalde, Catherine; Reveron, Helen; Weill, François; Maglione, Mario; Cansell, François

    2005-06-01

    This work highlights, for the first time, the coating of ferroelectric nanoparticles with a chemical fluid deposition process in supercritical fluids. BaTiO3 nanoparticles of about 50 nm are coated with a shell of a few nanometers of amorphous alumina and can be recovered as a dry powder for processing. The sintering of these core-shell nanoparticles gives access to a ceramic material with very interesting ferroelectric properties, in particular, dielectric losses below 1%.

  20. Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles

    NASA Technical Reports Server (NTRS)

    Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo

    2003-01-01

    Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.

  1. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    PubMed Central

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  2. Study of sintering behavior of vapor forms of 1-octanethiol coated copper nanoparticles for application to ink-jet printing technology.

    PubMed

    Kwon, Jinhyeong; Park, Shinyoung; Haque, Md Mominul; Kim, Young-Seok; Lee, Caroline Sunyong

    2012-04-01

    Sub-50 nm copper nanoparticles coated with sub-5 nm 1-octanethiol layer for oxidation inhibition were examined to confirm the 1-octanethiol removal temperature as the sub-50 nm copper nanoparticles are sintered. As a result, 1-octanethiol Self-Assembled Multi-layers (SAMs) on sub-50 nm copper nanoparticles were successfully removed before sintering of copper nanoparticles so that a high density of copper line could be obtained. Finally, the line resistivity was measured and compared to verify the effect of sintering in different atmospheres. As a result, electrical resistivity of the copper pattern sintered in hydrogen atmosphere was measured at 6.96 x 10(-6) ohm-cm whereas that of the copper pattern sintered in mixed gas atmosphere was measured at 2.62 x 10(-5) ohm-cm. Thus, sintering of copper patterns was successfully done to show low electrical resistivity values. Moreover, removal of 1-octanethiol coating after sintering process was confirmed using X-ray photoelectron spectroscopy (XPS) analysis. By showing no sulfur content, XPS results indicate that 1-octanethiol is completely removed. Therefore, the vapor form of 1-octanethiol coating layers can be safely used as an oxidation inhibition layer for low temperature sintering processes and ink-jet applications.

  3. Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy.

    PubMed

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Goodwin, Andrew P

    2016-08-23

    Ultrasound is widely applied in medical diagnosis and therapy due to its safety, high penetration depth, and low cost. In order to improve the contrast of sonographs and efficiency of the ultrasound therapy, echogenic gas bodies or droplets (with diameters from 200 nm to 10 µm) are often used, which are not very stable in the bloodstream and unable to penetrate into target tissues. Recently, it was demonstrated that nanobubbles stabilized by nanoparticles can nucleate ultrasound responsive microbubbles under reduced acoustic pressures, which is very promising for the development of nanoscale (<100 nm) ultrasound agents. However, there is still very little understanding about the effects of nanoparticle properties on the stabilization of nanobubbles and nucleation of acoustic cavitation by these nanobubbles. Here, a series of mesoporous silica nanoparticles with sizes around 100 nm but with different morphologies were synthesized to understand the effects of nanoparticle porosity, surface roughness, hydrophobicity, and hydrophilic surface modification on acoustic cavitation inception by porous nanoparticles. The chemical analyses of the nanoparticles showed that, while the nanoparticles were prepared using the same silica precursor (TEOS) and surfactant (CTAB), they revealed varying amounts of carbon impurities, hydroxyl content, and degrees of silica crosslinking. Carbon impurities or hydrophobic modification with methyl groups is found to be essential for nanobubble stabilization by mesoporous silica nanoparticles. The acoustic cavitation experiments in the presence of ethanol and/or bovine serum albumin (BSA) demonstrated that acoustic cavitation is predominantly nucleated by the nanobubbles stabilized at the nanoparticle surface not inside the mesopores. Finally, acoustic cavitation experiments with rough and smooth nanoparticles were suggested that a rough nanoparticle surface is needed to largely preserve surface nanobubbles after coating the surface with

  4. The role of pore geometry in single nanoparticle detection

    DOE PAGES

    Davenport, Matthew; Healy, Ken; Pevarnik, Matthew; ...

    2012-08-22

    In this study, we observe single nanoparticle translocation events via resistive pulse sensing using silicon nitride pores described by a range of lengths and diameters. Pores are prepared by focused ion beam milling in 50 nm-, 100 nm-, and 500 nm-thick silicon nitride membranes with diameters fabricated to accommodate spherical silica nanoparticles with sizes chosen to mimic that of virus particles. In this manner, we are able to characterize the role of pore geometry in three key components of the detection scheme, namely, event magnitude, event duration, and event frequency. We find that the electric field created by the appliedmore » voltage and the pore’s geometry is a critical factor. We develop approximations to describe this field, which are verified with computer simulations, and interactions between particles and this field. In so doing, we formulate what we believe to be the first approximation for the magnitude of ionic current blockage that explicitly addresses the invariance of access resistance of solid-state pores during particle translocation. These approximations also provide a suitable foundation for estimating the zeta potential of the particles and/or pore surface when studied in conjunction with event durations. We also verify that translocation achieved by electro-osmostic transport is an effective means of slowing translocation velocities of highly charged particles without compromising particle capture rate as compared to more traditional approaches based on electrophoretic transport.« less

  5. Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review

    PubMed Central

    Möller, Winfried; Pagels, Joakim H.; Kreyling, Wolfgang G.; Swietlicki, Erik; Schmid, Otmar

    2014-01-01

    Abstract Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30–70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data. PMID:24151837

  6. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    PubMed

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Y.-F.; Kim, H.; Kovenklioglu, S.

    2007-09-15

    BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles. BaSO{sub 4} nanoparticles in the size range of 15-100 nm were reactively precipitated within the confinement of an aqueous droplet which was coalesced from two separate aqueous droplets containing BaCl{sub 2} and (NH{sub 4}){sub 2}SO{sub 4} using a three T-junction micromixer configuration constructed with commercially available simple tubing and fitting supplies. Also, DPA nanoparticles of about 200 nm were crystallized by combining DPA+ethanol and watermore » droplets using the same micromixer configuration. - Graphical abstract: BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles.« less

  8. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    PubMed

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  9. Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles.

    PubMed

    Isojima, Tatsushi; Lattuada, Marco; Vander Sande, John B; Hatton, T Alan

    2008-09-23

    Janus nanoparticles have been synthesized consisting of approximately 5 nm magnetite nanoparticles coated on one side with a pH-dependent and temperature-independent polymer (poly(acrylic acid), PAA), and functionalized on the other side by a second (tail) polymer that is either a pH-independent polymer (polystyrene sodium sulfonate, PSSNa) or a temperature-dependent polymer (poly(N-isopropyl acrylamide), PNIPAM). These Janus nanoparticles are dispersed stably as individual particles at high pH values and low temperatures, but can self-assemble at low pH values (PSSNa) or at high temperatures (>31 degrees C) (PNIPAM) to form stable dispersions of clusters of approximately 80-100 nm in hydrodynamic diameter. The Janus nanoparticle compositions were verified using FTIR and XPS, and their structures observed directly by TEM. Their clustering behavior is analyzed by dynamic light scattering and zeta potential measurements.

  10. Detection of Silver Nanoparticles in Cells by Flow Cytometry Using Light Scattering and Far-red Fluorescence

    EPA Science Inventory

    The cellular uptake of different sized silver nanoparticles (l0 nm, 50 nm, and 75nm) coated with polyvinylpyrrolidone (PVP) or citrate in ARPE-19 cells following 24 hour incubation was detected by side scatter through the use of a flow cytometer. A large far red fluorescence sign...

  11. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.

    PubMed

    Yuill, Elizabeth M; Sa, Niya; Ray, Steven J; Hieftje, Gary M; Baker, Lane A

    2013-09-17

    Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.

  12. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    PubMed

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Study of iron oxide nanoparticles in soil for remediation of arsenic

    NASA Astrophysics Data System (ADS)

    Shipley, Heather J.; Engates, Karen E.; Guettner, Allison M.

    2011-06-01

    There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 μg/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 μg/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.

  14. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Xu, Hua-lan; Zhong, Sheng-liang; Wang, Lei

    2017-07-01

    Rare-earth stannate (Ln2Sn2O7 (Ln = Y, La-Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, pH value, and alkali source on the preparation was investigated. The results revealed that the pH value plays an important role in the formation process of gadolinium stannate (Gd2Sn2O7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the pH value of 11.5. A possible formation mechanism was briefly proposed. Gd2Sn2O7:Eu3+ nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd2Sn2O7 nanoparticles were paramagnetic. The other rare-earth stannate Ln2Sn2O7 (Ln = Y, La-Lu) nanocrystals were prepared by similar approaches.

  15. Ion beam synthesis of Au nanoparticles embedded nano-composite glass

    NASA Astrophysics Data System (ADS)

    Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.

    2013-02-01

    Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.

  16. Tunable magnetic properties and magnetocaloric effect of off-stoichiometric LaMnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tola, P. S.; Kim, H. S.; Kim, D. H.; Phan, T. L.; Rhyee, J. S.; Shon, W. H.; Yang, D. S.; Manh, D. H.; Lee, B. W.

    2017-12-01

    The crystal and electronic structures and the magnetic and magnetocaloric properties of off-stoichiometric LaMnO3 nanoparticles (NPs) with various particle sizes D = 20-100 nm were studied. The Rietveld refinement revealed that all NPs were crystallized in the rhombohedral structure, with varied structural parameters dependent on D. Magnetization (M) measurements indicated a considerable difference between zero-field-cooled and field-cooled magnetizations at temperatures below ferromagnetic-paramagnetic (FM-PM) phase transition, particularly for the samples with D = 25-40 nm. These results are ascribed to spin-glass-like behaviors and magnetic inhomogeneity. We also found the possibility of tuning the FM-PM phase transition temperature (TC) from 77 to 262 K, which is dependent on both D and W (the eg-electron bandwidth). Under an applied field of H = 50 kOe, the absolute maximum magnetic entropy change that achieved around TC can be improved from 4.02 J kg-1 K-1 for D = 40 nm to 6.36 Jṡ kg-1ṡ K-1 for D = 100 nm, corresponding to the relative-cooling-power values of 241-245 Jṡ kg-1. We also analyzed the data of M and magnetic entropy change based on theoretical models to further understand the magnetic property and phase-transition type of the NP samples.

  17. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy

    PubMed Central

    Butterworth, K T; Coulter, J A; Jain, S; Forker, J; McMahon, S J; Schettino, G; Prise, K M; Currell, F J; Hirst, D G

    2010-01-01

    High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 μg ml−1. This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy. PMID:20601762

  18. Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy.

    PubMed

    Tetgure, Sandesh R; Borse, Amulrao U; Sankapal, Babasaheb R; Garole, Vaman J; Garole, Dipak J

    2015-04-01

    Simple and eco-friendly biosynthesis approach was developed to synthesize silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using Ficus racemosa latex as reducing agent. The presence of sunlight is utilized with latex and achieved the nanoparticles whose average size was in the range of 50-120 nm for SNPs and 20-50 nm for GNPs. The synthesized nanoparticles were characterized by UV/Visible absorption spectroscopy, X-ray diffraction, and field emission-scanning electron microscopy techniques toget understand the obtained nanoparticles. The pH-dependent binding studies of SNPs and GNPs with four amino acids, namely L-lysine, L-arginine, L-glutamine and glycin have been reported.

  19. [New toxicological patterns of nanomaterials, nanostructures and nanoparticles].

    PubMed

    Mazzotta, M; Mazzotta, A D; Fernández, M; Tamborino, B; De Filippis, G

    2012-01-01

    Nanomaterials engineered as nanotubes, quantum-dots, dendrimers or hybrid systems are increasing themselves by an annual mean rate of 4-5%, with rapid spread in various sectors e.g. biomedical. The liposolubility through membranes and the hydrosolubility through active transport do not interfere with nanoparticles below a certain size, which without activation processes and carrier, transport through thanks to capillaries, to intracellular pores (60 - 70 nm) and fissures (4 - 6 nm) in the same membranes. Conversely, in the processes of pinocytosis/endocytosis energy and carrier are required and endocytosis clathrin/caveolae mediated,is respectively for nanoparticles higher or lower than 200 nm. In occupational hazard nanostructures ranging from a few nm up to 100 - 150 nm have the ability to affect several organs through inhalation, intestinal, parental or dermal route of access. New toxicological aspects are associated to the capacity of nanomaterials of being more or less biocompatible or hydrosoluble, of creating bonds with proteins or to determine accumulation in the cells due to an incomplete elimination process.

  20. Towards magnetic-enhanced cellular uptake, MRI and chemotherapeutics delivery by magnetic mesoporous silica nanoparticles.

    PubMed

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-10-01

    A type of nanoparticle with three functional modalities was prepared with the aim of providing a multifunctional drug delivery system. The nanoparticle was 50 nm in size, with 2.7 nm mesopores and a magnetic nanocrystal core, which was further doped with FITC to enable the tracking of cellular uptake. We demonstrated that the internalization of the nanoparticles in tumor cells could be enhanced by applying an external magnetic field and furthermore, this kind of nanoparticle could be used in magnetic targeted drug delivery. With high transverse relaxivity, the magnetic nanoparticles shortened proton relaxation time and induced high magnetic resonance imaging contrast in tumor cells. Studies on anticancer drug loading and delivery capacity of anticancer drugs also showed that this type of nanoparticles could load water-soluble doxorubicin, and produce a prominent inhibitive effect against tumor cells. Taken together, the presented nanoparticles could become a promising agent in cancer theranostics.

  1. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  2. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  3. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  4. Nanoparticles for Biomedical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less

  5. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials.

    PubMed

    Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B

    2017-11-01

    The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging.

    PubMed

    Zhang, Bingbo; Yang, Weitao; Yu, Jiani; Guo, Weisheng; Wang, Jun; Liu, Shiyuan; Xiao, Yi; Shi, Donglu

    2017-02-01

    Gadolinium (Gd)-based nanoparticles are known for their high potential in magnetic resonance imaging (MRI). However, further MRI applications of these nanoparticles are hampered by their relatively large sizes resulting in poor organ/tumor targeting. In this study, ultrafine sub-10 nm and biocompatible Gd-based nanoparticles are synthesized in a bioinspired, environmentally benign, and straightforward fashion. This novel green synthetic strategy is developed for growing dextran-coated Gd-based nanoparticles (GdNPs@Dex). The as-prepared GdNPs@Dex is not only biocompatible but also stable with a sub-10 nm size. It exhibits higher longitudinal and transverse relaxivities in water (r 1 and r 2 values of 5.43 and 7.502 s -1 × 10 -3 m -1 of Gd 3+ , respectively) than those measured for Gd-DTPA solution (r 1 and r 2 values of 3.42 and 3.86 s -1 × 10 -3 m -1 of Gd 3+ , respectively). In vivo dynamic T 1 -weighted MRI in tumor-bearing mice shows GdNPs@Dex can selectively target kidneys and tumor, in addition to liver and spleen. GdNPs@Dex is found particularly capable for determining the tumor boundary with clearly enhanced tumor angiogenesis. GdNPs@Dex is also found cleared from body gradually mainly via hepatobiliary and renal processing with no obvious systemic toxicity. With this green synthesis strategy, the sub-10 nm GdNPs@Dex presents promising potentials for translational biomedical imaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity.

    PubMed

    Kanakalakshmi, A; Janaki, V; Shanthi, K; Kamala-Kannan, S

    2017-11-01

    The aim of this study was to synthesize and characterize Cr(III) nanoparticles using wastewater from electroplating industries and chromium-resistant Bacillus subtilis. Formation of Cr(III) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 300 nm. The size of the nanoparticles varied from 4 to 50nm and energy dispersive spectroscopy profile shows strong Cr peak approximately at 4.45 and 5.2 keV. The nanoparticles inhibited the growth of pathogenic bacteria Staphylococcus aureus and Escherichia coli. The cytotoxic effect of the synthesized Cr(III) nanoparticle was studied using HEK 293 cells, and the cell viability was found to decrease with increasing concentration of Cr(III) nanoparticles.

  8. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles.

    PubMed

    Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R

    2016-11-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.

  9. Stress in titania nanoparticles: an atomistic study.

    PubMed

    Darkins, Robert; Sushko, Maria L; Liu, Jun; Duffy, Dorothy M

    2014-05-28

    Stress engineering is becoming an increasingly important method for controlling electronic, optical, and magnetic properties of nanostructures, although the concept of stress is poorly defined at the nanoscale. We outline a procedure for computing bulk and surface stress in nanoparticles using atomistic simulation. The method is applicable to ionic and non-ionic materials alike and may be extended to other nanostructures. We apply it to spherical anatase nanoparticles ranging from 2 to 6 nm in diameter and obtain a surface stress of 0.89 N m(-1), in agreement with experimental measurements. Based on the extent that stress inhomogeneities at the surface are transmitted into the bulk, two characteristic length-scales are identified: below 3 nm bulk and surface regions cannot be defined and the available analytic theories for stress are not applicable, and above about 5 nm the stress becomes well-described by the theoretical Young-Laplace equation. The effect of a net surface charge on the bulk stress is also investigated. It is found that moderate surface charges can induce significant bulk stresses, on the order of 100 MPa, in nanoparticles within this size range.

  10. Synthesis of indium-containing nanoparticles using plasmas in water to study their effects on living body

    NASA Astrophysics Data System (ADS)

    Amano, Takaaki; Koga, Kazunori; Sarinont, Thapanut; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Kitazaki, Satoshi; Hirata, Miyuki; Nakatsu, Yoshimichi; Tanaka, Akiyo

    2015-09-01

    Nanoparticles can be employed for biomedical applications such as biomarkers, drug delivery systems, and cancer therapies. They are, however, pointed out their adverse effects on human body. Here, we synthesed indium-containing nanoparticles using discharge plasmas with indium electrodes immersed in DI water and administrated nanoparticles to rats to analyze their kinetics in living body. The discharge power was 5.1 W. The electron density is 5x1017/cm3 deduced from Stark broadening of hydrogen lines. TEM observation shows the mean size of primary nanoparticles is 7 nm. The nanoparticles are indium crystalline and indium hydroxide crystalline. The synthesized nanoparticles and purchased nanoparticles (In2O3, <100nm) were administrated to rats using subcutaneous injection. Indium of 166.7 g/day (synthesized) and of 27.8 g/day (purchased) are detected from the urine at 12 weeks after the administration. Synthesized nanoparticles dispersed in water are useful for analyzing kinetics of nanoparticles in living body. Work partly supported by KAKENHI.

  11. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  12. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery

    NASA Astrophysics Data System (ADS)

    Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi

    2016-12-01

    In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.

  13. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    NASA Astrophysics Data System (ADS)

    Morgaleva, T.; Morgalev, Yu; Gosteva, I.; Morgalev, S.

    2015-11-01

    The effect of nanoparticles with the particle size Δ50=5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C20 is determined for all the organisms used in bioassays. L(E)C50 is estimated for Paramecium caudatum (L(E)C50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C50 = 0.529 mg/l), for Daphnia m. S (L(E)C50 > 100 mg/l) and for fish Danio rerio (L(E)C50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances.

  14. Efficient Cisplatin Pro-Drug Delivery Visualized with Sub-100 nm Resolution: Interfacing Engineered Thermosensitive Magnetomicelles with a Living System

    DOE PAGES

    Vitol, Elina A.; Rozhkova, Elena A.; Rose, Volker; ...

    2014-06-06

    Temperature-responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this paper, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm-co-AAm)-b-PCL core-shell were loaded with a hydrophobic Pt(IV) complex and Fe 3O 4 nanoparticles though self-assembly.more » The distribution of a platinum complex on subcellular level is visualized using hard X-ray fluorescence microscopy with unprecedented level of detail at sub-100 nm spatial resolution. We then study the cytotoxic effects of platinum complex-loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. In conclusion, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.« less

  15. Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles.

    PubMed

    Raghnaill, Michelle Nic; Bramini, Mattia; Ye, Dong; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Åberg, Christoffer; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A

    2014-03-07

    Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known 'toxic' and 'non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during long-term accumulation.

  16. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.

    PubMed

    He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan

    2017-06-01

    Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis of gold and silver nanoparticles using leaf extract of Perilla frutescens--a biogenic approach.

    PubMed

    Basavegowda, Nagaraj; Lee, Yong Rok

    2014-06-01

    The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.

  18. Background-Free 3D Nanometric Localization and Sub-nm Asymmetry Detection of Single Plasmonic Nanoparticles by Four-Wave Mixing Interferometry with Optical Vortices

    NASA Astrophysics Data System (ADS)

    Zoriniants, George; Masia, Francesco; Giannakopoulou, Naya; Langbein, Wolfgang; Borri, Paola

    2017-10-01

    Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry, and material sciences. Despite significant advances, localizing objects with nanometric position precision in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Here, we show a new four-wave-mixing interferometry technique, whereby the position of a single nonfluorescing gold nanoparticle of 25-nm radius is determined with 16 nm precision in plane and 3 nm axially from rapid single-point measurements at 1-ms acquisition time by exploiting optical vortices. The precision in plane is consistent with the photon shot-noise, while axially it is limited by the nano-positioning sample stage, with an estimated photon shot-noise limit of 0.5 nm. The detection is background-free even inside biological cells. The technique is also uniquely sensitive to particle asymmetries of only 0.5% ellipticity, corresponding to a single atomic layer of gold, as well as particle orientation. This method opens new ways of unraveling single-particle trafficking within complex 3D architectures.

  19. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  20. Sub-100nm resolution microscopy based on proximity projection grating scheme

    PubMed Central

    Hu, Feng; Somekh, Michael G.; Albutt, Darren J.; Webb, Kevin; Moradi, Emilia; See, Chung W.

    2015-01-01

    Structured illumination microscopy (SIM) has been widely used in life science imaging applications. The maximum resolution improvement of SIM, compared to conventional bright field system is a factor of 2. Here we present an approach to structured illumination microscopy using the proximity projection grating scheme (PPGS), which has the ability to further enhance the SIM resolution without invoking any nonlinearity response from the sample. With the PPGS-based SIM, sub-100nm resolution has been obtained experimentally, and results corresponding to 2.4 times resolution improvement are presented. Furthermore, it will be shown that an improvement of greater than 3 times can be achieved. PMID:25715953

  1. Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.

    PubMed

    Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong

    2018-05-18

    Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dielectric properties and microstructure of sintered BaTiO3 fabricated by using mixed 150-nm and 80-nm powders with various additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Kang, Jae Won; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2015-04-01

    Recently, the use of small-sized BaTiO3 particles for ultra-thin MLCC research has increased as a method for minimizing the dielectric layer's thickness in thick film process. However, when particles smaller than 100 nm are used, the reduced particle size leads to a reduced dielectric constant. The use of nanoparticles, therefore, requires an increase in the amount of additive used due to the increase in the specific surface area, thus increasing the production cost. In this study, a novel method of coating 150-nm and 80-nm BaTiO3 powders with additives and mixing them together was employed, taking advantage of the effect obtained through the use of BaTiO3 particles smaller than 100 nm, to conveniently obtain the desired dielectric constant and thermal characteristics. Also, the microstructure and the dielectric properties were evaluated. The additives Dy, Mn, Mg, Si, and Cr were coated on a 150-nm powder, and the additives Dy, Mn, Mg, and Si were coated on 80-nm powder, followed by mixing at a ratio of 1:1. As a result, the microstructure revealed grain formation according to the liquid-phase additive Si; additionally, densification was well realized. However, non-reducibility was not obtained, and the material became a semiconductor. When the amount of added Mn in the 150-nm powder was increased to 0.2 and 0.3 mol%, insignificant changes in the microstructure were observed, and the bulk density after mixing was found to have increased drastically in comparison to that before mixing. Also, non-reducibility was obtained for certain conditions. The dielectric property was found to be consistent with the densification and the grain size. The mixed composition #1-0.3 had a dielectric constant over 2000, and the result somewhat satisfied the dielectric constant temperature dependency for X6S.

  3. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry

    PubMed Central

    Di Bucchianico, Sebastiano; Cappellini, Francesca; Le Bihanic, Florane; Zhang, Yuning; Dreij, Kristian; Karlsson, Hanna L.

    2017-01-01

    The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50–150nm), NM101 (anatase, 5–8nm) and NM103 (rutile, 20–28nm) for 3, 24 or 48h mainly at concentrations 1–30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles. PMID:27382040

  4. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath

    PubMed Central

    Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob

    2016-01-01

    Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100nm) and breath-holding time (3–20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26–50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1–10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs. PMID:27819335

  5. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

    NASA Astrophysics Data System (ADS)

    Lim, Dong-Kwon; Jeon, Ki-Seok; Hwang, Jae-Ho; Kim, Hyoki; Kwon, Sunghoon; Suh, Yung Doug; Nam, Jwa-Min

    2011-07-01

    An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R2 > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 108, which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 108 and 5.0 × 109.

  6. Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser.

    PubMed

    Vainrub, Arnold; Pustovyy, Oleg; Vodyanoy, Vitaly

    2006-10-01

    Resolution of 90 nm was achieved with a research microscope simply by replacing the standard bright-field condenser with a homebuilt illumination system with a cardioid annular condenser. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects were clearly visible on a calibrated microscope test slide. The resolution increase results from a known narrower diffraction pattern in coherent illumination for the annular aperture compared with the circular aperture. This explanation is supported by an excellent accord of calculated and measured diffraction patterns for a 50 nm radius disk.

  7. Dye-doped silica-based nanoparticles for bioapplications

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong

    2013-12-01

    This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.

  8. Addressable Direct-Write Nanoscale Filament Formation and Dissolution by Nanoparticle-Mediated Bipolar Electrochemistry.

    PubMed

    Crouch, Garrison M; Han, Donghoon; Fullerton-Shirey, Susan K; Go, David B; Bohn, Paul W

    2017-05-23

    Nanoscale conductive filaments, usually associated with resistive memory or memristor technology, may also be used for chemical sensing and nanophotonic applications; however, realistic implementation of the technology requires precise knowledge of the conditions that control the formation and dissolution of filaments. Here we describe and characterize an addressable direct-write nanoelectrochemical approach to achieve repeatable formation/dissolution of Ag filaments across a ∼100 nm poly(ethylene oxide) (PEO) film containing either Ag + alone or Ag + together with 50 nm Ag-nanoparticles acting as bipolar electrodes. Using a conductive AFM tip, formation occurs when the PEO film is subjected to a forward bias, and dissolution occurs under reverse bias. Formation-dissolution kinetics were studied for three film compositions: Ag|PEO-Ag + , Ag|poly(ethylene glycol) monolayer-PEO-Ag + , and Ag|poly(ethylene glycol) monolayer-PEO-Ag + /Ag-nanoparticle. Statistical analysis shows that the distribution of formation times exhibits Gaussian behavior, and the fastest average initial formation time occurs for the Ag|PEO-Ag + system. In contrast, formation in the presence of Ag nanoparticles likely proceeds by a noncontact bipolar electrochemical mechanism, exhibiting the slowest initial filament formation. Dissolution times are log-normal for all three systems, and repeated reformation of filaments from previously formed structures is characterized by rapid regrowth. The direct-write bipolar electrochemical deposition/dissolution strategy developed here presents an approach to reconfigurable, noncontact in situ wiring of nanoparticle arrays-thereby enabling applications where actively controlled connectivity of nanoparticle arrays is used to manipulate nanoelectronic and nanophotonic behavior. The system further allows for facile manipulation of experimental conditions while simultaneously characterizing surface conditions and filament formation/dissolution kinetics.

  9. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    NASA Astrophysics Data System (ADS)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  10. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    PubMed

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.

  11. Size-dependent reactivity of diamond nanoparticles.

    PubMed

    Williams, Oliver A; Hees, Jakob; Dieker, Christel; Jäger, Wolfgang; Kirste, Lutz; Nebel, Christoph E

    2010-08-24

    Photonic active diamond nanoparticles attract increasing attention from a wide community for applications in drug delivery and monitoring experiments as they do not bleach or blink over extended periods of time. To be utilized, the size of these diamond nanoparticles needs to be around 4 nm. Cluster formation is therefore the major problem. In this paper we introduce a new technique to modify the surface of particles with hydrogen, which prevents cluster formation in buffer solution and which is a perfect starting condition for chemical surface modifications. By annealing aggregated nanodiamond powder in hydrogen gas, the large (>100 nm) aggregates are broken down into their core ( approximately 4 nm) particles. Dispersion of these particles into water via high power ultrasound and high speed centrifugation, results in a monodisperse nanodiamond colloid, with exceptional long time stability in a wide range of pH, and with high positive zeta potential (>60 mV). The large change in zeta potential resulting from this gas treatment demonstrates that nanodiamond particle surfaces are able to react with molecular hydrogen at relatively low temperatures, a phenomenon not witnessed with larger (20 nm) diamond particles or bulk diamond surfaces.

  12. Optical and structure characterization of cinnamon nanoparticles synthesized by pulse laser ablation in liquid (PLAL)

    NASA Astrophysics Data System (ADS)

    Aqeel Salim, Ali; Bidin, Noriah; Bakhtiar, Hazri; Krishna Ghoshal, Sib; Azawi, Mohammed Al; Krishnan, Ganesan

    2018-05-01

    Organic nanoparticles development is under exploration due to its beneficial applications in nanobiomedical and research interests. PLAL technique of Q-switched 1064-Nd: YAG (10 ns pulse duration, repetition rate 1 Hz and laser energy 20-100 mJ) has inherent advantages and rapid growth of nanoparticles when compared to conventional methods because of the controlled fabricated nanoparticles, stability, and purity. Cinnamon sticks as a target are immersed in 5 ml ethanol medium and irradiated by a laser beam for the growth process. The morphology, optical characteristic, and bonding structure of cinnamon nanoparticles (CNPs) are determined and evaluated by transmission electron microscope (TEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). Spherical, homogenous and high crystallinity CNPs was revealed within the particle size range of 2 - 28 nm. The absorption band was found in the ultraviolent region around 259 nm and 319 nm. The present of FTIR spectra confirmed that the nanoparticles were covered by plant secondary metabolites. The experimental findings revealed that the synthesize CNPs in ethanol has a potential for nanomedicine applications.

  13. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO 3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO 3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  14. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    PubMed

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Hun; Kim, Jin Hyoung; Kim, Kyu-Won; Kim, Myung Hun; Yu, Young Suk

    2009-12-01

    The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 ± 5%), endothelial cells (17 ± 6%) and peri-endothelial glial cells (8 ± 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.

  16. Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications.

    PubMed

    Kong, Qinglu; Zhang, Lingxia; Liu, Jianan; Wu, Meiying; Chen, Yu; Feng, Jingwei; Shi, Jianlin

    2014-12-25

    Hydrophilic mesoporous carbon nanoparticles (MCNs) have been synthesized via an extremely facile precursor carbonization-in-hot solvent route. The synthesized MCNs show well-defined particle and pore size distribution at around 100 nm and 2.7 nm, respectively, and multicolor and upconversion photoluminescence, which endow the MCNs with multicolor/upconversion bioimaging and drug delivery properties.

  17. DNA nanostructure-directed assembly of metal nanoparticle superlattices

    NASA Astrophysics Data System (ADS)

    Julin, Sofia; Nummelin, Sami; Kostiainen, Mauri A.; Linko, Veikko

    2018-05-01

    Structural DNA nanotechnology provides unique, well-controlled, versatile, and highly addressable motifs and templates for assembling materials at the nanoscale. These methods to build from the bottom-up using DNA as a construction material are based on programmable and fully predictable Watson-Crick base pairing. Researchers have adopted these techniques to an increasing extent for creating numerous DNA nanostructures for a variety of uses ranging from nanoelectronics to drug-delivery applications. Recently, an increasing effort has been put into attaching nanoparticles (the size range of 1-20 nm) to the accurate DNA motifs and into creating metallic nanostructures (typically 20-100 nm) using designer DNA nanoshapes as molds or stencils. By combining nanoparticles with the superior addressability of DNA-based scaffolds, it is possible to form well-ordered materials with intriguing and completely new optical, plasmonic, electronic, and magnetic properties. This focused review discusses the DNA structure-directed nanoparticle assemblies covering the wide range of different one-, two-, and three-dimensional systems.

  18. Toxicity evaluation of pH dependent stable Achyranthes aspera herbal gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok; Kumari, Sarika; Kumar, Arvind

    2016-01-01

    Nanoparticles have gained substantial attention for the control of various diseases. However, any adverse effect of herbal gold nanoparticles (HGNPs) on animals including human being has not been investigated in details. The objectives of current study are to assess the cytotoxicity of HGNPs synthesized by using leaf extract of Achyranthes aspera, and long epoch stability. The protocol deals with stability of HGNPs in pH dependent manner. Visually, HGNPs formation is characterized by colour change of extract from dark brown to dark purple after adding gold chloride solution (1 mM). The 100 μg/ml HGNPs concentration has been found nontoxic to the cultured spleenocyte cells. Spectrophotometric analysis of nanoparticles solution gave a peak at 540 nm which corresponds to surface plasmon resonance absorption band. As per scanning electron microscopy and Transmission electron microscopy (TEM), size of HGNPs are in the range of 50-80 nm (average size 70 nm) with spherical morphology. TEM-selected area electron diffraction observation showed hexagonal texture. HGNPs showed substantial stability at higher temperature (85 °C), pH 10 and salt concentration (5 M). The zeta potential value of HGNPs is -35.9 mV at temperature 25 °C, pH 10 showing its good quality with better stability in comparison to pH 6 and pH 7. The findings advocate that the protocol for the synthesis of HGNPs is easy and quick with good quality and long epoch stability at pH 10. Moreover, non-toxic dose could be widely applicable for human health as a potential nano-medicine in the future to cure diseases.

  19. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    NASA Astrophysics Data System (ADS)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  20. Electromagnetic properties of Fe-Co granular composite materials containing acicular nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasagi, Teruhiro; Massango, Herieta; Tsutaoka, Takanori; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2018-03-01

    Electromagnetic properties of acicular (needle-like) Fe76Co24 nanoparticle composite materials have been studied in microwave frequency range up to 20 GHz. The Fe76Co24 particles are commercially available acicular Fe76Co24 nanoparticles with an approximate length and diameter of 100 and 25 nm, respectively. The Fe76Co24 nanocomposites were prepared by embedding the Fe76Co24 nanoparticle in an appropriate resin. Since the metallic Fe76Co24 nanoparticles have an oxidized surface, even high particle content composites at 78 vol.%, which is in the percolated state, does not show metallic conduction; a low frequency plasmonic state with the negative permittivity spectrum was not observed. Meanwhile, the negative permeability spectrum caused by the magnetic resonance in Fe76Co24 alloy was obtained in the high particle content composites. From the measurement of the complex permeability spectra under the external dc magnetic field, it was clarified that the gyromagnetic spin rotation mainly contributes to the permeability spectrum of nanocomposites due to extremely small quantity of domain walls in the acicular nanoparticles. This result suggests that the negative permeability spectrum was caused by the gyromagnetic spin resonance. By the comparison of the complex permeability spectrum between the acicular Fe76Co24 nanocomposite and the spherical Fe50Co50 microcomposite, the gyromagnetic spin resonance frequency of the acicular nanocomposite tends to locate higher than that of the spherical microcomposite owing to the demagnetizing field effect. Therefore, it can be concluded that the negative permeability frequency band of the acicular nanocomposite is higher than that of the spherical microcomposite at the same particle content.

  1. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  2. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2

    NASA Astrophysics Data System (ADS)

    Li, Naixu; Chen, Yong; Shen, Quanhao; Yang, Bin; Liu, Ming; Wei, Lingfei; Tian, Wei; Zhou, Jiancheng

    2018-05-01

    We report a simple and efficient method for the preparation of highly dispersed Au nanoparticles (< 5 nm) on TS-1 substrate. The synthesis relies on the use of NaBH4 as a reductant for rapid Au atom generation, as well as PVA as a capping agent confining the particle size and dispersion. The samples were characterized by N2 physisorption, inductively coupled plasma mass spectrometry, power X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, CO pulse chemisorption and thermogravimetric analysis. The size of Au particles can be controlled in the range of 3-5 nm. The supported catalyst shows both good activity and selectivity for propylene oxide (PO) generation from direct propylene epoxidation. An optimal performance with PO formation rate of 102.94 gPO h-1 kg-1cat and selectivity of 84.83% is achieved over 2.0 wt% Au/TS-1 catalyst, which is prepared by controlling PVA/Au3+ mass ratio of 1.5/1 and NaBH4/Au3+ mole ratio of 5/1. After 50 h test at 200 °C, no significant decrement of both catalytic activity and PO selectivity can be observed, indicating the excellent thermally stability of the catalyst. Furthermore, a possible reaction mechanism is described on basis of the previous researches and our experimental results.

  3. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    PubMed

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  4. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells.

    PubMed

    Zheng, Yu; Yu, Bo; Weecharangsan, Wanlop; Piao, Longzhu; Darby, Michael; Mao, Yicheng; Koynova, Rumiana; Yang, Xiaojuan; Li, Hong; Xu, Songlin; Lee, L James; Sugimoto, Yasuro; Brueggemeier, Robert W; Lee, Robert J

    2010-05-10

    Transferrin (Tf)-conjugated lipid-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles carrying the aromatase inhibitor, 7alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione (7alpha-APTADD), were synthesized by a solvent injection method. Formulation parameters including PLGA-to-lipid, egg PC-to-TPGS, and drug-to-PLGA ratios and aqueous-to-organic phase ratio at the point of synthesis were optimized to obtain nanoparticles with desired sizes and drug loading efficiency. The optimal formulation had a drug loading efficiency of 36.3+/-3.4%, mean diameter of 170.3+/-7.6nm and zeta potential of -18.9+/-1.5mV. The aromatase inhibition activity of the nanoparticles was evaluated in SKBR-3 breast cancer cells. IC(50) value of the Tf-nanoparticles was ranging from 0.77 to 1.21nM, and IC(50) value of the nanoparticles was ranging from 1.90 to 3.41nM (n=3). The former is significantly lower than the latter (p<0.05). These results suggested that the aromatase inhibition activity of the Tf-nanoparticles was enhanced relative to that of the non-targeted nanoparticles, which was attributable to Tf receptor (TfR) mediated uptake. In conclusion, Tf-conjugated lipid-coated PLGA nanoparticles are potential vehicles for improving the efficiency and specificity of therapeutic delivery of aromatase inhibitors. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of electro-explosive magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bakina, O. V.; Glazkova, E. A.; Svarovskaya, N. V.; Lerner, M. I.; Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nowadays there are new magnetic nanostructures based on bioactive metals with low toxicity and high efficiency for a wide range of biomedical applications including drugs delivery, antimicrobial drugs design, cells' separation and contrasting. For such applications it is necessary to develop highly magnetic particles with less than 100 nm in size. In the present study magnetic nanoparticles Fe, Fe3O4 and bimetallic Cu/Fe with the average size of 60-90 nm have been synthesized by electrical explosion of wire in an oxygen or argon atmosphere. The produced nanoparticles have been characterized with transmission electron microscopy, X-ray phase analysis, and nitrogen thermal desorption. The synthesized particles have shown antibacterial activity to gram-positive (S. aureus, MRSA) and gramnegative (E. coli, P. aeruginosa) bacteria. According to the cytological data Fe, Fe3O4 and Cu/Fe nanoparticles have effectively inhibited viability of cancer cell lines Neuro-2a and J774. The obtained nanoparticles are promising for new antimicrobial drugs and antitumor agents' development.

  6. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastami, Tahereh Rohani; Entezari, Mohammad H., E-mail: moh_entezari@yahoo.com

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM).more » The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.« less

  7. Layer-by-layer charging in non-volatile memory devices using embedded sub-2 nm platinum nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu

    In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less

  8. Determination of Conjugation Efficiency of Antibodies and Proteins to the Superparamagnetic Iron Oxide Nanoparticles by Capillary Electrophoresis with Laser-Induced Fluorescence Detection

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Hua; Yoshitake, Takashi; Kim, Do-Kyung; Muhammed, Mamoun; Bjelke, Börje; Kehr, Jan

    2003-04-01

    The method based on capillary electrophoresis with laser-induced fluorescence detection (CE/LIF) was developed for determination of magnetic iron oxide nanoparticles (hydrodynamic diameters of 100 nm) functionalized with molecules containing primary amino groups. The magnetic nanoparticles with carboxylic or aminopropyl-trimethoxysilane groups at their surface were conjugated to the model proteins (bovine serum albumin, BSA; streptavidin or goat anti-rabbit immunoglobulin G, IgG) using carbodiimide as a zero-length cross-linker. The nanoparticle-protein conjugates (hydrodynamic diameter 163-194 nm) were derivatized with naphthalene-2,3-dicarboxaldehyde reagent and separated by CE/LIF with a helium-cadmium laser (excitation at 442 nm, emission at 488 nm). The separations were carried out by using a fused-silica capillary (effective length 48 cm, inner diameter 75 um) and 100 mM sodium borate buffer (pH 9.2), the potential was 30 kV. The detection limit for BSA-conjugate was 1.3 pg/10 nl, i.e. about 20 amol. The present method provides an efficient and fast tool for sensitive determination of the efficacy of biomolecular functionalization of magnetic nanoparticles. The CE/LIF technique requires only negligible sample volumes for analysis, which is especially suitable for controlling the process of preparation of functionalized nanoparticles with unique properties aimed to be used for diagnostic or therapeutic purposes.

  9. Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation.

    PubMed

    Tank, Chiti; Raman, Sujatha; Karan, Sujoy; Gosavi, Suresh; Lalla, Niranjan P; Sathe, Vasant; Berndt, Richard; Gade, W N; Bhoraskar, S V; Mathe, Vikas L

    2013-06-01

    Silica-coated, silicon nanotubes (SCSNTs) and silica-coated, silicon nanoparticles (SCSNPs) have been synthesized by catalyst-free single-step gas phase condensation using the arc plasma process. Transmission electron microscopy and scanning tunneling microscopy showed that SCSNTs exhibited a wall thickness of less than 1 nm, with an average diameter of 14 nm and a length of several 100 nm. Both nano-structures had a high specific surface area. The present study has demonstrated cheaper, resistance-free and effective antibacterial activity in silica-coated silicon nano-structures, each for two Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) was estimated, using the optical densitometric technique, and by determining colony-forming units. The MIC was found to range in the order of micrograms, which is comparable to the reported MIC of metal oxides for these bacteria. SCSNTs were found to be more effective in limiting the growth of multidrug-resistant Staphylococcus aureus over SCSNPs at 10 μg/ml (IC 50 = 100 μg/ml).

  10. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles

  11. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  12. Diatomite silica nanoparticles for drug delivery.

    PubMed

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  13. Synthesis and standardization of biologically synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Das, Tapan Kumar

    2013-06-01

    The biological silver nanoparticle was synthesized extracellularly by using a fungi Aspergillus foetidus. The live cell filtrate of fungi has been used as reducing agent in the process of nanoparticles synthesis. In 50 ml cell filtrate a volume of AgNO3 stock solution was added to make finally the concentration as 1 mM of AgNO3 and allowed to shake in an incubator for several hrs in dark. The changed color was considered as the primary indication of nanoparticles formation and studies of UV-VIS, DLS, FTIR, AFM, TEM, EDS, Zeta pot. and nitrate reductase assay confirmed the same. It was indicated that stable & 20-40 nm roughly spherical shaped silver nanoparticles was formed. To standardize the nanoparticles biosynthesis different physical parameters like Substrate cone. (0-8 mM), PH-(5-12), Temp.-(5-50°C), incubation time (0-120) hrs and salinity (0.1-1.0 %) were investigated and it was observed that 4 mM AgNO3 conc., PH-9, Temp. -30°C, incubation time 72h and 0.2 % salinity were found to be optimum for the synthesis & stability of the silver nanoparticles.

  14. 50 CFR 100.6 - Licenses, permits, harvest tickets, tags, and reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Licenses, permits, harvest tickets, tags, and reports. 100.6 Section 100.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... provisions as set forth in subpart D of this part. (e) If you take fish and wildlife under a community...

  15. 50 CFR 100.6 - Licenses, permits, harvest tickets, tags, and reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Licenses, permits, harvest tickets, tags, and reports. 100.6 Section 100.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... provisions as set forth in subpart D of this part. (e) If you take fish and wildlife under a community...

  16. 50 CFR 100.6 - Licenses, permits, harvest tickets, tags, and reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Licenses, permits, harvest tickets, tags, and reports. 100.6 Section 100.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... provisions as set forth in subpart D of this part. (e) If you take fish and wildlife under a community...

  17. 50 CFR 100.6 - Licenses, permits, harvest tickets, tags, and reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Licenses, permits, harvest tickets, tags, and reports. 100.6 Section 100.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... provisions as set forth in subpart D of this part. (e) If you take fish and wildlife under a community...

  18. 50 CFR 100.6 - Licenses, permits, harvest tickets, tags, and reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Licenses, permits, harvest tickets, tags, and reports. 100.6 Section 100.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) NATIONAL WILDLIFE MONUMENTS SUBSISTENCE MANAGEMENT REGULATIONS FOR PUBLIC LANDS IN ALASKA General Provisions § 10...

  19. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells.

    PubMed

    Hwang, Pai-An; Lin, Xiao-Zhen; Kuo, Ko-Liang; Hsu, Fu-Yin

    2017-03-14

    Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and -67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.

  20. Preparation and characterization of natural bentonite in to nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Sirait, Makmur; Bukit, Nurdin; Siregar, Nurdin

    2017-01-01

    The nanoparticle based on natural bentonite from Pahae village had been prepared using co-precipitation method. Bentonite was dried in the oven at 100°C during a week. Bentonite is crushed using a mortal and milled by planetary ball mill to obtain the powder form. Further, the bentonite powder is activated with chemical reaction by dissolves the 50 g bentonite to 100 ml of HCl at 10 M. The magnetic stirrer was employed to mix the solution at 300 rpm and temperature 70°C. After that, the bentonite solution is washed using distilled water until the pH is neutral. The bentonite powder is calcined at temperature of 600°C for 1 hour with fix increment 150°C. Finally, the powder is given High Energy Milling (HEM) treatment for 30 minutes to obtain the particle size. The X-ray Difractometer (XRD) and Scanning Electron Microscope (SEM) were used to characterize. From the characterization results it is reported that the average of bentonite nanoparticle size is 35.26 nm and the chemical constituents of natural bentonite Pahae are Al, Si, Ca, Fe and Ti.

  1. Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions.

    PubMed

    Weaver, James L; Tobin, Grainne A; Ingle, Taylor; Bancos, Simona; Stevens, David; Rouse, Rodney; Howard, Kristina E; Goodwin, David; Knapton, Alan; Li, Xiaohong; Shea, Katherine; Stewart, Sharron; Xu, Lin; Goering, Peter L; Zhang, Qin; Howard, Paul C; Collins, Jessie; Khan, Saeed; Sung, Kidon; Tyner, Katherine M

    2017-07-17

    As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.

  2. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  3. An Analytical Quantum Model to Calculate Fluorescence Enhancement of a Molecule in Vicinity of a Sub-10 nm Metal Nanoparticle.

    PubMed

    Bagheri, Zahra; Massudi, Reza

    2017-05-01

    An analytical quantum model is used to calculate electrical permittivity of a metal nanoparticle located in an adjacent molecule. Different parameters, such as radiative and non-radiative decay rates, quantum yield, electrical field enhancement factor, and fluorescence enhancement are calculated by such a model and they are compared with those obtained by using the classical Drude model. It is observed that using an analytical quantum model presents a higher enhancement factor, up to 30%, as compared to classical model for nanoparticles smaller than 10 nm. Furthermore, the results are in better agreement with those experimentally realized.

  4. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials.

    PubMed

    Hao, Nanjing; Jayawardana, Kalana W; Chen, Xuan; Yan, Mingdi

    2015-01-21

    In this study, amine-functionalized hollow mesoporous silica nanoparticles with an average diameter of ∼100 nm and shell thickness of ∼20 nm were prepared by an one-step process. This new nanoparticulate system exhibited excellent killing efficiency against mycobacterial (M. smegmatis strain mc(2) 651) and cancer cells (A549).

  5. Magnetocapacitance effect in core/shell NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Subir; Kambhala, Nagaiah; Angappane, S.

    2018-04-01

    The exchange bias and magnetocapacitance properties of nickel oxide nanoparticles of average particle size 50 nm have been studied. NiO nanoparticles of uniform size distribution were synthesized by a sol-gel method using nickel acetate and polyvinyl acetate. The magnetic measurements show the ferromagnetic like behavior exhibiting exchange bias effect indicative of the formation of core/shell structure of NiO with a antiferromagnetic core and ferromagnetic shell. An electrical double layer capacitance behavior was observed for NiO nanoparticles in the cyclic voltammetry measurement, and it was found that the value of capacitance decreased by about 26 % under the application of magnetic field of 0.1 T.

  6. 41 CFR 109-1.100-50 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Scope of subpart. 109-1... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL 1-INTRODUCTION 1.1-Regulation System § 109-1.100-50 Scope of subpart. This subpart sets forth the Department of Energy (DOE...

  7. 41 CFR 109-1.100-50 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Scope of subpart. 109-1... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL 1-INTRODUCTION 1.1-Regulation System § 109-1.100-50 Scope of subpart. This subpart sets forth the Department of Energy (DOE...

  8. Nanoparticle Imaging of Integrins on Tumor Cells1

    PubMed Central

    Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee

    2006-01-01

    Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415

  9. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.

    PubMed

    Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L'azou, Béatrice

    2012-09-28

    Silica nanoparticles (nano-SiO(2)) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO(2) can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO(2) of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK(1)). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO(2) nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO(2). The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO(2). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruan, Jing; Wang, Kan; Song, Hua; Xu, Xin; Ji, Jiajia; Cui, Daxiang

    2011-12-01

    Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

  11. Experimental determination of the impact of polysilicon LER on sub-100-nm transistor performance

    NASA Astrophysics Data System (ADS)

    Patterson, Kyle; Sturtevant, John L.; Alvis, John R.; Benavides, Nancy; Bonser, Douglas; Cave, Nigel; Nelson-Thomas, Carla; Taylor, William D.; Turnquest, Karen L.

    2001-08-01

    Photoresist line edge roughness (LER) has long been feared as a potential limitation to the application of various patterning technologies to actual devices. While this concern seems reasonable, experimental verification has proved elusive and thus LER specifications are typically without solid parametric rationale. We report here the transistor device performance impact of deliberate variations of polysilicon gate LER. LER magnitude was attenuated by more than a factor of 5 by altering the photoresist type and thickness, substrate reflectivity, masking approach, and etch process. The polysilicon gate LER for nominally 70 - 150 nm devices was quantified using digital image processing of SEM images, and compared to gate leakage and drive current for variable length and width transistors. With such comparisons, realistic LER specifications can be made for a given transistor. It was found that subtle cosmetic LER differences are often not discernable electrically, thus providing hope that LER will not limit transistor performance as the industry migrates to sub-100 nm patterning.

  12. Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Verma, Anita K.; Claesson, P.; Bohidar, H. B.

    2007-11-01

    Soot originating from the burning of butter and mustard oil in a lamp with a cotton wick was collected on a brass plate and dispersed in water and carbon tetrachloride (CCl4) as naked, and as Gum Arabic (GA, a anionic polyelectrolyte)-coated nanoparticles in water. They were physically characterized, and their anti-bacterial activities were probed on gram positive and negative bacterial colonies. TEM data revealed the presence of 35-55 nm diameter spherical carbon nanoparticles in water and CCl4. The dynamic light scattering determined the average hydrodynamic diameter for the same samples, which was found to be ≈100 nm (in CCl4) and ≈240 nm (in water), implying the packing of these nanoparticles into clusters. GA-coated particles yielded stable suspensions in water, but the clusters were almost the same in size (≈250 nm). The zeta potential distributions of the naked and the GA-coated nanoparticles were found to be unimodal and bimodal, respectively, with both yielding mean zeta potential values nearly equal to zero. Results of energy-dispersive x-ray analysis (EDAX) confirmed the absence of toxic metallic elements inside the specimen. X-ray diffraction study confirmed the presence of amorphous as well as graphitized carbon in these nanostructures. The anti-microbial activities in terms of growth inhibition for the carbon nanoparticles against Staphylococcus aureus, ATCC 13709 (native strain) and Klebsiella pneumonia ATCC 29655 (native strain) were assayed in agar gel. In vitro testing revealed significant anti-microbial activity against Klebsiella pneumonia, but carbon nanoparticles were unable to kill Staphylococcus aureus.

  13. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis

    PubMed Central

    2012-01-01

    In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol. PMID:22655978

  14. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis.

    PubMed

    Petkova, Galina A; Záruba, Capital Ka Cyrillicamil; Zvátora, Pavel; Král, Vladimír

    2012-06-01

    In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol.

  15. Size-dependent Hamaker constants for silver and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pinchuk, Pavlo; Jiang, Ke

    2015-08-01

    Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.

  16. IF-WS{sub 2} nanoparticles size design and synthesis via chemical reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoreishi, S.M., E-mail: ghoreshi@cc.iut.ac.ir; Meshkat, S.S.; Dadkhah, A.A.

    2010-05-15

    An innovative synthesis of inorganic fullerene-like disulfide tungsten (IF-WS{sub 2}) nanoparticles was developed using a chemical reduction reaction in a horizontal quartz reactor. In this process, first tungsten trisulfide (WS{sub 3}) was formed via a chemical reaction of tetra thiotungstate ammonium ((NH{sub 4}){sub 2}WS{sub 4}), polyethylene glycol (PEG), and hydrochloric acid (HCl) at ambient temperature and pressure. Subsequently, WS{sub 3} was reacted with hydrogen (H{sub 2}) at high temperature (1173-1373 K) in a quartz tube. The produced WS{sub 2} nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), and transmission electron microscopy (TEM). Themore » characterization results indicated that the high-purity (100%) IF-WS{sub 2} nanoparticles were produced. Moreover, addition of surfactant (PEG) and higher operating temperature (1173-1373 K) decreased the particles agglomeration, and consequently led to the reduction of average diameter of WS{sub 2} particles in the range of 50-78 nm. The developed method is simple, environmentally compatible, and cost-effective in contrast to the conventional techniques.« less

  17. Interactions of nanomaterials with biological systems: A study of bio-mineralized nanoparticles and nanoparticle antibiotics

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer Chappell

    Nature is continually able to out-perform laboratory syntheses of nanomaterials with control of specific properties under ambient temperatures, pressures and pH. The investigation of existing biomolecule-mediated nanoparticle synthesis provides insight and knowledge necessary for duplicating these processes. In this way, peptides or proteins with nanomaterial mediation capabilities can be: 1) explored to further understand the ways in which biomolecules create specific nanoparticles then 2) used to create genetically encodable tags for use in electron tomography. The goal of designing such a tag was to assist in closing the resolution gap that exists in current imaging techniques between approximately 5 nm and 100 nm. Presented in this thesis are examples of peptides and proteins that form iron oxide, silver or gold nanoparticles under discrete circumstances. Three iron oxide-related bacterial proteins -- bacterioferritin, Dps and Mms6 -- were investigated for potential use. Similarly, a silver mineralizing peptide, Ge8, was studied upon attachment to the filamentous protein, FtsZ, and a gold mineralizing peptide, A3, was examined to characterize the way in which it mediates the formation of both Au0 nanoclusters and nanoparticles. Given the established interactions that occur between nanoparticles and biomolecules, it may not be surprising that gold nanoparticles displaying specific ratios of functional groups are able to interact with bacteria, in some cases inhibiting growth or causing cell death as antibiotics. A previously developed small molecule variable ligand display (SMVLD) method was expanded to identify a nanoparticle conjugate with a minimal inhibitory concentration (MIC99.9) of 6 muM for Mycobacterium smegmatis, a common laboratory model for M. tuberculosis and the first example of SMVLD applied to mycobacteria. Nanoparticle structure-activity relationships, modes of action and approximations of mammalian cell toxicities were also explored to expand

  18. Multiplexed highly sensitive detections of cancer biomarkers in thermal space using encapsulated phase change nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Liyuan; Hong, Yan; Ma, Zeyu; Kaittanis, Charalambos; Perez, J. Manuel; Su, Ming

    2009-07-01

    We describe a multiplexed highly sensitive method to detect cancer biomarkers using silica encapsulated phase change nanoparticles as thermal barcodes. During phase changes, nanoparticles absorb heat energy without much temperature rise and show sharp melting peaks (0.6 °C). A series of phase change nanoparticles of metals or alloys can be synthesized in such a way that they melt between 100 and 700 °C, thus the multiplicity could reach 1000. The method has high sensitivity (8 nM) that can be enhanced using materials with large latent heat, nanoparticles with large diameter, or reducing the grafting density of biomolecules on nanoparticles.

  19. Redox properties of undoped 5 nm diamond nanoparticles.

    PubMed

    Holt, Katherine B; Ziegler, Christoph; Caruana, Daren J; Zang, Jianbing; Millán-Barrios, Enrique J; Hu, Jingping; Foord, John S

    2008-01-14

    This paper demonstrates the promoting effects of 5 nm undoped detonation diamond nanoparticles on redox reactions in solution. An enhancement in faradaic current for the redox couples Ru(NH(3))(6)(3+/2+) and Fe(CN)(6)(4-/3-) was observed for a gold electrode modified with a drop-coated layer of nanodiamond (ND), in comparison to the bare gold electrode. The ND layer was also found to promote oxygen reduction. Surface modification of the ND powders by heating in air or in a hydrogen flow resulted in oxygenated and hydrogenated forms of the ND, respectively. Oxygenated ND was found to exhibit the greatest electrochemical activity and hydrogenated ND the least. Differential pulse voltammetry of electrode-immobilised ND layers in the absence of solution redox species revealed oxidation and reduction peaks that could be attributed to direct electron transfer (ET) reactions of the ND particles themselves. It is hypothesised that ND consists of an insulating sp(3) diamond core with a surface that has significant delocalised pi character due to unsatisfied surface atoms and C[double bond, length as m-dash]O bond formation. At the nanoscale surface properties of the particles dominate over those of the bulk, allowing ET to occur between these essentially insulating particles and a redox species in solution or an underlying electrode. We speculate that reversible reduction of the ND may occur via electron injection into available surface states at well-defined reduction potentials and allow the ND particles to act as a source and sink of electrons for the promotion of solution redox reactions.

  20. 50 CFR Table 12 to Part 679 - Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites 12 Table 12 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT..., 3nm No Groundfish Fishing Sites ER29DE10.022 ER29DE10.023 ER29DE10.024 [75 FR 81922, Dec. 29, 2010] ...

  1. 50 CFR Table 12 to Part 679 - Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites 12 Table 12 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT..., 3nm No Groundfish Fishing Sites ER29DE10.022 ER29DE10.023 ER29DE10.024 [75 FR 81922, Dec. 29, 2010] ...

  2. 50 CFR Table 12 to Part 679 - Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites 12 Table 12 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT..., 3nm No Groundfish Fishing Sites ER29DE10.022 ER29DE10.023 ER29DE10.024 [75 FR 81922, Dec. 29, 2010] ...

  3. 50 CFR Table 12 to Part 679 - Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites 12 Table 12 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT..., 3nm No Groundfish Fishing Sites ER29DE10.022 ER29DE10.023 ER29DE10.024 [75 FR 81922, Dec. 29, 2010] ...

  4. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle

  5. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier.

    PubMed

    Liu, Dan; Lin, Bingqian; Shao, Wei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong

    2014-02-12

    Transport of PEGylated silica nanoparticles (PSiNPs) with diameters of 100, 50, and 25 nm across the blood-brain barrier (BBB) was evaluated using an in vitro BBB model based on mouse cerebral endothelial cells (bEnd.3) cultured on transwell inserts within a chamber. In vivo animal experiments were further performed by noninvasive in vivo imaging and ex vivo optical imaging after injection via carotid artery. Confocal fluorescence studies were carried out to evaluate the uptake of PSiNPs by brain endothelial cells. The results showed that PSiNPs can traverse the BBB in vitro and in vivo. The transport efficiency of PSiNPs across BBB was found to be size-dependent, with increased particle size resulting in decreased efficiency. This work points to the potential application of small sized silica nanoparticles in brain imaging or drug delivery.

  6. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma.

    PubMed

    Yanhua, Wang; Hao, Hang; Li, Yan; Zhang, Shengmin

    2016-04-01

    Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Novel selenium-substituted hydroxyapatite nanoparticles (SeHAN) were designed to serve as anticancer agent. The authors examined the nanoparticles by physicochemical techniques. The in vivo efficacy and toxicity of these nanoparticles were also investigated on a nude mice model of human hepatocellular carcinoma. The results showed that the selenite ions can be incorporated into the hydroxyapatite lattice facilely. They exhibited bundles of needles shape with a size of 160-200 nm. In the in vivo study, they showed better survival advantage. The overall survival rate of nude mice in the control, pure hydroxyapatite and SeHAN group were 50.00%, 76.92%, and 100.00% respectively. Blood biochemical studies showed that SeHAN group had significantly lower toxicities on the liver and kidney functions. Histopathological studies confirmed that massive tumor necrosis and calcium deposition were evident after SeHAN treatment. Moreover, immunohistochemistry and Western blot assay showed significantly reduced expression of the Ki-67, VEGF and MMP-9 protein in the SeHAN group. Taken together, these results suggest that the selenium-substituted hydroxyapatite nanoparticles could be a new type of promising anticancer agent to provide both survival advantage and lower toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens.

    PubMed

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  8. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Anti-CRLF2 Antibody-Armored Biodegradable Nanoparticles for Childhood B-ALL.

    PubMed

    Raghunathan, Rekha; Mahesula, Swetha; Kancharla, Kranthi; Janardhanan, Preethi; Jadhav, Yeshwant L A; Nadeau, Robert; Villa, German P; Cook, Robert L; Witt, Colleen M; Gelfond, Jonathan A L; Forsthuber, Thomas G; Haskins, William E

    2013-04-01

    B-precursor acute lymphoblastic leukemia (B-ALL) lymphoblast (blast) internalization of anti-cytokine receptor-like factor 2 (CRLF2) antibody-armored biodegradable nanoparticles (AbBNPs) are investigated. First, AbBNPsaere synthesized by adsorbing anti-CRLF2 antibodies to poly(D,L-lactide- co -glycolide) (PLGA) nanoparticles of various sizes and antibody surface density (Ab/BNP) ratios. Second, AbBNPs are incubated with CRLF2-overexpressing (CRLF2+) or control blasts. Third, internalization of AbBNPs by blasts is evaluated by multicolor flow cytometry as a function of receptor expression, AbBNP size, and Ab/BNP ratio. Results from these experiments are con-firmed by electron microscopy, fluorescence microscopy, and Western blotting. The optimal size and Ab/BNP for internalization of AbBNPs by CRLF2+ blasts is 50 nm with 10 Ab/BNP and 100 nm with 25 Ab/BNP. These studies show that internalization of AbBNPs in childhood B-ALL blasts is AbBNP size-and Ab/BNP ratio-dependent. All AbBNP combinations are non-cytotoxic. It is also shown that CD47 is very slightly up-regulated by blasts exposed to AbBNPs. CD47 is "the marker of self" overexpressed by blasts to escape phagocytosis, or "cellular devouring", by beneficial macrophages. The results indicate that precise engineering of AbBNPs by size and Ab/BNP ratio may improve the internalization and selectivity of future biodegradable nanoparticles for the treatment of leukemia patients, including drug-resistant minority children and Down's syndrome patients with CRLF2+B-ALL.

  10. Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna

    PubMed Central

    Dabrunz, André; Duester, Lars; Prasse, Carsten; Seitz, Frank; Rosenfeldt, Ricki; Schilde, Carsten; Schaumann, Gabriele E.; Schulz, Ralf

    2011-01-01

    The production and use of nanoparticles (NP) has steadily increased within the last decade; however, knowledge about risks of NP to human health and ecosystems is still scarce. Common knowledge concerning NP effects on freshwater organisms is largely limited to standard short-term (≤48 h) toxicity tests, which lack both NP fate characterization and an understanding of the mechanisms underlying toxicity. Employing slightly longer exposure times (72 to 96 h), we found that suspensions of nanosized (∼100 nm initial mean diameter) titanium dioxide (nTiO2) led to toxicity in Daphnia magna at nominal concentrations of 3.8 (72-h EC50) and 0.73 mg/L (96-h EC50). However, nTiO2 disappeared quickly from the ISO-medium water phase, resulting in toxicity levels as low as 0.24 mg/L (96-h EC50) based on measured concentrations. Moreover, we showed that nTiO2 (∼100 nm) is significantly more toxic than non-nanosized TiO2 (∼200 nm) prepared from the same stock suspension. Most importantly, we hypothesized a mechanistic chain of events for nTiO2 toxicity in D. magna that involves the coating of the organism surface with nTiO2 combined with a molting disruption. Neonate D. magna (≤6 h) exposed to 2 mg/L nTiO2 exhibited a “biological surface coating” that disappeared within 36 h, during which the first molting was successfully managed by 100% of the exposed organisms. Continued exposure up to 96 h led to a renewed formation of the surface coating and significantly reduced the molting rate to 10%, resulting in 90% mortality. Because coating of aquatic organisms by manmade NP might be ubiquitous in nature, this form of physical NP toxicity might result in widespread negative impacts on environmental health. PMID:21647422

  11. Analyzing the soil sorption and transfer environmental functions in the South-East part of Western Siberia using Pt and Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Kulizhskiy, Sergey; Loyko, Sergey; Morgalev, Yuriy; Istigechev, Georgiy; Novokreshchennykh, Tatiana; Rodikova, Anna

    2015-04-01

    The soil with flushing water regime has a very important environmental function, the regulative one in the migration of the dispersed substances caused by natural and anthropogenic activity. The study of these processes is necessary to solve questions of the origins and functioning of soils and also to estimate the parameters of finely dispersed xenobiotics (man-made nanoparticles) accumulation and transfer in the landscapes. The model substance to explore the ways and potential function of migration in texture-differentiated soils of the southern forest zone of Western Siberia are the suspensions of nanosized platinum (diameter from 5 to 15 nm). The research is based on the properties and behavior of nanoparticles in porous media and their ability to keep highly dispersed state for a long time in the aqueous suspensions due to the small size (up to 100 nm) and low surface charge. Particle identification tags will be conducted using mass spectrometry with inductively coupled plasma. That is possible due to the small percentage abundance of platinum. Two groups of experiments were conducted with support of RFBR grant №14-04-00967. First one has been done for evaluation the platinum nanoparticles transmission and interception in soil horizons inside undisturbed monoliths. Second group has dealt with the mechanical barriers investigation for nanoparticles behavior in the native Haplic Albeluvisols profiles by standard method application to determine the filtration properties. The significant variability of detention and transmission values of nanoparticles columns through soil horizons has been detected. There are no simple correlations between the evaluated with the nanoparticles pass-through function through the soil column and soil properties. The main factor that determines the conditions of nanoparticles transfer through the horizon is the geometry of the pore space, and the type of filtering suspensions: linear or front one. Thus, the presences of dead

  12. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles.

    PubMed

    Lee, Yi-Jae; Park, Jae-Yeong

    2010-12-15

    A sensitive macroporous Au electrode with a highly rough surface obtained through the use of with Pt nanoparticles (macroporous Au-/nPts) is reported. It has been designed for nonenzymatic free-cholesterol biosensor applications. A macroporous Au-/nPts electrode was fabricated by electroplating Pt nanoparticles onto a coral-like shaped macroporous Au electrode structure. The macroporous Au-/nPts electrode was physically characterized by field emission scanning electron microscopy (FESEM). It was confirmed that the Pt nanoparticles were well deposited on the surface of the macroporous Au electrode. The porosity and window pore size of the macroporous Au electrode were 50% and 100-300 nm, respectively. The electroplated Pt nanoparticle size was approximately 10-20 nm. Electrochemical experiments showed that the macroporous Au-/nPts exhibited a much larger surface activation area (roughness factor (RF)=2024.7) than the macroporous Au electrode (RF=46.07). The macroporous Au-/nPts also presented a much stronger electrocatalytic activity towards cholesterol oxidation than does the macroporous Au electrode. At 0.2 V, the electrode responded linearly up to a 5 mM cholesterol concentration in a neutral media, with a detection limit of 0.015 mM and detection sensitivity of 226.2 μA mM(-1) cm(-2). Meanwhile, interfering species such as ascorbic acid (AA), acetaminophen (AP), and uric acid (UA), were effectively avoided. This novel nonenzymatic detection electrode has strong applications as an electrochemically based cholesterol biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  14. Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles.

    PubMed

    Love, Sara A; Thompson, John W; Haynes, Christy L

    2012-09-01

    As nanoparticles have found increased use in both consumer and medical applications, corresponding increases in possible exposure to humans necessitate studies examining the impacts of these nanomaterials in biological systems. This article examines the effects of approximately 30-nm-diameter gold nanoparticles, with positively and negatively charged surface coatings in human blood. Here, we study the exposure effects, with up to 72 h of exposure to 5, 15, 25 and 50 µg/ml nanoparticles on hemolysis, reactive oxygen species (ROS) generation and platelet aggregation in subsets of cells from human blood. Assessing viability with hemolysis, results show significant changes in a concentration-dependent fashion. Rates of ROS generation were investigated using the dichlorofluorscein diacetate-based assay as ROS generation is a commonly suspected mechanism of nanoparticle toxicity; herein, ROS was not a significant factor. Optical monitoring of platelet aggregation revealed that none of the examined nanoparticles induced aggregation upon short-term exposure.

  15. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.

    PubMed

    Wen, Yang; Zhu, Yujie; Langrock, Alex; Manivannan, Ayyakkannu; Ehrman, Sheryl H; Wang, Chunsheng

    2013-08-26

    Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one-step aerosol spraying of surface-modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50-100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene-encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open-ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g⁻¹ (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g⁻¹ at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene-encapsulated Si anodes combined with the scalable and one-step aerosol synthesis technique makes this material very promising for lithium ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Targeted therapy of hepatocellular carcinoma with aptamer-functionalized biodegradable nanoparticles

    NASA Astrophysics Data System (ADS)

    Weigum, Shannon; McIvor, Elizabeth; Munoz, Christopher; Feng, Richard; Cantu, Travis; Walsh, Kyle; Betancourt, Tania

    2016-11-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer, occurring primarily in regions where viral hepatitis infections are common. Unfortunately, most HCC cases remain undiagnosed until late stages of the disease when patient outcome is poor, typically limiting survival from a few months to a year after initial diagnosis. In order to better care for HCC patients, new target-specific approaches are needed to improve early detection and therapeutic intervention. In this work, polymeric nanoparticles functionalized with a HCC-specific aptamer were examined as potential targeted drug delivery vehicles. Specifically, doxorubicin-loaded nanoparticles were prepared via nanoprecipitation of blends of poly(lactic-co-glycolic acid)- b-poly(ethylene glycol). These particles were further functionalized with the HCC-specific TLS11a aptamer. The in vitro interaction and therapeutic efficacy of the aptamer and aptamer-functionalized nanoparticles were characterized in a hepatoma cell line. Nanoparticles were found to be spherical in shape, roughly 100-125 nm in diameter, with a low polydispersity (≤0.2) and slightly negative surface potential. Doxorubicin was encapsulated within the particles at 40 % efficiency. Drug release was found to occur through anomalous transport influenced by diffusion and polymer relaxation, releasing 50 % doxorubicin in the first 10 h and full release occurring within 36 h. Confocal microscopy confirmed binding and attachment of aptamer-targeted nanoparticles to the cell surface of cultured HCC cells. Efficacy studies demonstrated a significant improvement in doxorubicin delivery and cell-killing capacity using the aptamer-functionalized, drug-loaded nanoparticles versus controls further supporting use of aptamer nanoparticles as a targeted drug delivery system for HCC tumors.

  17. A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery.

    PubMed

    Xiao, Kai; Lin, Tzu-Yin; Lam, Kit S; Li, Yuanpei

    2017-06-14

    Precision drug delivery has a great impact on the application of precision oncology for better patient care. Here we report a facile strategy for fine-tuning the stability, drug release and responsiveness of stimuli-responsive cross-linked nanoparticles towards precision drug delivery. A series of micellar nanoparticles with different levels of intramicellar disulfide crosslinkages could be conveniently produced with a mixed micelle approach. These micellar nanoparticles were all within a size range of 25-40 nm so that they could take full advantage of the enhanced permeability and retention (EPR) effect for tumor-targeted drug delivery. The properties of these nanoparticles such as critical micelle concentration (CMC), stability, drug release and responsiveness to a reductive environment could be well correlated with the levels of crosslinking (LOC). Compared to the micellar nanoparticles with a LOC at 0% that caused the death of animals of two species (mouse and rat) due to the acute toxicity such as hemolysis, the nanoparticles at all other levels of crosslinking were much safer to be administered into animals. The in vitro antitumor efficacy of micellar nanoparticles crosslinked at lower levels (20% & 50%) were much more effective than that of 100% crosslinked micellar nanoparticles in SKOV-3 ovarian cancer cells.

  18. TiO2 nanoparticles and bulk material stimulate human peripheral blood mononuclear cells☆

    PubMed Central

    Becker, Kathrin; Schroecksnadel, Sebastian; Geisler, Simon; Carriere, Marie; Gostner, Johanna M.; Schennach, Harald; Herlin, Nathalie; Fuchs, Dietmar

    2014-01-01

    Nanomaterials are increasingly produced and used throughout recent years. Consequently the probability of exposure to nanoparticles has risen. Because of their small 1–100 nm size, the physicochemical properties of nanomaterials may differ from standard bulk materials and may pose a threat to human health. Only little is known about the effects of nanoparticles on the human immune system. In this study, we investigated the effects of TiO2 nanoparticles and bulk material in the in vitro model of human peripheral blood mononuclear cells (PBMC) and cytokine-induced neopterin formation and tryptophan breakdown was monitored. Both biochemical processes are closely related to the course of diseases like infections, atherogenesis and neurodegeneration. OCTi60 (25 nm diameter) TiO2 nanoparticles and bulk material increased neopterin production in unstimulated PBMC and stimulated cells significantly, the effects were stronger for OCTi60 compared to bulk material, while P25 TiO2 (25 nm diameter) nanoparticles had only little influence. No effect of TiO2 nanoparticles on tryptophan breakdown was detected in unstimulated cells, whereas in stimulated cells, IDO activity and IFN-γ production were suppressed but only at the highest concentrations tested. Because neopterin was stimulated and tryptophan breakdown was suppressed in parallel, data suggests that the total effect of particles would be strongly pro-inflammatory. PMID:24361406

  19. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery.

    PubMed

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Poly(lactic- co -glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, "PolyDots"), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene- b -ethylene oxide) (PS- b -PEO) micelles. PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS- b -PEO micelles (ie, ~7%). Increasing the PLGA:PS- b -PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications.

  20. 100nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  1. Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles.

    PubMed

    Zhou, Shuai; Chen, Qianwang

    2011-09-14

    Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011

  2. Citrate coated silver nanoparticles with modulatory effects on aflatoxin biosynthesis in Aspergillus parasiticus

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrani

    fungus successfully reverts its aflatoxin biosynthesis to normal levels once the level of AgNp-cit decreased significantly in the growth medium. A stability study of AgNp-cit in the fungal growth medium, along with mycelia, was conducted using UV-vis spectroscopy. The result showed that the distinctive peak (at 395nm wavelength) of silver nanoparticles, size of 20nm, shifted to a higher wavelength (400nm-500nm), broadened, and decreased over time. At 30-hour post inoculation the UV-vis peak at 395 nm wavelength was not observed at all. The peak shifts may occur due to organic molecules from the medium replacing the citrate surface coating. Another possible explanation for the peak shift are the interactions between the surface coating and other inorganic components in the medium. Peak broadening may suggest possible aggregation or formation of corona on the surface of AgNp due to particle-protein interactions (leading to AgNp aggregation in the growth medium). Reduction of peak height may suggest nanoparticle uptake by the mycelia, dissolution of nanoparticles into charged ions as well as possible interaction with other ions in the growth medium or the formation of precipitate of silver salt. We have investigated effects of different sizes (15 nm, 20 nm, and 30 nm) of AgNp-cit and pvp coated silver nanoparticles (AgNp-pvp (20 nm)) on growth and aflatoxin B1 biosynthesis in A. parasiticus. AgNp-cit size of 15nm showed maximum aflatoxin inhibition at 25ng/mL. For 20nm and 30nm AgNp-cit the strongest aflatoxin inhibition was observed at 50ng/mL concentration. The aflatoxin inhibitory effect was also found to be AgNp coating dependent. For 20nm AgNp-cit the strongest aflatoxin inhibition was seen at 50ng/mL (calculated) while for 20nm AgNp-pvp, the maximum aflatoxin inhibition was observed at 60ng/mL (calculated) concentration. Acute toxicity of silver nanoparticles on various organisms are well-studied but large knowledge gap still exist on the assessment of its chronic

  3. Emmision cross section of OI (135.6nm) at 100 eV resulting from electron-inpact dissociative excitation of O-2

    NASA Technical Reports Server (NTRS)

    Noren, C.; Kanik, I.; Ajello, J.; McCartney, P.; Makarov, O.; McClintock, W.; Drake, V.

    2001-01-01

    In this Letter, we report for the first time, the ratio of the O I (135.6 nm)/O I (130.4 nm) absolute emission cross sections from electron-impact dissociative excitation of O-2 at 100 eV using facilities located at the University of Colorado, Laboratory for Atmospheric and Space Physics (LASP).

  4. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  5. Supramolecular Hydrogel from Nanoparticles and Cyclodextrins for Local and Sustained Nanoparticle Delivery.

    PubMed

    Xu, Shuxin; Yin, Li; Xiang, Yuzhang; Deng, Hongzhang; Deng, Liandong; Fan, Hongxia; Tang, Hua; Zhang, Jianhua; Dong, Anjie

    2016-08-01

    Injectable and biodegradable supramolecular hydrogel mPECT NP/α-CD(gel) composed of high-concentration nanoparticle dispersion (≤20% W/V) and α-cyclodextrins (α-CD) are prepared by a two-level physical cross-linking using amphiphilic block polymer methoxy poly(ethylene glycol)-b-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (mPECT) and α-CD. The gelation behavior depends on the concentration of nanoparticles and α-CD. The viscoelasticity and shear thinning of mPECT NP/α-CD(gel) are confirmed. In vitro hydrogel erosion is demonstrated to be mainly a concentration-dependent dissociation process with general release of discrete mPECT nanoparticles about 50 nm that can be easily taken up by cells. The in vitro release behavior can be modulated by changing the concentration of nanoparticles or α-CD. In vitro and in vivo cytotoxicity study demonstrates its biocompatibility and biosafety. Gel formation after subcutaneous injection is also confirmed and mPECT NP/α-CD(gel) shows about 2 weeks retention time. This work validates the potential application for this supramolecular hydrogel in local and sustained delivery of nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of annealing on magnetic properties of Ni80Fe20 permalloy nanoparticles prepared by polyol method.

    PubMed

    Qin, G W; Pei, W L; Ren, Y P; Shimada, Y; Endo, Y; Yamaguchi, M; Okamoto, S; Kitakami, O

    2011-12-01

    Ni80Fe20 permalloy nanoparticles with narrow size distribution and homogeneous composition have been prepared by the polyol processing at 180 degrees C for 2 h and their particle sizes can be tunable in the size range of 20-440 nm by proper addition of K2PtCI4 agent. X-ray diffraction results show that the NiFe nanoparticles are of face centered cubic structure. The addition of K2PtCl4 does not affect the composition of NiFe NPs but decreases the particle size remarkably. Both saturation magnetization and coercivity of the as-prepared NiFe nanoparticles decrease with decreasing particle size. Annealed at 280 degrees C, however, the saturation magnetization of various sized NiFe nanoparticles increases drastically and approaches to the bulk for the -440 nm NiFe particles, and a maximum coercivity (-270 Oe) happens at a critical size of -50 nm. The magnetic property dependency of these NiFe nanoparticles on annealing has been discussed by considering the surface chemistry.

  7. Antifungal activity of gold nanoparticles prepared by solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less

  8. Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mertz, Damien; Affolter-Zbaraszczuk, Christine; Barthès, Julien; Cui, Jiwei; Caruso, Frank; Baumert, Thomas F.; Voegel, Jean-Claude; Ogier, Joelle; Meyer, Florent

    2014-09-01

    In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing.In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing. Electronic supplementary information (ESI) available: Experimental details and supporting Fig. S1-S4. See DOI: 10.1039/c4nr02623c

  9. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system

    NASA Astrophysics Data System (ADS)

    Chen, Huabing; Xiao, Ling; Du, Danrong; Mou, Dongsheng; Xu, Huibi; Yang, Xiangliang

    2010-01-01

    We report a novel facile method for preparing stable nanoparticles with inner spherical solid spheres and an outer hydrogel matrix using a hot O/W hydrogel-thickened microemulsion with spontaneous stability. The nanoparticles with average diameters of about 30.0 nm and 100.0 nm were constructed by cooling the hot hydrogel-thickened microemulsion at different temperatures, respectively. We explained the application of these nanoparticles by actualizing the cutaneous delivery of drug-loaded nanoparticles. The in vitro skin permeation studies showed that the nanoparticles could significantly reduce the penetration of model drugs through skin and resulted in their dermal uptakes in skin. The sol-gel process of TEOS was furthermore used in the template of HTM to regulate the particle size of nanoparticles. The coating of silica on the surface of nanoparticles could regulate the penetration of drug into skin from dermal delivery to transdermal delivery. This strategy provides a facile method to produce nanoparticles with long-term stability and ease of manufacture, which might have a promising application in drug delivery.

  10. Mechanistic Differences in DNA Nanoparticle Formation in the Presence of Oligolysines and Poly-L-lysine†

    PubMed Central

    Nayvelt, Irina; Thomas, Thresia; Thomas, T. J.

    2008-01-01

    We studied the effectiveness of trilysine (Lys3)-, tetralysine (Lys4)-, pentalysine (Lys5)-, and poly-L-lysine (PLL) (MW: 50,000) on λ-DNA nanoparticle formation, and characterized the size, shape and stability of nanoparticles. Light scattering experiments showed EC50 (lysine concentration at 50% DNA compaction) values of ~0.0036, 2, and 20 μmoles/liter, respectively, for PLL, Lys5, and Lys4 at 10 mM [Na+]. Plots of log[EC50] versus log[Na+] showed positive slopes of 1.09 and 1.7, respectively, for Lys4 and Lys5 and a negative slope of −0.1 for PLL. Hydrodynamic radii of oligolysine-condensed particles increased (48–173 nm) with increasing [Na+], whereas no significant change occurred to nanoparticles formed with PLL. There was an increase in the size of nanoparticles formed with Lys5 at >40 °C, whereas no such change occurred with PLL. DNA melting temperature increased with oligolysine concentration. These results indicate distinct differences in the mechanism(s) by which oligolysines and PLL provoke DNA condensation to nanoparticles. PMID:17291071

  11. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    PubMed

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  12. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wu; Zhang, Jie; Liu, Lili

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been provedmore » to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.« less

  13. Controlled Fabrication of Gelatin Nanoparticles as Drug Carriers

    NASA Astrophysics Data System (ADS)

    Jahanshahi, M.; Sanati, M. H.; Minuchehr, Z.; Hajizadeh, S.; Babaei, Z.

    2007-08-01

    In recent years, significant effort has been devoted to develop nanotechnology for drug delivery since it offers a suitable means of delivering small molecular weight drugs, as well as macromolecules such as proteins, peptides or genes by either localized or targeted delivery to the tissue of interest. Nanotechnology focuses on formulating therapeutic agents in biocompatible nanocomposites such as nanoparticles, nanocapsules, micellar systems, and conjugates. Protein nanoparticles (BSA, HAS and gelatin) generally vary in size from 50-300 nm and they hold certain advantages such as greater stability during storage, stability in vivo, non-toxicity, non-antigen and ease to scale up during manufacture over the other drug delivery systems. The primary structure of gelatin offers many possibilities for chemical modification and covalent drug attachment. Here nanoparticles of gelatin type A were prepared by a two-step desolvation method as a colloidal drug delivery system and the essential parameters in fabrication were considered. Gelatin was dissolved in 25 mL distilled water under room temperature range. Then acetone was added to the gelatin solution as a desolvating agent to precipitate the high molecular weight (HMW) gelatin. The supernatant was discarded and the HMW gelatin re-dissolved by adding 25 mL distilled water and stirring at 600 rpm. Acetone were added drop-wise to form nanoparticles. At the end of the process, glutaraldehyde solution was used for preparing nanoparticles as a cross-linking agent, and stirred for 12h at 600 rpm. For purification stage we use centrifuge with 600rpm for 3 times. The objective of the present study is consideration of some factors such as temperature, gelatin concentration, agitation speed and the amount of acetone and their effects on size and distribution of nanoparticles. Among the all conditions, 60° C, 50 mg/ml gelatin concentration, 75 ml acetone had the best result and the nanoparticle size was under 170 nm. The effect

  14. Domain wall motion in sub-100 nm magnetic wire

    NASA Astrophysics Data System (ADS)

    Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc

    2015-03-01

    Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.

  15. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating.

    PubMed

    Seol, Yeonee; Carpenter, Amanda E; Perkins, Thomas T

    2006-08-15

    Gold nanoparticles appear to be superior handles in optical trapping assays. We demonstrate that relatively large gold particles (R(b)=50 nm) indeed yield a sixfold enhancement in trapping efficiency and detection sensitivity as compared to similar-sized polystyrene particles. However, optical absorption by gold at the most common trapping wavelength (1064 nm) induces dramatic heating (266 degrees C/W). We determined this heating by comparing trap stiffness from three different methods in conjunction with detailed modeling. Due to this heating, gold nanoparticles are not useful for temperature-sensitive optical-trapping experiments, but may serve as local molecular heaters. Also, such particles, with their increased detection sensitivity, make excellent probes for certain zero-force biophysical assays.

  16. Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate.

    PubMed

    Hou, Yanpan; Zhang, Zicheng; Zhang, Jiande; Liu, Zhuofeng; Song, Zuyin

    2015-05-01

    As an alternative to water, propylene carbonate (PC) has a good application prospect in the compact pulsed power sources for its breakdown strength higher than that of water, resistivity bigger than 10(9) Ω m, and low freezing temperature (-49 °C). In this paper, the investigation into dielectric breakdown of PC and PC-based nano-fluids (NFs) subjected to high amplitude electric field is presented with microsecond pulses applied to a 1 mm gap full of PC or NFs between spherical electrodes. One kind of NF is composed of PC mixed with 0.5-1.4 vol. % BaTiO3 (BT) nano-particles of mean diameter ≈100 nm and another is mixed with 0.3-0.8 vol. % BT nano-particles of mean diameter ≈30 nm. The experimental results demonstrate the rise of permittivity and improvement of the breakdown strength of NFs compared with PC. Moreover, it is found that there exists an optimum fraction for these NFs corresponding to tremendous surface area in nano-composites with finite mesoscopic thickness. In concrete, the dielectric breakdown voltage of NFs is 33% higher than that of PC as the volume concentration of nano-particles with a 100 nm diameter is 0.9% and the breakdown voltage of NFs is 40% higher as the volume concentration of nano-particles with a 30 nm diameter is 0.6%. These phenomena are considered as the dielectric breakdown voltage of PC-based NFs is increased because the interfaces between nano-fillers and PC matrices provide myriad trap sites for charge carriers, which play a dominant role in the breakdown performance of NFs.

  17. Nanoparticle-wetted surfaces for relays and energy transmission contacts.

    PubMed

    Voevodin, Andrey A; Vaia, Richard A; Patton, Steven T; Diamanti, Steven; Pender, Mark; Yoonessi, Mitra; Brubaker, Jennifer; Hu, Jian-Jun; Sanders, Jeffrey H; Phillips, Benjamin S; MacCuspie, Robert I

    2007-11-01

    Submonolayer coatings of noble-metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single-component materials consisting of a metal nanoparticle core (5-20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic-liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact-retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.

  18. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  19. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry.

    PubMed

    Di Bucchianico, Sebastiano; Cappellini, Francesca; Le Bihanic, Florane; Zhang, Yuning; Dreij, Kristian; Karlsson, Hanna L

    2017-01-01

    The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO 2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50-150nm), NM101 (anatase, 5-8nm) and NM103 (rutile, 20-28nm) for 3, 24 or 48h mainly at concentrations 1-30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO 2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society.

  20. Anodic stripping voltammetry of synthesized CdS nanoparticles at boron-doped diamond electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayat, Mohammad; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Saepudin, Endang

    Cadmium sulphide (CdS) nanoparticles were chemically synthesized using reverse micelles microreactor methods. By using different washing treatments, UV-Vis spectroscopy showed that the absorption peaks appeared at 465 nm, 462 nm, 460 nm, and 459 nm respectively for CdS nanoparticles without and with 1, 2, and 3 times washing treatments using pure water. In comparison with the absorbance peak of bulk CdS at 512 nm, the shifted absorption peaks, indicates that the different sizes of CdS can be prepared. Anodic stripping voltammetry of the CdS nanoparticles was then studied at a boron-doped diamond electrode using 0.1 M KClO{sub 4} and 0.1 M HClO{sub 4} as themore » electrolytes. A scan rate of 100 mV/s with a deposition potential of -1000 mV (vs. Ag/AgCl) for 60 s at a potential scan from -1600 mV to +800 mV (vs. Ag/AgCl) was applied as the optimum condition of the measurements. Highly-accurate linear calibration curves (R{sup 2} = 0.99) in 0.1 M HClO{sub 4} with the sensitivity of 0.075 mA/mM and the limit of detection of 81 µM in 0.1 M HClO{sub 4} can be achieved, which is promising for an application of CdS nanoparticles as a label for biosensors.« less

  1. Advanced optical imaging platform for CD metrology and defect review on 130-nm to 100-nm node reticles: an overview of preliminary results

    NASA Astrophysics Data System (ADS)

    Hourd, Andrew C.; Grimshaw, Anthony; Scheuring, Gerd; Gittinger, Christian; Brueck, Hans-Juergen; Chen, Shiuh-Bin; Chen, Parkson W.; Hartmann, Hans; Ordynskyy, Volodymyr; Jonckheere, Rik M.; Philipsen, Vicky; Schaetz, Thomas; Sommer, Karl

    2002-08-01

    Critical Dimension fidelity continues to be one of the key driving parameters defining photomask quality and printing performance. The present advanced optical CD metrology systems, operating at i-line, will very soon be challenged as viable tools owing to their restricted resolution and measurement linearity impact on the ability to produce repeatable measurements. Alternative measurement technologies such as CD-SEM and -AFM have started to appear, but are also not without tier concerns in the field of reticle CD metrology. This paper introduces a new optical metrology system (MueTec /) operating at DUV wavelength (248nm), which has been specifically designed to meet the resolution and measurement repeatability requirements of reticle manufacture at the 130nm and 100nm nodes. The system is based upon a specially designed mechanical-optical platform for maximum stability and very advanced optical, illumination, alignment and software systems. The at wavelength operation of this system also makes it an ideal platform for defect printability analysis and review. The system is currently part of a European Commission funded assessment project (IST-2000-28086: McD'OR) to develop a testing strategy to verify the system performance, agree on equipment specifications and demonstrate its capability on advanced production reticles - including long-term reliability. It is the preliminary results from this evaluation that are presented here.

  2. Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells.

    PubMed

    Baskaran, Balraj; Muthukumarasamy, Arulmozhi; Chidambaram, Siva; Sugumaran, Abimanyu; Ramachandran, Krithikadevi; Rasu Manimuthu, Thaneswari

    2017-04-01

    Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time . The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20-50nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC 50 ) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.

  3. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.

    2011-12-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  4. Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng

    2016-03-01

    Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.

  5. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  6. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  7. BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging.

    PubMed

    Wang, Yanfei; Barhoumi, Aoune; Tong, Rong; Wang, Weiping; Ji, Tianjiao; Deng, Xiaoran; Li, Lele; Lyon, Sophie A; Reznor, Gally; Zurakowski, David; Kohane, Daniel S

    2018-05-01

    We report sub-100nm metal-shell (Au) dielectric-core (BaTiO 3 ) nanoparticles with bimodal imaging abilities and enhanced photothermal effects. The nanoparticles efficiently absorb light in the near infrared range of the spectrum and convert it to heat to ablate tumors. Their BaTiO 3 core, a highly ordered non-centrosymmetric material, can be imaged by second harmonic generation, and their Au shell generates two-photon luminescence. The intrinsic dual imaging capability allows investigating the distribution of the nanoparticles in relation to the tumor vasculature morphology during photothermal ablation. Our design enabled in vivo real-time tracking of the BT-Au-NPs and observation of their thermally-induced effect on tumor vessels. Photothermal therapy induced by plasmonic nanoparticles has emerged as a promising approach to treating cancer. However, the study of the role of intratumoral nanoparticle distribution in mediating tumoricidal activity has been hampered by the lack of suitable imaging techniques. This work describes metal-shell (Au) dielectric-core (BaTiO 3 ) nanoparticles (abbreviated as BT-Au-NP) for photothermal therapy and bimodal imaging. We demonstrated that sub-100nm BT-Au-NP can efficiently absorb near infrared light and convert it to heat to ablate tumors. The intrinsic dual imaging capability allowed us to investigate the distribution of the nanoparticles in relation to the tumor vasculature morphology during photothermal ablation, enabling in vivo real-time tracking of the BT-Au-NPs and observation of their thermally-induced effect on tumor vessels. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. 100nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications

    PubMed Central

    Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies f T/f max of 100/125 GHz together with minimum noise figure NFmin = 0.5 dB and associated gain G ass = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime. PMID:24707193

  9. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  10. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions.

    PubMed

    Li, Qian; Li, Ti; Liu, Chengmei; DeLoid, Glen; Pyrgiotakis, Georgios; Demokritou, Philip; Zhang, Ruojie; Xiao, Hang; McClements, David Julian

    Titanium dioxide (TiO 2 ) particles are used in some food products to alter their optical properties, such as whiteness or brightness. These additives typically contain a population of TiO 2 nanoparticles (d < 100nm), which has led to concern about their potential toxicity. The objective of this study was to examine the impact of TiO 2 particles on the gastrointestinal fate of oil-in-water emulsions using a simulated gastrointestinal tract (GIT) that includes mouth, stomach, and small intestine phases. Theoretical predictions suggested that TiO 2 nanoparticles might inhibit lipid digestion through two physicochemical mechanisms: (i) a fraction of the lipase adsorbs to TiO 2 particle surfaces, thereby reducing the amount available to hydrolyze lipid droplets; (ii) some TiO 2 particles adsorb to the surfaces of lipid droplets, thereby reducing the lipid surface area exposed to lipase. The importance of these mechanisms was tested by passing protein-coated lipid droplets (2%, w/w) through the simulated GIT in the absence and presence of TiO 2 (0.5%, w/w) nanoparticles (18 nm) and fine particles (167 nm). Changes in particle characteristics (size, organization, and charge) and lipid digestion were then measured. Both TiO 2 nanoparticles and fine particles had little impact on the aggregation state and charge of the lipid droplets in the different GIT regions, as well as on the rate and extent of lipid digestion. This suggests that the theoretically predicted impact of particle size on lipid digestion was not seen in practice.

  11. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.

    PubMed

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I

    2014-03-24

    Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

  12. Interaction of Se{sup 0} nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baklagina, Yu. G.; Khripunov, A. K.; Tkachenko, A. A.

    2006-07-15

    The sorption and desorption of poly(vinylpyrrolidone)-Se{sup 0} (PVP-Se{sup 0}) nanoparticles on gel films of cellulose Acetobacter xylinum (CAX) are investigated. It is revealed that the hydrodynamic radius R{sub h} of PVP-Se{sup 0} nanoparticles decreases from 57 nm in the initial solution (without CAX gel films) to 25 nm after the sorption of nanostructures on gel films and then increases to approximately 100 nm after the desorption of nanoparticles with water from dry samples of the CAX gel film-PVP-Se{sup 0} nanocomposite. It is found that selenium atoms do not penetrate into crystallites of the cellulose nanofibrils and replace water molecules sorbedmore » by the primary hydroxyl groups of their walls. Poly(vinylpyrrolidone)-Se{sup 0} nanoclusters differ in the number and size upon their sorption inside the cellulose gel film and on the film surface.« less

  13. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  14. Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA

    PubMed Central

    Woehrstein, Johannes B.; Strauss, Maximilian T.; Ong, Luvena L.; Wei, Bryan; Zhang, David Y.; Jungmann, Ralf; Yin, Peng

    2017-01-01

    Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target. PMID:28691083

  15. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis.

    PubMed

    Ottoni, Cristiane Angélica; Simões, Marta Filipa; Fernandes, Sara; Dos Santos, Jonas Gomes; da Silva, Elda Sabino; de Souza, Rodrigo Fernando Brambilla; Maiorano, Alfredo Eduardo

    2017-12-01

    The present work had the goal of screening a batch of 20 fungal strains, isolated from sugar cane plantation soil, in order to identify those capable of biosynthesis of silver nanoparticles. These nanoparticles are known to have a large and effective application in clinical microbiology. Four strains were found to be capable of biosynthesis of silver nanoparticles. The biosynthesised nanoparticles were characterised by UV-vis spectroscopy, scanning electron microscopy, EDX, and XRD. They were found to have an average size of 30-100 nm, a regular round shape, and potential antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antimicrobial activity was found to be directly related to the nanoparticles concentration. Mycogenic synthesis of nanoparticles is a green biogenic process preferable to other alternatives. Because fungi are great producers of extracellular enzymes this process makes scaling-up an easier task with high importance for clinical microbiology on the fight against microbial resistance, as well as for other industrial applications.

  16. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    PubMed Central

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336

  17. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-04-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  18. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Rostami, Elham

    2014-03-01

    In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.

  19. Surface modified α-glycine - EuF3: Gd nanoparticles for upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Mahajan, Manoj P.; Khandpekar, M. M.

    2018-04-01

    Gadolinium doped EuF3 nanoparticles have been synthesized in the presence of α-glycine via chloride route with subsequent microwave drying. The XRD profile shows hexagonal phase structure with lattice parameters a = b = 6.920 A° and c = 7.085 A° (JCPDS No. 32-0373) with Debye-Scherer particle size of 51 nm. The SEM shows chipped morphology and TEM images exhibit shallow toroid like hexagonal - rounded nanostructures (30 - 50 nm) and their subsequent spontaneous transformation in to hyperboloid shaped nanostructures (200 - 600 nm) possibly with extension of the reaction time. SAED pattern confirms crystalline nature of nanoparticles and the planes are in agreement with XRD Peaks. Comparative FTTR and Raman spectrum shows presence of various functional groups confirming the capping of the glycine on EuF3:Gd core. A TGA/DTA spectrum shows decomposition in two stages. The photoluminescence spectrum shows up conversion luminescence at wavelength 653 nm (red).

  20. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a

  1. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells

    PubMed Central

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2015-01-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO2) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO2 nanoparticles are not cytotoxic or clastogenic to human skin cells. PMID:26568896

  2. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells.

    PubMed

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2014-11-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO 2 ) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO 2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO 2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm 2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO 2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm 2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO 2 nanoparticles are not cytotoxic or clastogenic to human skin cells.

  3. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB)more » by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.« less

  4. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size.

    PubMed

    Lou, Sha; Ye, Jia-ying; Li, Ke-qiang; Wu, Aiguo

    2012-03-07

    Four different sized gold nanoparticles (14 nm, 16 nm, 35 nm and 38 nm) were prepared to conjugate an antibody for a gold nanoparticle-based immunochromatographic assay which has many applications in both basic research and clinical diagnosis. This study focuses on the conjugation efficiency of the antibody with different sized gold nanoparticles. The effect of factors such as pH value and concentration of antibody has been quantificationally discussed using spectra methods after adding 1 wt% NaCl which induced gold nanoparticle aggregation. It was found that different sized gold nanoparticles had different conjugation efficiencies under different pH values and concentrations of antibody. Among the four sized gold nanoparticles, the 16 nm gold nanoparticles have the minimum requirement for antibody concentrations to avoid aggregation comparing to other sized gold nanoparticles but are less sensitive for detecting the real sample compared to the 38 nm gold nanoparticles. Consequently, different sized gold nanoparticles should be labeled with antibody under optimal pH value and optimal concentrations of antibody. It will be helpful for the application of antibody-labeled gold nanoparticles in the fields of clinic diagnosis, environmental analysis and so on in future.

  5. Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells

    NASA Astrophysics Data System (ADS)

    Awasthi, Kumud Kant; Awasthi, Anjali; Kumar, Narender; Roy, Partha; Awasthi, Kamlendra; John, P. J.

    2013-09-01

    Silver nanoparticles (Ag NPs) are being used increasingly in wound dressings, catheters, and in various household products due to their antimicrobial activity. The present study reports the toxicity evaluation of synthesized and well characterized Ag NPs using Chinese hamster ovary (CHO) cells. The UV-Vis spectroscopy reveals the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 408-410 nm. Transmission electron microscopy (TEM) reveals that the average diameter of silver nanoparticles is about 5.0 ± 1.0 nm and that they have spherical shape. Cell visibility and cell viability percentage show dose-dependent cellular toxicity of Ag NPs. The half maximal inhibitory concentration (IC50) for CHO cells is 68.0 ± 2.65 μg/ml after 24 h Ag NPs exposure. Toxicity evaluations, including cellular morphology, mitochondrial function (MTT assay), reactive oxygen species (ROS), and DNA fragmentation assay (Ladder pattern) were assessed in unexposed CHO cells (control) and the cells exposed to Ag NPs concentrations of 15, 30, and 60 μg/ml for 24 h. The findings may assist in the designing of Ag NPs for various applications and provide insights into their toxicity.

  6. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  7. Red emissive cross-linked chitosan and their nanoparticles for imaging the nucleoli of living cells.

    PubMed

    Wang, Ke; Yuan, Xun; Guo, Zhenpeng; Xu, Jiying; Chen, Yi

    2014-02-15

    Biocompatible glutaraldehyde-cross-linked chitosan with new red fluorescence were prepared for the first time and were shaped into nanoparticles via inverse-microemulsion method. They could luminesce at ca. 670 nm either as powders and nanoparticles or in real and gelling solutions or suspensions, having a lifetime of 1.353 ns and a quantum yield of 0.08 in solution or 0.01 in solid state. The new-formed pyridinium structures and the intramolecular charge transfer effect are considered to be responsible for the new red emission, which have been proved by FTIR, (13)C NMR, and some calculation using Gaussian 09, respectively. Strikingly, they are quite inert and anti-photobleaching, with only <3% loss of fluorescent intensity per minute in average under a continuous laser illumination at 633 nm and 50 μW. Especially, their nanoparticles (5.6 nm) could enter into the negative nucleoli of living HeLa cells with low cytotoxicity for high contrast imaging inspections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fabrication of self-assembled (-)-epigallocatechin gallate (EGCG) ovalbumin-dextran conjugate nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells.

    PubMed

    Li, Zheng; Gu, Liwei

    2014-02-12

    Nanoparticles have the potential to increase bioavailability of nutraceutical compounds such as (-)-epigallocatechin gallate (EGCG). Ovalbumin was conjugated with dextran using the Maillard reaction. The resultant ovalbumin-dextran (O-D) conjugates were self-assembled with EGCG to form EGCG O-D conjugate nanoparticles at pH 5.2 after heating at 80 °C for 60 min. Ovalbumin in EGCG O-D conjugate nanoparticles was further cross-linked by glutaraldehyde for 24 h at room temperature. EGCG O-D conjugate nanoparticles and cross-linked EGCG O-D conjugate nanoparticles in aqueous suspension had particle sizes of 285 and 339 nm, respectively, and showed a spherical morphology. The loading efficiencies of EGCG in these two nanoparticles were 23.4 and 30.0%, whereas the loading capacities were 19.6 and 20.9%, respectively. These nanoparticles showed positive zeta-potentials in a pH range from 2.5 to 4.0 but had negative charges at pH ≥5.0. EGCG O-D conjugate nanoparticles maintained a particle size of 183-349 nm in simulated gastric fluid (SGF) and 188-291 nm in simulated intestinal fluid (SIF) at 37 °C for 2 h, whereas cross-linked nanoparticles had particle sizes of 294-527 nm in SGF and 206-300 nm in SIF. Limited release of EGCG was observed in both nanoparticle systems in simulated gastric and intestinal fluids without and with digestive enzymes. EGCG O-D conjugate nanoparticles significantly enhanced the apparent permeability coefficient (Papp) of EGCG on Caco-2 monolayers compared with EGCG solution, suggesting that these nanoparticles may improve the absorption of EGCG.

  9. 50 CFR 648.100 - Summer flounder Annual Catch Limit (ACL).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Summer flounder Annual Catch Limit (ACL... Management Measures for the Summer Flounder Fisheries § 648.100 Summer flounder Annual Catch Limit (ACL). (a... frequent or more specific ACL performance review criteria as part of a stock rebuilding plan following a...

  10. 50 CFR 648.100 - Summer flounder Annual Catch Limit (ACL).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Summer flounder Annual Catch Limit (ACL... Management Measures for the Summer Flounder Fisheries § 648.100 Summer flounder Annual Catch Limit (ACL). (a... frequent or more specific ACL performance review criteria as part of a stock rebuilding plan following a...

  11. 50 CFR 648.100 - Summer flounder Annual Catch Limit (ACL).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Summer flounder Annual Catch Limit (ACL... Management Measures for the Summer Flounder Fisheries § 648.100 Summer flounder Annual Catch Limit (ACL). (a... frequent or more specific ACL performance review criteria as part of a stock rebuilding plan following a...

  12. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor.

    PubMed

    Bhushan, Shashi; Kakkar, Vandita; Pal, Harish Chandra; Mondhe, D M; Kaur, Indu Pal

    2016-01-25

    AP9-cd, a novel lignan composition from Cedrus deodara has significant anticancer potential, and to further enhance its activity, it was lucratively encumbered into solid lipid nanoparticles (SLNs). These nanoparticles were formulated by micro-emulsion technique with 70% drug trap competence. AP9-cd-SLNs were regular, solid, globular particles in the range of 100-200 nm, which were confirmed by electron microscopic studies. Moreover, AP9-cd-SLNs were found to be stable for up to six months in terms of color, particle size, zeta potential, drug content and entrapment. AP9-cd-SLNs have 30-50% higher cytotoxic and apoptotic potential than the AP9-cd alone. The augmented anticancer potential of AP9-cd-SLNs was observed in cytotoxic IC50 value, apoptosis signaling cascade and in Ehrlich ascites tumor (EAT) model. AP9-cd-SLNs induce apoptosis in Molt-4 cells via both intrinsic and extrinsic pathway. Moreover, the dummy nanoparticles (SLNs without AP9-cd) did not have any cytotoxic effect in cancer as well as in normal cells. Consequently, SLNs of AP9-cd significantly augment the apoptotic and antitumor potential of AP9-cd. The present study provides a podium for ornamental the remedial latent via novel delivery systems like solid lipid nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Size matters: influence of the size of nanoparticles on their interactions with ligands immobilized on the solid surface.

    PubMed

    Piletska, Elena V; Piletsky, Sergey A

    2010-03-16

    The correlation between the size of biotinylated nanoparticles and their affinity in relation to interactions with the solid surface was investigated. The silica particles with a diameter of 50-200 nm containing amino groups on the surface were labeled with different quantities of biotin. The affinity properties of biotinylated nanoparticles were studied using a Biacore 3000 instrument equipped with a streptavidin-coated sensor chip (SA chip). It was shown that the increase in the particle size from 50 to 200 nm reduced the affinity (K(D)) of biotin-streptavidin interactions from 1.2 x 10(-12) to 1.2 x 10(-10) M. It was found that the particles with higher concentrations of immobilized biotin on particle surfaces demonstrated stronger binding with streptavidin.

  14. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.

    PubMed

    Cooper, Daniel R; Kudinov, Konstantin; Tyagi, Pooja; Hill, Colin K; Bradforth, Stephen E; Nadeau, Jay L

    2014-06-28

    CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthesis methods for water-dispersible Ce0.1La0.9F3/LaF3 and CeF3/LaF3 core/shell nanoparticles and an investigation of energy transfer to photosensitizers. Unbound deuteroporphyrin IX 2,4-disulfonic acid was found to substantially quench the luminescence of large (>10 nm diameter) aminocaproic acid-stabilized nanoparticles at reasonable concentrations and loading amounts: up to 80% quenching at 6% w/w photosensitizer loading. Energy transfer was found to occur primarily through a cascade, with excitation of "regular" site Ce(3+) at 252 nm relayed to photosensitizer molecules at the nanoparticle surface through intermediate "perturbed" Ce(3+) sites. Smaller (<5 nm) citrate-stabilized nanoparticles were coated with the bisphosphonate alendronate, allowing covalent conjugation to chlorin e6 and resulting in static quenching of the nanoparticle luminescence: ∼50% at ∼0.44% w/w. These results provide insight into energy transfer mechanisms that may prove valuable for optimizing similar systems.

  15. Dose-dependent biodistribution of prenatal exposure to rutile-type titanium dioxide nanoparticles on mouse testis

    NASA Astrophysics Data System (ADS)

    Kubo-Irie, Miyoko; Uchida, Hiroki; Mastuzawa, Shotaro; Yoshida, Yasuko; Shinkai, Yusuke; Suzuki, Kenichiro; Yokota, Satoshi; Oshio, Shigeru; Takeda, Ken

    2014-02-01

    Titanium dioxide nanoparticles (nano-TiO2), believed to be inert and safe, are used in many products especially rutile-type in cosmetics. Detection, localization, and count of nanoparticles in tissue sections are of considerable current interest. Here, we evaluate the dose-dependent biodistribution of rutile-type nano-TiO2 exposure during pregnancy on offspring testes. Pregnant mice were subcutaneously injected five times with 0.1 ml of sequentially diluted of nano-TiO2 powder, 35 nm with primary diameter, suspensions (1, 10, 100, or 1,000 μg/ml), and received total doses of 0.5, 5, 50, and 500 μg, respectively. Prior to injection, the size distribution of nano-TiO2 was analyzed by dynamic light scattering measurement. The average diameter was increased in a dose-dependent manner. The most diluted concentration, 1 μg/ml suspension, contained small agglomerates averaging 193.3 ± 5.4 nm in diameter. The offspring testes were examined at 12 weeks postpartum. Individual particle analysis in testicular sections under scanning and transmission electron microscopy enabled us to understand the biodistribution. The correlation between nano-TiO2 doses injected to pregnant mice, and the number of agglomerates in the offspring testes was demonstrated to be dose-dependent by semiquantitative evaluation. However, the agglomerate size was below 200 nm in the testicular sections of all recipient groups, independent from the injected dose during pregnancy.

  16. Near-infrared fluorescence imaging using organic dye nanoparticles.

    PubMed

    Yu, Jia; Zhang, Xiujuan; Hao, Xiaojun; Zhang, Xiaohong; Zhou, Mengjiao; Lee, Chun-Sing; Chen, Xianfeng

    2014-03-01

    Near-infrared (NIR) fluorescence imaging in the 700-1000 nm wavelength range has been very attractive for early detection of cancers. Conventional NIR dyes often suffer from limitation of low brightness due to self-quenching, insufficient photo- and bioenvironmental stability, and small Stokes shift. Herein, we present a strategy of using small-molecule organic dye nanoparticles (ONPs) to encapsulate NIR dyes to enable efficient fluorescence resonance energy transfer to obtain NIR probes with remarkably enhanced performance for in vitro and in vivo imaging. In our design, host ONPs are used as not only carriers to trap and stabilize NIR dyes, but also light-harvesting agent to transfer energy to NIR dyes to enhance their brightness. In comparison with pure NIR dyes, our organic dye nanoparticles possess almost 50-fold increased brightness, large Stokes shifts (∼250 nm) and dramatically enhanced photostability. With surface modification, these NIR-emissive organic nanoparticles have water-dispersity and size- and fluorescence- stability over pH values from 2 to 10 for almost 60 days. With these superior advantages, these NIR-emissive organic nanoparticles can be used for highly efficient folic-acid aided specific targeting in vivo and ex vivo cellular imaging. Finally, during in vivo imaging, the nanoparticles show negligible toxicity. Overall, the results clearly display a potential application of using the NIR-emissive organic nanoparticles for in vitro and in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol

    NASA Astrophysics Data System (ADS)

    Rai, Tripti; Panda, Debashis

    2015-03-01

    Cellulase reduces silver ions in both aqueous and methanolic media yielding stable narrow-sized silver nanoparticles (Ag-NP) at room temperature. The synthesized nanoparticles have been characterized by various spectroscopic, microscopic methods. The redox potentials of tyrosine residues and protein backbone play an instrumental role to reduce the metal ions. The average size of nanoparticles formed in aqueous medium is of 5.04 ± 3.50 nm. Post-synthesis of Ag-NP secondary structure of enzyme is completely lost whereas upon incubation with chemically synthesized Ag-NP a significant gain in secondary structure is observed. Cellulase as a capping ligand stabilizes the silver nanoparticles even in methanol.

  18. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens.

    PubMed

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-07-01

    Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized

  19. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  20. Fractional laser microablation of skin aimed at enhancing its permeability for nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Dolotov, L E; Bashkatov, A N

    2011-05-31

    A new method for delivering nanoparticles into the skin using the fractional laser microablation of its surface and the ultrasonic treatment is proposed. As a result of in vitro and in vivo studies, it is shown that the 290-nm laser pulses with the energy from 0.5 to 3.0 J provide the penetration of nanoparticles of titanium dioxide with the diameter {approx}100 nm from the skin surface to the depth, varying from 150 to 400 {mu}m. Histological testing of the skin areas, subjected to the treatment, shows that the particles stay in the dermis at the depth up to 400 {mu}mmore » no less than for three weeks. (optical technologies in biophysics and medicine)« less