Science.gov

Sample records for nanoparticles densely loaded

  1. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA

    NASA Astrophysics Data System (ADS)

    Woodrow, Kim A.; Cu, Yen; Booth, Carmen J.; Saucier-Sawyer, Jennifer K.; Wood, Monica J.; Mark Saltzman, W.

    2009-06-01

    Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protection against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternative approach using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing, we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA to the vaginal mucosa.

  2. Dense loading of catalyst improves hydrotreater performance

    SciTech Connect

    Nooy, F.M.

    1984-11-12

    This paper discusses the advantages of increased capacity and improved catalyst/oil contact in existing hydrotreating units. The similarities between catalyst loading and other material processes are reviewed. Catalyst bed activity is examined. Dense loading systems are reviewed in detail. Over the last years, many refiners have gained experience with the benefits of dense loading techniques, and these techniques are gaining more and more acceptance.

  3. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  4. Universal behavior of dense clusters of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Serebryakova, O. N.

    2016-07-01

    A detailed numerical simulation of quasistatic hysteresis loops of dense clusters of interacting magnetic nanoparticles is carried out. Both clusters of magnetically soft and magnetically hard nanoparticles are considered. The clusters are characterized by an average particle diameter D, the cluster radius Rc, the particle saturation magnetization Ms, and the uniaxial anisotropy constant K. The number of particles in the cluster varies between Np = 30 - 120. The particle centers are randomly distributed within the cluster, their easy anisotropy axes being randomly oriented. It is shown that a dilute assembly of identical random clusters of magnetic nanoparticles can be characterized by two dimensionless parameters: 1) the relative strength of magneto-dipole interaction, K/Ms2, and the average particle concentration within the cluster, η = V Np/Vc. Here V is the nanoparticle volume, and Vc is the volume of the cluster, respectively. In the strong interaction limit, Msη/Ha > > 1, where Ha = 2K/Ms is the anisotropy field, the ultimate hysteresis loops of dilute assemblies of clusters have been constructed. In the variables (M/Ms, H/Ms) these hysteresis loops depend only on the particle volume fraction η. In the weak interaction limit, Msη/Ha < < 1, the assembly hysteresis loops in the variables (M/Ms, H/Ha) are close to the standard Stoner-Wohlfarth hysteresis loop.

  5. Hemoglobin loaded polymeric nanoparticles: preparation and characterizations.

    PubMed

    Dessy, Alberto; Piras, Anna M; Schirò, Giorgio; Levantino, Matteo; Cupane, Antonio; Chiellini, Federica

    2011-05-18

    In the present work polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with m-PEG (2000) and 95% grafted with 2-methoxyethanol (VAM41-PEG) were loaded with human hemoglobin (Hb) and characterized from a physicochemical point of view. The assessment of structural and functional features of the loaded Hb was performed and the effect of the introduction of different reducing agents as aimed at minimizing Hb oxidation during the nanoparticles formulation process, was also investigated. Nanoparticles possessing an average diameter of 138±10 nm and physicochemical features suitable for this kind of application were successfully obtained. Although the oxidation of the protein was not avoided during its loading into nanoparticles, the presence of acidic moieties in the polymeric structure is proposed to be directly involved in the protein inactivation mechanism. PMID:21443949

  6. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  7. Interface interaction induced ultra-dense nanoparticles assemblies.

    PubMed

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E

    2013-08-01

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 ± 1.0 nm to 12.5 ± 2.9 nm, mean inter-edge spacings from 3.5 ± 1.4 nm to 7.9 ± 3.4 nm and areal densities from 5.6 × 10(11) NPs per cm(2) to 1.5 × 10(12) NPs per cm(2) are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 ± 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering. PMID:23793729

  8. Interface interaction induced ultra-dense nanoparticles assemblies

    NASA Astrophysics Data System (ADS)

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E.

    2013-07-01

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 +/- 1.0 nm to 12.5 +/- 2.9 nm, mean inter-edge spacings from 3.5 +/- 1.4 nm to 7.9 +/- 3.4 nm and areal densities from 5.6 × 1011 NPs per cm2 to 1.5 × 1012 NPs per cm2 are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 +/- 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering.We demonstrate a simple and clean physical

  9. Porphyrin-loaded nanoparticles for cancer theranostics

    NASA Astrophysics Data System (ADS)

    Zhou, Yiming; Liang, Xiaolong; Dai, Zhifei

    2016-06-01

    Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.

  10. Dead Sea Minerals loaded polymeric nanoparticles.

    PubMed

    Dessy, Alberto; Kubowicz, Stephan; Alderighi, Michele; Bartoli, Cristina; Piras, Anna Maria; Schmid, Ruth; Chiellini, Federica

    2011-10-15

    Therapeutic properties of Dead Sea Water (DSW) in the treatment of skin diseases such as atopic dermatitis, psoriasis and photo aging UV damaged skin have been well established. DSW is in fact rich in minerals such as calcium, magnesium, sodium, potassium, zinc and strontium which are known to exploit anti-inflammatory effects and to promote skin barrier recovery. In order to develop a Dead Sea Minerals (DSM) based drug delivery system for topical therapy of skin diseases, polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with monomethoxy poly(ethyleneglycol) 2000 MW (PEG) and 95% grafted with 2-methoxyethanol (VAM41-PEG) loaded with DSM were prepared by means of a combined miniemulsion/solvent evaporation process. The resulting nanoparticles were characterized in terms of dimension, morphology, biocompatibility, salt content and release. Cytocompatible spherical nanoparticles possessing an average diameter of about 300 nm, a time controlled drug release profile and a high formulation yield were obtained. PMID:21676600

  11. Sustained release Curcumin loaded Solid Lipid Nanoparticles

    PubMed Central

    Jourghanian, Parisa; Ghaffari, Solmaz; Ardjmand, Mehdi; Haghighat, Setareh; Mohammadnejad, Mahdieh

    2016-01-01

    Purpose: curcumin is poorly water soluble drug with low bioavailability. Use of lipid systems in lipophilic substances increases solubility and bioavailability of poorly soluble drugs. The aim of this study was to prepare curcumin loaded Solid Lipid Nanoparticles (SLNs) with high loading efficiency, small particle size and prolonged release profile with enhanced antibacterial efficacy. Methods: to synthesize stable SLNs, freeze- Drying was done using mannitol as cryoprotectant. Cholesterol was used as carrier because of good tolerability and biocompatibility. SLNs were prepared using high pressure homogenization method. Results: optimized SLNs had 112 and 163 nm particle size before and after freeze drying, respectively. The prepared SLNs had 71% loading efficiency. 90% of loaded curcumin was released after 48 hours. Morphologic study for formulation was done by taking SEM pictures of curcumin SLNs. Results show the spherical shape of curcumin SLNs. DSC studies were performed to determine prolonged release mechanism. Antimicrobial studies were done to compare the antimicrobial efficacy of curcumin SLNs with free curcumin. DSC studies showed probability of formation of hydrogen bonds between cholesterol and curcumin which resulted in prolonged release of curcumin. Lipid structure of cholesterol could cause enhanced permeability in studied bacteria to increase antibacterial characteristics of curcumin. Conclusion: the designed curcumin SLNs could be candidate for formulation of different dosage forms or cosmeceutical products. PMID:27123413

  12. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.

    PubMed

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2012-04-20

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles' performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications. PMID:22456180

  13. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI)

    NASA Astrophysics Data System (ADS)

    Huang, Yun-Ru; Jiang, Yijie; Hor, Jyo Lyn; Gupta, Rohini; Zhang, Lei; Stebe, Kathleen J.; Feng, Gang; Turner, Kevin T.; Lee, Daeyeon

    2014-12-01

    Polymer nanocomposite films (PNCFs) with extremely high concentrations of nanoparticles are important components in energy storage and conversion devices and also find use as protective coatings in various applications. PNCFs with high loadings of nanoparticles, however, are difficult to prepare because of the poor processability of polymer-nanoparticle mixtures with high concentrations of nanoparticles even at an elevated temperature. This problem is exacerbated when anisotropic nanoparticles are the desired filler materials. Here we report a straightforward method for generating PNCFs with extremely high loadings of nanoparticles. Our method is based on what we call capillary rise infiltration (CaRI) of polymer into a dense packing of nanoparticles. CaRI consists of two simple steps: (1) the preparation of a two-layer film, consisting of a porous layer of nanoparticles and a layer of polymer and (2) annealing of the bilayer structure above the temperature that imparts mobility to the polymer (e.g., glass transition of the polymer). The second step leads to polymer infiltration into the interstices of the nanoparticle layer, reminiscent of the capillary rise of simple fluid into a narrow capillary or a packing of granules. We use in situ spectroscopic ellipsometry and a three-layer Cauchy model to follow the capillary rise of polystyrene into the random network of nanoparticles. The infiltration of polystyrene into a densely packed TiO2 nanoparticle layer is shown to follow the classical Lucas-Washburn type of behaviour. We also demonstrate that PNCFs with densely packed anisotropic TiO2 nanoparticles can be readily generated by spin coating anisotropic TiO2 nanoparticles atop a polystyrene film and subsequently thermally annealing the bilayer film. We show that CaRI leads to PNCFs with modulus, hardness and scratch resistance that are far superior to the properties of films of the component materials. In addition, CaRI fills in cracks that may exist in the

  14. Dense nanoparticles exhibit enhanced vascular wall targeting over neutrally buoyant nanoparticles in human blood flow.

    PubMed

    Thompson, Alex J; Eniola-Adefeso, Omolola

    2015-07-01

    For vascular-targeting carrier (VTC) systems to be effective, carriers must be able to localize and adhere to the vascular wall at the target site. Research suggests that neutrally buoyant nanoparticles are limited by their inability to localize to the endothelium, making them sub-optimal as carriers. This study examines whether particle density can be exploited to improve the targeting (localization and adhesion) efficiency of nanospheres to the vasculature. Silica spheres with 500 nm diameter, which have a density roughly twice that of blood, exhibit improved adhesion to inflamed endothelium in an in vitro model of human vasculature compared to neutrally buoyant polystyrene spheres of the same size. Silica spheres also display better near-wall localization in the presence of red blood cells than they do in pure buffer, likely resulting in the observed improvement in adhesion. Titania spheres (4 times more dense than blood) adhere at levels higher than polystyrene, but only in conditions when gravity or centrifugal force acts in the direction of adhesion. In light of the wide array of materials proposed for use as carrier systems for drug delivery and diagnostics, particle density may be a useful tool for improving the targeting of diseased tissues. PMID:25870170

  15. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media

    NASA Astrophysics Data System (ADS)

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M.; Luna, Mónica; Briones, Fernando

    2012-04-01

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles’ performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.

  16. Design of naltrexone-loaded hydrolyzable crosslinked nanoparticles

    PubMed Central

    Yin, Wusheng; Akala, Emmanuel O.; Taylor, Robert E.

    2010-01-01

    A hydrolyzable crosslinker (N,O-dimethacryloylhydroxylamine (MANHOMA)) was synthesized by a modified method and was characterized using 1H-NMR, FTIR, and melting point determination. Naltrexone-loaded nanoparticles were prepared by copolymerization of poly(ethylene glycol)1000 monomethyl ether mono methacrylate (PEO-MA), methyl methacrylate (MMA) and N,O-dimethacryloylhydroxylamine (MANHOMA) in 0.4% poly(vinyl alcohol) aqueous solution. The nanoparticles were characterized by FTIR, particle size determination and transmission electron microscope (TEM). The TEM photomicrographs of the nanoparticles show a crosslinked core surrounded by a ring formed by the polyethylene glycol tail of PEO-MA. The loading efficiency of the nanoparticles and in vitro drug availability from the nanoparticles were investigated. The naltrexone-loaded hydrolyzable crosslinked nanoparticles were able to sustain the release of naltrexone for different periods of time, depending on the monomer feed composition. PMID:12204561

  17. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    PubMed

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials. PMID:27038916

  18. Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Russier, Vincent; de Montferrand, Caroline; Lalatonne, Yoann; Motte, Laurence

    2012-10-01

    The magnetic properties of densely packed magnetic nanoparticles (MNP) assemblies are investigated from Monte Carlo simulations. The case of iron oxide nanoparticles is considered as a typical example of MNP. The main focus is put on particle size, and size polydispersity influences on the magnetization curve. The particles are modeled as uniformly magnetized spheres isolated one from each other by a non magnetic layer representing the organic coating. A comparison with recent experimental results on γ -Fe2O3 powder samples differing by their size is given.

  19. Super spin dimensionality of a mono-dispersed and densely packed magnetic nanoparticle system

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; De Toro, J. A.; Lee, S. S.; Mathieu, R.; Nordblad, P.

    2014-06-01

    The dynamics of a dense near mono-dispersed assembly of maghemite nanoparticles is investigated by measurements of the temperature dependence of the isothermal remnant magnetization induced by temporal application of weak magnetic fields at constant temperature. The results suggest that the dimensionality of the super spins of the particles is of Heisenberg character at high temperatures but crossover to become Ising like at lower temperatures.

  20. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. PMID:22027546

  1. Combining nanoimprint lithography with dynamic templating for the fabrication of dense, large-area nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Golze, Spencer D.

    The study of nanomaterials is a developing science with potentially large benefits in the development of catalysts, optical and chemical sensors, and solid state memory devices. As several of these devices require large arrays of nanoparticles, one of the greatest obstacles in material characterization and device development is the reliable manufacture of nanopatterns over a large surface area. In addition, various applications require different nanoparticle size and density. High density arrays with small nanoparticle sizes are difficult to achieve over a large surface area using current manufacturing processes. Herein, Nanoimprint Lithography (NIL) and Dynamic Templating are combined to create a new manufacturing process capable of developing high density arrays with small nanoparticle sizes. The NIL process involves the stamping of a polymer coated substrate by a silicon stamp with patterned nanofeatures. The stamp is then removed, leaving the pattern in the polymer, which is first etched and then coated with a thin layer of metal, filling the recessed regions of the pattern. The excess polymer is dissolved, leaving a pattern of nanoparticles on the substrate matching the pattern on the stamp. When Dynamic Templating is applied, a very thin layer of metal can be coated, which forms small nanoparticle sizes when dewetted. A custom NIL system has been developed to combine these two processes together, which has now proven to yield consistent large-area, dense arrays with a small nanoparticle size. An array spacing of 700 nm has been achieved, along with a nanoparticle size of 90 nm. Arrays have been created in gold and palladium, where there is now the potential to combine them with other solution-based syntheses which should lead to complex nanoparticle geometries suitable for sensor applications.

  2. Novel Methods of Lipidic Nanoparticle Preparation and Drug Loading

    NASA Astrophysics Data System (ADS)

    Maitani, Y.

    2013-09-01

    In improving cancer chemotherapy, lipidic nanoparticle systems for drug delivery, such as liposomes and emulsions, have received much attention because they are capable of delivering their drug payload selectively to cancer cells and of circulating for a long period in the bloodstream. In addition, lipidic nanoparticles have been examined for use in gene delivery as a non-viral vector. Preparation methods of particles and drug loading methods are crucial for the physicochemical properties of nanoparticles, which are the key aspects for pharmaceutical applications. This review describes new preparation methods for nanoparticles and a loading method for drugs using nanotechnology, including an evaluation of nanoparticles from the point of drug release for applications in cancer therapy and gene delivery.

  3. Photothermal ablation of malignant brain tumors by nanoparticle loaded macrophages

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Baek, Seung-Kuk; Kwon, Young Jik; Sun, Chung-Ho; Madsen, Steen J.

    2011-03-01

    Nanoshells are a new class of optically tunable nanoparticles composed of a dielectric core (silica) coated with an ultrathin metallic layer (gold). Since nanoshells are roughly one million times more efficient at converting NIR light into heat than conventional dyes when exposed to NIR light, they can generate sufficient heat to induce cell death. Macrophages are frequently found in and around glioblastomas in both experimental animals and patient biopsies. Inflammatory cells loaded with nanoparticles could therefore be used to target tumors.

  4. Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Preclíková, Jana; Galář, Pavel; Trojánek, František; Rezek, Bohuslav; Němcová, Yvonne; Malý, Petr

    2011-04-01

    We report on a systematic study of the photoluminescence properties of nanocrystalline titanium dioxide films loaded with silver nanoparticles under various ambient conditions: in the temperature interval of 10 to 300 K, under different values of ambient air pressure (5 to 105 Pa), and under visible light irradiation that causes the photochromic transformation of the film. Our results enable us to follow the electron transfer from titanium dioxide into silver nanoparticles and to observe the oxidation of silver nanoparticles during the photochromic transformation. We propose a microscopic model explaining the behavior of extinction and photoluminescence of the Ag-TiO2 film under different values of ambient air pressure.

  5. Preliminary toxicological report of metformin hydrochloride loaded polymeric nanoparticles.

    PubMed

    Lekshmi, Unnikrishnan Meenakshi Dhana; Reddy, Pully Neelakanta

    2012-09-01

    Nanosized materials have tremendous application in every field of human activity, with a lot of economic benefit increasing nanoparticle research and use. There are number of nanosized products already available commercially and many others are in queue. Therefore, there is a pressing need for careful consideration of benefits and side effects of the use of nanoparticles in medicine. This research work aims at providing a balanced update of this exciting potentially toxicological effect of manufactured Metformin hydrochloride loaded polymeric nanoparticles. To assess the toxicities systematically on the functions of various tissues and organs in rats, the rats were fed with the manufactured polymeric nanoparticles for a period of 30 days repeated oral administration. Variation in the protein, carbohydrate and fat metabolic profile of the rat exposed to nanoparticles were studied by hematobiochemical and pathology profiles. The haemolytic potential of these nanoparticles were determined by means of an in vitro haemolysis assay. All formulations showed haemolytic effect less than 5%. The study revealed that Metformin loaded PMMA and PLGA polymeric nanoparticle did not produce any toxicity. PMID:23293465

  6. Preliminary Toxicological Report of Metformin Hydrochloride Loaded Polymeric Nanoparticles

    PubMed Central

    Lekshmi, Unnikrishnan Meenakshi Dhana; Reddy, Pully Neelakanta

    2012-01-01

    Nanosized materials have tremendous application in every field of human activity, with a lot of economic benefit increasing nanoparticle research and use. There are number of nanosized products already available commercially and many others are in queue. Therefore, there is a pressing need for careful consideration of benefits and side effects of the use of nanoparticles in medicine. This research work aims at providing a balanced update of this exciting potentially toxicological effect of manufactured Metformin hydrochloride loaded polymeric nanoparticles. To assess the toxicities systematically on the functions of various tissues and organs in rats, the rats were fed with the manufactured polymeric nanoparticles for a period of 30 days repeated oral administration. Variation in the protein, carbohydrate and fat metabolic profile of the rat exposed to nanoparticles were studied by hematobiochemical and pathology profiles. The haemolytic potential of these nanoparticles were determined by means of an in vitro haemolysis assay. All formulations showed haemolytic effect less than 5%. The study revealed that Metformin loaded PMMA and PLGA polymeric nanoparticle did not produce any toxicity. PMID:23293465

  7. Asymmetric Collagen/chitosan Membrane Containing Minocycline-loaded Chitosan Nanoparticles for Guided Bone Regeneration.

    PubMed

    Ma, Shiqing; Adayi, Aidina; Liu, Zihao; Li, Meng; Wu, Mingyao; Xiao, Linghao; Sun, Yingchun; Cai, Qing; Yang, Xiaoping; Zhang, Xu; Gao, Ping

    2016-01-01

    Infections caused by pathogens colonization at wound sites in the process of bone healing are considered as one of the major reasons for the failure of guided bone regeneration (GBR). The objective of this study was to prepare a novel asymmetric collagen/chitosan GBR membrane containing minocycline-loaded chitosan nanoparticles. The morphologies of the membranes and nanoparticles were observed by SEM and TEM, respectively. The characterization and biocompatibility of the membranes was evaluated. The effect of the membrane on bone regeneration was assessed using the critical-size at cranial defect model. TEM images showed the spherical morphology of the nanoparticles. The results of SEM indicated that the asymmetric membrane contained a dense collagen layer and a loose chitosan layer. An in vitro experiment showed that the membrane can inhibit bacterial growth and promote osteoblasts and fibroblasts growth. The membrane showed the ability to promote angiogenesis and enhance bone regeneration in vivo. An asymmetric collagen/chitosan GBR membrane can be fabricated by loading minocycline encapsulated chitosan nanoparticles, and shows satisfactory biocompatibility and barrier function, which enhances bone regeneration. Therefore, this antibacterial GBR membrane is a promising therapeutic approach to prevent infection and guide bone regeneration. PMID:27546177

  8. Asymmetric Collagen/chitosan Membrane Containing Minocycline-loaded Chitosan Nanoparticles for Guided Bone Regeneration

    PubMed Central

    Ma, Shiqing; Adayi, Aidina; Liu, Zihao; Li, Meng; Wu, Mingyao; Xiao, Linghao; Sun, Yingchun; Cai, Qing; Yang, Xiaoping; Zhang, Xu; Gao, Ping

    2016-01-01

    Infections caused by pathogens colonization at wound sites in the process of bone healing are considered as one of the major reasons for the failure of guided bone regeneration (GBR). The objective of this study was to prepare a novel asymmetric collagen/chitosan GBR membrane containing minocycline-loaded chitosan nanoparticles. The morphologies of the membranes and nanoparticles were observed by SEM and TEM, respectively. The characterization and biocompatibility of the membranes was evaluated. The effect of the membrane on bone regeneration was assessed using the critical-size at cranial defect model. TEM images showed the spherical morphology of the nanoparticles. The results of SEM indicated that the asymmetric membrane contained a dense collagen layer and a loose chitosan layer. An in vitro experiment showed that the membrane can inhibit bacterial growth and promote osteoblasts and fibroblasts growth. The membrane showed the ability to promote angiogenesis and enhance bone regeneration in vivo. An asymmetric collagen/chitosan GBR membrane can be fabricated by loading minocycline encapsulated chitosan nanoparticles, and shows satisfactory biocompatibility and barrier function, which enhances bone regeneration. Therefore, this antibacterial GBR membrane is a promising therapeutic approach to prevent infection and guide bone regeneration. PMID:27546177

  9. Development and characterization of voriconazole loaded nanoparticles for parenteral delivery.

    PubMed

    Füredi, Petra; Kovács, Kristóf; Ludányi, Krisztina; Antal, István; Klebovich, Imre

    2016-08-20

    Human serum albumin (HSA) has attracted the most attention in the last decades as a new nanocarrier system of active pharmaceutical ingredients (API) due to its biocompatibility and high binding capacity to hydrophobic drugs. Voriconazole (VCZ), an antifungal agent with low water solubility, was selected to produce albumin based nanoparticles using nanoparticle albumin-bound technology (nab™-technology). Aim of our study was to study the development process of VCZ-loaded nanoparticles for parenteral drug delivery, such as homogenizing pressure, homogenizing cycle number and drug loading capacity. The main characters of nanoparticles such as particle size distribution and polydispersity index (PDI) were determined by dynamic light scattering. Six homogenization cycles at 1800bar were ensured the acceptable PDI value (lower than 0.3) of the VCZ content nanoparticles. Optimized formulation process produced 81.2±1nm average particle size which meets the requirements of intravenous administration. Furthermore, the encapsulated concentration of VCZ was 69.7±4.2% and the water solubility was over 2 times greater than the API itself which were determined by the developed HPLC method. The in vivo release behavior can be predicted from our applied in vitro dissolution study. Almost 50% of VCZ was liberated from the nanoparticles in the first 60min. PMID:27291972

  10. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization.

    PubMed

    De Giglio, Elvira; Trapani, Adriana; Cafagna, Damiana; Sabbatini, Luigia; Cometa, Stefania

    2011-06-01

    The formulation and characterization of dopamine (DA)-loaded chitosan nanoparticles (CSNPs) are described as preliminary steps for the development of potential DA carrier systems intended for Parkinson's disease treatment. For this purpose, CSNPs were firstly produced and, afterwards, they were incubated in a DA aqueous solution to promote neurotransmitter loading. The characterization of the resulting nanoparticles started with Fourier transform infrared spectroscopy analysis to ascertain the presence of DA in the nanocarrier, whereas X-ray photoelectron spectroscopy analysis provided evidence of the localization of DA on the nanoparticle surface. A quartz crystal microbalance with dissipation monitoring (QCM-D) was then exploited to investigate both swelling of CSNPs and interaction of DA with CSNPs. In particular, the QCM-D revealed that this interaction is fast and so this allows a stable nanostructured system to be obtained. PMID:21523332

  11. 5-fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications.

    PubMed

    Rejinold, N Sanoj; Muthunarayanan, M; Chennazhi, K P; Nair, S V; Jayakumar, R

    2011-01-01

    In this study, 5-flurouracil loaded fibrinogen nanoparticles (5-FU-FNPs) were prepared by two step coacervation method using calcium chloride as cross-linker. The prepared nanoparticles were characterized using DLS, SEM, AFM, FT-IR, TG/DTA and XRD studies. Particle size of 5-FU-FNPs was found to be 150-200 nm. The loading efficiency (LE) and in vitro drug release was studied using UV spectrophotometer. The LE of FNPs was found to be ∼90%. The cytotoxicity studies showed 5-FU-FNPs were toxic to MCF7, PC3 and KB cells while they are comparatively non toxic to L929 cells. Cellular uptake of Rhodamine 123 conjugated 5-FU-FNPs was also studied. Cell uptake studies demonstrated that the nanoparticles are inside the cells. These results indicated that FNPs could be useful for cancer drug delivery. PMID:20951162

  12. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    PubMed

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals. PMID:26701055

  13. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-01

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  14. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    PubMed Central

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-01-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg) were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  15. Sunitinib loaded chitosan nanoparticles formulation and its evaluation.

    PubMed

    Joseph, Jayapal John; Sangeetha, D; Gomathi, Thandapani

    2016-01-01

    The nano-polymeric pharmaceutical excipient such as chitosan nanoparticles (CS-NPs) were synthesized for formulating the anticancer drug Sunitinib (STB). The formulation was done through the simple ionic cross linking method. The prepared formulation was characterized by DLS, SEM, FT-IR and XRD. The DLS study reveals that the Sunitinib loaded chitosan nanoparticles (SNB-CS-NPs) were in the size range of < 200 nm. Encapsulation of Sunitinib and validation for the formulation was done using UV spectrophotometry. In vitro drug release and its cytotoxic studies were performed for STB-CS-NPs. This study implies the novel drug delivery system for Sunitinib for the effective sustained delivery. PMID:26522243

  16. Polarized interference imaging of dense disordered plasmonic nanoparticle arrays for biosensor applications

    NASA Astrophysics Data System (ADS)

    Bergs, Gatis; Malinovskis, Uldis; Poplausks, Raimonds; Apsite, Indra; Erts, Donats; Prikulis, Juris

    2015-09-01

    We report on light scattering by dense short-range ordered gold and silver nanoparticle arrays with 25 nm diameter and 50 nm center separation produced by masked deposition through anodized aluminum oxide membranes. Local resonant regions are formed, which scatter light with polarization components perpendicular to the incident wave due to electromagnetic coupling between particles at random angles. The observed cross-polarized far-field images have a granular structure that morphs in response to environmental variations in the article near field. We quantify the changes in the recorded images by 2D correlation matrix calculation and demonstrate the application of this approach to biomolecular sensing by using various concentrations of cysteine solution as a model system. The presented method may potentially compete with colorimetric sensor techniques since the detection setup does not require any spectroscopic instruments.

  17. Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution

    PubMed Central

    Liu, Chi-Hsien; Chiu, Hao-Che; Wu, Wei-Chi; Sahoo, Soubhagya Laxmi; Hsu, Ching-Yun

    2014-01-01

    Topical delivery has the advantages including being user friendly and cost effective. Development of topical delivery carriers for lutein is becoming an important issue for the ocular drug delivery. Quantification of the partition coefficient of drug in the ocular tissue is the first step for the evaluation of delivery efficacy. The objectives of this study were to evaluate the effects of lipid nanoparticles and cyclodextrin (CD) on the corneal lutein accumulation and to measure the partition coefficients in the porcine cornea. Lipid nanoparticles combined with 2% HPβCD could enhance lutein accumulation up to 209.2 ± 18 (μg/g) which is 4.9-fold higher than that of the nanoparticles. CD combined nanoparticles have 68% of drug loading efficiency and lower cytotoxicity in the bovine cornea cells. From the confocal images, this improvement is due to the increased partitioning of lutein to the corneal epithelium by CD in the lipid nanoparticles. The novel lipid nanoparticles could not only improve the stability and entrapment efficacy of lutein but also enhance the lutein accumulation and partition in the cornea. Additionally the corneal accumulation of lutein was further enhanced by increasing the lutein payload in the vehicles. PMID:25101172

  18. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles

    PubMed Central

    Abdalla, Mohamed O.; Aneja, Ritu; Dean, Derrick; Rangari, Vijay; Russell, Albert; Jaynes, Jessie; Yates, Clayton; Turner, Timothy

    2009-01-01

    The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe3O4 nanoparticles with an average size of 10 ± 2.5 nm. These Fe3O4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252 ± 6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe3O4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (L-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe3O4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces. PMID:20161408

  19. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Abdalla, Mohamed O.; Aneja, Ritu; Dean, Derrick; Rangari, Vijay; Russell, Albert; Jaynes, Jessie; Yates, Clayton; Turner, Timothy

    2010-01-01

    The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe 3O 4 nanoparticles with an average size of 10±2.5 nm. These Fe 3O 4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252±6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe 3O 4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe 3O 4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

  20. Dual Drug Conjugate Loaded Nanoparticles for the Treatment of Cancer.

    PubMed

    Matlapudi, Megha Shyam; Moin, Afrasim; Medishetti, Raghavender; Rajendra, K; Raichur, Ashok M; Kumar, B R Prashantha

    2015-01-01

    Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue. PMID:25961796

  1. Lysozyme loading and release from Se doped hydroxyapatite nanoparticles.

    PubMed

    Wang, Yanhua; Hao, Hang; Zhang, Shengmin

    2016-04-01

    Element-substituted hydroxyapatite (HA) based nanocomposites have become a promising therapeutic material for improving bone defect repair. Selenium substituted HA nanoparticles can both induce apoptosis of bone tumor cells and enhance osteointegration. However, the effect of selenite ions on the proteins in combination with the HA nanoparticles remains to be elucidated. Here, we investigated the influence of selenium doping concentration on the loading and release of lysozyme (LSM) as a model protein drug. The selenium substituted HA-LSM composites with different doping concentrations were synthesized and characterized. The subsequent delivery of lysozyme was studied in a phosphate buffer solution (PBS). We found that selenium substituted HA-LSM composites with Se:P=10% showed the highest amount of lysozyme loading (41.7%), whereas the amount of lysozyme loaded in undoped HA nanoparticles was the lowest (34.1%). The doped selenium interacts with lysozyme molecules, which leads to the increase of β-sheet and unordered, and the decrease of self-association, α-helix and β-turns in protein structures. Moreover, selenium addition significantly slows the protein release from HA-LSM composites. The composites with Se:P=10% release lysozyme at the slightly slower rate among the samples with different Se doping concentrations. It also shows that the released lysozyme retains most of its enzymatic activity. PMID:26838882

  2. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency.

    PubMed

    Cai, Kaimin; He, Xi; Song, Ziyuan; Yin, Qian; Zhang, Yanfeng; Uckun, Fatih M; Jiang, Chen; Cheng, Jianjun

    2015-03-18

    Encapsulation of small-molecule drugs in hydrophobic polymers or amphiphilic copolymers has been extensively used for preparing polymeric nanoparticles (NPs). The loadings and loading efficiencies of a wide range of drugs in polymeric NPs, however, tend to be very low. In this Communication, we report a strategy to prepare polymeric NPs with exceptionally high drug loading (>50%) and quantitative loading efficiency. Specifically, a dimeric drug conjugate bearing a trigger-responsive domain was designed and used as the core-constructing unit of the NPs. Upon co-precipitation of the dimeric drug and methoxypoly(ethylene glycol)-block-polylactide (mPEG-PLA), NPs with a dimeric drug core and a polymer shell were formed. The high-drug-loading NPs showed excellent stability in physiological conditions. No premature drug or prodrug release was observed in PBS solution without triggering, while external triggering led to controlled release of drug in its authentic form. PMID:25741752

  3. Cargo and Carrier Effects of Rapamycin-Loaded Perfluorocarbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bibee, Kristin Page

    Nanoparticle-based drug delivery has been championed as a means to increase local delivery of therapeutics while decreasing systemic drug exposure. By targeting the particles, and therefore the drugs, to diseased cells of interest, healthy cells will be spared and side effects avoided. This delivery mechanism would be particularly useful for drugs that interfere with cell growth and proliferation pathways, as blocking proliferation in normal cells leads to significant patient morbidity. Rapamycin is a macrolide and a known inhibitor of mTORC1, a protein complex that plays a crucial role in protein translation and cell growth. This work demonstrates the effects of rapamycin complexed with a nanoparticle carrier on two distinct pathologies: a new triple negative breast cancer cell line and a conventional mouse model of muscular dystrophy (mdx). Rapamycin is able to alter mitochondrial function and thus metabolism in both free and nanoparticle-delivered form without killing the cells. Although nanoparticles are considered to be a benign carrier, this work shows that perfluorocarbon nanoparticles are able to induce autophagy in vitro. The benefits of autophagy induction in cancer cells is cell and stage specific, but has been reported to be useful for radiosensitization of triple negative breast cancers. Additionally, the particles are shown to induce autophagy in the mdx model of Duchenne Muscular Dystrophy and, when loaded with rapamycin, dramatically improve strength even in older animals with muscular dystrophy. Overall, this work enhances our understanding of the cellular effects of perfluorocarbon nanoparticles in two different disease models and enhances prospects for clinical translation of nanoparticle-based drug delivery.

  4. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    NASA Astrophysics Data System (ADS)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  5. Roxithromycin-loaded lipid nanoparticles for follicular targeting.

    PubMed

    Wosicka-Frąckowiak, Hanna; Cal, Krzysztof; Stefanowska, Justyna; Główka, Eliza; Nowacka, Magdalena; Struck-Lewicka, Wiktoria; Govedarica, Biljana; Pasikowska, Monika; Dębowska, Renata; Jesionowski, Teofil; Srčič, Stane; Markuszewski, Michał Jan

    2015-11-30

    Particulate drug carriers e.g. nanoparticles (NPs) have been shown to penetrate and accumulate preferentially in skin hair follicles creating high local concentration of a drug. In order to develop such a follicle targeting system we obtained and characterized solid lipid nanoparticles (SLN) loaded with roxithromycin (ROX). The mean particle size (172±2 nm), polydisperisty index (0.237±0.007), zeta potential (-31.68±3.10 mV) and incorporation efficiency (82.1±3.0%) were measured. The long term stability of ROX-loaded SLN suspensions was proved up to 26 weeks. In vitro drug release study was performed using apparatus 4 dialysis adapters. Skin irritation test conducted using the EpiDerm™ tissue model demonstrated no irritation potential for ROX-loaded SLN. Ex vivo human skin penetration studies, employing rhodamine B hexyl ester perchlorate (RBHE) as a fluorescent dye to label the particles, revealed fluorescence deep in the skin, specifically around the hair follicles up to over 1mm depth. The comparison of fluorescence intensities after application of RBHE solution and RBHE-labelled ROX-loaded SLN was done. Then cyanoacrylate follicular biopsies were obtained in vivo and analyzed for ROX content, proving the possibility of penetration to human pilosebaceous units and delivering ROX by using SLN with the size below 200 nm. PMID:26456292

  6. Design of Albumin-Coated Microbubbles Loaded With Polylactide Nanoparticles

    PubMed Central

    Gauthier, Marianne; Yin, Qian; Cheng, Jianjun; O'Brien, William D.

    2015-01-01

    Objectives A protocol was designed to produce albumin-coated microbubbles (MBs) loaded with functionalized polylactide (PLA) nanoparticles (NPs) for future drug delivery studies. Methods Microbubbles resulted from the sonication of 5% bovine serum albumin and 15% dextrose solution. Functionalized NPs were produced by mixing fluorescent PLA and PLA-polyethylene glycol-carboxylate conjugates. Nanoparticle-loaded MBs resulted from the covalent conjugation of functionalized NPs and MBs. Three NP/MB volume ratios (1/1, 1/10, and 1/100) and unloaded MBs were produced and compared. Statistical evaluations were based on quantitative analysis of 3 parameters at 4 time points (1, 4, 5, and 6 days post MB fabrication): MB diameter using a circle detection routine based on the Hough transform, MB number density using a hemocytometer, and NP-loading yield based on MB counts from fluorescence and light microscopic images. Loading capacity of the albumin-coated MBs was evaluated by fluorescence. Results Loaded MB sizes were stable over 6 days after production and were not significantly different from that of time-matched unloaded MBs. Number density evaluation showed that only 1/1 NP/MB volume ratio and unloaded MB number densities were stable over time, and that the 1/1 MB number density evaluated at each time point was not significantly different from that of unloaded MBs. The 1/10 and 1/100 NP/MB volume ratios had unstable number densities that were significantly different from that of unloaded MBs (P < .05). Fluorescence evaluation suggested that 1/1 MBs had a higher NP-loading yield than 1/10 and 1/100 MBs. Quantitative loading evaluation suggested that the 1/1 MBs had a loading capacity of 3700 NPs/MB. Conclusions A protocol was developed to load albumin MBs with functionalized PLA NPs for further drug delivery studies. The 1/1 NP/MB volume ratio appeared to be the most efficient to produce stable loaded MBs with a loading capacity of 3700 NPs/MB. PMID:26206822

  7. Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma.

    PubMed

    Makarov, Sergey; Kudryashov, Sergey; Mukhin, Ivan; Mozharov, Alexey; Milichko, Valentin; Krasnok, Alexander; Belov, Pavel

    2015-09-01

    We propose a novel approach for efficient tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser irradiation. This concept is based on ultrafast photoinjection of dense (>10(20) cm(-3)) electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows manipulation by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its scattering diagram and scattering cross section. We experimentally demonstrate 20% tuning of reflectance of a single silicon nanoparticle by femtosecond laser pulses with wavelength in the vicinity of the magnetic dipole resonance. Such a single-particle nanodevice enables designing of fast and ultracompact optical switchers and modulators. PMID:26259100

  8. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations. PMID:27131608

  9. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation.

    PubMed

    Rachmawati, Heni; Yanda, Yulia L; Rahma, Annisa; Mase, Nobuyuki

    2016-01-01

    Curcumin is a polyphenolic compound derived from Curcuma domestica (Zingiberaceae) that possesses diverse pharmacological effects including anti-inflammatory, antioxidant, antimicrobial, and anticarcinogenic activities. Although phase I clinical trials have shown curcumin as a safe drug even at high doses (12 g/day) in humans, poor bioavaibility largely limits its pharmacological activity. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin bioavaibility. In this study, curcumin was encapsulated in biodegradable polymer poly-(lactic acid) (PLA) nanoparticles via the emulsification-solvent evaporation method. Optimization of selected parameters of this method including the type of solvent, surfactant concentration, drug loading, sonication time, and centrifugation speed, were performed to obtain polymeric nano-carriers with optimum characteristics. Dichloromethane was used as the solvent and vitamin E polyethylene glycol succinate (TPGS) was used as the surfactant. Four minutes of sonication time and centrifugation at 10500 rpm were able to produce spherical nanoparticles with average size below 300 nm. The highest encapsulation efficiency was found on PLA nanoparticles containing 5% of curcumin at 89.42 ± 1.04%. The particle size, polydispersity index, zeta potential of 5% curcumin-PLA nanoparticles were 387.50 ± 58.60 nm, 0.289 ± 0.047, and -1.12 mV, respectively. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies showed partial interaction between the drug and polymer. PMID:27110509

  10. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    NASA Astrophysics Data System (ADS)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  11. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation

    PubMed Central

    Rachmawati, Heni; Yanda, Yulia L.; Rahma, Annisa; Mase, Nobuyuki

    2016-01-01

    Curcumin is a polyphenolic compound derived from Curcuma domestica (Zingiberaceae) that possesses diverse pharmacological effects including anti-inflammatory, antioxidant, antimicrobial, and anticarcinogenic activities. Although phase I clinical trials have shown curcumin as a safe drug even at high doses (12 g/day) in humans, poor bioavaibility largely limits its pharmacological activity. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin bioavaibility. In this study, curcumin was encapsulated in biodegradable polymer poly-(lactic acid) (PLA) nanoparticles via the emulsification-solvent evaporation method. Optimization of selected parameters of this method including the type of solvent, surfactant concentration, drug loading, sonication time, and centrifugation speed, were performed to obtain polymeric nano-carriers with optimum characteristics. Dichloromethane was used as the solvent and vitamin E polyethylene glycol succinate (TPGS) was used as the surfactant. Four minutes of sonication time and centrifugation at 10500 rpm were able to produce spherical nanoparticles with average size below 300 nm. The highest encapsulation efficiency was found on PLA nanoparticles containing 5% of curcumin at 89.42 ± 1.04%. The particle size, polydispersity index, zeta potential of 5% curcumin-PLA nanoparticles were 387.50 ± 58.60 nm, 0.289 ± 0.047, and −1.12 mV, respectively. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies showed partial interaction between the drug and polymer. PMID:27110509

  12. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load.

    PubMed

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J; Santamaría, Jesús

    2016-03-28

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(DL-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography. PMID:26612770

  13. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application

    NASA Astrophysics Data System (ADS)

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-10-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g-1 at 100 mA g-1vs. 590 mA h g-1 of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ~4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g-1 (current density, 200 mA g-1) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP

  14. Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles.

    PubMed

    Pereira de Sousa, Irene; Steiner, Corinna; Schmutzler, Matthias; Wilcox, Matthew D; Veldhuis, Gert J; Pearson, Jeffrey P; Huck, Christian W; Salvenmoser, Willi; Bernkop-Schnürch, Andreas

    2015-11-01

    The GI mucus layer represents a significant block to drug carriers absorption. Taking an example from nature, virus-mimicking nanoparticles (NPs) with highly densely charged surface were designed with the aim to improve their mucus permeation ability. NPs were formulated by combining chitosan with chondroitin sulfate and were characterized by particle size, ζ-potential and hydrophobicity. The interaction occurring between NPs and diluted porcine intestinal mucus was investigated by a new method. Furthermore, the rotating tube technique was exploited to evaluate the NPs permeation ability in fresh undiluted porcine intestinal mucus. NPs (400-500 nm) presenting a slightly positive (4.02 mV) and slightly negative (-3.55 mV) ζ-potential resulted to be hydrophobic and hydrophilic, respectively. On the one hand the hydrophobic NPs undergo physico-chemical changes when incubated with mucus, namely the size increased and the ζ-potential decreased. On the other hand, the hydrophilic NPs did not significantly change size and net charge during incubation with mucus. Both types of NPs showed a 3-fold higher diffusion ability compared to the reference 50/50 DL-lactide/glycolide copolymer NPs (136 nm, -23 mV, hydrophilic). Based on these results, this work gives valuable information for the further design of mucus-penetrating NPs. PMID:25576256

  15. Experimental evidence of exciton-plasmon coupling in densely packed dye doped core-shell nanoparticles obtained via microfluidic technique

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Iazzolino, A.; Salmon, J.-B.; Leng, J.; Ravaine, S.; Grigorenko, A. N.; Strangi, G.

    2014-09-01

    The interplay between plasmons and excitons in bulk metamaterials are investigated by performing spectroscopic studies, including variable angle pump-probe ellipsometry. Gain functionalized gold nanoparticles have been densely packed through a microfluidic chip, representing a scalable process towards bulk metamaterials based on self-assembly approach. Chromophores placed at the hearth of plasmonic subunits ensure exciton-plasmon coupling to convey excitation energy to the quasi-static electric field of the plasmon states. The overall complex polarizability of the system, probed by variable angle spectroscopic ellipsometry, shows a significant modification under optical excitation, as demonstrated by the behavior of the ellipsometric angles Ψ and Δ as a function of suitable excitation fields. The plasmon resonances observed in densely packed gain functionalized core-shell gold nanoparticles represent a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic bulk systems for advanced optical materials.

  16. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.

    PubMed

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-11-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g(-1) at 100 mA g(-1)vs. 590 mA h g(-1) of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ∼4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g(-1) (current density, 200 mA g(-1)) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery. PMID:24056975

  17. Magnetic poly(D,L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment

    NASA Astrophysics Data System (ADS)

    Antal, Iryna; Kubovcikova, Martina; Zavisova, Vlasta; Koneracka, Martina; Pechanova, Olga; Barta, Andrej; Cebova, Martina; Antal, Vitaliy; Diko, Pavel; Zduriencikova, Martina; Pudlak, Michal; Kopcansky, Peter

    2015-04-01

    In this study anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by the modified nanoprecipitation method. The effect of magnetite and drug concentrations on the size distribution and zeta potential of polymer nanoparticles was investigated. The optimized loadings were as follows: theoretical magnetite loading was 20 mg/100 mg polymer nanoparticles and aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles at theoretical loading 0.6 mg aliskiren/100 mg magnetic polymer nanoparticles. The physicochemical characteristics of nanoparticles were studied, with spherical shape of nanoparticles sized between 58 and 227 nm being one of the observed results. Differential scanning calorimetry and infrared spectroscopy confirmed that aliskiren was successfully identified in the magnetic poly(D,L-lactide) nanoparticles. The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug.

  18. Next generation radiotherapy biomaterials loaded with high-Z nanoparticles

    NASA Astrophysics Data System (ADS)

    Cifter, Gizem

    This research investigates the dosimetric feasibility of using high-Z nanoparticles as localized radiosensitizers to boost the dose to the residual tumor cells during accelerated partial breast irradiation while minimizing the dose to surrounding healthy tissue. Analytical microdosimetry calculations were carried out to calculate dose enhancement (DEF) in the presence of high-Z nanoparticles. It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. Prototype smart biomaterials were produced by incorporating the GNPs in poly (D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. In vitro release of GNPs was monitored over time by optical/spectroscopy methods as a function of various design parameters. The prototype smart biomaterials displayed sustained customizable release of NPs in-vitro, reaching a burst release profile approximately after 25 days. The results also show that customizable release profiles can be achievable by varying GNP concentrations that are embedded within smart biomaterials, as well as other design parameters. This would potentially allow customizable local dose boost resulting in diverse treatment planning opportunities for individual cases. Considered together, the results provide preliminary data for development of next generation of RT biomaterials, which can be employed at no additional inconvenience to RT patients.

  19. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    PubMed

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (<10% cell survival) after 30 s of laser exposure. Radio frequency treatment required higher loading (>10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating

  20. Spectral and spatial characterization of protein loaded PLGA nanoparticles.

    PubMed

    Zidan, Ahmed S; Rahman, Ziyaur; Habib, Muhammad J; Khan, Mansoor A

    2010-03-01

    The objective of this study was to evaluate near infrared (NIR) spectroscopy and imaging as approaches to assess drug contents in poly(dl-lactide-co-glycolide) (PLGA) based nanoparticles of a model protein, cyclosporine A (CyA). A 6-factors 12-runs designed set of experiments with Plackett-Burman (PB) screening was applied in order to examine the effects of drug loading (X(1)), polymer loading (X(2)), emulsifier concentration (X(3)), stirring rate (X(4)), type of organic solvent (X(5)), and ratio of organic to aqueous phases' volumes (X(6)), on drug entrapment efficiency (EFF). After omitting the factors with nonsignificant influences on EFF, a reduced mathematical relationship, EFF = 48.34 + 7.3X(1) - 29.95X(3), was obtained to explain the effect of the significant factors on EFF. Using two different sets for calibration and validation, the developed NIR calibration model was able to assess CyA contents within the 12 PB formulations. NIR spectral imaging was capable of clearly distinguishing the 12 formulations, both qualitatively and quantitatively. A good correlation with a coefficient of 0.9727 was obtained for constructing a quantile-quantile plot for the actual drug loading percentage and the % standard deviation obtained for the drug loading prediction using the hyperspectral images. PMID:19774658

  1. Insulin-loaded alginic acid nanoparticles for sublingual delivery.

    PubMed

    Patil, Nilam H; Devarajan, Padma V

    2016-01-01

    Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin. PMID:24901208

  2. Microfluidic generation of droplets with a high loading of nanoparticles

    PubMed Central

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J.; Anthony, John E.; Sinko, Patrick J.; Prudhomme, Robert K.; Stone, Howard A.

    2012-01-01

    Microfluidic approaches for controlled generation of colloidal clusters, e.g., via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (< 10 wt%). Here we demonstrate microfluidic approaches for directly making droplets with moderate (10–25 wt%) and high (> 60 wt%) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt% PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt% PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt%, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Qoil/Qwater from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (> 25 wt%) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt%. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions of microparticles that are filled with a high loading of nanoparticles and which are useful for drug delivery applications. PMID:22934976

  3. Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles.

    PubMed

    Nehilla, Barrett J; Bergkvist, Magnus; Popat, Ketul C; Desai, Tejal A

    2008-02-01

    The intent of this work was to synthesize and comprehensively characterize ubiquinone-loaded, surfactant-free biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles in vitro. Surfactant-free, empty and ubiquinone (CoQ10)-loaded biodegradable nanoparticles were synthesized by nanoprecipitation, and the physicochemical properties of these nanoparticles were analyzed with a variety of techniques. Nanoprecipitation consistently yielded individual, sub-200nm, surfactant-free empty and CoQ10-loaded nanoparticles, where the physical and drug encapsulation characteristics were controlled by varying the formulation parameters. CoQ10 release was sustained for 2 weeks but then plateaued before 100% CoQ10 release. A novel, nondestructive purification protocol involving transient sodium dodecyl sulfate (SDS) adsorption to nanoparticles followed by centrifugation and dialysis was developed to yield purified, surfactant-free, CoQ10-loaded nanoparticles. This protocol permitted removal of unencapsulated CoQ10, prevented centrifugation-induced nanoparticle aggregation and preserved the surfactant-free and drug encapsulation properties of the nanoparticles. These CoQ10-loaded nanoparticles are promising as sustained drug delivery devices due to their extended CoQ10 release. Importantly, a surfactant-free nanoprecipitation procedure is presented that in combination with a novel purification step enables the synthesis of individual and purified CoQ10-loaded nanoparticles. PMID:17692482

  4. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  5. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  6. An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles

    PubMed Central

    Kishore, Golla; Kondapi, Anand Kumar

    2009-01-01

    Background Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. Methodology/Principal Findings Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25–50 ηm, which increase to 60–80 ηm upon direct loading of drug (direct-nano), and showed further increase in dimension (75–95 ηm) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression

  7. DEM analyses of the whole failure process of shallow foundation in plate load test on dense sand

    NASA Astrophysics Data System (ADS)

    Li, L.; Jiang, M. J.; Li, T.; Chen, S. L.

    2015-09-01

    Shallow foundations are widely used in civil engineering practice, but the instability mechanism is still unclear yet. Previously, the Finite Element Method (FEM) was commonly used to analyze the failure process of shallow foundations, but it meets difficulty in properly simulating the whole failure process of shallow foundation on the strain-softening material. Hence, the Discrete Element Method (DEM) is employed in this paper to study the instability mechanism of the shallow foundation via numerical plate load test with focus on the microscopic features evolution during vertical loading. In the simulation, an amplified gravity was applied to a dense granular ground to reproduce a gravity stress state at a large scale. Then, a plate was put on the granular ground to simulate the plate load test. Deformation pattern, particle velocity and distribution of void ratio in the ground were examined to illustrate the microscopic features in the whole failure process of the granular ground. The results show that: 1) There are a marked peak value and a settlement softening branch in the stress-settlement relationship. 2) The grids close to the edge of the plate are peculiarly extended and twisted. 3) Four particle motion patterns were observed in the velocity fields and the percentage of each motion pattern changes during loading. 4) The void ratio field varies during loading, and the distinguishing interface tends to be similar to Terzaghi's shear failure surface.

  8. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.

    PubMed

    Drozdowicz-Tomsia, Krystyna; Baltar, Henrique T M C M; Goldys, Ewa M

    2012-06-19

    We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies. PMID:22439753

  9. Additive-Driven Assembly of Block Copolymer and Nanoparticles: Influence of Nanoparticle Size and Loading

    NASA Astrophysics Data System (ADS)

    Gai, Yue; Lin, Ying; Watkins, James

    2015-03-01

    Additive-driven assembly of block copolymer (BCP)/nanoparticle (NP) composites in which functionalized NPs exhibiting strong hydrogen bond interactions with one domain of the BCP has been shown to strengthen phase segregation and yield well-ordered materials at high NP loadings. Here we report a systemic study of how phase behavior and NP distribution in BCP/ Au NP composites are influenced by the NP size, NP loading and block copolymer domain size. 2nm, 5nm, 9nm and 15nm diameter Au nanoparticles at loadings ranging from 10% to 50% weight percent, in polystyrene-block-poly (2-vinyl pyridine) block copolymers with domain spacing ranging from 14 nm to 75 nm were used in the investigation. We find that strong interactions enable the incorporation of larger diameter NPs with respect to domain size as compared to systems in which interactions between the NP and BCP are weak or enthalpically neutral. This work was supported by NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst.

  10. Drug loading to lipid-based cationic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich

    2005-08-01

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  11. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy

    PubMed Central

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062

  12. Dual agents loaded polymeric nanoparticle: Effect of process variables

    PubMed Central

    Sharma, Deepak; Philip, Gilphy; Gabrani, Reema; Ali, Javed; Dang, Shweta

    2015-01-01

    Aim and Objectives: In the present investigation dual agents i.e., hesperidin and diazepam loaded polymeric nanoparticles (NPs) were formulated by nanoprecipitation method and optimized using three-level factorial design. Methods: The developed NPs were optimized keeping poly (lactic-co-glycolic) acid (PLGA), poloxamer amount as independent process variable and z-average, percentage drug entrapment as a dependent response. The optimized NP was subjected to in vitro drug release study to investigate drug release mechanism from NP. Cell viability assay was performed on Vero cell line to confirm the safety of NP. Results: Drug loaded NP showed z-average in the range of 189-307 d.nm with percentage drug entrapment for diazepam and hesperidin 62-89% and 68-92%, respectively. In vitro drug release studies showed controlled drug release behavior was observed from polymeric NP across dialysis membrane compared to aqueous drug solution. Cell viability assay showed drug dependent cytotoxicity on Vero cell line, however, polymeric NP showed less cytotoxicity compared with aqueous drug solution. PMID:26258057

  13. Nearly full-dense and fine-grained AZO:Y ceramics sintered from the corresponding nanoparticles

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of 4.6 × 10−3 Ω·cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with better optical and electrical properties. PMID:22929049

  14. Nearly full-dense and fine-grained AZO:Y ceramics sintered from the corresponding nanoparticles.

    PubMed

    Yang, Ye; Lan, Pinjun; Wang, Muqin; Wei, Tiefeng; Tan, Ruiqin; Song, Weijie

    2012-01-01

    Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of 4.6 × 10-3 Ω·cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with better optical and electrical properties. PMID:22929049

  15. Polymeric Nanoparticles with Precise Ratiometric Control over Drug Loading for Combination Therapy

    PubMed Central

    Aryal, Santosh; Hu, Che-Ming Jack; Zhang, Liangfang

    2011-01-01

    We report a novel approach for nanoparticle-based combination chemotherapy by concurrently incorporating two different types of drugs into a single polymeric nanoparticle with ratiometric control over the loading of the two drugs. By adapting metal alkoxide chemistry, we synthesize highly hydrophobic drug-poly-l-lactide (drug-PLA) conjugates, of which the polymer has the same chain length while the drug may differ. These drug-polymer conjugates are then encapsulated into lipid-coated polymeric nanoparticles through a single-step nanoprecipication method. Using doxorubicin (DOX) and camptothecin (CPT) as two model chemotherapy drugs, various ratios of DOX-PLA and CPT-PLA conjugates are loaded into the nanoparticles with over 90% loading efficiency. The resulting nanoparticles are uniform in size, size distribution and surface charge. The loading yield of DOX and CPT in the particles can be precisely controlled by simply adjusting the DOX-PLA:CPT-PLA molar ratio. Cellular cytotoxicity results show that the dual-drug loaded nanoparticles are superior to the corresponding cocktail mixtures of single-drug loaded nanoparticles. This dual-drug delivery approach offers a solution to the long-standing challenge in ratiometric control over the loading of different types of drugs onto the same drug delivery vehicle. We expect that this approach can be exploited for many types of chemotherapeutic agents containing hydroxyl groups and thus enable co-delivery of various drug combinations for combinatorial treatments of diseases. PMID:21696189

  16. Effects of ball-milling on PLGA polymer and its implication on lansoprazole-loaded nanoparticles

    PubMed Central

    Shabir, Anjumn; Alhusban, Farhan; Perrie, Yvonne; Mohammed, Afzal R.

    2011-01-01

    PLGA is a biodegradable polymer utilised widely in pharmaceutical research for the encapsulation of a wide range of drugs as nano particulate systems. This study investigates the impact of rotary ball milling on the physical properties of PLGA and its influence on nanoparticle formation prepared using the solvent displacement technique. By applying mechanical stress to the polymer and altering its physical appearance and molecular weight, the loading of lansoprazole within the nanoparticles was increased to 96%, with a reduction in particle size. The results indicate that rotary ball milling significantly reduces particle size, increases lansoprazole loading and improves the release profile for lansoprazole loaded PLGA nanoparticles PMID:24826005

  17. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity.

    PubMed

    Kim, Mi Kyung; Lee, Ji-Soo; Kim, Kwang Yup; Lee, Hyeon Gyu

    2013-03-01

    The aim of this study was to produce ascorbyl palmitate (AP)-loaded nanoparticles in order to inhibit polyphenol oxidase (PPO) in bananas. AP-loaded chitosan nanoparticles were prepared using acetic acid and citric acid (denoted as CS/AA and CS/CA nanoparticles, respectively). As the initial AP concentration increases, the particle size significantly decreases, and the zeta potential, entrapment and loading efficiency significantly increases. The PPO inhibitory activity of AP was effectively improved when AP was nano-encapsulated by chitosan compared to no encapsulation. These results suggest that chitosan nano-encapsulation can be used to enhance the PPO inhibitory activity of AP. PMID:23247266

  18. Comparison of Doxorubicin Anticancer Drug Loading on Different Metal Oxide Nanoparticles

    PubMed Central

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-01-01

    Abstract Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs. This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug. Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  19. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles.

    PubMed

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-03-01

    Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  20. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  1. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  2. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2013-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  3. Activation of Latent HIV Using Drug-loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kovochich, Michael

    Antiretroviral therapy is currently only capable of controlling human immunodeficiency virus (HIV) replication, rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T-cells, which persists even in the presence of highly active antiretroviral therapy (HAART). It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However, no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence, novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target, activate primary human CD4+ T-cells, and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the histone deacetylase inhibitor (HDACi) sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. LNP-Bry was further tested for its in vivo biodistribution in both wild type mice (C57 black 6), as well as humanized mice (SCID-hu Thy/Liv, and bone marrow-liver-thymus [BLT]). LNP-Bry accumulated in the spleen and induced the early activation marker CD69 in wild type mice. Taken together, these data demonstrate the ability of nanotechnological approaches to

  4. Structural and optical properties of ZnO and ZnO:Fe nanoparticles under dense electronic excitations

    SciTech Connect

    Kumar, Shiv; Singh, Ranjan Kr.; Ghosh, Anup K.; Asokan, K.; Kanjilal, D.; Chatterjee, S.

    2013-10-28

    We report on the changes in structural, morphological, and optical properties of sol-gel derived ZnO and ZnO:Fe nanoparticles due to dense electronic excitations produced by heavy ion irradiations using 200 MeV Ag{sup +15} ion beams. X-ray diffraction studies with Rietveld refinement show that the samples are single phase and tensile strain has been developed in the ion-irradiated samples. The Raman spectroscopy measurements show that ion-irradiation results in microscopic structural disorders and breaking of translational symmetry giving rise to local distortions in the lattice. Atomic force microscopy studies show that roughness of the pellets increases strongly for pure ZnO as compared with Fe-doped ZnO due to ion-irradiation. Fourier transform infrared analysis confirms tetrahedral coordination of O ions surrounding the Zn-ions and surface modification of the nanoparticles. The UV-Vis spectroscopy measurements show that the band gap increases on Fe doping which may be due to 4s–3d and 2p–3d interactions and the Burstein-Moss band filling effect. The band gap decreases after irradiation which can be interpreted on the basis of creation of some new localized energy states above the valence band. Photoluminescence (PL) intensity is enhanced and two new emission bands viz. a blue band at ∼480 nm (related to surface defects) and a green band at ∼525 nm (related to O vacancies) are observed in ion-irradiated nanoparticles. The enhancement of PL-intensity in irradiated samples is attributed to the increase of different defect states and Zn−O bonds on the surfaces of the irradiated nanoparticles arising from surface modification.

  5. A Novel Microbubble Capable of Ultrasound-Triggered Release of Drug-Loaded Nanoparticles.

    PubMed

    Wang, Jiayu; Li, Pan; Tian, Rui; Hu, Wenjing; Zhang, Yuxia; Yuan, Pei; Tang, Yalan; Jia, Yuntao; Zhang, Liangke

    2016-03-01

    Drug-loaded microbubbles have shown attractive potential in disease treatment applications. The present work presents a unique ultrasound (US)-triggered system in which drug-loaded nanoparticles and perfluorocarbon gas are encapsulated within the internal space of microbubbles. The prepared curcumin-loaded albumin nanoparticle payload microbubbles (CcmANP-MB) exhibited a mean diameter of 4895.1 nm ± 421.2 nm and a drug-loading efficiency of 2.23% ± 0.08% (297% increase compared with the drug loading of common drug-loaded microbubbles). US allowed the release of the internal payload. In vitro US-triggered drug release experiments showed that the drug release of CcmANP-MB was delayed by lipid membranes and significantly increased after sonication. In vitro and in vivo US imaging experiments demonstrated that CcmANP-MB evidently enhances US imaging, which indicates that the microbubbles possess good acoustic properties even after encapsulation of nanoparticles. Tumor bearing mice were administered with CcmANP-MB through the tail vein and were then exposed to ultrasound, which resulted in an enhanced drug accumulation in tumor tissues and a significant increase in tumor growth inhibition rate (57.1%) compared with CcmANP-MB alone (28.8%) as well as curcumin-loaded albumin nanoparticle (26.2%). Therefore, the combination of lecithin microbubbles and albumin nanoparticles provides a platform for targeted drug delivery in clinical therapy and disease diagnosis. PMID:27280249

  6. Positron annihilation spectroscopy: a new frontier for understanding nanoparticle-loaded polymer brushes

    NASA Astrophysics Data System (ADS)

    Panzarasa, Guido; Aghion, Stefano; Soliveri, Guido; Consolati, Giovanni; Ferragut, Rafael

    2016-01-01

    Nanoparticle-loaded polymer brushes are powerful tools for the development of innovative devices. However, their characterization is challenging and arrays of different techniques are typically required to gain sufficient insight. Here we demonstrate for the first time the suitability of positron annihilation spectroscopy (PAS) to investigate, with unprecedented detail and without making the least damage to samples, the physico-chemical changes experienced by pH-responsive polymer brushes after protonation and after loading of silver nanoparticles. One of the most important findings is the depth profiling of silver nanoparticles inside the brushes. These results open up a completely new way to understand the structure and behavior of such complex systems.

  7. Evaluation of self-assembled HCPT-loaded PEG- b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly( d, l-lactide) (PEG- b-PLA) and PLA, respectively. Both HCPT-loaded PEG- b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG- b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG- b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG- b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG- b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  8. Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

    PubMed

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs. PMID:26088984

  9. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer

    PubMed Central

    Wang, Pu; Qu, Yazhuo; Li, Chuan; Yin, Li; Shen, Caifei; Chen, Wei; Yang, Shiming; Bian, Xiuwu; Fang, Dianchun

    2015-01-01

    Purpose Nano dense-silica (dSiO2) has many advantages such as adjustable core–shell structure, multiple drug delivery, and controllable release behavior. Improving the gastric tumor-specific targeting efficiency based on the development of various strategies is crucial for anti-cancer drug delivery systems. Methods Superparamagnetic iron oxide nanoparticles (SPION) were coated with dSiO2 as core–shell nanoparticles, and labeled with near infra-red fluorescence (NIRF) dye 800ZW (excitation wavelength: 778 nm/emission wavelength: 806 nm) and anti-CD146 monoclonal antibody YY146 for magnetic resonance (MR)/NIRF imaging study in xenograft gastric cancer model. The morphology and the size of pre- and postlabeling SPION@dSiO2 core–shell nanoparticles were characterized using transmission electron microscopy. Iron content in SPION@dSiO2 nanoparticles was measured by inductively coupled plasma optical emission spectrometry. Fluorescence microscopy and fluorescence-activated cell sorter studies were carried out to confirm the binding specificity of YY146 and 800ZW–SPION@dSiO2–YY146 on MKN45 cells. In vivo and in vitro NIRF imaging, control (nanoparticles only) and blocking studies, and histology were executed on MKN45 tumor-bearing nude mice to estimate the affinity of 800ZW–SPION@dSiO2–YY146 to target tumor CD146. Results 800ZW–SPION@dSiO2–YY146 nanoparticles were uniformly spherical in shape and dispersed evenly in a cell culture medium. The diameter of the nanoparticle was 20–30 nm with 15 nm SPION core and ~10 nm SiO2 shell, and the final concentration was 1.7 nmol/mL. Transverse relaxivity of SPION@dSiO2 dispersed in water was measured to be 110.57 mM−1·s−1. Fluorescence activated cell sorter analysis of the nanoparticles in MKN45 cells showed 14-fold binding of 800ZW–SPION@dSiO2–YY146 more than the control group 800ZW–SPION@dSiO2. Series of NIRF imaging post intravenous injection of 800ZW–SPION@dSiO2–YY146 demonstrated that the MKN45

  10. Formulation of Gammaoryzanol-Loaded Nanoparticles for Potential Application in Fortifying Food Products

    PubMed Central

    Ghaderi, Serveh; Ghanbarzadeh, Saeed; Mohammadhassani, Zahra; Hamishehkar, Hamed

    2014-01-01

    Purpose: The field of nanoparticle delivery systems for nutrients and nutraceuticals with poor water solubility has attracted a great attention during the last decades. Methods: Ethyl cellulose (EC) based GO-loaded nanoparticles were prepared by solvent evaporation method. The effects of formulation parameters on nanoparticle size, encapsulation efficiency (EE%) and loading efficiency (LE%) were investigated. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were used to investigate the crystalline behavior of GO and EC after the preparation of nanoparticles. Stability of the prepared nanoparticle was investigated during five weeks of storage. Results: Particle sizes of all formulation were in the range of 70-100 nm with narrow size distribution. Increase in the time of sonication from 1 to 5 minutes decreased the particle size. However, the mean particle size was increased when the sonication time increased from 5 to 7 minutes. The results showed that in the same concentration of PVA, increasing the ratio of EC:GO led to an increase in the GO encapsulation efficiency and decrease in loading efficiency. During five weeks, the mean diameter and size distribution indexes (SPAN values) of nanoparticles did not show significant changes. DSC and XRD studies indicated that crystallinity of GO was decreased in nanoparticles. Conclusion: EC based nanoparticles are promising carriers for addition of GO as a water insoluble antioxidant to fortify liquid food products without any change in quality of products. PMID:25671188

  11. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA–TPGS nanoparticles

    PubMed Central

    Thu, Ha Phuong; Nam, Nguyen Hoai; Quang, Bui Thuc; Son, Ho Anh; Toan, Nguyen Linh; Quang, Duong Tuan

    2015-01-01

    Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLA–TPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50 nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo. PMID:26702264

  12. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    PubMed Central

    Hu, Daode; Liu, Liang; Chen, Wenjuan; Li, Sining; Zhao, Yaping

    2012-01-01

    In this study, solution enhanced dispersion by supercritical fluids (SEDS) technique was applied for the preparation of 5-aminosalicylic acid (5-ASA) loaded Eudragit S100 (EU S100) nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spherical shape and small particle size with narrow particle size distribution. In addition, the nanoparticles prepared were characterized by X-ray diffraction, Differential scanning calorimetry and Fourier transform infrared spectroscopy analyses. The results showed that 5-ASA was imbedded into EU S100 in an amorphous state after SEDS processing and the SEDS process did not induce degradation of 5-ASA. PMID:22754377

  13. Docetaxel Loaded PEG-PLGA Nanoparticles: Optimized Drug Loading, In-vitro Cytotoxicity and In-vivo Antitumor Effect

    PubMed Central

    Noori Koopaei, Mona; Khoshayand, Mohammad Reza; Mostafavi, Seyed Hossein; Amini, Mohsen; Khorramizadeh, Mohammad Reza; Jeddi Tehrani, Mahmood; Atyabi, Fatemeh; Dinarvand, Rassoul

    2014-01-01

    In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) Nanoparticles (NPs) with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cytotoxicity of optimized DTX loaded PEG-PLGA NPs was studied in SKOV3 tumor cell lines by standard MTT assay. The in-vivo antitumor efficacy of DTX loaded PLGA-PEG NPs was assessed in tumor bearing female BALB/c mice. The optimum level of Y1, Y2 and Y3 predicted by the model were 188 nm, 0.16 and 9% respectively with perfect agreement with the experimental data. The in-vitro release profile of optimum formulation showed a burst release of approximately 20% (w/w) followed by a sustained release profile of the loaded drug over 288 h. The DTX loaded optimized nanoparticles showed a greater cytotoxicity against SKOV3 cancer cells than free DTX. Enhanced tumor-suppression effects were achieved with DTX-loaded PEG-PLGA NPs. These results demonstrated that optimized NPs could be a potentially useful delivery system for DTX as an anticancer agent. PMID:25276182

  14. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    PubMed

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. PMID:26188300

  15. Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

    PubMed Central

    Boca, Sanda; Leordean, Cosmin; Astilean, Simion

    2015-01-01

    Summary Chemiresistors are a class of sensitive electrical devices capable of detecting (bio)chemicals by simply monitoring electrical resistance. Sensing based on surface enhanced Raman scattering (SERS) represents a radically different approach, in which molecules are optically detected according to their vibrational spectroscopic fingerprint. Despite different concepts are involved, one can find in the literature examples from both categories reporting sensors made of gold nanoparticles. The same building blocks appear because both sensor classes share a common principle: nanometric interparticle gaps are needed, for electron tunneling in chemiresistors, and for enhancing electromagnetic fields by plasmon coupling in SERS-based sensors. By exploiting such nano-gaps in self-assembled films of gold nanoparticles, we demonstrate the proof of concept of a dual electrical/optical sensor, with both chemiresistive and SERS capabilities. The proposed device is realized by self-assembling 15 nm gold nanoparticles into few micrometers-wide strips across commercially available interdigitated electrodes. The dual-mode operation of the device is demonstrated by the detection of a biologically relevant model analyte, 4-mercaptophenyl boronic acid. PMID:26885462

  16. Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles.

    PubMed

    Boca, Sanda; Leordean, Cosmin; Astilean, Simion; Farcau, Cosmin

    2015-01-01

    Chemiresistors are a class of sensitive electrical devices capable of detecting (bio)chemicals by simply monitoring electrical resistance. Sensing based on surface enhanced Raman scattering (SERS) represents a radically different approach, in which molecules are optically detected according to their vibrational spectroscopic fingerprint. Despite different concepts are involved, one can find in the literature examples from both categories reporting sensors made of gold nanoparticles. The same building blocks appear because both sensor classes share a common principle: nanometric interparticle gaps are needed, for electron tunneling in chemiresistors, and for enhancing electromagnetic fields by plasmon coupling in SERS-based sensors. By exploiting such nano-gaps in self-assembled films of gold nanoparticles, we demonstrate the proof of concept of a dual electrical/optical sensor, with both chemiresistive and SERS capabilities. The proposed device is realized by self-assembling 15 nm gold nanoparticles into few micrometers-wide strips across commercially available interdigitated electrodes. The dual-mode operation of the device is demonstrated by the detection of a biologically relevant model analyte, 4-mercaptophenyl boronic acid. PMID:26885462

  17. Preparation, characterization and luminescent properties of dense nano-silica hybrids loaded with 1,8-naphthalic anhydride.

    PubMed

    Wang, Jinpeng; Sun, Jihong; Li, Yuzhen; Wang, Feng

    2014-03-01

    Novel luminescent dense nano-silica hybrid materials (DNSS) modified with different amounts of (3-aminopropyl)triethoxysilane (APTES) and 1,8-naphthalic anhydride (NA) were successfully synthesized via two steps combined with post-grafting methods. Powder X-ray diffraction (XRD), N2-sorption analysis, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), photoluminescence (PL) spectroscopy and elemental analysis, as well as time-resolved decays were employed to characterize the resultant hybrid materials. The results revealed that luminescent organic molecules had been successfully loaded onto the amine-modified surface of nano-silica spheres. In addition, their fluorescence intensity and characteristic peak of emission spectra changed with increasing amount of APTES and NA additive. In particular, the characteristic peak showed a red shift from 390 to 450 nm, however, this was inconsistent with results calculated on the basis of the elemental analysis data, most probably because of the dispersion behaviors of NA molecules from the aggregating to the monolayer state. These observations demonstrated the existence of a quantum confinement effectiveness of NA-DNSS samples, and therefore a possible mechanism was put forward. PMID:23765586

  18. Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage

    PubMed Central

    Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee

    2016-01-01

    Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood–retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154

  19. Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage.

    PubMed

    Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee

    2016-01-01

    Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood-retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154

  20. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    PubMed

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care. PMID:23858976

  1. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles.

    PubMed

    De Cock, Ine; Lajoinie, Guillaume; Versluis, Michel; De Smedt, Stefaan C; Lentacker, Ine

    2016-03-01

    In the last years, research on ultrasound mediated drug delivery using microbubbles is vastly expanding. While some groups simply mix drugs and microbubbles (co-administration), other researchers have a major interest in the potential of drug-loaded microbubbles. However, today, little is known on the pros and cons of these two strategies. In this study we evaluated the delivery of nanoparticles (polystyrene nanospheres and mRNA-lipoplexes) to cells in vitro, in case the nanoparticles were mixed with unloaded microbubbles versus loaded onto the microbubbles. Flow cytometry experiments demonstrated that unloaded microbubbles did not enhance the cellular delivery of the nanospheres and mRNA-lipoplexes. However, upon loading the nanoparticles onto the microbubbles, their delivery to cells substantially improved. Real-time swept field confocal microscopy imaging of the microbubbles and cells during ultrasound radiation revealed that nanoparticle-loaded microbubbles directly deposited the nanoparticles in patches onto the cell membrane, a process that we termed 'sonoprinting'. This phenomenon resulted in the delivery of large amounts of nanoparticles to the cells and is suggested to be different from the creation of cell membrane pores and enhanced endocytosis, which have been reported before as mechanisms behind the improved delivery of drugs to cells by ultrasound. PMID:26796042

  2. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections

    NASA Astrophysics Data System (ADS)

    Zhang, Fuwu; Smolen, Justin A.; Zhang, Shiyi; Li, Richen; Shah, Parth N.; Cho, Sangho; Wang, Hai; Raymond, Jeffery E.; Cannon, Carolyn L.; Wooley, Karen L.

    2015-01-01

    In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate.In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate. Electronic supplementary information (ESI) available: Materials, experimental details, and characterization. See DOI: 10.1039/c4nr07103d

  3. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities.

    PubMed

    Park, Jai Il; Jagadeesan, Dinesh; Williams, Ross; Oakden, Wendy; Chung, Siyon; Stanisz, Greg J; Kumacheva, Eugenia

    2010-11-23

    We report a single-step approach to producing small and stable bubbles functionalized with nanoparticles. The strategy includes the following events occurring in sequence: (i) a microfluidic generation of bubbles from a mixture of CO(2) and a minute amount of gases with low solubility in water, in an aqueous solution of a protein, a polysaccharide, and anionic nanoparticles; (ii) rapid dissolution of CO(2) leading to the shrinkage of bubbles and an increase in acidity of the medium in the vicinity of the bubbles; and (iii) co-deposition of the biopolymers and nanoparticles at the bubble-liquid interface. The proposed approach yielded microbubbles with a narrow size distribution, long-term stability, and multiple functions originating from the attachment of metal oxide, metal, or semiconductor nanoparticles onto the bubble surface. We show the potential applications of these bubbles in ultrasound and magnetic resonance imaging. PMID:20968309

  4. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    PubMed Central

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  5. Lifetime of fluorescent dye molecules in dense aqueous suspensions of polystyrene nanoparticles.

    PubMed

    Scalia, Giuseppe; Scheffold, Frank

    2015-11-16

    We study the lifetime of two common fluorescent dye molecules from the Alexa Fluor NHS Ester family dissolved in water in an opaque aqueous dispersion of dielectric polystyrene nanoparticles. We investigate the role of the dispersion composition by varying the particle concentration and adding SDS (sodium dodecyl sulfate) surfactant molecules. The observed strong changes in lifetime of Alexa 430 can be attributed to the relative contribution of radiative and non-radiative decay channels while the lifetime of the Alexa 488 dye depends only weakly on the sample composition. For Alexa 430, a dye with a rather low quantum yield in aqueous solution, the addition of polystyrene nanoparticles leads to a significant enhancement in quantum yield and an associated increase of the fluorescent lifetime by up to 55 %. We speculate that the increased quantum yield can be attributed to the hydrophobic effect on the structure of water in the boundary layer around the polystyrene particles in suspension. Adding SDS acts as a quencher. Over a range of particle concentrations the particle induced increase of the lifetime can be completely compensated by adding SDS. PMID:26698418

  6. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography.

    PubMed

    Satzer, Peter; Wellhoefer, Martin; Jungbauer, Alois

    2014-07-01

    For scale up and efficient production of protein loaded nanoparticles continuous separation by size exclusion chromatography in simulated moving bed (SMB) mode helps do reduce unbound protein concentration and increase yields for perfectly covered particles. Silica nanoparticles were loaded with an excess of beta casein or bovine serum albumin (BSA) and the loaded particles purified by size exclusion chromatography using Sephacryl300 as stationary phase in a four zone SMB. We determined our working points for the SMB from batch separations and the triangle theory described by Mazzotti et al. with an SMB setup of one Sephacryl300 26/70mm column per zone with switch times of 5min for BSA and 7min for beta casein. In the case of BSA the Raffinate contained loaded nanoparticles of 63% purity with 98% recovery and the extract was essentially particle free (95% purity). We showed that the low purity of the Raffinate was only due to BSA multimers present in the used protein solution. In the case of beta casein where no multimers are present we achieved 89% purity and 90% recovery of loaded nanoparticles in the Raffinate and an extract free of particles (92% purity). Using a tangential flow filtration unit with 5kDa cutoff membrane we proved that the extract can be concentrated for recycling of protein and buffer. The calculated space-time-yield for loaded nanoparticles was 0.25g of loaded nanoparticles per hour and liter of used resin. This proves that the presented process is suitable for large scale production for industrial purposes. PMID:24866563

  7. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    NASA Astrophysics Data System (ADS)

    Anh, Nguyen Tuan; Chi, Nguyen T.; Khai Tran, T.; Tuyen Dao, T. P.; Nhan Le, N. T.; Mau Chien, Dang; Hoai, Nguyen To

    2012-12-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid.

  8. Developing Precisely Defined Drug-Loaded Nanoparticles by Ring-Opening Polymerization of a Paclitaxel Prodrug.

    PubMed

    Liu, Jinyao; Pang, Yan; Bhattacharyya, Jayanta; Liu, Wenge; Weitzhandler, Isaac; Li, Xinghai; Chilkoti, Ashutosh

    2016-08-01

    Nanoparticles with high paclitaxel (PTX) loading and low systemic toxicity are prepared in scalable and versatile manner via one-step ring-opening polymerization of a prodrug monomer consisting of PTX that is appended to a cyclic carbonate through a hydrolysable ester linker. Initiating this monomer from a hydrophilic macroinitiator results in an amphiphilic diblock copolymer that spontaneously self-assembles into well-defined nanoparticles with tunable size. PMID:27111757

  9. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-05-01

    Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles' surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  10. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes.

    PubMed

    Ueno, Kosei; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-01-18

    Visible- and near-infrared-light-driven water splitting, which splits water molecules to generate hydrogen and oxygen gases, is a significant subject in artificial photosynthesis with the goal of achieving a low-carbon society. In recent years, considerable attention has been paid to studies on the development of a plasmon-induced water-splitting system responding to visible light. In this review, we categorized water-splitting systems as gold-nanoparticle-loaded semiconductor photocatalytic particles system and metallic-nanoparticles-loaded semiconductor photoelectrode systems, and introduce the latest studies according to these categories. Especially, we describe the studies that optimize a material or a structural design of metallic-nanoparticle-loaded semiconductor photoelectrodes and consider a whole water-splitting system, including a cathode design. Furthermore, we discuss important points when studying plasmon-induced water splitting, and we describe a methodology that enhances plasmon-induced water-splitting efficiency. PMID:26593450

  11. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.

    PubMed

    Hwang, Ho-Young; Kim, In-San; Kwon, Ick Chan; Kim, Yong-Hee

    2008-05-22

    Hydrophobically modified glycol chitosan (HGC) nanoparticles, a new nano-sized drug carrier, were prepared by introducing a hydrophobic molecule, cholanic acid, to water soluble glycol chitosan. The HGC nanoparticles were easily loaded with the anticancer drug docetaxel (DTX) using a dialysis method, and the resulting docetaxel-loaded HGC (DTX-HGC) nanoparticles formed spontaneously self-assembled aggregates with a mean diameter of 350 nm in aqueous condition. The DTX-HGC nanoparticles were well dispersed and stable for 2 weeks under physiological conditions (pH 7.4 and 37 degrees C) and a sustained drug release profile, in vitro. In addition, the DTX-HGC nanoparticles were reasonably stable in the presence of excess bovine serum albumin, which suggested that the DTX-HGC nanoparticles might also be stable in the blood stream. The DTX-HGC nanoparticles exhibited a distinctive deformability in aqueous conditions, in that they could easily pass through a filter membrane with 200 nm pores despite their mean diameter of 350 nm. We also evaluated the time-dependent excretion profile, in vivo biodistribution, prolonged circulation time, and tumor targeting ability of DTX-HGC nanoparticles by using a non-invasive live animal imaging technology. Finally, under optimal conditions for cancer therapy, the DTX-HGC nanoparticles showed higher antitumor efficacy such as reduced tumor volume and increased survival rate in A549 lung cancer cells-bearing mice and strongly reduced the anticancer drug toxicity compared to that of free DTX in tumor-bearing mice. Together our results showed that the anticancer loaded nano-sized drug carriers are a promising nano-sized drug formulation for cancer therapy. PMID:18374444

  12. Fabrication of poly hydroxybutyrate-polyethylene glycol-folic acid nanoparticles loaded by paclitaxel.

    PubMed

    Rezaei, Fatemeh; Rafienia, Mohammad; Keshvari, Hamid; Sattary, Mansooreh; Naeimi, Mitra; Keyvani, Hossein

    2016-01-01

    In this study drug (paclitaxel)-loaded nanoparticles of poly hydroxybutyrate-polyethylene glycol-folic acid (PHB-PEG-FOL) were prepared by using an oil-in-water (O/W) emulsion-solvent evaporation method. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance tests ((1)H NMR). Morphology of nanoparticles was evaluated by scanning electron microscopy (SEM). Nanoparticles were characterized by particle size analyzer. Between two samples containing drug, the lower doses showed more homogeneous distribution, and the lowest aggregation. The drug release profiles showed a two-phase release including initial rapid release and a continuous release. MG63 cells were used to evaluate cytotoxicity. The cytotoxicity of PHB-PEG-FOL nanoparticles with drug against cancer cells was much higher and longer than free drug sample. These nanoparticles were successfully synthesized as a novel system for targeted drug delivery against cancer cells. PMID:26234551

  13. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma.

    PubMed

    Li, Hui; Tian, Jian; Wu, Anqing; Wang, Jiamin; Ge, Cuicui; Sun, Ziling

    2016-01-01

    Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin-eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer. PMID:27621628

  14. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    PubMed Central

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  15. Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid

    NASA Astrophysics Data System (ADS)

    Qin, H.; Wang, C. M.; Dong, Q. Q.; Zhang, L.; Zhang, X.; Ma, Z. Y.; Han, Q. R.

    2015-05-01

    A novel and simple method has been proposed to prepare magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system.

  16. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma

    PubMed Central

    Li, Hui; Tian, Jian; Wu, Anqing; Wang, Jiamin; Ge, Cuicui; Sun, Ziling

    2016-01-01

    Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin–eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer. PMID:27621628

  17. Design and optimization of PLGA-based diclofenac loaded nanoparticles.

    PubMed

    Cooper, Dustin L; Harirforoosh, Sam

    2014-01-01

    Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108 ± 2.1 nm) and highest zeta potential (-27.71 ± 0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4 ± 7.6 nm) and highest zeta potential (-11.14 ± 0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3 ± 3.5% and 80.2 ± 1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac. PMID:24489896

  18. Design and Optimization of PLGA-Based Diclofenac Loaded Nanoparticles

    PubMed Central

    Cooper, Dustin L.; Harirforoosh, Sam

    2014-01-01

    Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108±2.1 nm) and highest zeta potential (−27.71±0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4±7.6 nm) and highest zeta potential (−11.14±0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3±3.5% and 80.2±1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac. PMID:24489896

  19. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation

    PubMed Central

    Yang, Kwan Yeol; Hwang, Du Hyeong; Yousaf, Abid Mehmood; Kim, Dong Wuk; Shin, Young-Jun; Bae, Ok-Nam; Kim, Yong-II; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2013-01-01

    Background The purpose of this study was to develop a novel silymarin-loaded solid nanoparticle system with enhanced oral bioavailability and an ability to provide excellent hepatic protection for poorly water-soluble drugs using Shirasu porous glass (SPG) membrane emulsification and a spray-drying technique. Methods A silymarin-loaded liquid nanoemulsion was formulated by applying the SPG membrane emulsification technique. This was further converted into solid state nanosized particles by the spray-drying technique. The physicochemical characteristics of these nanoparticles were determined by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. Their dissolution, bioavailability, and hepatoprotective activity in rats were assessed by comparison with a commercially available silymarin-loaded product. Results Formulation of a silymarin-loaded nanoemulsion, comprising silymarin, castor oil, polyvinylpyrrolidone, Transcutol HP, Tween 80, and water at a weight ratio of 5/3/3/1.25/1.25/100 was accomplished using an SPG membrane emulsification technique at an agitator speed of 700 rpm, a feed pressure of 15 kPa, and a continuous phase temperature of 25°C. This resulted in generation of comparatively uniform emulsion globules with a narrow size distribution. Moreover, the silymarin-loaded solid nanoparticles, containing silymarin/castor oil/polyvinylpyrrolidone/Transcutol HP/Tween 80 at a weight ratio of 5/3/3/1.25/1.25, improved about 1,300-fold drug solubility and retained a mean size of about 210 nm. Silymarin was located in unaltered crystalline form in the nanoparticles. The drug dissolved rapidly from the nanoparticles, reaching nearly 80% within 15 minutes, indicating three-fold better dissolution than that of the commercial product. Further, the nanoparticles showed a considerably shorter time to peak concentration, a greater area under the concentration-time curve, and a higher maximum concentration of silymarin compared

  20. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  1. Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics.

    PubMed

    Semkina, A; Abakumov, M; Grinenko, N; Abakumov, A; Skorikov, A; Mironova, E; Davydova, G; Majouga, A G; Nukolova, N; Kabanov, A; Chekhonin, V

    2015-12-01

    Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. PMID:26595387

  2. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies.

    PubMed

    Chadha, Renu; Gupta, Sushma; Pathak, Natasha

    2012-12-01

    Artesunate (AST), the most widely used artemisnin derivative, has poor aqueous solubility and suffers from low oral bioavailability (~40%). Under these conditions, nanoparticles with controlled and sustained released properties can be a suitable solution for improving its biopharmaceuticals properties. This work reports the preparation and characterization of auto-assembled chitosan/lecithin nanoparticles loaded with AST and AST complexed with β-cyclodextrin (β-CD) to boost its antimalarial activity. The nanoparticles prepared by direct injection of lecithin alcoholic solution into chitosan/water solution have shown the particle size distribution below 300 nm. Drug entrapment efficiency was found to be maximum (90%) for nanoparticles containing 100 mg of AST. Transmission electron microscopy images show spherical shape with contrasted corona (chitosan) surrounded by a lipidic core (lecithin + isopropyl myristate). Differential scanning calorimeter thermograms demonstrated the presence of drug in drug-loaded nanoparticles along with the disappearance of decomposition exotherm suggesting the increased physical stability of drug in prepared formulations. Negligible changes in the characteristic peaks of drug in Fourier-transform infrared spectra indicated the absence of any interaction among the various components entrapped in the nanoparticle formulation. In vitro drug release behavior was found to be influenced by pH value. Increased in vivo antimalarial activity in terms of less mean percent parasitemia was observed in infected Plasmodium berghei mice after the oral administration of all the prepared nanoparticle formulations. PMID:22348223

  3. Preparation and in vitro investigation of antigastric cancer activities of carvacrol-loaded human serum albumin nanoparticles.

    PubMed

    Maryam, Keshavarzi; Shakeri, Shahryar; Kiani, Keyhaneh

    2015-10-01

    In this study, carvacrol-loaded human serum albumin (HSA) nanoparticles were developed and characterised. Nanoparticles were prepared by desolvation and emulsion/desolvation methods. Encapsulation efficiency (EE%) and loading capacity (LC%) of nanoparticles prepared by desolvation method were 48.4 and 45.1%, respectively. Carvacrol-loaded nanoparticles had 132±42 nm in diameter with monomodal distribution. Carvacrol-loaded nanoparticles which is prepared by emulsion/desolvation method had EE% and LC% of 32 and 32.3%, respectively, and 230±38 nm in size. The release of carvacrol from nanoparticles was monitored in phosphate-buffered saline (pH=7.4), 100 rpm at 37°C for 10 days. About 21.4% of carvacrol was released after 3 h from nanoparticles that were prepared by desolvation method. In emulsion/desolvation method, 26.8% of total carvacrol was released during 3 h of incubation. Cytotoxicity effect of loaded carvacrol was assessed by 3-[4, 5 dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test on gastric cancer cells line (AGS). Cell line was exposed to the free carvacrol, unloaded and carvacrol-loaded nanoparticles for 48 h. The half maximal inhibitory concentration (IC50) for free carvacrol, unloaded and carvacrol-loaded HSA nanoparticles were 30, 1070 and 120 µg/ml, respectively. In conclusion, the results of this study showed applications of HSA nanoparticles for entrapment of carvacrol and antigastric cancer activity. Moreover, loading of carvacrol in combination with chemotherapy agents into the HSA nanoparticles may treat cancer cells better than single drug loaded nanoparticles. PMID:26435283

  4. Two-dimensional ultrathin gold film composed of steadily linked dense nanoparticle with surface plasmon resonance

    PubMed Central

    2012-01-01

    Background Noble metallic nanoparticles have prominent optical local-field enhancement and light trapping properties in the visible light region resulting from surface plasmon resonances. Results We investigate the optical spectral properties and the surface-enhanced Raman spectroscopy of two-dimensional distinctive continuous ultrathin gold nanofilms. Experimental results show that the one- or two-layer nanofilm obviously increases absorbance in PEDOT:PSS and P3HT:PCBM layers and the gold nanofilm acquires high Raman-enhancing capability. Conclusions The fabricated novel structure of the continuous ultrathin gold nanofilms possesses high surface plasmon resonance properties and boasts a high surface-enhanced Raman scattering (SERS) enhancement factor, which can be a robust and cost-efficient SERS substrate. Interestingly, owing to the distinctive morphology and high light transmittance, the peculiar nanofilm can be used in multilayer photovoltaic devices to trap light without affecting the physical thickness of solar photovoltaic absorber layers and yielding new options for solar cell design. PMID:23259927

  5. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO₂-anatase containing silver nanoparticles.

    PubMed

    Roldán, María V; de Oña, Paula; Castro, Yolanda; Durán, Alicia; Faccendini, Pablo; Lagier, Claudia; Grau, Roberto; Pellegri, Nora S

    2014-10-01

    Here we describe the development of novel nanostructured coating systems with improved photocatalytic and antibacterial activities. These systems comprise a layer of SiO2 followed by a layer of mesoporous or dense TiO2-anatase, and doping with silver nanoparticles (Ag NPs). The coatings were synthesized via a sol-gel technique by combining colloidal Ag NPs with TiO2 and SiO2 sols. The photocatalytic activity was studied through methyl orange decomposition under UV light. Results showed a great increase of photocatalytic activity by Ag NPs doping. The most active photocatalyst corresponded to the Ag-SiO2/TiO2 mesoporous system, associated with the porosity of the coatings and with the decrease of e-h recombination for the presence of Ag NPs. All the TiO2 coatings showed a strong bactericidal activity against planktonic forms of Gram-negative (enterohemorrhagic Escherichia coli) and Gram-positive (Listeria monocytogenes) pathogens, as well as a strong germicidal effect against deadly spores of human gas gangrene- and anthrax-producing bacteria (Clostridium perfringens and Bacillus anthracis, respectively). The bactericidal and sporocidal activity was improved by doping the coatings with Ag NPs, even more when nanoparticles were in the outer layer of TiO2, because they are more accessible to the environment. The mechanisms responsible for the increase of photocatalytic and bactericidal behaviors related to Ag NP doping were studied by spectroscopic ellipsometry, UV-vis spectroscopy, photoluminescence and anodic stripping voltammetry. It was found that the separation of the electron-hole pair contributed to the enhancement of photocatalysis, whereas the effect of the local electric field reinforcement was probably present. A possible involvement of a decrease of band-gap energy and dispersion by silver nanoparticles is ruled out. bactericidal efficacy was increased by Ag(+) ion release. Overall, the results included in this article show that the architecture of the

  6. Size-dependent surface effects in maghemite nanoparticles and its impact on interparticle interactions in dense assemblies.

    PubMed

    Andersson, Mikael Svante; Mathieu, Roland; Lee, Su Seong; Normile, Peter S; Singh, Gurvinder; Nordblad, Per; Toro, Jose Angel De

    2015-11-27

    The question of the dominant interparticle magnetic interaction type in random closely packed assemblies of different diameter (6.2-11.5 nm) bare maghemite nanoparticles (NPs) is addressed. Single-particle magnetic properties such as particle anisotropy and exchange bias field are first of all studied in dilute (reference) systems of these same NPs, where interparticle interactions are neglible. Substantial surface spin disorder is revealed in all particles except the smallest, viz. for diameters d = 8-11.5 nm but not for d = 6.2-6.3 nm. X-ray diffraction analysis points to a crystallographic origin of this effect. The study of closely packed assemblies of the d ≥ 8 nm particles observes collective (superspin) freezing that clearly appears to be governed by interparticle dipole interactions. However, the dense assemblies of the smallest particles exhibit freezing temperatures that are higher than expected from a simple (dipole) extrapolation of the corresponding temperatures found in the d ≥ 8 nm assemblies. It is suggested that the nature of the dominant interparticle interaction in these smaller particle assemblies is superexchange, whereby the lack of significant surface spin disorder allows this mechanism to become important at the level of interacting superspins. PMID:26536047

  7. Size-dependent surface effects in maghemite nanoparticles and its impact on interparticle interactions in dense assemblies

    NASA Astrophysics Data System (ADS)

    Svante Andersson, Mikael; Mathieu, Roland; Lee, Su Seong; Normile, Peter S.; Singh, Gurvinder; Nordblad, Per; De Toro, Jose Angel

    2015-11-01

    The question of the dominant interparticle magnetic interaction type in random closely packed assemblies of different diameter (6.2-11.5 nm) bare maghemite nanoparticles (NPs) is addressed. Single-particle magnetic properties such as particle anisotropy and exchange bias field are first of all studied in dilute (reference) systems of these same NPs, where interparticle interactions are neglible. Substantial surface spin disorder is revealed in all particles except the smallest, viz. for diameters d = 8-11.5 nm but not for d = 6.2-6.3 nm. X-ray diffraction analysis points to a crystallographic origin of this effect. The study of closely packed assemblies of the d ≥slant 8 nm particles observes collective (superspin) freezing that clearly appears to be governed by interparticle dipole interactions. However, the dense assemblies of the smallest particles exhibit freezing temperatures that are higher than expected from a simple (dipole) extrapolation of the corresponding temperatures found in the d ≥slant 8 nm assemblies. It is suggested that the nature of the dominant interparticle interaction in these smaller particle assemblies is superexchange, whereby the lack of significant surface spin disorder allows this mechanism to become important at the level of interacting superspins.

  8. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy

    PubMed Central

    Maji, Ruma; Dey, Niladri Shekhar; Satapathy, Bhabani Sankar; Mukherjee, Biswajit; Mondal, Subhasish

    2014-01-01

    Background Four formulations of Tamoxifen citrate loaded polylactide-co-glycolide (PLGA) based nanoparticles (TNPs) were developed and characterized. Their internalization by Michigan Cancer Foundation-7 (MCF-7) breast cancer cells was also investigated. Methods Nanoparticles were prepared by a multiple emulsion solvent evaporation method. Then the following studies were carried out: drug-excipients interaction using Fourier transform infrared spectroscopy (FTIR), surface morphology by field emission scanning electron microscopy (FESEM), zeta potential and size distribution using a Zetasizer Nano ZS90 and particle size analyzer, and in vitro drug release. In vitro cellular uptake of nanoparticles was assessed by confocal microscopy and their cell viability (%) was studied. Results No chemical interaction was observed between the drug and the selected excipients. TNPs had a smooth surface, and a nanosize range (250–380 nm) with a negative surface charge. Drug loadings of the prepared particles were 1.5%±0.02% weight/weight (w/w), 2.68%±0.5% w/w, 4.09%±0.2% w/w, 27.16%±2.08% w/w for NP1–NP4, respectively. A sustained drug release pattern from the nanoparticles was observed for the entire period of study, ie, up to 60 days. Further, nanoparticles were internalized well by the MCF-7 breast cancer cells on a concentration dependent manner and were present in the cytoplasm. The nucleus was free from nanoparticle entry. Drug loaded nanoparticles were found to be more cytotoxic than the free drug. Conclusion TNPs (NP4) showed the highest drug loading, released the drug in a sustained manner for a prolonged period of time and were taken up well by the MCF-7 breast cancer cell line in vitro. Thus the formulation may be suitable for breast cancer treatment due to the good permeation of the formulation into the breast cancer cells. PMID:25028549

  9. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    PubMed Central

    Keum, Chang-Gu; Noh, Young-Wook; Baek, Jong-Suep; Lim, Ji-Ho; Hwang, Chan-Ju; Na, Young-Guk; Shin, Sang-Chul; Cho, Cheong-Weon

    2011-01-01

    Background Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA), are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20.83%, 40.07%, and 51.5% of the docetaxel was released in 28 days from nanoparticles containing Poloxamer 188, TPGS, or polyvinyl alcohol, respectively. TPGS and Poloxamer 188 had slower release kinetics than polyvinyl alcohol. It was predicted that there was residual drug remaining on the surface from x-ray photoelectron spectroscopy. Conclusion Our research shows that the choice of surfactant is important for controlled release of

  10. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: Preparation, magnetic targeting, cell cytotoxicity, and protein delivery research.

    PubMed

    Liu, Min-Chao; Jin, Shu-Fang; Zheng, Min; Wang, Yan; Zhao, Peng-Liang; Tang, Ding-Tong; Chen, Jiong; Lin, Jia-Qi; Wang, Xia-Hong; Zhao, Ping

    2016-08-01

    The clinical use of daunomycin is restricted by dose-dependent toxicity and low specificity against cancer cells. In the present study, modified superparamagnetic iron oxide nanoparticles were employed to load daunomycin and the drug-loaded nanospheres exhibited satisfactory size and smart pH-responsive release. The cellular uptake efficiency, targeted cell accumulation, and cell cytotoxicity experimental results proved that the superparamagnetic iron oxide nanoparticle-loading process brings high drug targeting without decreasing the cytotoxicity of daunomycin. Moreover, a new concern for the evaluation of nanophase drug delivery's effects was considered, with monitoring the interactions between human serum albumin and the drug-loaded nanospheres. Results from the multispectroscopic techniques and molecular modeling calculation elucidate that the drug delivery has detectable deleterious effects on the frame conformation of protein, which may affect its physiological function. PMID:27288463

  11. Preparation of ultrafine poly(methyl methacrylate-co-methacrylic acid) biodegradable nanoparticles loaded with ibuprofen.

    PubMed

    Saade, Hened; Diaz de León-Gómez, Ramón; Enríquez-Medrano, Francisco Javier; López, Raúl Guillermo

    2016-08-01

    Ibuprofen-loaded polymeric particles with around 9.2 nm in mean diameter, as determined by electron microscopy, dispersed in an aqueous media containing up to 12.8% solids were prepared by semicontinuous heterophase polymerization. The polymeric material is a (2/1 mol/mol) methyl methacrylate-co-methacrylic acid copolymer similar to Eudragit S100, deemed safe for human consumption and used in the manufacturing of drug-loaded pills as well as micro- and nanoparticles. The loading efficiency was 100%, attaining around 10-12% in drug content. Release studies showed that the drug is released from the nanoparticles at a slower rate than that in the case of free IB. Given their size as well as the pH values required for their dissolution, it is believed that this type of particles could be used as a basis for preparing nanosystems loaded with a variety of drugs. PMID:27126476

  12. Methotrexate loaded self stabilized calcium phosphate nanoparticles: a novel inorganic carrier for intracellular drug delivery.

    PubMed

    Mukesh, Ukawala; Kulkarni, Vijay; Tushar, Rajyaguru; Murthy, R S R

    2009-02-01

    Calcium phosphate is considered as a potential biomaterial for drug and gene delivery because of its excellent features. In this study, we reported the formulation and characterization of calcium phosphate nanoparticle containing anticancer drug, methotrexate (MTX). Calcium phosphate nanoparticles containing MTX (CaPi-MTX) were prepared by reverse micelles technique. CaPi-MTX nanoparticles of average size 262 +/- 47.64 nm with entrapment efficiency of 58.04 +/- 4.09% were obtained. The IR spectrum of CaPi-MTX showed characteristics of composite formation of hydroxyapatite with MTX. X-RD analysis revealed that, CaPi-MTX nanoparticles were crystalline and in hydroxyapatite form. TEM studies showed that CaPi-MTX nanoparticles were spherical in shape. In vitro release study of CaPi-MTX nanoparticles showed slow release of MTX at physiological pH (pH 7.4) while > 90% release was observed within 3-4 hours at endosomal pH (pH 5.5 and pH 6.0). Confocal microscopy was performed using CHO cell lines, showed intracellular localization of FITC-Dextran loaded calcium phosphate nanoparticles. Results indicate that prepared CaPi-MTX nanoparticles could serve the purpose for intracellular drug delivery. PMID:20055112

  13. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors

    PubMed Central

    Sawyer, Andrew J.; Saucier-Sawyer, Jennifer K.; Booth, Carmen J.; Liu, Jie; Patel, Toral; Piepmeier, Joseph M.

    2011-01-01

    Direct delivery of chemotherapy agents to the brain via degradable polymer delivery systems—such as Gliadel®—is a clinically proven method for treatment of glioblastoma multiforme, but there are important limitations with the current technology—including the requirement for surgery, profound local tissue toxicity, and limitations in diffusional penetration of agents—that limit its application and effectiveness. Here, we demonstrate another technique for direct, controlled delivery of chemotherapy to the brain that provides therapeutic benefit with fewer limitations. In our new approach, camptothecin (CPT)-loaded poly(lacticco-glycolic acid) (PLGA) nanoparticles are infused via convection-enhanced delivery (CED) to a stereotactically defined location in the brain, allowing simultaneous control of location, spread, and duration of drug release. To test this approach, CPT-PLGA nanoparticles (~100 nm in diameter) were synthesized with 25% drug loading. When these nanoparticles were incubated in culture with 9L gliosarcoma cells, the IC50 of CPT-PLGA nanoparticles was 0.04 µM, compared to 0.3 µM for CPT alone. CPT-PLGA nanoparticles stereotactically delivered by CED improved survival in rats with intracranial 9L tumors: the median survival for rats treated with CPT-PLGA nanoparticles (22 days) was significantly longer than unloaded nanoparticles (15 days) and free CPT infusion (17 days). CPT-PLGA nanoparticle treatment also produced significantly more long-term survivors (30% of animals were free of disease at 60 days) than any other treatment. CPT was present in tissues harvested up to 53 days post-infusion, indicating prolonged residence at the local site of administration. These are the first results to demonstrate the effectiveness of combining polymer-controlled release nanoparticles with CED in treating fatal intracranial tumors. PMID:21691426

  14. Magnetic manipulation of bacterial magnetic nanoparticle-loaded neurospheres.

    PubMed

    Shin, Jaeha; Lee, Kyung-Mee; Lee, Jae Hyup; Lee, Junghoon; Cha, Misun

    2014-05-01

    Specific targeting of cells to sites of tissue damage and delivery of high numbers of transplanted cells to lesion tissue in vivo are critical parameters for the success of cell-based therapies. Here, we report a promising in vitro model system for studying the homing of transplanted cells, which may eventually be applicable for targeted regeneration of damaged neurons in spinal cord injury. In this model system, neurospheres derived from human neuroblastoma SH-SY5Y cells labeled with bacterial magnetic nanoparticles were guided by a magnetic field and successfully accumulated near the focus site of the magnetic field. Our results demonstrate the effectiveness of using an in vitro model for testing bacterial magnetic nanoparticles to develop successful stem cell targeting strategies during fluid flow, which may ultimately be translated into in vivo targeted delivery of cells through circulation in various tissue-repair models. PMID:24638869

  15. Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications.

    PubMed

    González-Delgado, José A; Castro, Pedro M; Machado, Alexandra; Araújo, Francisca; Rodrigues, Francisca; Korsak, Bárbara; Ferreira, Marta; Tomé, João P C; Sarmento, Bruno

    2016-08-20

    5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra-iodide (TMPyP), a potent water-soluble photosensitizer (PS) used in antimicrobial applications, was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TMPyP-PLGA) for topical delivery purposes. Nanoparticles resulted in a mean particle size around 130nm, narrow polydispersity index (PdI), spherical morphology and association efficiency up to 93%. Free TMPyP and TMPyP-PLGA nanoparticles were incorporated into Carbopol(®) hydrogels, resulting in controlled TMPyP release of about 60% and 20% after 4.5h, respectively. Critical properties such as appearance, clarity, viscosity and pH were maintained over time, as hydrogels were stable during 6 months at 4°C, 25°C/60% RH and 40°C/75% RH. For photodynamic applications, the photoproduction of singlet oxygen from these hydrogels was quite efficient being both formulations very photostable after 20min. No TMPyP permeation through pig ear skin was observed after 24h, and histological assays did not show relevant damages in surrounding tissues. All these excellent characteristics make them promising platforms for photodynamic applications through topical clinical use. PMID:27321129

  16. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme.

    PubMed

    Piras, Anna Maria; Maisetta, Giuseppantonio; Sandreschi, Stefania; Esin, Semih; Gazzarri, Matteo; Batoni, Giovanna; Chiellini, Federica

    2014-06-01

    A commercially available chitosan (CS) was employed in the formulation of nanoparticles loaded with lysozyme (LZ) as antimicrobial protein drug model. Due to the variability of commercially available batches of chitosans and to the strict dependence of their physical and biological properties to the molecular weight (Mw) and deacetylation degree (DD) of the material, the CS was fully characterized resulting in weight-average molecular weight of 108,120g/mol and DD of 92%. LZ-loaded nanoparticles (LZ-NPs) of 150nm diameter were prepared by inotropic gelation. The nanoparticles were effectively preserving the antibacterial activity of the loaded enzyme, which was slowly released over 3 weeks in vitro and remained active toward Staphylococcus epidermidis up to 5 days of incubation. Beyond the intrinsic antibacterial activity of CS and LZ, the LZ-NPs evidenced a sustained antibacterial activity that resulted in about 2 log reduction of the number of viable S. epidermidis compared to plain CS nanoparticles. Furthermore, the LZ-NPs showed a full in vitro cytocompatibility toward murine fibroblasts and, in addition to the potential antimicrobial applications of the developed system, the proposed study could serve as an optimal model for development of CS nanoparticles carrying antimicrobial peptides for biomedical applications. PMID:24661890

  17. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction.

    PubMed

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20-30nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. PMID:25842144

  18. Enhanced in vitro and in vivo therapeutic efficacy of codrug-loaded nanoparticles against liver cancer

    PubMed Central

    Li, Xiaolin; Xu, Hua’e; Dai, Xinzheng; Zhu, Zhenshu; Liu, Baorui; Lu, Xiaowei

    2012-01-01

    Paclitaxel (Ptx), one of the most widely used anticancer agents, has demonstrated extraordinary activities against a variety of solid tumors. However, the therapeutic response of Ptx is often associated with severe side effects caused by its nonspecific cytotoxic effects and special solvents (Cremophor EL®). The current study reports the stable controlled release of Ptx/tetrandrine (Tet)-coloaded nanoparticles by amphilic methoxy poly(ethylene glycol)–poly(caprolactone) block copolymers. There were three significant findings. Firstly, Tet could effectively stabilize Ptx-loaded nanoparticles with the coencapsulation of Tet and Ptx. The influence of different Ptx/Tet feeding ratios on the size and loading efficiency of the nanoparticles was also explored. Secondly, the encapsulation of Tet and Ptx into nanoparticles retains the synergistic anticancer efficiency of Tet and Ptx against mice hepatoma H22 cells. Thirdly, in the in vivo evaluation, intratumoral administration was adopted to increase the site-specific delivery. Ptx/Tet nanoparticles, when delivered intratumorally, exhibited significantly improved antitumor efficacy; moreover, they substantially increased the overall survival in an established H22-transplanted mice model. Further investigation into the anticancer mechanisms of this nanodelivery system is under active consideration as a part of this ongoing research. The results suggest that Ptx/Tet-coloaded nanoparticles could be a potential useful chemotherapeutic formulation for liver cancer therapy. PMID:23055730

  19. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    PubMed Central

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to formulate NPs with identical size, shape and surface chemistry, but with variable docetaxel loading. The lower weight loading (9%-NP) of docetaxel was found to have a superior pharmacokinetic profile and enhanced efficacy in a murine cancer model when compared to that of a higher docetaxel loading (20%-NP). The 9%-NP docetaxel increased plasma and tumor docetaxel exposure and reduced liver, spleen and lung exposure when compared to that of 20%-NP docetaxel. PMID:23899444

  20. On the effect of gold nanoparticles loading within carbonaceous macro-mesocellular foams toward lithium-sulfur battery performances

    NASA Astrophysics Data System (ADS)

    Depardieu, Martin; Demir-Cakan, Rezan; Sanchez, Clément; Birot, Marc; Deleuze, Hervé; Morcrette, Mathieu; Backov, Rénal

    2016-05-01

    Novel carbonaceous monolith foams loaded with gold nanoparticles have been synthesized and thoroughly characterized over several length scale. Their Li-S battery electrode capabilities have been assessed and compared while varying the gold loading and subsequently the specific surface area. Their capacities expressed in either mass (mA h g-1) or volume (mA h cm-3) dimensions have shown that specific surface area and nanoparticles loading are acting in a strong partitioning mode, rather than a cooperative mode, which does not favor the use of gold nanoparticles loading as efficient incremental path toward optimizing porous carbonaceous-based Li-S battery electrodes.

  1. Promoting DNA loading on magnetic nanoparticles using a DNA condensation strategy.

    PubMed

    Shan, Zhi; Jiang, Youjun; Guo, Mengyu; Bennett, J Craig; Li, Xianghai; Tian, Hefeng; Oakes, Ken; Zhang, Xu; Zhou, Yi; Huang, Qianming; Chen, Huaping

    2015-01-01

    Maximizing DNA loading on magnetic nanoparticles (MNPs) is crucial for their successful utilization in gene transfer, DNA isolation, and bio-analytical applications. This enhancement is typically achieved by altering particle size and surfaces as well as charge density and ionic strength. We demonstrate a novel route for promoting DNA loading on amino-modified silica-coated magnetic nanoparticles (ASMNPs) by prior condensation of elongated DNA to a compact globule before adsorption. The enhanced DNA-loading capacity, as demonstrated by a reduction in the number of ASMNPs needed to achieve complexation, was presumably due to the elimination of DNA wrapping around nanoparticles and substantially reduced electrostatic interactions of DNA with nanoparticles because the compacted DNA globule conformation decreases its exposed surface charge. The maximum loading capacity of ASMNPs for condensed DNA was 4.4 times greater than that for elongated coiled DNA, achieving the highest ever reported value of 385 μg mg(-1). Practical applications for plasmid DNA isolation from cleared lysate confirmed the reliability of the proposed method. PMID:25454752

  2. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections.

    PubMed

    Zhang, Fuwu; Smolen, Justin A; Zhang, Shiyi; Li, Richen; Shah, Parth N; Cho, Sangho; Wang, Hai; Raymond, Jeffery E; Cannon, Carolyn L; Wooley, Karen L

    2015-02-14

    In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate. PMID:25573163

  3. Photophysical property of a polymeric nanoparticle loaded with an aryl benzyl ester silicon (IV) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Pan, Sujuan; Ma, Dongdong; Chen, Xiuqin; Wang, Yuhua; Yang, Hongqin; Peng, Yiru

    2014-09-01

    Because of their excellent near-infrared (NIR) optical properties, phthalocyanines (Pcs) have been regarded as promising therapy agents for fluorescence image-guided drug delivery and noninvasive treatment of tumors by photodynamic therapy (PDT). Nevertheless, phthalocyanines are substantially limited in clinical applications owing to their poor solubility, aggregation and insufficient selectivity for cancer cells. To address these issues, we have developed a novel dendrimer-based theranostic nanoparticle for tumor-targeted delivery of phthalocyanine. The preparation procedure involved the modification of the silicon (IV) phthalocyanine molecule with a dendritic axially substitution, which significantly enhances their photophysical property. In order to improve biocompatibility and tumor-targeted delivery, the hydrophobic dendritic phthalocyanine was encapsulated by diblock amphiphilic copolymer poly (ethylene glycol)-poly (Epsilon-caprolactone) (MPEG-PCL) to form a polymeric nanoparticle. The polymeric nanoparticle is spherical with a diameter at about 90 nm. The photophysical property of the polymeric nanoparticle was studied by UV/Vis and fluorescence spectroscopic methods. Compared with the free dendritic phthalocyanine, the Q band of the polymeric nanoparticle was red-shifted, and the fluorescence intensity decreased. Furthermore, the polymeric nanoparticle has a relatively high loading amount and encapsulation rate. Therefore, the polymeric nanoparticle would be a promising third-generation photosensitizer (PS) for PDT.

  4. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    PubMed

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs. PMID:24712731

  5. Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging.

    PubMed

    Sanjai, Chutimon; Kothan, Suchart; Gonil, Pattarapond; Saesoo, Somsak; Sajomsang, Warayuth

    2016-05-01

    Target-specific MRI contrast agent based on super-paramagnetic iron oxide-chitosan-folic acid (SPIONP-CS-FA) nanoparticles was fabricated by using an ionotropic gelation method, which involved the loading of SPIONPs at various concentrations into CS-FA nanoparticles by electrostatic interaction. The SPIONP-CS-FA nanoparticles were characterized by ATR-FTIR, XRD, TEM, and VSM techniques. This study revealed that the advantages of this system would be green fabrication, low cytotoxicity at iron concentrations ranging from 0.52 mg/L to 4.16 mg/L, and high water stability (pH 6) at 4°C over long periods. Average particle size and positive zeta-potential of the SPIONP-CS-FA nanoparticles was found to be 130 nm with narrow size distribution and 42 mV, respectively. In comparison to SPIONP-0.5-CS nanoparticles, SPIONP-0.5-CS-FA nanoparticles showed higher and specific cellular uptake levels into human cervical adenocarcinoma cells due to the presence of folate receptors, while in vivo results (Wistar rat) indicated that only liver tissue showed significant decreases in MR image intensity on T2 weighted images and T2* weighted images after post-injection, in comparison with other organs. Our results demonstrated that SPIONP-CS-FA nanoparticles can be applied as an either tumor or organ specific MRI contrast agents. PMID:26783640

  6. Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment

    PubMed Central

    Ma, Yuandong; Zheng, Yi; Zeng, Xiaowei; Jiang, Liqin; Chen, Hongbo; Liu, Ranyi; Huang, Laiqiang; Mei, Lin

    2011-01-01

    Background The formulation of docetaxel available for clinical use (Taxotere®) contains a high concentration of polysorbate 80 (Tween 80). After incorporation of Tween 80 into poly-ɛ-caprolactone (PCL)-Tween 80 copolymer, the relative amount of Tween 80 should be decreased and the advantages of PCL and Tween 80 should be combined. Methods A novel PCL-Tween 80 copolymer was synthesized from ɛ-caprolactone and Tween 80 in the presence of stannous octoate as a catalyst via ring opening polymerization. Two types of nanoparticle formulation were made from commercial PCL and a self-synthesized PCL-Tween 80 copolymer using a modified solvent extraction/evaporation method. Results The nanoparticles were found by field emission scanning electron microscopy to have a spherical shape and be 200 nm in diameter. The copolymers could encapsulate 10% of the drug in the nanoparticles and release 34.9% of the encapsulated drug over 28 days. PCL-Tween 80 nanoparticles could be internalized into the cells and had higher cellular uptake than the PCL nanoparticles. The drug-loaded PCL-Tween 80 nanoparticles showed better in vitro cytotoxicity towards C6 cancer cells than commercial Taxotere at the same drug concentration. Conclusion Nanoparticles using PCL-Tween 80 copolymer as drug delivery vehicles may have a promising outcome for cancer patients. PMID:22114498

  7. Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles.

    PubMed

    Souto, Gabriele Dadalt; Farhane, Zeineb; Casey, Alan; Efeoglu, Esen; McIntyre, Jennifer; Byrne, Hugh James

    2016-08-01

    In the emerging field of nanomedicine, targeted delivery of nanoparticle encapsulated active pharmaceutical ingredients (API) is seen as a potential significant development, promising improved pharmacokinetics and reduced side effects. In this context, understanding the cellular uptake of the nanoparticles and subsequent subcellular distribution of the API is of critical importance. Doxorubicin (DOX) was encapsulated within chitosan nanoparticles to investigate its intracellular delivery in A549 cells in vitro. Unloaded (CS-TPP) and doxorubicin-loaded (DOX-CS-TPP) chitosan nanoparticles were characterised for size (473 ± 41 nm), polydispersity index (0.3 ± 0.2), zeta potential (34 ± 4 mV), drug content (76 ± 7 μM) and encapsulation efficiency (95 ± 1 %). The cytotoxic response to DOX-CS-TPP was substantially stronger than to CS-TPP, although weaker than that of the equivalent free DOX. Fluorescence microscopy showed a dissimilar pattern of distribution of DOX within the cell, being predominantly localised in the nucleus for free form and in cytoplasm for DOX-CS-TPP. Confocal microscopy demonstrated endosomal localisation of DOX-CS-TPP. Numerical simulations, based on a rate equation model to describe the uptake and distribution of the free DOX, nanoparticles and DOX-loaded nanoparticles within the cells and the subsequent dose- and time-dependent cytotoxic responses, were used to further elucidate the API distribution processes. The study demonstrates that encapsulation of the API in nanoparticles results in a delayed release of the drug to the cell, resulting in a delayed cellular response. This work further demonstrates the potential of mathematical modelling in combination with intracellular imaging techniques to visualise and further understand the intracellular mechanisms of action of external agents, both APIs and nanoparticles in cells. PMID:27225177

  8. Potent Engineered PLGA Nanoparticles by Virtue of Exceptionally High Chemotherapeutic Loadings

    PubMed Central

    Enlow, Elizabeth M.; Luft, J. Christopher; Napier, Mary E.; DeSimone, Joseph M.

    2011-01-01

    Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT® (Particle Replication In Non-wetting Templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere®. PMID:21265552

  9. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array

    NASA Astrophysics Data System (ADS)

    Cho, Ikjun; Kim, Beom Joon; Ryu, Sook Won; Cho, Jeong Ho; Cho, Jinhan

    2014-12-01

    Organic field-effect transistor (OFET) memories have rapidly evolved from low-cost and flexible electronics with relatively low-memory capacities to memory devices that require high-capacity memory such as smart memory cards or solid-state hard drives. Here, we report the high-capacity OFET memories based on the multilayer stacking of densely packed hydrophobic metal NP layers in place of the traditional transistor memory systems based on a single charge trapping layer. We demonstrated that the memory performances of devices could be significantly enhanced by controlling the adsorption isotherm behavior, multilayer stacking structure and hydrophobicity of the metal NPs. For this study, tetraoctylammonium (TOA)-stabilized Au nanoparticles (TOA-AuNPs) were consecutively layer-by-layer (LbL) assembled with an amine-functionalized poly(amidoamine) dendrimer (PAD). The formed (PAD/TOA-AuNP)n films were used as a multilayer stacked charge trapping layer at the interface between the tunneling dielectric layer and the SiO2 gate dielectric layer. For a single AuNP layer (i.e. PAD/TOA-AuNP)1) with a number density of 1.82 × 1012 cm-2, the memory window of the OFET memory device was measured to be approximately 97 V. The multilayer stacked OFET memory devices prepared with four AuNP layers exhibited excellent programmable memory properties (i.e. a large memory window (ΔVth) exceeding 145 V, a fast switching speed (1 μs), a high program/erase (P/E) current ratio (greater than 106) and good electrical reliability) during writing and erasing over a relatively short time scale under an operation voltage of 100 V applied at the gate.

  10. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung.

    PubMed

    Athawale, Rajani B; Jain, Darshana S; Singh, Kamlinder K; Gude, Rajiv P

    2014-03-01

    Poor solubility of etoposide and associated poor bioavailability of the drug was circumvented by developing solid lipid nanocarrier system. The objective of the research work was to prepare etoposide loaded solid lipid nanoparticles (SLN) for improved efficacy and therapy of metastasized cancers. Entrapment of drug into nanoparticulate system modifies the pharmacokinetic and biodistribution profile of the drug with improved therapeutic efficacy. Solid lipid nanoparticles of various triglycerides were prepared using hot homogenization technique. Further, the process and formulation parameters viz. homogenization cycle and pressure, type of lipid were optimized. Developed nanoparticles were characterised for particle size, in vitro dissolution studies, DSC thermogram, surface morphology and cytotoxicity assay. Pharmacokinetic and biodistribution study were performed to assess the distribution of the drug in vivo. Modulation of the therapeutic activity of the drug was studied by performing antimetastatic activity on a B16F10 melanoma mouse model. The obtained results exhibited suitability of trimysristin for fabrication of nanoparticles. Characterisation of nanoparticles depicted formation of homogenous, spherical particles entrapping approximately 50% of the drug. The results for the performed MTT assay suggested that the developed nanoparticles exhibited cytotoxicity in a time- and concentration-dependent fashion. These findings concord with the results of the in vitro dissolution profile. Pharmacokinetic parameters demonstrated increase in area under curve (AUC), t1/2 and mean residence time (MRT) for drug in plasma. Further there is enhancement in the ratio of the drug that reaches to the highly perfused organs (upon encapsulation into solid lipid nanoparticles). Generally, cancer cells metastasized through the blood or lymphatic system. Accumulation of the drug in the highly perfused organ suggests suitability of the developed nanoparticles for targeting

  11. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration.

    PubMed

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1-34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3-4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  12. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers.

    PubMed

    Sridhar, Sreepathy; Venugopal, Jayarama Reddy; Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2015-10-01

    Cardiac tissue engineering promises to revolutionize the treatment of patients with end-stage heart failure and provide new solutions to the serious problems of shortage of heart donors. The influence of extracellular matrix (ECM) plays an influential role along with nanostructured components for guided stem cell differentiation. Hence, nanoparticle embedded Nanofibrous scaffolds of FDA approved polycaprolactone (PCL), Vitamin B12 (Vit B12), Aloe Vera(AV) and Silk fibroin(SF) was constructed to differentiate mesenchymal stem cells into cardiac lineage. Cardiomyocytes (CM) and Mesenchymal stem cells (MSC) were co-cultured on these fabricated nanofibrous scaffolds for the regeneration of infarcted myocardium. Results demonstrated that synthesized gold nanoparticles were of the size 16 nm and the nanoparticle loaded nanofibrous scaffold has a mechanical strength of 2.56 MPa matching that of the native myocardium. The gold nanoparticle blended PCL scaffolds were found to be enhancing the MSCs proliferation and differentiation into cardiogenesis. Most importantly the phenotype and cardiac marker expression in differentiated MSCs were highly resonated in gold nanoparticle loaded nanofibrous scaffolds. The appropriate mechanical strength provided by the functionalized nanofibrous scaffolds profoundly supported MSCs to produce contractile proteins and achieve typical cardiac phenotype. PMID:26209968

  13. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration

    PubMed Central

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1–34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3–4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. Both in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  14. A Novel Docetaxel-Loaded Poly (ɛ-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Yangqing; Zheng, Yi; Tian, Ge; Song, Cunxian; Yang, Dongye; Chen, Hongli; Sun, Hongfan; Tian, Yan; Liu, Kexin; Li, Zhen; Huang, Laiqiang

    2009-12-01

    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ɛ-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere® in the MCF-7 TAX30 cell culture, but the differences were not significant ( p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere® ( p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.

  15. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  16. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines.

    PubMed

    Eatemadi, Ali; Darabi, Masoud; Afraidooni, Loghman; Zarghami, Nosratollah; Daraee, Hadis; Eskandari, Leila; Mellatyar, Hassan; Akbarzadeh, Abolfazl

    2016-05-01

    Breast cancer is a major form of cancer, with a high mortality rate in women. It is crucial to achieve more efficient and safe anticancer drugs. Recent developments in medical nanotechnology have resulted in novel advances in cancer drug delivery. Cisplatin, doxorubicin, and 5-fluorouracil are three important anti-cancer drugs which have poor water-solubility. In this study, we used cisplatin, doxorubicin, and 5-fluorouracil-loaded polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles to improve the stability and solubility of molecules in drug delivery systems. The nanoparticles were prepared by a double emulsion method and characterized with Fourier Transform Infrared (FTIR) spectroscopy and Hydrogen-1 nuclear magnetic resonance ((1)HNMR). Cells were treated with equal concentrations of cisplatin, doxorubicin and 5-fluorouracil-loaded PCL-PEG nanoparticles, and free cisplatin, doxorubicin and 5-fluorouracil. The 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) assay confirmed that cisplatin, doxorubicin, and 5-fluorouracil-loaded PCL-PEG nanoparticles enhanced cytotoxicity and drug delivery in T47D and MCF7 breast cancer cells. However, the IC50 value of doxorubicin was lower than the IC50 values of both cisplatin and 5-fluorouracil, where the difference was statistically considered significant (p˂0.05). However, the IC50 value of all drugs on T47D were lower than those on MCF7. PMID:25707442

  17. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery.

    PubMed

    Duxfield, Linda; Sultana, Rubab; Wang, Ruokai; Englebretsen, Vanessa; Deo, Samantha; Swift, Simon; Rupenthal, Ilva; Al-Kassas, Raida

    2016-03-01

    The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410 nm and 68 nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin. PMID:26794936

  18. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier.

    PubMed

    Charoenputtakhun, Ponwanit; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-03-01

    The objective of this study was to investigate the effects of drug amounts (0.1%, 0.2% and 0.3% w/w), amounts of the oil (10%, 15% and 20% w/w of lipid matrix) and types of the oil (soybean oil (S), medium chain triglycerides (M), oleic acids (O) and linoleic acids (L)) in lipid matrix of all-trans retinoic acid (ATRA)-loaded nanostructured lipid carriers (NLCs) for transdermal drug delivery. The ATRA-loaded solid lipid nanoparticles (SLNs) were formulated with 30% w/w cetyl palmitate. All lipid nanoparticles had average sizes between 130 and 241 nm and had negative zeta potentials. The drug loading of all formulations was higher than 95%. The release of drug from all lipid nanoparticles followed zero-order kinetics. The amount of drug released from all the NLCs and SLNs was significantly greater than the drug released from the ATRA suspension. The ATRA flux of the SLNs was higher than the NLCs. The flux of the NLCs containing oleic acid was significantly higher than the other types of oils. The chemical stability at 4 °C, the percentage of ATRA remaining in all the lipid nanoparticles tested was higher than 80%. It can be concluded that both the SLNs and NLCs are promising dermal drug delivery systems for ATRA. PMID:23356887

  19. Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles.

    PubMed

    Liu, Qin; Li, Rutian; Zhu, Zhenshu; Qian, Xiaoping; Guan, Wenxian; Yu, Lixia; Yang, Mi; Jiang, Xiqun; Liu, Baorui

    2012-07-01

    To investigate the antitumor effect, biodistribution and penetration in tumors of docetaxel (DOC)-loaded polyethylene glycol-poly(caprolactone) (mPEG-PCL) nanoparticles on hepatic cancer model, DOC-loaded nanoparticles (DOC-NPs) were prepared with synthesized mPEG-PCL by nano-precipitated method with satisfactory encapsulation efficiency, loading capacity and size distribution. The fabricated nano-drugs were effectively transported into tumoral cells through endocytosis and localized around the nuclei in the cytoplasm. In vitro cytotoxicity test showed that DOC-NPs inhibited the murine hepatic carcinoma cell line H22 in a dose-dependent manner, which was similar to Taxotere, the commercialized formulation of docetaxel. The in vivo biodistribution performed on tumor-bearing mice by NIRF real-time imaging demonstrated that the nanoparticles achieved higher concentration and longer retention in tumors than in non-targeted organs after intravenous injection. The immunohistochemical analysis demonstrated that the nanoparticles located not only near the tumoral vasculatures, but also inside the tumoral interior. Therefore, DOC-NPs could penetrate into tumor parenchyma, leading to high intratumoral concentration of DOC. More importantly, the in vivo anti-tumor evaluation showed that DOC-NPs significantly inhibited tumor growth by tumor volume measurement and positron emission tomography and computed tomography (PET/CT) imaging observation. Taken together, the reported drug delivery system here could shed light on the future targeted therapy against hepatic carcinoma. PMID:22525076

  20. Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery

    PubMed Central

    Mohseni, Meysam; Gilani, Kambiz; Mortazavi, Seyed Alireza

    2015-01-01

    The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant). The prepared nanoparticles were characterized in terms of their particle size measurement and porosimetry. The results showed that the particle size is 218 ± 46 nm (mean ± SD) and surface area is 816 m2g-1. In order to load rifampin within the mesopores, adsorption experiments using three different solvents (methanol, water and dimethyl sulfoxide) were carried out. The loading procedure resulted in a significant improvement in the amount of rifampin loaded into mesoporous silica nanoparticles and methanol was found to be a suitable solvent, providing a drug entrapment efficiency of 52 %. Rifampin loaded nanoparticles underwent different in-vitro tests including, SEM and drug release. The in-vitro drug release was investigated using buffer phosphate (pH=7.4). Regarding the drug release study, a biphasic pattern of release was observed. The drug-loaded mesoporous silica nanoparticles were capable of releasing 95% of their drug content after 24 h, following a faster release in the first four hours. The prepared rifampin loaded nanoparticles seem to have potential for use as a pulmonary drug delivery. PMID:25561909

  1. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    PubMed Central

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  2. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  3. Chitosan-clodronate nanoparticles loaded in poloxamer gel for intra-articular administration.

    PubMed

    Russo, E; Gaglianone, N; Baldassari, S; Parodi, B; Croce, I; Bassi, A M; Vernazza, S; Caviglioli, G

    2016-07-01

    This work was based on the study of an intra-articular delivery system constituted by a poloxamer gel vehiculating clodronate in chitosan nanoparticles. This system has been conceived to obtain a specific and controlled release of clodronate in the joints to reduce the arthritis rheumatoid degenerative effect. Clodronate (CLO) is a first-generation bisphosphonate with anti-inflammatory properties, inhibiting the cytokine and NO secretion from macrophages, therefore causing apoptosis in these cells. This is related to its ability to be metabolized by cells and converted into a cytotoxic intermediate as a non-hydrolysable analogue of ATP. Chitosan (CHI) was used to develop nanosystems, by ionotropic gelation induced by clodronate itself. A fractional factorial experimental design allowed us to obtain nanoparticles, the diameter of which ranged from 200 to 300nm. Glutaraldehyde was used to increase nanoparticle stability and modify the drug release profile. The zeta potential value of crosslinked nanopaparticles was 21.0mV±1.3, while drug loading was 31.0%±5.4 w/w; nanoparticle yield was 18.2%±1.8 w/w, the encapsulation efficiency was 48.8%±9.9 w/w. Nanoparticles were homogenously loaded in a poloxamer sol, and the drug delivery system is produced in-situ after local administration, when sol become gel at physiological temperature. The properties of poloxamer gels containing CHI-CLO nanoparticles, such as viscosity, gelation temperature and drug release properties, were evaluated. In vitro studies were conducted to evaluate the effects of these nanoparticles on a human monocytic cell line (THP1). The results showed that this drug delivery system is more efficient, with respect to the free drug, to counteract the inflammatory process characteristic of several degenerative diseases. PMID:26998870

  4. Expansion and improvement of the FORMA system for response and load analysis. Volume 2A: Listings, dense FORMA subroutines

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.

    1976-01-01

    A listing of the source deck of each dense FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detail operations of each subroutine. The FORTRAN 4 programming language is used throughout.

  5. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis.

    PubMed

    Ye, Jiesheng; Wang, Qun; Zhou, Xuefeng; Zhang, Na

    2008-03-20

    This work systematically studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with actarit, a poor water soluble anti-rheumatic drug. The goal of this study was to design passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects such as nephrotoxicity and gastrointestinal disorders commonly associated with oral formulations of actarit. Based on the optimized results of single-factor and orthogonal design, actarit-loaded SLNs were prepared by a modified solvent diffusion-evaporation method. The formulated SLNs were found to be relatively uniform in size (241+/-23 nm) with a negative zeta potential (-17.14+/-1.6 mV). The average drug entrapment efficiency and loading were (50.87+/-0.25)% and (8.48+/-0.14)%, respectively. The actarit-loaded SLNs exhibited a longer mean retention time in vivo (t(1/2(beta)), 9.373 h; MRT, 13.53 h) compared with the actarit 50% propylene glycol solution (t(1/2(ke)), 0.917 h; MRT, 1.323 h) after intravenous injection to New Zealand rabbits. The area under curve of plasma concentration-time (AUC) of actarit-loaded SLNs was 1.88 times greater than that of the actarit in 50% propylene glycol solution. The overall targeting efficiency (TE(C)) of the actarit-loaded SLNs was enhanced from 6.31% to 16.29% in spleen while the renal distribution of actarit was significantly reduced as compared to that of the actarit solution after intravenous administration to mice. These results indicated that injectable actarit-loaded solid lipid nanoparticles were promising passive targeting therapeutic agents for rheumatoid arthritis. PMID:18054182

  6. Positively-charged, porous, polysaccharide nanoparticles loaded with anionic molecules behave as 'stealth' cationic nanocarriers

    PubMed Central

    Paillard, Archibald; Passirani, Catherine; Saulnier, Patrick; Kroubi, Maya; Garcion, Emmanuel; Benoît, Jean-Pierre; Betbeder, Didier

    2010-01-01

    PURPOSE Stealth nanoparticles are generally obtained after modifying their surface with hydrophilic polymers such as PEG. In this study we analysed the effect of a phospholipid (DG) or protein (BSA) inclusion in porous cationic polysaccharide (NP+) on their physico-chemical structure and the effect on complement activation. METHODS NP+s were characterised in terms of size, zeta potential (ζ) and static light-scattering (SLS). Complement consumption was assessed in normal human serum (NHS) by measuring the residual haemolytic capacity of the complement system. RESULTS DG-loading did not change their size or ζ whereas progressive BSA loading decreased lightly their ζ. An electrophoretic mobility analysis study showed the presence of 2 differently-charged sublayers at the NP+ surface which are not affected by DG-loading. Complement system activation, studied via a CH50 test, was suppressed by DG- or BSA-loading. We also demonstrated that NP+s could be loaded by a polyanionic molecule such as BSA, after their preliminary filling by a hydrophobic molecule such as DG. CONCLUSION These nanoparticles are able to absorb large amounts of phospholipids or proteins without change in their size or zeta potential. Complement studies showed that stealth behaviour is observed when they are loaded and saturated either with anionic phospholipid or proteins. PMID:19851846

  7. Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles.

    PubMed

    Erdoğar, Nazlı; Esendağlı, Güneş; Nielsen, Thorbjorn T; Şen, Murat; Öner, Levent; Bilensoy, Erem

    2016-07-25

    As nanomedicines are gaining momentum in the therapy of cancer, new biomaterials emerge as alternative platforms for the delivery of anticancer drugs with bioavailability problems. In this study, two novel amphiphilic cyclodextrins (FCD-1 and FCD-2) conjugated with folate group to enable active targeting to folate positive breast tumors were introduced. The objective of this study was to develop and characterize new folated-CD nanoparticles via 3(2) factorial design for optimal final parameters. Full physicochemical characterization studies were performed. Blank and paclitaxel loaded FCD-1 and FCD-2 nanoparticles remained within the range of 70-275nm and 125-185nm, respectively. Zeta potential values were neutral and -20mV for FCD-1 and FCD-2 nanoparticles, respectively. Drug release studies showed initial burst release followed by a longer sustained release. Blank nanoparticles had no cytotoxicity against L929 cells. T-47D and ZR-75-1 human breast cancer cells with different levels of folate receptor expression were used to assess anti-cancer efficacy. Through targeting the folate receptor, these nanoparticles were efficiently engulfed by the breast cancer cells. Additionally, breast cancer cells became more sensitive to cytotoxic and/or cytostatic effects of PCX delivered by FCD-1 and FCD-2. In conclusion, these novel folate-conjugated cyclodextrin nanoparticles can therefore be considered as promising alternative systems for safe and effective delivery of paclitaxel with a folate-dependent mechanism. PMID:27282534

  8. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality. PMID:26257380

  9. Docetaxel-Loaded Fluorescent Liquid-Crystalline Nanoparticles for Cancer Theranostics.

    PubMed

    Meli, Valeria; Caltagirone, Claudia; Falchi, Angela M; Hyde, Stephen T; Lippolis, Vito; Monduzzi, Maura; Obiols-Rabasa, Marc; Rosa, Antonella; Schmidt, Judith; Talmon, Yeshayahu; Murgia, Sergio

    2015-09-01

    Here, we describe a novel monoolein-based cubosome formulation engineered for possible theranostic applications in oncology. The Docetaxel-loaded nanoparticles were stabilized in water by a mixture of commercial Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer) F108 (PF108) and rhodamine- and folate-conjugated PF108 so that the nanoparticles possess targeting, therapeutic, and imaging properties. Nanoparticles were investigated by DLS, cryo-TEM, and SAXS to confirm their structural features. The fluorescent emission characterization of the proposed formulation indicated that the rhodamine conjugated to the PF108 experiences an environment less polar than water (similar to chloroform), suggesting that the fluorescent fragment is buried within the poly(ethylene oxide) corona surrounding the nanoparticle. Furthermore, these nanoparticles were successfully used to image living HeLa cells and demonstrated a significant short-term (4 h incubation) cytotoxicity effect against these cancer cells. Furthermore, given their analogy as nanocarriers for molecules of pharmaceutical interest and to better stress the singularities of these bicontinuous cubic nanoparticles, we also quantitatively evaluated the differences between cubosomes and multilamellar liposomes in terms of surface area and hydrophobic volume. PMID:26293620

  10. Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity.

    PubMed

    Altmeyer, Clescila; Karam, Thaysa Ksiaskiewcz; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-03-01

    In this study, poly(L-lactide) (PLA) nanoparticles containing Tamoxifen (Tmx) were developed using an emulsion/solvent evaporation method, observing the influence of surfactants and their concentrations on mean particle size and drug entrapment. Nanoparticles were characterized in terms of size, morphology, polydispersity, interaction drug-polymer and in vitro drug release profile. Cytotoxicity over erythrocytes and tumor cells was assessed. The optimized formulation employed as surfactant 1% polyvinyl alcohol. Mean particle size was 155±4 nm (n=3) and Tmx encapsulation efficiency was 85±8% (n=3). The in vitro release profile revealed a biphasic release pattern diffusion-controlled with approximately 24% of drug released in 24 h followed by a sustained release up to 120 h (30% of Tmx released). PLA nanoparticles containing Tmx presented a very low index of hemolysis (less than 10%), in contrast to free Tmx that was significantly hemolytic. Tmx-loaded PLA nanoparticles showed IC50 value 2-fold higher than free Tmx, but considering the prolonged Tmx release from nanoparticles, cytotoxicity on tumor cells was maintained after nanoencapsulation. Thus, PLA nanoparticles are promising carriers for controlled delivery of Tmx with potential application in cancer treatment. PMID:26706516

  11. Imaging of the GI tract by QDs loaded heparin-deoxycholic acid (DOCA) nanoparticles.

    PubMed

    Khatun, Zehedina; Nurunnabi, Md; Cho, Kwang Jae; Lee, Yong-kyu

    2012-11-01

    This study presents an approach to deliver non invasive, near-IR imaging agent using oral delivery system. Low molecular weight heparin (LMWH)-deoxycholic acid (DOCA)/(LHD) nanoparticles formed by a self-assembly method was prepared to evaluate their physicochemical properties and oral absorption in vitro and in vivo. Near-IR QDs were prepared and loaded into LHD nanoparticles for imaging of the gastro-intestinal (GI) tract absorption. Q-LHD nanoparticles were almost spherical in shape with diameters of 194-217 nm. The size and fluorescent intensity of the Q-LHD nanoparticles were stable in 10% FBS solution and retained their fluorescent even after 5 days of incubation. Cell viability of Q-LHD nanoparticles maintained in the range of 80-95% for 24h incubation. No damage was found in tissues or organs during animal experiments. The in vivo oral absorption of Q-LHD was observed in SKH1 mice for 3h under different doses. From the results, we confirmed that Q-LHD was absorbed mostly into the ileum of small intestine containing intestinal bile acid transporter as observed in TEM and molecular imaging system. Our designed nanoparticles could be administered orally for bio-imaging and studying the bio-distribution of drug. PMID:22944403

  12. Microfluidic synthesis of dye-loaded polycaprolactone-block-poly(ethylene oxide) nanoparticles: Insights into flow-directed loading and in vitro release for drug delivery.

    PubMed

    Bains, Aman; Wulff, Jeremy E; Moffitt, Matthew G

    2016-08-01

    Using the fluorescent probe dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) as a surrogate for hydrophobic drugs, we investigate the effects of water content and on-chip flow rate on the multiscale structure, loading and release properties of DiI-loaded poly(ε-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles produced in a gas-liquid segmented microfluidic device. We find a linear increase in PCL crystallinity within the nanoparticle cores with increasing flow rate, while mean nanoparticle sizes first decrease and then increase with flow rate coincident with the disappearance and reappearance of long filament nanoparticles. Loading efficiencies at the lower water content (cwc+10wt%) are generally higher (up to 94%) compared to loading efficiencies (up to 53%) at the higher water content (cwc+75wt%). In vitro release times range between ∼2 and 4days for nanoparticles produced at cwc+10wt% and >15days for nanoparticles produced at cwc+75wt%. At the lower water content, slower release of DiI is found for nanoparticles produced at higher flow rate, while at high water content, release times first decrease and then increase with flow rate. Finally, we investigate the effects of the chemical and physical characteristics of the release medium on the kinetics of in vitro DiI release and nanoparticle degradation. This work demonstrates the general utility of dye-loaded nanoparticles as model systems for screening chemical and flow conditions for producing drug delivery formulations within microfluidic devices. PMID:27163840

  13. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System

    PubMed Central

    Kheiri Manjili, Hamidreza; Ma’mani, Leila; Tavaddod, Sharareh; Mashhadikhan, Maedeh; Shafiee, Abbas; Naderi-Manesh, Hossein

    2016-01-01

    A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells. PMID:26982588

  14. D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System.

    PubMed

    Kheiri Manjili, Hamidreza; Ma'mani, Leila; Tavaddod, Sharareh; Mashhadikhan, Maedeh; Shafiee, Abbas; Naderi-Manesh, Hossein

    2016-01-01

    A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells. PMID:26982588

  15. Preparation of curcumin-loaded poly(ester amine) nanoparticles for the treatment of anti-angiogenesis.

    PubMed

    Ding, Qiuxia; Niu, Ting; Yang, Yi; Guo, Qingfa; Luo, Feng; Qian, Zhiyong

    2014-04-01

    The aim of this study was to prepare curcumin loaded poly(ester amine) nanoparticles and enhance their hydrophilicity and treatment efficacy on anti-angiogenesis zebra fish model. Poly(ester amine) (PEA) copolymer was synthesized in this study. The curcumin-loaded PEA nanoparticles were prepared through double emulsion-solvent evaporation technique. The average particle size of obtained nanoparticles was about 100 nm. The zeta potential of prepared nanoparticles was about 35.8+/-2.4 mV. Transmission electron microscopy demonstrated a narrow size distribution with in vitro release profile demonstrating in vitro slow release of curcumin from the PEA nanoparticles. The in vitro cytotoxicity of the curcumin encapsulated PEA nanoparticles nearly had the same tendency of cytotoxic activity in vitro with free curcumin on tumor cells. In vitro cellular uptake of the curcumin-loaded nanoparticles demonstrated in Hela cells demonstrated that this kind of nanoparticles can be a promising candidate as a drug delivery system to cancer cells. The Cur/PEA nanoparticles more efficiently inhibited angiogenesis (in vivo) in transgenic zebra fish model and Alginate-encapsulated tumor cells than free curcumin. No mortality or significant lesions were observed from histopathological study of the major organs. From our results, we can conclude that the prepared PEA nanoparticles are an efficient curcumin drug delivery system for anti-angiogenesis therapy. PMID:24734515

  16. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  17. Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles.

    PubMed

    Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis

    2016-07-01

    This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency. PMID:27209005

  18. Efficient Chemotherapy of Rat Glioblastoma Using Doxorubicin-Loaded PLGA Nanoparticles with Different Stabilizers

    PubMed Central

    Wohlfart, Stefanie; Khalansky, Alexander S.; Gelperina, Svetlana; Maksimenko, Olga; Bernreuther, Christian; Glatzel, Markus; Kreuter, Jörg

    2011-01-01

    Background Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. Methodology The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. Conclusion The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations. PMID:21573151

  19. [Preparation and stability of β-carotene loaded using mesoporous silica nanoparticles as carriers system].

    PubMed

    Liu, Jing; Ren, Zhi-hui; Wang, Hai-yuan; Jin, Xing-hua

    2015-09-01

    1,3,5-Trimethylbenzene (1,3,5-TMB) was used as the pore-enlarging modifier to expand the pore size of MCM-41 (mobil company of matter) mesoporous silica nanoparticles. The solvent impregnation method was adopted to assemble non-water-soluble β-carotene into the pore channel of MCM-41. The MCM-41 and drug assemblies were characterized by TEM, FT-IR, elemental analysis and N2 adsorption-desorption. The results showed that MCM-41 has good sphericity and regular pore structure. The research also investigated the optimal loading time, the drug loading and the vitro stability of the β-carotene. As a drug carrier, the modified MCM-41 showing a shorter drug loading time, the drug loading as high as 85.58% and the stability of β-carotene in drug assemblies has improved. The study of this new formulation provides a new way for β-carotene application. PMID:26983203

  20. Core-shell poly-methylmethacrylate nanoparticles as effective carriers of electrostatically loaded anionic porphyrin.

    PubMed

    Varchi, Greta; Benfenati, Valentina; Pistone, Assunta; Ballestri, Marco; Sotgiu, Giovanna; Guerrini, Andrea; Dambruoso, Paolo; Liscio, Andrea; Ventura, Barbara

    2013-05-01

    Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture. PMID:23348806

  1. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  2. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections.

    PubMed

    Kiruthika, V; Maya, S; Suresh, Maneesha K; Kumar, V Anil; Jayakumar, R; Biswas, Raja

    2015-03-01

    Salmonella Paratyphi A is a food-borne Gram-negative pathogen and a major public health challenge in the developing world. Upon reaching the intestine, S. Paratyphi A penetrates the intestinal epithelial barrier; and infects phagocytes such as macrophages and dendritic cells. S. Paratyphi A surviving within macrophages is protected from the lethal action of antibiotics due to their poor penetration into the intracellular compartments. Hence we have developed chloramphenicol loaded chondroitin sulfate (CS-Cm Nps) and dextran sulfate (DS-Cm Nps) nanoparticles through ionotropic-gelation method for the intracellular delivery of chloramphenicol. The size of these nanoparticles ranged between 100 and 200 nm in diameter. The encapsulation efficiency of both the nanoparticles was found to be around 65%. Both the nanoparticles are found to be non-hemolytic and non-toxic to fibroblast and epithelial cells. The prepared nanoparticles exhibited sustained release of the drug of up to 40% at pH 5 and 20-25% at pH 7.0 after 168 h. The anti-microbial activities of both nanoparticles were tested under in vitro and ex vivo conditions. The delivery of DS-Cm Nps into the intracellular compartments of the macrophages was 4 fold more compared to the CS-Cm Nps which lead to the enhanced intracellular antimicrobial activity of Ds-Cm Nps. Enhanced anti-microbial activity of Ds-Cm Nps was further confirmed in an ex vivo chicken intestine infection model. Our results showed that Cm loaded DS Nps can be used to treat intracellular Salmonella infections. PMID:25645750

  3. Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles.

    PubMed

    Jee, Jun-Pil; Lim, Soo-Jeong; Park, Jeong-Sook; Kim, Chong-Kook

    2006-06-01

    Loading of drugs into the solid matrix of solid lipid nanoparticles (SLNs) can be one of effective means to protect them against chemical degradation. In this study, the SLNs for all-trans retinol (AR) were formulated to improve the stability of AR, whose chemical instability has been a limiting factor in its clinical use. First of all, the physicochemical properties of AR-loaded SLNs, including mean particle diameter and zeta potential, were modulated by changing the total amount of surfactant mixture and the mixing ratio of eggPC and Tween 80 as surfactant mixture. The AR-loaded SLNs formulation was irradiated with a 60-W bulb to investigate the photostability. The extent of photodegradation was measured by high-performance liquid chromatography. The mean particle diameter and zeta potential of the smallest SLNs were 96 nm and -28 mV, respectively. The loading of AR in optimized SLNs formulations rather decelerated the degradation of AR, compared with AR solution dissolved in methanol. Our subsequent study showed that the co-loading of antioxidants greatly enhanced the stability of AR loaded in SLNs, compared with those loaded in SLNs without antioxidant. The photostability at 12 h of AR in SLNs was enhanced folds (43% approximately) higher than that in methanol solution (about 11%). Furthermore, the protecting effect of antioxidants was greatly dependent on the type of antioxidant. Taken together, AR could be effectively stabilized by being loaded in SLNs together with an antioxidant BHT-BHA. PMID:16527470

  4. pH and ion strength modulated ionic species loading in mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Yang, Meng; Li, Li; Xu, Jianguo

    2013-10-01

    Mesoporous silica nanoparticles (MSN) have emerged as appealing host materials to accommodate guest molecules for biomedical applications, and recently various methods have been developed to modulate the loading of guest molecules in the silica matrix. Herein, it was demonstrated that pH and ion strength showed great influence on the loading of charged species into the nanoparticles, taking MCM-41 as a host MSN model and methylviologen (MV2+) and 1,5-naphthalene disulfonate (NDS2-) as typical charged ionic guest molecules. As the pH increased from 3.0 to 8.0, the loading amount of MV2+ increased gradually, while on the contrary, it decreased gradually for NDS2-, for the solution pH changed the electrostatic interaction between the silica matrix and the ionic guest molecules. Additionally, the adding of NaCl reduced the electrostatic interaction, which resulted in a decreasing of the electrostatic rejection and electrostatic accumulation for the molecules carrying the same and the opposite charge to the particle respectively. Thus, pH and ion strength can be employed as simple approaches to modulate the loading of charged molecules and permselectivity in MSN. This work has a definite guidance function for molecule loading, transport modulation, controlled release as well as sensors based on MSN.

  5. Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles.

    PubMed

    Shi, Aimin; Li, Dong; Liu, Hongzhi; Adhikari, Benu; Wang, Qiang

    2016-06-01

    Drug loading into and release from starch nanoparticles (StNPs), one kind of novel biological macromolecule, were investigated. Two drying methods (spray and vacuum freeze drying) and drug loading methods (coating and adsorption) were used for evaluation. 40% (w/w) of ciprofloxacin was loaded using coating method while only 7% for adsorption method. Glass transition temperature (Tg) and melting point temperature (Tmp) of ciprofloxacin loaded starch nanoparticles varied from 40°C to 55°C and 125°C to 175°C. Particles using adsorption method had lower loading rate of ciprofloxacin, higher Tg, Tmp and release rate compared to using coating method. Tg and Tmp were not affected by these two drying methods. Release rate of ciprofloxacin was higher from freeze dried particles than from spray dried particles using coating method. For adsorption method, drying methods had not effect on the release rate. A double decay exponential model was able to fit the release data suitably well with coefficient of determination (R(2))>0.97. PMID:26893049

  6. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery.

    PubMed

    Morales, Javier O; Huang, Siyuan; Williams, Robert O; McConville, Jason T

    2014-10-01

    The goal of this investigation was to develop films containing insulin-coated nanoparticles and evaluate their performance in vitro as potential peptide delivery systems. To incorporate insulin into the films, a new antisolvent co-precipitation fabrication process was adapted to obtain insulin-coated nanoparticles (ICNPs). The ICNPs were embedded in polymeric films containing a cationic polymethacrylate derivative (ERL) or a combination of ERL with hydroxypropyl methylcellulose (HPMC). ICNP-loaded films were characterized for morphology, mucoadhesion, and insulin release. Furthermore, in vitro insulin permeation was evaluated using a cultured tridimensional human buccal mucosa model. The antisolvent co-precipitation method was successfully adapted to obtain ICNPs with 40% (w/w) insulin load, achieving 323±8nm particles with a high zeta potential of 32.4±0.8mV, indicating good stability. High yields were obtained after manufacture and the insulin content did not decrease after one month storage. ICNP-embedded films using ERL as the polymer matrix presented excellent mucoadhesive and insulin release properties. A high permeation enhancement effect was observed for ICNP-loaded ERL films in comparison with ICNP-loaded ERL-HPMC films and a control insulin solution. ICNP-loaded ERL formulations were found to be more effective in terms of film performance and insulin permeation through the human buccal mucosa model, and thus are a promising delivery system for buccal administration of a peptide such as insulin. PMID:25016543

  7. Study of Antimicrobial Effects of Clarithromycin Loaded PLGA Nanoparticles against Clinical Strains of Helicobacter pylori.

    PubMed

    Lotfipour, F; Valizadeh, H; Milani, M; Bahrami, N; Ghotaslou, R

    2016-01-01

    Clarithromycin (CLR) formulation was prepared as PLGA nanoparticles in order to enhance the therapeutic effects using the distinctive features of a nanoparticulate delivery system. CLR loaded PLGA nanoparticles were prepared by Quasi Emulsion Solvent Diffusion (QESD) method using Poly lactic-co-Glycolic Acid (PLGA) as a biodegradable polymer. Antibacterial activity of the prepared formulations was evaluated against clinical strains of Helicobacter pylori, isolated from gastric biopsies of patients with gastritis, duodenal ulcer, peptic ulcer, and gastroesophageal reflux disease undergoing endoscopy, by using agar dilution method.Spherical nanoparticles with relatively narrow size distribution (between 200 and 800 nm) in the size range of 305 ± 138, 344 ± 148 and 362 ± 110 nm were achieved for F22, F23 and F23 respectively. CLR encapsulation percentages were measured to be 57.4 ± 4.3 to 80.2 ± 4.0%. CLR loaded PLGA nanoparticles showed equal or enhanced eradication effect against H. pylori strains according to the declined MIC values in comparison with the untreated CLR.In conclusion, the prepared CLR nanoformulation showed appropriate physicochemical properties and improved activity against H. pylori that could be a suitable candidate for oral preparations. PMID:25919643

  8. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells.

    PubMed

    Moysidis, Stavros N; Alvarez-Delfin, Karen; Peschansky, Veronica J; Salero, Enrique; Weisman, Alejandra D; Bartakova, Alena; Raffa, Gabriella A; Merkhofer, Richard M; Kador, Karl E; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2015-04-01

    To improve the delivery and integration of cell therapy using magnetic cell guidance for replacement of corneal endothelium, here we assess magnetic nanoparticles' (MNPs') effects on human corneal endothelial cells (HCECs) in vitro. Biocompatible, 50 nm superparamagnetic nanoparticles endocytosed by cultured HCECs induced no short- or long-term change in viability or identity. Assessment of guidance of the magnetic HCECs in the presence of different magnet shapes and field strengths showed a 2.4-fold increase in delivered cell density compared to gravity alone. After cell delivery, HCECs formed a functional monolayer, with no difference in tight junction formation between MNP-loaded and control HCECs. These data suggest that nanoparticle-mediated magnetic cell delivery may increase the efficiency of cell delivery without compromising HCEC survival, identity or function. Future studies may assess the safety and efficacy of this therapeutic modality in vivo. From the clinical editor: The authors show in this article that magnetic force facilitates the delivery of human corneal endothelial cells loaded by superparamagnetic nanoparticles to cornea, without changing their morphology, identity or functional properties. This novel idea can potentially have vast impact in the treatment of corneal endothelial dystrophies by providing self-endothelial cells after ex-vivo expansion. PMID:25596075

  9. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice.

    PubMed

    Imbuluzqueta, Edurne; Gamazo, Carlos; Lana, Hugo; Campanero, Miguel Ángel; Salas, David; Gil, Ana Gloria; Elizondo, Elisa; Ventosa, Nora; Veciana, Jaume; Blanco-Prieto, María J

    2013-07-01

    The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis. PMID:23650167

  10. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Ong, Wei Li; Natarajan, Srinivasan; Kloostra, Bradley; Ho, Ghim Wei

    2013-05-01

    We have demonstrated an environmentally friendly and template-free aqueous synthesis of hierarchically assembled 3D ZnO nanoflakes. The ZnO nanoflakes self-assembled to expose highly interconnected networks of well-defined catalytic active {0001} facets. Well dispersed Pt, Ag and Au metal nanoparticles were loaded to form hybrid ZnO nanoflakes for enhanced photocatalytic activity. The enhanced photocatalytic activity may be attributed to the synergetic effects of well-structured ZnO crystal facets, high metal nanoparticles dispersity, enhanced light absorption and charge-transfer kinetics which leads to high photocatalytic degradation.We have demonstrated an environmentally friendly and template-free aqueous synthesis of hierarchically assembled 3D ZnO nanoflakes. The ZnO nanoflakes self-assembled to expose highly interconnected networks of well-defined catalytic active {0001} facets. Well dispersed Pt, Ag and Au metal nanoparticles were loaded to form hybrid ZnO nanoflakes for enhanced photocatalytic activity. The enhanced photocatalytic activity may be attributed to the synergetic effects of well-structured ZnO crystal facets, high metal nanoparticles dispersity, enhanced light absorption and charge-transfer kinetics which leads to high photocatalytic degradation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00043e

  11. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma

    PubMed Central

    Xiao, Xiaojun; Zeng, Xiaowei; Zhang, Xinxin; Ma, Li; Liu, Xiaoyu; Yu, Haiqiong; Mei, Lin; Liu, Zhigang

    2013-01-01

    Background Pollen allergy is the most common allergic disease. However, tropical pollens, such as those of Palmae, have seldom been investigated compared with the specific immunotherapy studies done on hyperallergenic birch, olive, and ragweed pollens. Although poly(lactic-co-glycolic acid) (PLGA) has been extensively applied as a biodegradable polymer in medical devices, it has rarely been utilized as a vaccine adjuvant to prevent and treat allergic disease. In this study, we investigated the immunotherapeutic effects of recombinant Caryota mitis profilin (rCmP)-loaded PLGA nanoparticles and the underlying mechanisms involved. Methods A mouse model of allergenic asthma was established for specific immunotherapy using rCmP-loaded PLGA nanoparticles as the adjuvant. The model was evaluated by determining airway hyperresponsiveness and levels of serum-specific antibodies (IgE, IgG, and IgG2a) and cytokines, and observing histologic sections of lung tissue. Results The rCmP-loaded PLGA nanoparticles effectively inhibited generation of specific IgE and secretion of the Th2 cytokine interleukin-4, facilitated generation of specific IgG2a and secretion of the Th1 cytokine interferon-gamma, converted the Th2 response to Th1, and evidently alleviated allergic symptoms. Conclusion PLGA functions more appropriately as a specific immunotherapy adjuvant for allergen vaccines than does conventional Al(OH)3 due to its superior efficacy, longer potency, and markedly fewer side effects. The rCmP-loaded PLGA nanoparticles developed herein offer a promising avenue for specific immunotherapy in allergic asthma. PMID:24376349

  12. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug.

    PubMed

    Parsian, Maryam; Unsoy, Gozde; Mutlu, Pelin; Yalcin, Serap; Tezcaner, Aysen; Gunduz, Ufuk

    2016-08-01

    Targeted delivery of anti-cancer drugs increase the efficacy, while decreasing adverse effects. Among various delivery systems, chitosan coated iron oxide nanoparticles (CsMNPs) gained attention with their biocompatibility, biodegradability, low toxicity and targetability under magnetic field. This study aimed to increase the cellular uptake and efficacy of Gemcitabine. CsMNPs were synthesized by in situ co-precipitation and Gemcitabine was loaded onto the nanoparticles. Nanoparticle characterization was performed by TEM, FTIR, XPS, and zeta potential. Gemcitabine release and stability was analyzed. The cellular uptake was shown. Cytotoxicity of free-Gemcitabine and Gem-CsMNPs were examined on SKBR and MCF-7 breast cancer cells by XTT assay. Gemcitabine loading was optimized as 30µM by spectrophotometric analyses. Drug release was highest (65%) at pH 4.2, while it was 8% at pH 7.2. This is a desired release characteristic since pH of tumor-tissue and endosomes are acidic, while the blood-stream and healthy-tissues are neutral. Peaks reflecting the presence of Gemcitabine were observed in FTIR and XPS. At neutral pH, zeta potential increased after Gemcitabine loading. TEM images displayed, Gem-CsMNPs were 4nm with uniform size-distribution and have spherical shape. The cellular uptake and targetability of CsMNPs was studied on MCF-7 breast cancer cell lines. IC50 value of Gem-CsMNPs was 1.4 fold and 2.6 fold lower than free-Gem on SKBR-3 and MCF-7 cell lines respectively, indicating the increased efficacy of Gemcitabine when loaded onto nanoparticles. Targetability by magnetic field, stability, size distribution, cellular uptake and toxicity characteristics of CsMNPs in this study provides a useful targeted delivery system for Gemcitabine in cancer therapy. PMID:27181067

  13. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    PubMed Central

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer

  14. Antiretroviral Drugs-Loaded Nanoparticles Fabricated by Dispersion Polymerization with Potential for HIV/AIDS Treatment.

    PubMed

    Ogunwuyi, Oluwaseun; Kumari, Namita; Smith, Kahli A; Bolshakov, Oleg; Adesina, Simeon; Gugssa, Ayele; Anderson, Winston A; Nekhai, Sergei; Akala, Emmanuel O

    2016-01-01

    Highly active antiretroviral (ARV) therapy (HAART) for chronic suppression of HIV replication has revolutionized the treatment of HIV/AIDS. HAART is no panacea; treatments must be maintained for life. Although great progress has been made in ARV therapy, HIV continues to replicate in anatomical and intracellular sites where ARV drugs have restricted access. Nanotechnology has been considered a platform to circumvent some of the challenges in HIV/AIDS treatment. Dispersion polymerization was used to fabricate two types (PMM and ECA) of polymeric nanoparticles, and each was successfully loaded with four ARV drugs (zidovudine, lamivudine, nevirapine, and raltegravir), followed by physicochemical characterization: scanning electron microscope, particle size, zeta potential, drug loading, and in vitro availability. These nanoparticles efficiently inhibited HIV-1 infection in CEM T cells and peripheral blood mononuclear cells; they hold promise for the treatment of HIV/AIDS. The ARV-loaded nanoparticles with polyethylene glycol on the corona may facilitate tethering ligands for targeting specific receptors expressed on the cells of HIV reservoirs. PMID:27013886

  15. Antiretroviral Drugs-Loaded Nanoparticles Fabricated by Dispersion Polymerization with Potential for HIV/AIDS Treatment

    PubMed Central

    Ogunwuyi, Oluwaseun; Kumari, Namita; Smith, Kahli A.; Bolshakov, Oleg; Adesina, Simeon; Gugssa, Ayele; Anderson, Winston A.; Nekhai, Sergei; Akala, Emmanuel O.

    2016-01-01

    Highly active antiretroviral (ARV) therapy (HAART) for chronic suppression of HIV replication has revolutionized the treatment of HIV/AIDS. HAART is no panacea; treatments must be maintained for life. Although great progress has been made in ARV therapy, HIV continues to replicate in anatomical and intracellular sites where ARV drugs have restricted access. Nanotechnology has been considered a platform to circumvent some of the challenges in HIV/AIDS treatment. Dispersion polymerization was used to fabricate two types (PMM and ECA) of polymeric nanoparticles, and each was successfully loaded with four ARV drugs (zidovudine, lamivudine, nevirapine, and raltegravir), followed by physicochemical characterization: scanning electron microscope, particle size, zeta potential, drug loading, and in vitro availability. These nanoparticles efficiently inhibited HIV-1 infection in CEM T cells and peripheral blood mononuclear cells; they hold promise for the treatment of HIV/AIDS. The ARV-loaded nanoparticles with polyethylene glycol on the corona may facilitate tethering ligands for targeting specific receptors expressed on the cells of HIV reservoirs. PMID:27013886

  16. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    PubMed

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells. PMID:23889734

  17. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. PMID:26340358

  18. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    NASA Astrophysics Data System (ADS)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  19. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension.

    PubMed

    Wang, Ting; Chen, Xiaojin; Lu, Mengmeng; Li, Xihe; Zhou, WenZhong

    2015-12-01

    A florfenicol-loaded solid lipid nanoparticle (FFC-SLN) suspension was prepared by hot homogenisation and ultrasonic technique. The suspension was characterised for its release profile, stability, toxicity, and the physicochemical properties of the nanoparticles. Antibacterial activity of the suspension was evaluated in vitro and in vivo. The results showed that the mean diameter, polydispersity index and zeta potential of the nanoparticles were 253 ± 3 nm, 0.409 ± 0.022 and 47.5 ± 0.21 mV, respectively. In vitro release profile showed the FFC-SLN suspension had sustained release effect. The minimum inhibition concentration values of the FFC-SLN suspension were 6 and 3 µg/mL against Staphylococcus aureus and Escherichia coli respectively, compared with 3.5 and 2 µg/mL of native florfenicol. The suspension was relatively stable at 4°C and less stable at room temperature during 9 months storage. Although the nanoparticle carriers exhibited cytotoxicity in cell cultures, the LD50 of the lyophilised dry power of the suspension was higher than 5 g/kg body weight. Mortality protection against E. coli lethal infection in mice showed that the nanoparticle suspension had much better efficacy (6/10) than native drug (1/10). These results indicate that FFC-SLN suspension could be a promising formulation in veterinary medicine. PMID:26647811

  20. Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy.

    PubMed

    Xiong, Hejian; Zhou, Dongfang; Qi, Yanxin; Zhang, Zhiyun; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Meng, Fanbo; Huang, Yubin

    2015-12-14

    Carborane-conjugated amphiphilic copolymer nanoparticles were designed to deliver anticancer drugs for the combination of chemotherapy and boron neutron capture therapy (BNCT). Poly(ethylene glycol)-b-poly(L-lactide-co-2-methyl-2(2-dicarba-closo-dodecarborane)propyloxycarbonyl-propyne carbonate) (PLMB) was synthesized via the versatile reaction between decaborane and side alkynyl groups, and self-assembled with doxorubicin (DOX) to form drug-loaded nanoparticles. These DOX@PLMB nanoparticles could not only suppress the leakage of the boron compounds into the bloodstream due to the covalent bonds between carborane and polymer main chains, but also protect DOX from initial burst release at physiological conditions because of the dihydrogen bonds between DOX and carborane. It was demonstrated that DOX@PLMB nanoparticles could selectively deliver boron atoms and DOX to the tumor site simultaneously in vivo. Under the combination of chemotherapy and BNCT, the highest tumor suppression efficiency without reduction of body weight was achieved. This polymeric nanoparticles delivery system could be very useful in future chemoradiotherapy to obtain improved therapeutic effect with reduced systemic toxicity. PMID:26564472

  1. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery.

    PubMed

    Cui, Fu-de; Tao, An-jin; Cun, Dong-mei; Zhang, Li-qiang; Shi, Kai

    2007-02-01

    The aim of the present work was to investigate the preparation of PLGA nanoparticles (PNP) and PLGA-Hp55 nanoparticles (PHNP) as potential drug carriers for oral insulin delivery. The nanoparticles were prepared by a modified emulsion solvent diffusion method in water, and their physicochemical characteristics, drug release in vitro and hypoglycemic effects in diabetic rats were evaluated. The particle sizes of the PNP and PHNP were 150+/-17 and 169+/-16 nm, respectively, and the drug recoveries of the nanoparticles were 50.30+/-3.1 and 65.41+/-2.3%, respectively. The initial release of insulin from the nanoparticles in simulated gastric fluid over 1 h was 50.46+/-6.31 and 19.77+/-3.15%, respectively. The relative bioavailability of PNP and PHNP compared with subcutaneous (s.c.) injection (1 IU/kg) in diabetic rats was 3.68+/-0.29 and 6.27+/-0.42%, respectively. The results show that the use of insulin-loaded PHNP is an effective method of reducing serum glucose levels. PMID:17051590

  2. Biocompatible Hollow Polydopamine Nanoparticles Loaded Ionic Liquid Enhanced Tumor Microwave Thermal Ablation in Vivo.

    PubMed

    Tan, Longfei; Tang, Wenting; Liu, Tianlong; Ren, Xiangling; Fu, Changhui; Liu, Bo; Ren, Jun; Meng, Xianwei

    2016-05-11

    Tumor microwave thermal therapy (MWTT) has attracted more attention because of the minimal damage to body function, convenient manipulation and low complications. Herein, a novel polydopamine (PDA) nanoparticle loading ionic liquids (ILs/PDA) as microwave susceptible agent is introduced for enhancing the selectivity and targeting of MWTT. ILs/PDA nanocomposites have an excellent microwave heating efficiency under an ultralow microwave power irradiation. Encouraging antitumor effect was observed when tumor bearing mice received ILs/PDA nanoparticles by intravenous injection and only single microwave irradiation. PDA nanoparticles with gold nanoparticles in core were constructed for tumor targeting study by ICP-MS and about 15% PDA nanoparticles were founded in tumor. Furthermore, the cytotoxicity and acute toxicity study in vivo of PDA showed the excellent biocompatibility of ILs/PDA nanocomposites. In addition, the degradation of ILs/PDA nanocomposites in simulated body fluid illustrated the low potential hazard when they entered the blood. The emergence of PDA as a novel and feasible platform for cancer thermal therapy will promote the rapid development of microwave therapy in clinics. PMID:27089478

  3. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting-Ideal Versus Reality.

    PubMed

    Lee, Chooi Yeng; Ooi, Ing Hong

    2016-01-01

    Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ's efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach. PMID:27618068

  4. Amphiphilic core–shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells

    PubMed Central

    Liu, Zuojin; Niu, Dechao; Zhang, Junyong; Zhang, Wenfeng; Yao, Yuan; Li, Pei; Gong, Jianping

    2016-01-01

    Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs). In this article, we demonstrate that amphiphilic core–shell nanoparticles (NPs) consisting of well-defined hydrophobic poly(methyl methacrylate) (PMMA) cores and branched polyethyleneimine (PEI) shells (denoted as PEI@PMMA NPs) are efficient nanocarriers to deliver microRNA (miRNA)-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@ PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1). The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%). Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in the cytoplasm of the KCs. Furthermore, when compared to the control groups, the protein expression of target nuclear factor κB P65 was considerably inhibited (P<0.05) both in vitro and in vivo. These results demonstrate that the PEI@PMMA NPs with a unique amphiphilic core–shell nanostructure are promising nanocarriers for delivering miRNA plasmid to KCs. PMID:27366061

  5. Antifungal efficacy of itraconazole-loaded TPGS-b-(PCL-ran-PGA) nanoparticles

    PubMed Central

    Qiu, Lixin; Hu, Bicheng; Chen, Hongbo; Li, Shanshan; Hu, Yuqian; Zheng, Yi; Wu, Xinxing

    2015-01-01

    This research was conducted to formulate biodegradable itraconazole (ITZ)-loaded d-a-tocopheryl polyethylene glycol 1000 succinate-b-poly(e-caprolactone-ran-glycolide) (TPGS-b-(PCL-ran-PGA); TPP) nanoparticles (NPs) (designed as ITZ-loaded TPP NPs) to improve antifungal efficacy. ITZ-loaded TPP NPs were prepared by a modified double-emulsion method, and their size distribution, morphology, zeta potential, drug encapsulation efficiency, drug-release profile, and antifungal effects were characterized. The cytotoxicity of ITZ-loaded-TPP NPs on HeLa cells and fibroblasts was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The in vivo antifungal activity of ITZ-loaded-TPP NPs was examined in mice by administrating 5×105 colony forming units of Candida albicans through the tail vein. The survival rate and survival time of the mice was observed. The fungal count and pathology of lung tissue was analyzed. The data showed that ITZ-loaded-TPP NPs have size of 265±5.8 nm, zeta potential of −31±0.5 mV, high encapsulation efficiency (95%), and extended drug-release profile. ITZ-loaded-TPP NPs at a high concentration of 25 mg/mL had no cytotoxicity on HeLa cells and fibroblasts. Furthermore, ITZ-loaded-TPP NPs achieved a higher level of antifungal activity both in vitro and in vivo. The survival rate and duration was higher in mice treated by ITZ-loaded-TPP NPs than in the other groups (P<0.05). In conclusion, ITZ-loaded-TPP NPs significantly improved ITZ bioavailability by increasing its aqueous dispersibility and extending the duration of drug release, thereby improving the antifungal efficacy of the ITZ agent. PMID:25733833

  6. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy†

    PubMed Central

    Qin, Ming; Hah, Hoe Jin; Kim, Gwangseong; Nie, Guochao; Lee, Yong-Eun Koo

    2013-01-01

    The use of targeted nanoparticles (NPs) as a platform for loading photosensitizers enables selective accumulation of the photosensitizers in the tumor area, while maintaining their photodynamic therapy (PDT) effectiveness. Here two novel kinds of methylene blue (MB)-conjugated polyacrylamide (PAA) nanoparticles, MBI-PAA NPs and MBII-PAA NPs, based on two separate MB derivatives, are developed for PDT. This covalent conjugation with the NPs (i) improves the loading of MB, (ii) prevents any leaching of MB from the NPs and (iii) protects the MB from the effects of enzymes in the biological environment. The loading of MB into these two kinds of NPs was controlled by the input amount, resulting in concentrations with optimal singlet oxygen production. For each of the MB-NPs, the highest singlet oxygen production was found for an MB loading of around 11 nmol mg−1. After attachment of F3 peptide groups, for targeting, each of these NPs was taken up, selectively, by MDA-MB-435 tumor cells, in vitro. PDT tests demonstrated that both kinds of targeted NPs resulted in effective tumor cell kill, following illumination, while not causing dark toxicity. PMID:21479315

  7. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer

    PubMed Central

    Sun, Shu-Ben; Liu, Ping; Shao, Fa-Ming; Miao, Qi-Long

    2015-01-01

    The objective of this work is to prepare and evaluate Poly (D, L-Lactide-co-glycolide) (PLGA) Nanoparticles (NPs) of Capecitabine, an anticancer agent loaded by solvent displacement method using stabilizer (poly vinyl alcohol). The prepared NPs were characterized by FT-IR, DSC, drug loading, entrapment efficiency, particle size, surface morphology by Atomic force microscopy (AFM), X-ray diffraction and in-vitro studies. FT-IR and DSC studies indicated that there was no interaction between the drug and polymer. The morphological studies performed by AFM showed uniform and spherical shaped discrete particles without aggregation and smooth in surface morphology with a nano size range of 144 nm. X-ray diffraction was performed to reveal the crystalline nature of the drug after encapsulation. The NPs formed were spherical in shape with zeta potentials (-14.8 mV). In vitro release studies were carried and showed drug release up to 5 days. The drug release followed zero order kinetics and a Fickian transport mechanism. Nanoparticles obtained a high encapsulation efficiency of 88.4% and drug loading of 16.98%. Drug released from Capecitabine loaded PLGA NPs (84.1%) was for 5 days. It is concluded from the present investigation that PLGA NPs of Capecitabine may effectively deliver the drug to the prostate for the treatment of prostate cancer. PMID:26770631

  8. Effect of porosity on the release kinetics of propafenone-loaded PEG-g-PLA nanoparticles.

    PubMed

    Sant, Shilpa; Nadeau, Véronique; Hildgen, Patrice

    2005-10-01

    Nanoparticle preparation by the emulsification-solvent evaporation method is a complex phenomenon. Various formulation factors can affect the internal structure and release of drug from nanoparticles (NPs). The aim of the present study is to optimize NPs of PEG-g-PLA polymer and study the effect of various factors on the porosity as well as release profile of drug-loaded NPs. Propafenone hydrochloride (Prop.HCl), a model drug, was encapsulated in NPs using different amounts of triethylamine (TEA) and initial drug loading levels. NPs were also prepared without TEA by using propafenone base (Prop). All the formulations were characterized for surface morphology, size and size distribution, encapsulation efficiency, thermal analysis, porosimetry and in vitro release studies. Encapsulation efficiency of Prop ranged between 10% and 43% and was dependent on initial drug loading as well as amount of TEA added. Porosity studies revealed different pore size distribution (PSD) for formulations with and without TEA. Formulations with higher drug loading showed greater volume contribution of small pores, higher fractal dimension suggesting more complex pore structure and slower drug release, probably due to decrease in the effective diffusion coefficient of Prop. Results suggest that formulation factors play an important role affecting the porosity and release rate of NPs. Also, fractal dimension could be one of the most important factors in determining the release behavior of NPs. PMID:16099525

  9. Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery.

    PubMed

    Anitha, A; Maya, S; Deepa, N; Chennazhi, K P; Nair, S V; Jayakumar, R

    2012-01-01

    Chitosan (CS) and its carboxymethyl derivatives are smart biopolymers that are non-toxic, biocompatible and biodegradable, and, hence, suitable for various biomedical applications, such as drug delivery, gene therapy and tissue engineering. Curcumin is a major chemotherapeutic agent with antioxidant, anti-inflammatory, anti-proliferative, anticancer and antimicrobial effects. However, the potential of curcumin as a chemotherapeutic agent is limited by its hydrophobicity and poor bioavailability. In this work, we developed a nanoformulation of curcumin in a carboxymethyl chitosan (CMC) derivative, N,O-carboxymethyl chitosan (N,O-CMC). The curcumin-loaded N,O-CMC (curcumin-N,O-CMC) nanoparticles were characterized using DLS, AFM, SEM, FT-IR and XRD. DLS studies revealed nanoparticles with a mean diameter of 150 ± 30 nm. AFM and SEM confirmed that the particles have a spherical morphology within the size range of 150 ± 30 nm. Curcumin was entrapped with in N,O-CMC nanopartcles with an efficiency of 80%. The in vitro drug-release profile was studied at different pH (7.4 and 4.5) at 37°C for different incubation periods with and without lysozyme. Cytotoxicity studies using MTT assay indicated that curcumin-N,O-CMC nanoparticles showed specific toxicity towards cancer cells and non-toxicity to normal cells. Cellular uptake of curcumin-N,O-CMC nanoparticles was analyzed by fluorescence microscopy and was reconfirmed by flow cytometry. Overall, these results indicate that like previously reported curcumin loaded O-CMC nanoparticles, N,O-CMC will also be an efficient nanocarrier for delivering curcumin to cancer cells. PMID:21722423

  10. Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid.

    PubMed

    Campos, Débora A; Madureira, Ana Raquel; Gomes, Ana Maria; Sarmento, Bruno; Pintado, Maria Manuela

    2014-03-01

    During the last decade there has been a growing interest in the formulation of new food and nutraceutical products containing compounds with antioxidant activity. Unfortunately, due to their structure, certain compounds such as polyphenols, in particular rosmarinic acid (RA) are not stable and may interact easily with matrices in which they are incorporated. To overcome such limitations, the formulation of loaded polyphenols nanoparticles can offer an efficient solution to protect such compounds. Based on this rationale, the aim of this study was to prepare solid lipid nanoparticles (SLNs) loaded with RA using a hot melt ultrasonication method, where Witepsol H15 was used as lipid and Polysorbate 80 (Tween 80) as surfactant, following a 3(2) fractional factorial design, resulting in the use of 3 different percentages of surfactant (viz. 1, 2 and 3%, v/v) and lipid (0.5, 1.0 and 1.5%, w/v). The stability of the nanoparticles systems were tested during 28 d in aqueous solution stored at refrigeration temperature (ca. 5 °C), tracking the mean particle size of different formulations by photon correlation spectroscopy. To confirm RA entrapment, thermal analyses of the nanoparticles by DSC and FTIR were performed. The association efficiencies percentages (AE%) were determined using HPLC to quantitatively assess the RA in supernatants. Results showed that Witepsol H15 produced nanoparticles with initial mean diameters between 270 and 1000 nm, yet over time, a slight increase occurred, but without occurrence of aggregation. The AE% showed a high percentage of encapsulation (ca. 99%), which reveals low polyphenol releases from SLNs throughout storage time. In general, results showed a successful production of SLNs with properties that can be used to food applications. PMID:24413308

  11. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-01

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer. PMID:25584860

  12. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Phuc Le, Thi Minh; Phuc Pham, Van; Lua Dang, Thi Minh; Huyen La, Thi; Hanh Le, Thi; Huan Le, Quang

    2013-06-01

    Nanoparticles (NPs) have been proven to be an effective delivery system with few side effects for anticancer drugs. In this study, curcumin-loaded NPs have been prepared by an ionic gelation method using chitosan (Chi) and pluronic®F-127 (PF) as carriers to deliver curcumin to the target cancer cells. Prepared NPs were characterized using Zetasizer, fluorescence microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our results showed that the encapsulation efficiency of curcumin was approximately 50%. The average size of curcumin-loaded PF/Chi NPs was 150.9 nm, while the zeta potential was 5.09 mV. Cellular uptake of curcumin-loaded NPs into HEK293 cells was confirmed by fluorescence microscopy.

  13. Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying

    NASA Astrophysics Data System (ADS)

    Hammond, Samuel James

    Creating nanoparticles of beneficial nutraceuticals and pharmaceuticals has had a large surge of research due to the enhancement of absorption and bioavailability by decreasing their size. One of these ways is by electrohydrodynamic atomization, also known as electrospraying. In general, this novel process is done by forcing a liquid through a capillary nozzle and which is subjected to an electrical field. While there are different ways to create nanoparticles, the novel method of electrospraying can be beneficial over other types of nanoparticle formation. Reasons include high control over particle size and distribution by altering electrospray parameters (voltage, flow rate, distance, and time), higher encapsulation efficiency than other methods, and also it is a one step process without exposure to extreme conditions (Gomez-Estaca et. al. 2012, Jaworek and Sobcyzk 2008). The current study aimed to create a chitosan encapsulated theaflavin-2 enriched black tea extract (BTE) nanoparticles via electrospraying. The first step of this process was to create the smallest chitosan nanoparticles possible by altering the electrospray parameters and the chitosan-acetic acid solution parameters. The solution properties altered include chitosan molecular weight, acetic acid concentration, and chitosan concentration. Specifically, the electrospray parameters such as voltage, flow rate and distance from syringe to collector are the most important in determining particle size. After creating the smallest chitosan particles, the TF-2 enriched black tea extract was added to the chitosan-acetic acid solution to be electrosprayed. The particles were assessed with the following procedures: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) for particle morphology and size, and loading efficiency with ultraviolet--visible spectrophotometer (UV-VIS). Chitosan-BTE nanoparticles were successfully created in a one step process. Diameter of the particles on average

  14. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  15. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation.

    PubMed

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  16. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  17. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates.

    PubMed

    Sheng, Jianyong; He, Huining; Han, Limei; Qin, Jing; Chen, Sunhui; Ru, Ge; Li, Ruixiang; Yang, Pei; Wang, Jianxin; Yang, Victor C

    2016-07-10

    Although significant progress has been achieved, effective oral delivery of protein drugs such as insulin by nanoparticle-based carrier systems still faces certain formidable challenges. Considerable amount of protein drug is released from the nanoparticles (NPs) in the gastrointestinal (GI) tract. Because of their low permeability through the intestinal mucosa, the released protein would be soon degraded by the large amount of proteases in the GI tract. Herein, we report an oral insulin delivery system that can overcome the above-mentioned problems by mucoadhesive NPs (MNPs) loaded with cell penetrating peptide-linked insulin conjugates. On one hand, after conjugation with low molecular weight protamine (LMWP), a cell penetrating peptide (CPP), insulin showed greatly improved permeability through intestinal mucus layer and epithelia. On the other hand, the mucoadhesive N-trimethyl chitosan chloride-coated PLGA nanoparticles (MNPs) that were loaded with conjugates enhanced the retention in the intestinal mucus layer. By adopting this delivery strategy, the LMWP-insulin conjugates released from the MNPs could be deprived from enzymatic degradation, due to the short distance in reaching the epithelia and the high permeation of the conjugates through epithelia. The oral delivery system of insulin designed by us showed a long-lasting hypoglycemia effect with a faster onset in diabetic rats. The pharmacological availability of orally delivered conjugates-loaded MNPs was 17.98±5.61% relative to subcutaneously injected insulin solution, with a 2-fold higher improvement over that by MNPs loaded with native insulin. Our results suggested that conjugation with CPP followed by encapsulation in MNPs provides an effective strategy for oral delivery of macromolecular therapeutics. PMID:27178809

  18. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation.

    PubMed

    Yadav, Khushwant S; Sawant, Krutika K

    2010-01-01

    Etoposide is one of the most commonly used drugs in chemotherapy of acute lymphocytic leukemia and acute myelogenous leukaemia. Etoposide has variable oral bioavailability ranging from 24-74% and has terminal half life of 1.5 hours by intravenous route. The conventional parenteral therapy causes inconvenience and pain to the patients as it has to be given through a continuous IV infusion over 24-34 h. The present investigation was aimed at developing etoposide loaded biodegradable nanoparticles which would be a sustained release formulation and replace the conventional therapy of continuous intravenous administration. Nanoparticles were prepared by emulsion solvent evaporation method using high pressure homogenization. The process parameters like homogenization cycles (four) and homogenization pressure (10000 psi) were first optimized using a 3(2) factorial design based on response Y1(mean particle size of 98+/-1nm). Then a 32 factorial design was carried out to study the effect of two independent variables, ratio of drug and polymer (X1) and surfactant concentration (X2) on the two responses to obtain their optimized values, percentage entrapment efficiency (Y2, 83.12+/-8.3%) and mean particle size (Y3, 105+/-5.4 nm) for Etoposide loaded PLGA Nanoparticles. Contour plots and response surface plots showed visual representation of relationship between the experimental responses and the set of input variables. The adequacy of the regression model was verified by a check point analysis. The zeta potential values ranged between -23.0 to -34.2 mV, indicating stability. Sucrose was used as cryoprotectant during lyophilization. DSC and XRD studies indicated that etoposide was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. The electron micrographs showed spherical, discrete and homogenous particles. Drug release study showed that etoposide loaded PLGA nanoparticles sustained release up to 72h. The release from the nanoparticles

  19. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  20. Antimicrobial Activity of Glass lonomer Cement Incorporated with Chlorhexidine-Loaded Zeolite Nanoparticles.

    PubMed

    Kim, Hyun-Jin; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-02-01

    A functional dental restorative system with antimicrobial properties was developed using zeolite (ZE) nanoparticles (NPs) as a drug delivery carrier. ZE NPs loaded with chlorhexidine (CHX) were prepared using the ionic immobilization method. The resulting CHX-loaded ZE NPs were then incorporated into commercial dental glass ionomer cement (GIC). The average size of the CHX-loaded ZE NPs was about 100 to 200 nm, and the NPs were dispersed homogeneously in the GIC. The in vitro release profile of encapsulated GIC containing CHX showed an early release burst of approximately 30% of the total CHX by day 7, whereas GIC containing CHX-loaded ZE NPs showed a sustained release of CHX without the early release burst in a 4-week immersion study. The agar diffusion test results showed that the GIC incorporated with CHX-loaded ZE NPs showed a larger growth inhibition zone of Streptococcus mutans than GIC alone, indicating that this innovative delivery platform potently imparted antimicrobial activity to the GIC. Moreover, these findings suggest that a range of antimicrobial drugs that inhibit the growth of oral bacteria can be incorporated efficiently into dental GIC using CHX-loaded ZE NPs. PMID:27433603

  1. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Nhung Hoang, Thi My; Thu Trang Mai, Thi; Quynh Trang Nguyen, Thi; Doan Do, Hai; Hien Pham, Thi; Lap Nguyen, Thi; Thu Ha, Phuong

    2015-01-01

    Doxorubicin (DOX) is one of the most effective anticancer drugs for treating many types of cancer. However, the clinical applications of DOX were hindered because of serious side-effects resulting from the unselective delivery to cancer cell including congestive heart failure, chronic cardiomyopathy and drug resistance. Recently, it has been demonstrated that loading anti-cancer drugs onto drug delivery nanosystems helps to maximize therapeutic efficiency and minimize unwanted side-effects via passive and active targeting mechanisms. In this study we prepared folate decorated DOX loaded PLA-TPGS nanoparticles with the aim of improving the potential as well as reducing the side-effects of DOX. Characteristics of nanoparticles were investigated by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) method and Fourier transform infrared spectroscopy (FTIR). Anticancer activity of the nanoparticles was evaluated through cytotoxicity and cellular uptake assays on HeLa and HT29 cancer cell lines. The results showed that prepared drug delivery system had size around 100 nm and exhibited higher cytotoxicity and cellular uptake on both tested HeLa and HT29 cells.

  2. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer

    PubMed Central

    Jing, Lijia; shao, shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect. PMID:26722372

  3. BSA Nanoparticle Loaded Atorvastatin Calcium - A New Facet for an Old Drug

    PubMed Central

    S, Sripriyalakshmi.; C. H, Anjali.; C, George Priya Doss.; B, Rajith; Ravindran, Aswathy

    2014-01-01

    Background Currently, the discovery of effective chemotherapeutic agents poses a major challenge to the field of cancer biology. The present study focuses on enhancing the therapeutic and anti cancer properties of atorvastatin calcium loaded BSA (ATV-BSA) nanoparticles in vitro. Methodology/Results BSA-ATV nanoparticles were prepared using desolvation technique. The process parameters were optimized based on the amount of desolvating agent, stabilization conditions as well as the concentration of the cross linker. The anti cancer properties of the protein coated ATV nanoparticles were tested on MiaPaCa-2 cell lines. In vitro release behavior of the drug from the carrier suggests that about 85% of the drug gets released after 72 hrs. Our studies show that ATV-BSA nanoparticles showed specific targeting and enhanced cytotoxicity to MiaPaCa-2 cells when compared to the bare ATV. Conclusion We hereby propose that the possible mechanism of cellular uptake of albumin bound ATV could be through caveolin mediated endocytosis. Hence our studies open up new facet for an existing cholesterol drug as a potent anti-cancer agent. PMID:24498272

  4. Dual Stimuli-Responsive Polymer Prodrugs Quantitatively Loaded by Nanoparticles for Enhanced Cellular Internalization and Triggered Drug Release.

    PubMed

    Huang, Mingming; Zhao, Kaijie; Wang, Lei; Lin, Shanqing; Li, Junjie; Chen, Jingbo; Zhao, Chengai; Ge, Zhishen

    2016-05-11

    Direct encapsulation of hydrophobic drugs into amphiphilic block copolymer micelles is frequently subjected to low drug loading efficiency (DLE) and loading content (DLC), as well as lower micellar stability and uncontrollable drug release. In this report, we prepare the copolymer prodrugs (PPEMA-co-PCPTM) via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(piperidin-1-yl)ethyl methacrylate (PEMA) and reduction-responsive CPT monomer (CPTM), which were quantitatively encapsulated into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles. The polymer prodrug-loaded nanoparticles showed high stability for a long time in aqueous solution or blood serum and even maintain similar size after a lyophilization-dissolution cycle. The tumoral pH (∼6.8)-responsive properties of PPEMA segments endow the micellar cores with triggered transition from neutral to positively charged and swellable properties. The PEG-b-PCL nanoparticles loading polymer prodrugs (PPEMA-b-PCPTM) eliminated burst drug release. Simultaneously, CPT drug release can be triggered by reductive agents and solution pH. At pH 6.8, efficient cellular internalization was achieved due to positively charged cores of the nanoparticles. As compared with nanoparticles loading PCPTM, higher cytotoxicity was observed by the nanoparticles loading PPEMA-b-PCPTM at pH 6.8. Further multicellular tumor spheroid (MCTs) penetration and growth suppression studies demonstrated that high-efficiency penetration capability and significant size shrinkage of MCTs were achieved after treatment by PPEMA-b-PCPTM-loaded nanoparticles at pH 6.8. Therefore, the responsive polymer prodrug encapsulation strategy represents an effective method to overcome the disadvantages of common hydrophobic drug encapsulation approaches by amphiphilic block copolymer micelles and simultaneously endows the nanoparticles with responsive drug release behaviors as well as enhanced cellular internalization and

  5. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line.

    PubMed

    Parveen, Suphiya; Mitra, Moutushy; Krishnakumar, S; Sahoo, Sanjeeb K

    2010-08-01

    In the present study the potential of carboplatin-loaded chitosan-alginate nanoparticles (CANPs) for the treatment of retinoblastoma was investigated. The carboplatin-loaded CANPs were approximately 300 nm in size, exhibited a high zeta potential of approximately 36 mV and drug encapsulation of approximately 20 wt.%. The CANPs were further characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and transmission electron microscopy. In vitro release studies revealed fast release of approximately 25% of the drug during the first 24h, followed by sustained release. CANPs demonstrated greater and sustained antiproliferative activity of the drug in a dose- and time-dependent manner (carboplatin IC(50)=0.56 microg ml(-1), carboplatin-loaded CANPs IC(50)=0.004 microg ml(-1)), as well as an enhanced apoptotic effect as compared with the drug in solution in a retinoblastoma cell line (Y79). The higher cytotoxic effect of CANPs may be due to their greater cellular uptake as compared with native carboplatin. It was also demonstrated that clathrin-mediated endocytosis plays a key role in the internalization of CANPs in the Y79 cell line. In conclusion, biodegradable chitosan nanoparticles could be used as an effective ocular drug delivery system for sustained intracellular delivery of carboplatin for the treatment of retinoblastoma. PMID:20149903

  6. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    PubMed

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved. PMID:27477101

  7. Polydopamine Nanoparticles as a Versatile Molecular Loading Platform to Enable Imaging-guided Cancer Combination Therapy

    PubMed Central

    Dong, Ziliang; Gong, Hua; Gao, Min; Zhu, Wenwen; Sun, Xiaoqi; Feng, Liangzhu; Fu, Tingting; Li, Yonggang; Liu, Zhuang

    2016-01-01

    Cancer combination therapy to treat tumors with different therapeutic approaches can efficiently improve treatment efficacy and reduce side effects. Herein, we develop a theranostic nano-platform based on polydopamine (PDA) nanoparticles, which then are exploited as a versatile carrier to allow simultaneous loading of indocyanine green (ICG), doxorubicin (DOX) and manganese ions (PDA-ICG-PEG/DOX(Mn)), to enable imaging-guided chemo & photothermal cancer therapy. In this system, ICG acts as a photothermal agent, which shows red-shifted near-infrared (NIR) absorbance and enhanced photostability compared with free ICG. DOX, a model chemotherapy drug, is then loaded onto the surface of PDA-ICG-PEG with high efficiency. With Mn2+ ions intrinsically chelated, PDA-ICG-PEG/DOX(Mn) is able to offer contrast under T1-weighted magnetic resonance (MR) imaging. In a mouse tumor model, the MR imaging-guided combined chemo- & photothermal therapy achieves a remarkable synergistic therapeutic effect compared with the respective single treatment modality. This work demonstrates that PDA nanoparticles could serve as a versatile molecular loading platform for MR imaging guided combined chemo- & photothermal therapy with minimal side effects, showing great potential for cancer theranostics. PMID:27217836

  8. Enhanced antibacterial activity of roxithromycin loaded pegylated poly lactide-co-glycolide nanoparticles

    PubMed Central

    2012-01-01

    Background and the purpose of the study The purpose of this study was to prepare pegylated poly lactide-co-glycolide (PEG-PLGA) nanoparticles (NPs) loaded with roxithromycin (RXN) with appropriate physicochemical properties and antibacterial activity. Roxithromycin, a semi-synthetic derivative of erythromycin, is more stable than erythromycin under acidic conditions and exhibits improved clinical effects. Methods RXN was loaded in pegylated PLGA NPs in different drug;polymer ratios by solvent evaporation technique and characterized for their size and size distribution, surface charge, surface morphology, drug loading, in vitro drug release profile, and in vitro antibacterial effects on S. aureus, B. subtilis, and S. epidermidis. Results and conclusion NPs were spherical with a relatively mono-dispersed size distribution. The particle size of nanoparticles ranged from 150 to 200 nm. NPs with entrapment efficiency of up to 80.0±6.5% and drug loading of up to 13.0±1.0% were prepared. In vitro release study showed an early burst release of about 50.03±0.99% at 6.5 h and then a slow and steady release of RXN was observed after the burst release. In vitro antibacterial effects determined that the minimal inhibitory concentration (MIC) of RXN loaded PEG-PLGA NPs were 9 times lower on S. aureus, 4.5 times lower on B. subtilis, and 4.5 times lower on S. epidermidis compared to RXN solution. In conclusion it was shown that polymeric NPs enhanced the antibacterial efficacy of RXN substantially. PMID:23351784

  9. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats.

    PubMed

    Pan, Qing; Xu, Qingguo; Boylan, Nicholas J; Lamb, Nicholas W; Emmert, David G; Yang, Jeh-Chang; Tang, Li; Heflin, Tom; Alwadani, Saeed; Eberhart, Charles G; Stark, Walter J; Hanes, Justin

    2015-03-10

    Immunologic graft rejection is one of the main causes of short and long-term graft failure in corneal transplantation. Steroids are the most commonly used immunosuppressive agents for postoperative management and prevention of corneal graft rejection. However, steroids delivered in eye drops are rapidly cleared from the surface of the eye, so the required frequency of dosing for corneal graft rejection management can be as high as once every 2h. Additionally, these eye drops are often prescribed for daily use for 1 year or longer, which can result in poor patient compliance and steroid-related side effects. Here, we report a biodegradable nanoparticle system composed of Generally Regarded as Safe (GRAS) materials that can provide sustained release of corticosteroids to prevent corneal graft rejection following subconjunctival injection provided initially during transplant surgery. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing dexamethasone sodium phosphate (DSP) exhibited a size of 200 nm, 8 wt.% drug loading, and sustained drug release over 15 days in vitro under sink conditions. DSP-loaded nanoparticles provided sustained ocular drug levels for at least 7 days after subconjunctival administration in rats, and prevented corneal allograft rejection over the entire 9-week study when administered weekly. In contrast, control treatment groups that received weekly injections of either placebo nanoparticles, saline, or DSP in solution demonstrated corneal graft rejection accompanied by severe corneal edema, neovascularization and opacity that occurred in ≤ 4 weeks. Local controlled release of corticosteroids may reduce the rate of corneal graft rejection, perhaps especially in the days immediately following surgery when risk of rejection is highest and when typical steroid eye drop administration requirements are particularly onerous. PMID:25576786

  10. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    PubMed Central

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  11. Thermal decomposition behaviors and kinetic properties of 1,8-naphthalic anhydride loaded dense nano-silica hybrids

    NASA Astrophysics Data System (ADS)

    Wang, Jinpeng; Sun, Jihong; Wang, Feng; Ren, Bo

    2013-06-01

    A certain amount of (3-aminopropyl)triethoxysilane (APTES) and various capacity of 1,8-naphthalic anhydride (NA) were employed to modify and then graft onto the surface of the dense nano-silica spheres (DNSS) via a post-grafting method, and thereby, a novel luminescent density nano-silica hybrid materials have been successfully synthesized. Meanwhile, the structures and properties of obtained hybrid DNSS were characterized by XRD, TEM, N2 sorption, FT-IR, and TG analysis. Furthermore, the thermal stability of before and after modification were demonstrated by using both Kissinger methods and Ozawa-Flynn-Wall methods. Particularly, the thermal decomposition behaviors of amino-modified groups and NA-grafted organic molecules were emphasized based on the TG and DTG analysis and then the related mechanism was put forward according to Coats and Redfern methods. Finally, as a comparison, the obtained results and the proposed decomposition mechanism of hybrid DNSS with non-pores were discussed with that of mesopores silicas in details.

  12. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors

    PubMed Central

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong

    2016-01-01

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately −16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy. PMID:26625203

  13. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    PubMed

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy. PMID:26625203

  14. Ultrasound-guided Delivery of microRNA Loaded Nanoparticles into Cancer

    PubMed Central

    Wang, Tzu-Yin; Choe, Jung Woo; Pu, Kanyi; Devulapally, Rammohan; Bachawal, Sunitha; Machtaler, Steven; Chowdhury, Sayan Mullick; Luong, Richard; Tian, Lu; Khuri-Yakub, Butrus; Rao, Jianghong; Paulmurugan, Ramasamy; Willmann, Jürgen K.

    2015-01-01

    Ultrasound induced microbubble cavitation can cause enhanced permeability across natural barriers of tumors such as vessel walls or cellular membranes, allowing for enhanced therapeutic delivery into the target tissues. While enhanced delivery of small (<1 nm) molecules has been shown at acoustic pressures below 1MPa both in vitro and in vivo, the delivery efficiency of larger (>100 nm) therapeutic carriers into cancer remains unclear and may require a higher pressure for sufficient delivery. Enhanced delivery of larger therapeutic carriers such as FDA approved pegylated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NP) has significant clinical value because these nanoparticles have been shown to protect encapsulated drugs from degradation in the blood circulation and allow for slow and prolonged release of encapsulated drugs at the target location. In this study, various acoustic parameters were investigated to facilitate the successful delivery of two nanocarriers, a fluorescent semiconducting polymer model drug nanoparticle as well as PLGA-PEG-NP into human colon cancer xenografts in mice. We first measured the cavitation dose produced by various acoustic parameters (pressure, pulse length, and pulse repetition frequency) and microbubble concentration in a tissue mimicking phantom. Next, in vivo studies were performed to evaluate the penetration depth of nanocarriers using various acoustic pressures, ranging between 1.7 and 6.9 MPa. Finally, a therapeutic microRNA, miR-122, was loaded into PLGA-PEG-NP and the amount of delivered miR-122 was assessed using quantitative RT-PCR. Our results show that acoustic pressures had the strongest effect on cavitation. An increase of the pressure from 0.8 to 6.9 MPa resulted in a nearly 50-fold increase in cavitation in phantom experiments. In vivo, as the pressures increased from 1.7 to 6.9 MPa, the amount of nanoparticles deposited in cancer xenografts was increased from 4- to 14-fold, and the median penetration

  15. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  16. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles.

    PubMed

    Omwoyo, Wesley Nyaigoti; Ogutu, Bernhards; Oloo, Florence; Swai, Hulda; Kalombo, Lonji; Melariri, Paula; Mahanga, Geoffrey Maroa; Gathirwa, Jeremiah Waweru

    2014-01-01

    Primaquine (PQ) is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs) (PQ-SLNs) as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w) double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from -6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence of drug in drug-loaded nanoparticles along with disappearance of decomposition exotherms, suggesting increased physical stability of drug in prepared formulations. Negligible changes in characteristic peaks of drug in Fourier transform infrared spectra indicated absence of any interaction among the various components entrapped in the nanoparticle formulation. The nanoformulated PQ was 20% more effective as compared with conventional oral dose when tested in Plasmodium berghei-infected Swiss albino mice. This study demonstrated an efficient method of forming a nanomedicine delivery system for antimalarial drugs. PMID:25143734

  17. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design.

    PubMed

    Wang, Fengzhen; Chen, Li; Jiang, Sunmin; He, Jun; Zhang, Xiumei; Peng, Jin; Xu, Qunwei; Li, Rui

    2014-09-01

    The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box-Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100 mg GMS, 150 mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8 ± 4.9 nm. The polydispersity index of particle size was 0.239 ± 0.01 and the zeta potential was 32.7 ± 2.6 mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4 °C). PMID:24611687

  18. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles

    PubMed Central

    Omwoyo, Wesley Nyaigoti; Ogutu, Bernhards; Oloo, Florence; Swai, Hulda; Kalombo, Lonji; Melariri, Paula; Mahanga, Geoffrey Maroa; Gathirwa, Jeremiah Waweru

    2014-01-01

    Primaquine (PQ) is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs) (PQ-SLNs) as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w) double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from −6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence of drug in drug-loaded nanoparticles along with disappearance of decomposition exotherms, suggesting increased physical stability of drug in prepared formulations. Negligible changes in characteristic peaks of drug in Fourier transform infrared spectra indicated absence of any interaction among the various components entrapped in the nanoparticle formulation. The nanoformulated PQ was 20% more effective as compared with conventional oral dose when tested in Plasmodium berghei-infected Swiss albino mice. This study demonstrated an efficient method of forming a nanomedicine delivery system for antimalarial drugs. PMID:25143734

  19. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five

  20. Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan.

    PubMed

    Liu, Yong; Sun, Yan; Xu, Yaoxing; Feng, Hai; Fu, Sida; Tang, Jiangwu; Liu, Wei; Sun, Dongchang; Jiang, Hua; Xu, Shaochun

    2013-08-01

    To improve the application of lysozymes, methods for coating lysozymes with poly-γ-glutamic acid and chitosan were studied. Several lysozyme-loaded chitosan/poly-γ-glutamic acid composite nanosystems for loading and controlling the release of lysozymes were established. The lysozyme loading content and efficiency of the different systems were examined. The antibacterial activity of the composite nanoparticles was also investigated. Results showed that when the lysozymes were coated with poly-γ-glutamic acid and further rewrapped with chitosan, smooth spherical composite nanoparticles were obtained; the loading efficiency and loading content reached 76% and 40%, respectively. The lysozyme release in vitro was slow and presented a two-stage programmed release. Antibacterial testing in vitro indicated that lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid/chitosan had outstanding antibacterial activity. An obvious assembly of bacterial cells and composite nanoparticles was observed during co-incubation. Therefore, the poly-γ-glutamic acid/chitosan composite coating broadened the antibacterial spectrum of the composite lysozyme nanoreagent, and presented satisfactory antibacterial effect. The lysozyme-loaded chitosan/poly-γ-glutamic acid nanocoating system established in this research could provide reference for coating and controlled releasing of alkaline proteins. PMID:23628585

  1. Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study

    PubMed Central

    Basu, Sumit; Mukherjee, Biswajit; Chowdhury, Samrat Roy; Paul, Paramita; Choudhury, Rupak; Kumar, Ajeet; Mondal, Laboni; Hossain, Chowdhury Mobaswar; Maji, Ruma

    2012-01-01

    Objective We describe the development, evaluation, and comparison of colloidal gold-loaded, poly(d,l-lactic-co-glycolic acid)-based nanoparticles containing anti-acquired immunodeficiency syndrome drug stavudine and uptake of these nanoparticles by macrophages in vitro. Methods We used the following methods in this study: drug-excipient interaction by Fourier transform infrared spectroscopy, morphology of nanoparticles by field-emission scanning electron microscopy, particle size by a particle size analyzer, and zeta potential and polydispersity index by a zetasizer. Drug loading and in vitro release were evaluated for formulations. The best formulation was incorporated with fluorescein isothiocyanate. Macrophage uptake of fluorescein isothiocyanate nanoparticles was studied in vitro. Results Variations in process parameters, such as speed of homogenization and amount of excipients, affected drug loading and the polydispersity index. We found that the drug was released for a prolonged period (over 63 days) from the nanoparticles, and observed cellular uptake of stavudine nanoparticles by macrophages. Conclusion Experimental nanoparticles represent an interesting carrier system for the transport of stavudine to macrophages, providing reduced required drug dose and improved drug delivery to macrophages over an extended period. The presence of colloidal gold in the particles decreased the drug content and resulted in comparatively faster drug release. PMID:23271908

  2. Utilizing the protein corona around silica nanoparticles for dual drug loading and release

    NASA Astrophysics Data System (ADS)

    Shahabi, Shakiba; Treccani, Laura; Dringen, Ralf; Rezwan, Kurosch

    2015-10-01

    A protein corona forms spontaneously around silica nanoparticles (SNPs) in serum-containing media. To test whether this protein corona can be utilized for the loading and release of anticancer drugs we incorporated the hydrophilic doxorubicin, the hydrophobic meloxicam as well as their combination in the corona around SNPs. The application of corona-covered SNPs to osteosarcoma cells revealed that drug-free particles did not affect the cell viability. In contrast, SNPs carrying a protein corona with doxorubicin or meloxicam lowered the cell proliferation in a concentration-dependent manner. In addition, these particles had an even greater antiproliferative potential than the respective concentrations of free drugs. The best antiproliferative effects were observed for SNPs containing both doxorubicin and meloxicam in their corona. Co-localization studies revealed the presence of doxorubicin fluorescence in the nucleus and lysosomes of cells exposed to doxorubicin-containing coated SNPs, suggesting that endocytotic uptake of the SNPs facilitates the cellular accumulation of the drug. Our data demonstrate that the protein corona, which spontaneously forms around nanoparticles, can be efficiently exploited for loading the particles with multiple drugs for therapeutic purposes. As drugs are efficiently released from such particles they may have a great potential for nanomedical applications.A protein corona forms spontaneously around silica nanoparticles (SNPs) in serum-containing media. To test whether this protein corona can be utilized for the loading and release of anticancer drugs we incorporated the hydrophilic doxorubicin, the hydrophobic meloxicam as well as their combination in the corona around SNPs. The application of corona-covered SNPs to osteosarcoma cells revealed that drug-free particles did not affect the cell viability. In contrast, SNPs carrying a protein corona with doxorubicin or meloxicam lowered the cell proliferation in a concentration

  3. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters.

    PubMed

    Oliveira, Camila Areias de; Peres, Daniela D'Almeida; Graziola, Fabiana; Chacra, Nádia Araci Bou; Araújo, Gabriel Lima Barros de; Flórido, Ana Catarina; Mota, Joana; Rosado, Catarina; Velasco, Maria Valéria Robles; Rodrigues, Luís Monteiro; Fernandes, Ana Sofia; Baby, André Rolim

    2016-01-01

    The encapsulation of natural ingredients, such as rutin, can offer improvements in sun protection effectiveness. This strategy can provide enhanced flavonoid content and produces an improved bioactive compound with new physical and functional characteristics. As an alternative to common synthetic-based sunscreens, rutin-entrapped gelatin nanoparticles (GNPs) were designed and associated with ethylhexyl dimethyl PABA (EHDP), ethylhexyl methoxycinnamate (EHMC) and methoxydibenzoylmethane (BMDBM) in sunscreen formulations. The purpose of this study was to develop rutin-loaded gelatin nanoparticles and characterize their physicochemical, thermal, functional and safety properties. Rutin-loaded gelatin nanoparticles increased antioxidant activity by 74% relative to free-rutin (FR) solution. Also, this new ingredient upgraded the Sun Protection Factor (SPF) by 48%, indicating its potential as a raw material for bioactive sunscreens. The safety profile indicated that GNPs and glutaraldehyde (GTA) decreased HaCaT cell viability in a concentration/time-dependent manner. However, both blank nanoparticles (B-NC) and rutin-loaded nanoparticles (R-NC) had good performance on skin compatibility tests. These results functionally characterized rutin-loaded nanoparticles as a safe SPF enhancer in sunscreens, especially in association with UV filters. PMID:26428697

  4. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches

    PubMed Central

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. PMID:27536103

  5. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches.

    PubMed

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. PMID:27536103

  6. Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle

    PubMed Central

    Kai, Marc P.; Keeler, Amanda W.; Perry, Jillian L.; Reuter, Kevin G.; Luft, J. Christopher; O’Neal, Sara K.; Zamboni, William C.

    2015-01-01

    Cisplatin is a cytotoxic drug used as a first-line therapy for a wide variety of cancers. However, significant renal and neurological toxicities limits it clinical use. It has been documented that drug toxicities can be mitigated through nanoparticle formulation, while simultaneously increasing tumor accumulation through the enhanced permeation and retention effect. Circulation persistence is a key characteristic for exploiting this effect, and to that end we have developed long-circulating, PEGylated, polymeric hydrogels using the Particle Replication In Non-wetting Templates (PRINT®) platform and complexed cisplatin into the particles (PRINT-Platin). Sustained release was demonstrated, and drug loading correlated to surface PEG density. A PEG Mushroom conformation showed the best compromise between particle pharmacokinetic (PK) parameters and drug loading (16 wt %). While the PK profile of PEG Brush was superior, the loading was poor (2 wt %). Conversely, the drug loading in non-PEGylated particles was better (20 wt %), but the PK was not desirable. We also showed comparable cytotoxicity to cisplatin in several cancer cell lines (non-small cell lung, A549; ovarian, SKOV-3; breast, MDA-MB-468) and a higher MTD in mice (10 mg/kg versus 5 mg/kg). The pharmacokinetic profiles of drug in plasma, tumor, and kidney indicate improved exposure in the blood and tumor accumulation, with concurrent renal protection, when cisplatin was formulated in a nanoparticle. PK parameters were markedly improved: a 16.4-times higher area-under-the-curve (AUC), a reduction in clearance (CL) by a factor of 11.2, and a 4.20-times increase in the volume of distribution (Vd). Additionally, non-small cell lung and ovarian tumor AUC was at least twice that of cisplatin in both models. These findings suggest the potential for PRINT-Platin to improve efficacy and reduce toxicity compared to current cisplatin therapies. PMID:25744827

  7. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies.

    PubMed

    Gaspar, Diana P; Faria, Vasco; Gonçalves, Lídia M D; Taboada, Pablo; Remuñán-López, Carmen; Almeida, António J

    2016-01-30

    Systemic administration of antitubercular drugs can be complicated by off-target toxicity to cells and tissues that are not infected by Mycobacterium tuberculosis . Delivery of antitubercular drugs via nanoparticles directly to the infected cells has the potential to maximize efficacy and minimize toxicity. The present work demonstrates the potential of solid lipid nanoparticles (SLN) as a delivery platform for rifabutin (RFB). Two different RFB-containing SLN formulations were produced using glyceryl dibehenate or glyceryl tristearate as lipid components. Full characterization was performed in terms of particle size, encapsulation and loading efficiency, morphology by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies. Physical stability was evaluated when formulations were stored at 5 ± 3°C and in the freeze-dried form. Formulations were stable throughout lyophilization without significant variations on physicochemical properties and RFB losses. The SLN showed to be able to endure harsh temperature conditions as demonstrated by dynamic light scattering (DLS). Release studies revealed that RFB was almost completely released from SLN. In vitro studies with THP1 cells differentiated in macrophages showing a nanoparticle uptake of 46 ± 3% and 26 ± 9% for glyceryl dibehenate and glyceryl tristearate SLN, respectively. Cell viability studies using relevant lung cell lines (A549 and Calu-3) revealed low cytotoxicity for the SLN, suggesting these could be new potential vehicles for pulmonary delivery of antitubercular drugs. PMID:26656946

  8. Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhamoy; Sahoo, Amaresh Kumar; Chattopadhyay, Arun; Sankar Ghosh, Siddhartha

    2014-08-01

    The field of recombinant protein therapeutics has been evolving rapidly, making significant impact on clinical applications for several diseases, including cancer. However, the functional aspects of proteins rely exclusively on their structural integrity, in which nanoparticle mediated delivery offers unique advantages over free proteins. In the present work, a novel strategy has been developed where the nanoparticles (NPs) used for the delivery of the recombinant protein could contribute to enhancing the therapeutic efficacy of the recombinant protein. The transcription factor, NFκB, involved in cell growth and its inhibitor, IκBα, regulates its proliferation. Another similar naturally available molecule, which inhibits the function of NFκB, is curcumin. Hence, we have developed a ‘green synthesis’ method for preparing water-soluble curcumin nanoparticles to stabilize recombinant IκBα protein. The NPs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering before administration into human cervical carcinoma (HeLa) and glioblastoma (U87MG) cells. Experimental results demonstrated that this combined module had enhanced therapeutic efficacy, causing apoptotic cell death, which was confirmed by cytotoxicity assay and flowcytometry analyses. The expression of apoptotic genes studied by semi-quantitative reverse transcription PCR delineated the molecular pathways involved in cell death. Thus, our study revealed that the functional delivery of recombinant IκBα-loaded curcumin NPs has promise as a natural-product-based protein therapeutics against cancer cells.

  9. Indocyanine Green-Loaded Nanoparticles for Image-Guided Tumor Surgery

    PubMed Central

    Hill, Tanner K.; Abdulahad, Asem; Kelkar, Sneha S.; Marini, Frank C.; Long, Timothy E.; Provenzale, James M.; Mohs, Aaron M.

    2015-01-01

    Detecting positive tumor margins and local malignant masses during surgery is critical for long-term patient survival. The use of image-guided surgery for tumor removal, particularly with near-infrared fluorescent imaging, is a potential method to facilitate removing all neoplastic tissue at the surgical site. In this study we demonstrate a series of hyaluronic acid (HLA)-derived nanoparticles that entrap the near-infrared dye indocyanine green, termed NanoICG, for improved delivery of the dye to tumors. Self-assembly of the nanoparticles was driven by conjugation of one of three hydrophobic moieties: aminopropyl-1-pyrenebutanamide (PBA), aminopropyl-5β-cholanamide (5βCA), or octadecylamine (ODA). Nanoparticle self-assembly, dye loading, and optical properties were characterized. NanoICG exhibited quenched fluorescence that could be activated by disassembly in a mixed solvent. NanoICG was found to be nontoxic at physiologically relevant concentrations and exposure was not found to inhibit cell growth. Using an MDA-MB-231 tumor xenograft model in mice, strong fluorescence enhancement in tumors was observed with NanoICG using a fluorescence image-guided surgery system and a whole-animal imaging system. Tumor contrast with NanoICG was significantly higher than with ICG alone. PMID:25565445

  10. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles

    PubMed Central

    Lou, Jie; Hu, Wenjing; Tian, Rui; Zhang, Hua; Jia, Yuntao; Zhang, Jingqing; Zhang, Liangke

    2014-01-01

    This study aimed to optimize and evaluate a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles (Cur-BSA-NPs-Gel). Albumin nanoparticles were prepared via a desolvation method, and the gels were prepared via a cold method. The central composite design and response surface method was used to evaluate the effects of varying Pluronic® F127 and Pluronic® F68 concentrations on the sol–gel transition temperature, which is an indicator of optimum formulations. The optimized formulation was a free-flowing liquid below 30.9°C that transformed into a semi-solid gel above 34.2°C after dilution with simulated tear fluid. Results of the in vitro release and erosion behavior study indicated that Cur-BSA-NPs-Gel achieved superior sustained-release effects and that incorporation of albumin nanoparticles exerted minimal effects on the gel structure. In addition, in vivo ophthalmic experiments employing Cur-BSA-NPs-Gel were subsequently performed in rabbits. In vivo eye irritation results showed that Cur-BSA-NPs-Gel might be considered safe for ophthalmic drug delivery. The in vivo study also revealed that the formulation could significantly increase curcumin bioavailability in the aqueous humor. In conclusion, the optimized in situ gel formulation developed in this work has significant potential for ocular application. PMID:24904211