Sample records for nanoparticles electrochemical impedance

  1. A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus.

    PubMed

    Lin, Donghai; Tang, Thompson; Jed Harrison, D; Lee, William E; Jemere, Abebaw B

    2015-06-15

    We report on the development of a regenerable sensitive immunosensor based on electrochemical impedance spectroscopy for the detection of type 5 adenovirus. The multi-layered immunosensor fabrication involved successive modification steps on gold electrodes: (i) modification with self-assembled layer of 1,6-hexanedithiol to which gold nanoparticles were attached via the distal thiol groups, (ii) formation of self-assembled monolayer of 11-mercaptoundecanoic acid onto the gold nanoparticles, (iii) covalent immobilization of monoclonal anti-adenovirus 5 antibody, with EDC/NHS coupling reaction on the nanoparticles, completing the immunosensor. The immunosensor displayed a very good detection limit of 30 virus particles/ml and a wide linear dynamic range of 10(5). An electrochemical reductive desorption technique was employed to completely desorb the components of the immunosensor surface, then re-assemble the sensing layer and reuse the sensor. On a single electrode, the multi-layered immunosensor could be assembled and disassembled at least 30 times with 87% of the original signal intact. The changes of electrode behavior after each assembly and desorption processes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  3. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study.

    PubMed

    Hosseini, Marzieh; Fotouhi, Lida; Ehsani, Ali; Naseri, Maryam

    2017-11-01

    We introduce a simple and facile strategy for dispersing of nanoparticles within a p-type conducting polymer matrix by in situ electropolymerization using oxalic acid as the supporting electrolyte. Coatings prepared from polypyrrole-nano-metal oxide particles synthesized by in situ polymerization were found to exhibit excellent corrosion resistance much superior to polypyrrole (Ppy) in aggressive environments. The anti-corrosion behavior of polypyrrole films in different states and the presence of TiO 2 , Mn 2 O 3 and ZnO nanoparticles synthesized by electropolymerization on Al electrodes have been investigated in corrosive solutions using potentiodynamic polarization and electrochemical impedance spectroscopy. The electrochemical response of the coated electrodes in polymer and nanocomposite state was compared with bare electrodes. The use of TiO 2 nanoparticles has proved to be a great improvement in the performances of polypyrrole films for corrosion protection of Al samples. The polypyrrole synthesized in the presence of TiO 2 nanoparticles coated electrodes offered a noticeable enhancement of protection against corrosion processes. The exceptional improvement of performance of these coatings has been associated with the increase in barrier to diffusion, prevention of charge transport by the nanosize TiO 2 , redox properties of polypyrrole as well as very large surface area available for the liberation of dopant due to nano-size additive. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody.

    PubMed

    Liu, Guozhen; Liu, Jingquan; Davis, Thomas P; Gooding, J Justin

    2011-04-15

    Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.

    PubMed

    Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J

    2016-11-15

    systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.

  6. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  7. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  8. Electrochemical Impedance Of Inorganic-Zinc-Coated Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G.

    1992-01-01

    Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.

  9. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.

    PubMed

    Yoon, Ok Ja; Kim, Insu; Sohn, Il Yung; Kieu, Truong Thuy; Lee, Nae-Eung

    2014-07-01

    Graphene nanoflake toxicity was analyzed using cell-based electrochemical impedance biosensing with interdigitated indium tin oxide (ITO) electrodes installed in a custom-built mini-incubator positioned on an inverted optical microscope. Sensing with electrochemical measurements from interdigitated ITO electrodes was highly linear (R(2) = 0.93 and 0.96 for anodic peak current (Ipa) and cathodic peak current (Ipc), respectively). Size-dependent analysis of Graphene nanoflake toxicity was carried out in a mini-incubator system with cultured HeLa cells treated with Graphene nanoflakes having an average size of 80 or 30 nm for one day. Biological assays of cell proliferation and viability complemented electrochemical impedance measurements. The increased toxicity of smaller Graphene nanoflakes (30 nm) as measured by electrochemical impedance sensing and optical monitoring of treated cells was consistent with the biological assay results. Cell-based electrochemical impedance biosensing can be used to assess the toxicity of nanomaterials with different biomedical and environmental applications. © 2013 Wiley Periodicals, Inc.

  11. Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Mayedwa, N.; Fuku, X. G.; Mongwaketsi, N.; Maaza, M.

    2018-05-01

    The research work involved the development of a better, inexpensive, reliable, easily and accurate way for the fabrication of Cobalt (II, III) oxide (Co3O4) nanoparticles through a green synthetic method using Moringa Oleifera extract. The electrochemical activity, crystalline structure, morphology, isothermal behaviour and optical properties of Co3O4 nanoparticles were studied using various characterization techniques. The X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) analysis confirmed the formation of Co3O4 nanoparticles. The pseudo-capacitor behaviour of spinel Co3O4 nanoparticles on Nickel foam electrode was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 3M KOH solution. The CV curve revealed a pairs of redox peaks, indicating the pseudo-capacitive characteristics of the Ni/Co3O4 electrode. EIS results showed a small semicircle and Warburg impedance, indicating that the electrochemical process on the surface electrode is kinetically and diffusion controlled. The charge-discharge results indicating that the specific capacitance Ni/Co3O4 electrode is approximately 1060 F/g at a discharge current density of at 2 A/g.

  12. Fine tuning of magnetite nanoparticle size distribution using dissymmetric potential pulses in the presence of biocompatible surfactants and the electrochemical characterization of the nanoparticles.

    PubMed

    Rodríguez-López, A; Cruz-Rivera, J J; Elías-Alfaro, C G; Betancourt, I; Ruiz-Silva, H; Antaño-López, R

    2015-01-01

    The effects of varying the surfactant concentration and the anodic pulse potential on the properties and electrochemical behaviors of magnetite nanoparticles were investigated. The nanoparticles were synthesized with an electrochemical method based on applying dissymmetric potential pulses, which offers the advantage that can be used to tune the particle size distribution very precisely in the range of 10 to 50 nm. Under the conditions studied, the surfactant concentration directly affects the size distribution, with higher concentrations producing narrower distributions. Linear voltammetry was used to characterize the electrochemical behavior of the synthesized nanoparticles in both the anodic and cathodic regions, which are attributed to the oxidation of Fe(2+) and the reduction of Fe(3+); these species are part of the spinel structure of magnetite. Electrochemical impedance spectroscopy data indicated that the reduction and oxidation reactions of the nanoparticles are not controlled by the mass transport step, but by the charge transfer step. The sample with the highest saturation magnetization was that synthesized in the presence of polyethylene glycol. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  14. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.

    PubMed

    Kanchana, P; Sekar, C

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. Copyright © 2014. Published by Elsevier B.V.

  15. Electrochemical impedance analysis of perovskite–electrolyte interfaces

    DOE PAGES

    Li, Zhen; Mercado, Candy C.; Yang, Mengjin; ...

    2017-01-31

    Here, the flat band potentials and carrier densities of spin coated and sprayed MAPbI 3, FA 0.85Cs 0.15PbI 3, and MAPbBr 3 perovskite films were determined using the Mott-Schottky relation. The films developed a space charge layer and exhibited p-type conduction with carrier concentration ~ 10 16 cm -3 for spin coated films. Electrochemical impedance spectra showed typical space charge impedance at frequencies > 1 kHz with increasing capacitance < 1 kHz owing to an ion diffusion component.

  16. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  17. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    PubMed Central

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-01

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved. PMID:28788452

  18. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy.

    PubMed

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-03

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  19. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    PubMed

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  20. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  2. Botulinum neurotoxin serotypes detected by electrochemical impedance spectroscopy.

    PubMed

    Savage, Alison C; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-05-06

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A-E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins.

  3. Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy

    PubMed Central

    Savage, Alison C.; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-01-01

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A–E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins. PMID:25954998

  4. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  6. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    NASA Astrophysics Data System (ADS)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  7. Electrochemical Impedance Imaging via the Distribution of Diffusion Times.

    PubMed

    Song, Juhyun; Bazant, Martin Z

    2018-03-16

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  8. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    PubMed Central

    Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue

    2016-01-01

    In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893

  9. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud

    2014-07-01

    Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.

  10. Electrochemical impedance spectroscopy investigation on the clinical lifetime of ProTaper rotary file system.

    PubMed

    Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  11. Electrochemical Impedance Analysis of β-TITANIUM Alloys as Implants in Ringers Lactate Solution

    NASA Astrophysics Data System (ADS)

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-01

    Commercially pure titanium and two β-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better β-alloy as compared to TNZT.

  12. Peptide nanoparticles (PNPs) modified disposable platform for sensitive electrochemical cytosensing of DLD-1 cancer cells.

    PubMed

    Yaman, Yesim Tugce; Akbal, Öznur; Bolat, Gulcin; Bozdogan, Betul; Denkbas, Emir Baki; Abaci, Serdar

    2018-05-01

    A novel diphenylalaninamid (FFA) based peptide nanoparticles (PNPs) modified pencil graphite electrodes (PGEs) for construction of electrochemical cytosensor was demonstrated for the first time in this study. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed the spherical nanostructure of the synthesized FFA based PNPs while attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectra provided information about the structure and conformation of proteins in their structure. Self-assembly of PNPs on PGE surface and adhesion of DLD-1 cancer cells on this surface was also characterized by electrochemical measurements. PNP/PGEs acted as a sensitive platform for simple and rapid quantification of low concentration of DLD-1 cancer cells in early diagnosis using the electrochemical impedance method (EIS). The offered cytosensor demonstrated outstanding performance for the detection of DLD-1 cells by the EIS method. The impedance of electronic transduction was associated with the amount of the immobilized cells ranging from 2 × 10 2 to 2.0 × 10 5 cellsmL -1 with a limit of detection of 100 cellsmL -1 . The efficient performance of the cytosensor was attributed to the well-defined nanostructure and biocompability of PNPs on the substrate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  14. Organic electrochemical transistors for cell-based impedance sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivnay, Jonathan, E-mail: rivnay@emse.fr, E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain currentmore » measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.« less

  15. Electrochemical Detection of Nicotine Using Cerium Nanoparticles Modified Carbon Paste Sensor and Anionic Surfactant

    NASA Astrophysics Data System (ADS)

    Fekry, A. M.; Azab, S. M.; Shehata, M.; Ameer, M. A.

    A promising electrochemical sensor for the determination of nicotine (NIC) was developed by electrodeposition of Ce-Nanoparticles on a carbon paste electrode (CPE). The interaction of nicotine was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques, in both aqueous and micellar media. The NIC Measurements were carried out in Britton-Robinson (B-R) buffer solution of pH range (2.0-8.0) containing (1.0 mM) sodium dodecylsulfate (SDS). The linear response range of the sensor was between 8 × 10-6 and 10-4 M with a detection limit of 9.43 × 10-8 M. Satisfactory results were achieved for the detection of NIC in real samples as urine and different brands of commercial cigarettes.

  16. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  17. Effect of thiourea on electrochemical nucleation and electrochemical impedance spectroscopy of electrodeposited tin on a copper substrate in a sulfate bath.

    PubMed

    Lee, Mi-Ri; Na, Seong-Hun; Park, Hwa-Sun; Suh, Su-Jeong

    2014-12-01

    The effect of thiourea on the electrochemical nucleation of tin on a copper substrate from a sulfate bath was studied using voltammetry, chronoamperometry, electrochemical impedance spectroscopy, and scanning electron microscopy. Without thiourea, electrodeposition of tin showed very poor surface coverage. However, re-nucleation and growth of tin occurred after the addition of thiourea. In particular, very rapid re-nucleation and growth behavior of tin were observed when up to 6 g/L of thiourea was added. Furthermore, impedance analysis allowed the estimation of the change in the growth behavior of tin when up to 6 g/L of thiourea was added.

  18. Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7.

    PubMed

    Yang, Liju; Li, Yanbin; Erf, Gisela F

    2004-02-15

    A label-free electrochemical impedance immunosensor for rapid detection of Escherichia coli O157:H7 was developed by immobilizing anti-E. coli antibodies onto an indium-tin oxide interdigitated array (IDA) microelectrode. Based on the general electronic equivalent model of an electrochemical cell and the behavior of the IDA microelectrode, an equivalent circuit, consisting of an ohmic resistor of the electrolyte between two electrodes and a double layer capacitor, an electron-transfer resistor, and a Warburg impedance around each electrode, was introduced for interpretation of the impedance components of the IDA microelectrode system. The results showed that the immobilization of antibodies and the binding of E. coli cells to the IDA microelectrode surface increased the electron-transfer resistance, which was directly measured with electrochemical impedance spectroscopy in the presence of [Fe(CN)(6)](3-/4-) as a redox probe. The electron-transfer resistance was correlated with the concentration of E. coli cells in a range from 4.36 x 10(5) to 4.36 x 10(8) cfu/mL with the detection limit of 10(6) cfu/mL.

  19. An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode.

    PubMed

    Das, Ritu; Sharma, Mukesh K; Rao, Vepa K; Bhattacharya, B K; Garg, Iti; Venkatesh, V; Upadhyay, Sanjay

    2014-10-20

    In this work, we fabricated a system of integrated self-assembled layer of organosilane 3-mercaptopropyltrimethoxy silane (MPTS) on the screen printed electrode (SPE) and electrochemically deposited gold nanoparticle for Salmonella typhi detection employing Vi gene as a molecular marker. Thiolated DNA probe was immobilized on a gold nanoparticle (AuNP) modified SPE for DNA hybridization assay using methylene blue as redox (electroactive) hybridization indicator, and signal was monitored by differential pulse voltammetry (DPV) method. The modified SPE was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) method. The DNA biosensor showed excellent performances with high sensitivity and good selectivity. The current response was linear with the target sequence concentrations ranging from 1.0 × 10(-11) to 0.5 × 10(-8)M and the detection limit was found to be 50 (± 2.1)pM. The DNA biosensor showed good discrimination ability to the one-base, two-base and three-base mismatched sequences. The fabricated genosensor could also be regenerated easily and reused for three to four times for further hybridization studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  1. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    PubMed Central

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  3. Polyvinylidene fluoride membranes probed by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Qi-Zhao; Huang, Qing; Chen, Zhe; Yao, Lei; Fu, Ping; Lin, Zhi-Dong

    2018-06-01

    Electrochemical impedance spectroscopy (EIS) has been applied to characterize the structure of polyvinylidene fluoride (PVDF) membranes. The characteristic frequency, which directly obtained from the original EIS data, was used to clarify the difference of the membranes’ structures. The experimental data indicated the equivalence between the characteristic frequency and the membrane resistance fitted from the equivalent circuit. The results evidenced that the characteristic frequency obtained directly from original EIS data without any fitting calculation can be used for in situ characterizing a membrane instead of the membrane resistance.

  4. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.

    PubMed

    Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang

    2012-10-29

    Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.

  6. Rapid Quantitative Detection of Brucella melitensis by a Label-Free Impedance Immunosensor Based on a Gold Nanoparticle-Modified Screen-Printed Carbon Electrode

    PubMed Central

    Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen

    2013-01-01

    A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis. PMID:23881126

  7. Rapid quantitative detection of Brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode.

    PubMed

    Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen

    2013-07-04

    A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 10(4) to 4 × 10(6) CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 10(4) and 4 × 10(5) CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.

  8. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3.

    PubMed

    Hong, Chenglin; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying

    2009-02-09

    The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 UmL(-1) with a coefficient 0.9986 and a detection limit of 0.64 UmL(-1) at S/N=3.

  9. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.

  10. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles.

    PubMed

    Sun, Tong; Wang, Dengchao; Mirkin, Michael V

    2018-06-18

    Electrochemical experiments at individual nanoparticles (NPs) can provide new insights into their structure-activity relationships. By using small nanoelectrodes as tips in a scanning electrochemical microscope (SECM), we recently imaged individual surface-bound 10-50 nm metal NPs. Herein, we introduce a new mode of SECM operation based on tunneling between the tip and a nanoparticle immobilized on the insulating surface. The obtained current vs. distance curves show the transition from the conventional feedback response to electron tunneling between the tip and the NP at separation distances of less than about 3 nm. In addition to high-resolution imaging of the NP topography, the tunneling mode enables measurement of the heterogeneous kinetics at a single NP without making an ohmic contact with it. The developed method should be useful for studying the effects of nanoparticle size and geometry on electrocatalytic activity in real-world applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose.

    PubMed

    Sanaeifar, Niuosha; Rabiee, Mohammad; Abdolrahim, Mojgan; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2017-02-15

    In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe 3 O 4 ) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe 3 O 4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe 3 O 4 nanocomposite via physical adsorption. The mixture of PVA, Fe 3 O 4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe 3 O 4 /Sn). The Fe 3 O 4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe 3 O 4 and GOx/PVA-Fe 3 O 4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe 3 O 4 nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe 3 O 4 /Sn bioelectrode could measure glucose in the range from 5 × 10 -3 to 30 mM with a sensitivity of 9.36 μA mM -1 and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (K M ) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe 3 O 4 /Sn bioelectrode is promising in biosensor construction. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk.

    PubMed

    Dong, Jing; Zhao, Han; Xu, Minrong; Ma, Qiang; Ai, Shiyun

    2013-12-01

    A sensitive and stable label-free electrochemical impedance immunosensor for the detection of Salmonella typhimurium was developed by immobilising anti-Salmonella antibodies onto the gold nanoparticles and poly(amidoamine)-multiwalled carbon nanotubes-chitosan nanocomposite film modified glassy carbon electrode (AuNPs/PAMAM-MWCNT-Chi/GCE). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to verify the stepwise assembly of the immunosensor. Co-addition of MWCNT, PAMAM and AuNPs greatly enhanced the sensitivity of the immunosensor. The immobilisation of antibodies and the binding of Salmonella cells to the modified electrode increased the electron-transfer resistance (Ret), which was directly measured with EIS using [Fe(CN)6](3-/4-) as a redox probe. A linear relationship of Ret and Salmonella concentration was obtained in the Salmonella concentration range of 1.0×10(3) to 1.0×10(7) CFU mL(-1) with a detection limit of 5.0×10(2) CFU mL(-1). Additionally, the proposed method was successfully applied to determine S. typhimurium content in milk samples with satisfactory results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  14. Electrochemical characterization of gelatinized starch dispersions: voltammetry and electrochemical impedance spectroscopy on platinum surface.

    PubMed

    Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2015-06-25

    The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization and electrochemical response of DNA functionalized 2nm gold nanoparticles confined in a nanochannel array.

    PubMed

    Peinetti, Ana S; Ceretti, Helena; Mizrahi, Martín; González, Graciela A; Ramírez, Silvana A; Requejo, Félix G; Montserrat, Javier M; Battaglini, Fernando

    2018-06-01

    Polyvalent gold nanoparticle oligonucleotide conjugates are subject of intense research. Even though 2nm diameter AuNPs have been previously modified with DNA, little is known about their structure and electrochemical behavior. In this work, we examine the influence of different surface modification strategies on the interplay between the meso-organization and the molecular recognition properties of a 27-mer DNA strand. This DNA strand is functionalized with different sulfur-containing moieties and immobilized on 2nm gold nanoparticles confined on a nanoporous alumina, working the whole system as an electrode array. Surface coverages were determined by EXAFS and the performance as recognition elements for impedance-based sensors is evaluated. Our results prove that low DNA coverages on the confined nanoparticles prompt to a more sensitive response, showing the relevance in avoiding the DNA strand overcrowding. The system was able to determine a concentration as low as 100pM of the complementary strand, thus introducing the foundations for the construction of label-free genosensors at the nanometer scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  17. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    NASA Astrophysics Data System (ADS)

    Vitarelli, Michael J.; Talaga, David S.

    2013-09-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins.

  18. Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan

    2008-10-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  19. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  20. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    PubMed

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  1. The Performance of Dammar-based Paint System Evaluated by Electrochemical Impedance Spectroscopy (EIS) and Potential Time Measurement (PTM)

    NASA Astrophysics Data System (ADS)

    Omar, N. M.; Ahmad, A. Hanom

    2009-06-01

    The coating resistance of the Dammar-based paint system was determined by using Electrochemical Impedance Spectroscopy (EIS), whereas, the corrosion potential analysis was determined by using potential time measurement (PTM) method. Carotenoid pigment obtained from Capsicum Annum (dried chili pepper) was added into the mixture of dammar and acrylic polyol resin and the paint systems were proofed on Aluminium steel Q-panels as a substrate. Result shows that the paint system with a composition of 35% dammar (CD35%) possessed the higher corrosion resistance after 30 days of exposure in 3% NaCl solution for electrochemical impedance spectroscopy and also can withstand the longest time for delimitation protection in PTM analysis. The results prove that the developed organic paint system can improve the electrochemical and corrosion protection properties of a paint system.

  2. A novel electrochemical immunosensor based on Au nanoparticles and horseradish peroxidase signal amplification for ultrasensitive detection of α-fetoprotein.

    PubMed

    Lu, Dingqiang; Xu, Qiuda; Pang, Guangchang; Lu, Fuping

    2018-06-05

    An electrochemical double-layer Au nanoparticle membrane immunosensor was developed using an electrochemical biosensing signal amplification system with Au nanoparticles, thionine, chitosan, and horseradish peroxidase, which was fabricated using double self-adsorption of Au nanoparticle sol followed by anti-α-fetoprotein Balb/c mouse monoclonal antibody adsorption. The AuNPs sol was characterized by spectrum scanning and transmission electron microscopy. The immunosensor was characterized by atomic force microscopy, cyclic voltammetry, and alternating-current impedance during each stage of adsorption and assembly. The amperometric I-t curve method was used to measure α-fetoprotein (AFP) diluted in phosphate buffered saline. The result indicated a wide linear range, and the change rate of steady-current before and after immune response had linear correlation within the range 0.1-10 4  pg/mL AFP. The current change rate equation was △I = 5.82334 lgC + 37.01195 (R 2  = 0.9922). The lowest limit of detection was 0.03 pg/mL (S/N = 3), and the reproducibility of the sensor was good. Additionally, the sensor could be stably stored above phosphate buffered saline at 4 °C for more than 24 days. More importantly, the sensor is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling.

  3. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

    PubMed Central

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-01-01

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples. PMID:26184200

  4. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid.

    PubMed

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-07-09

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples.

  5. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review.

    PubMed

    Ding, Liang; Bond, Alan M; Zhai, Jianping; Zhang, Jie

    2013-10-03

    Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Electrochemical impedance study of the interaction of metal ions with unlabeled PNA.

    PubMed

    Gao, Lan; Li, Congjuan; Li, Xiaohong; Kraatz, Heinz-Bernhard

    2010-09-14

    The interactions of the metal ions Mg(2+), Zn(2+), Ni(2+), and Co(2+) with thin films of peptide nucleic acids (PNAs) were studied by electrochemical impedance spectroscopy (EIS), and the results show that Zn(2+), Ni(2+) and Co(2+) interacted favorably with the PNA film involving the backbone and the nucleobases with the exception of Mg(2+) for which the interaction with the backbone appears to be dominant.

  7. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.

    PubMed

    Ortiz-Aguayo, Dionisia; Del Valle, Manel

    2018-01-26

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  8. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    PubMed Central

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis. PMID:29373502

  9. An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang

    2017-06-01

    The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Engineering of Metal Oxide Nanoparticles for Application in Electrochemical Devices

    NASA Astrophysics Data System (ADS)

    Santos, Lidia Sofia Leitao

    The growing demand for materials and devices with new functionalities led to the increased interest in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by solvothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the performance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The deposition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The

  11. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    NASA Astrophysics Data System (ADS)

    Zia, Asif I.; Mohd Syaifudin, A. R.; Mukhopadhyay, S. C.; Yu, P. L.; Al-Bahadly, I. H.; Gooneratne, Chinthaka P.; Kosel, Jǘrgen; Liao, Tai-Shan

    2013-06-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  12. Enhancement of the electrochemical performance of hydrothermally prepared anatase nanoparticles for optimal use as high capacity anode materials in lithium ion batteries (LIBs)

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.; Powers, K.

    2015-02-01

    Mesoporous TiO2 nanoparticles have been synthesized via facile hydrolytic hydrothermal technique without incorporation any template. The precious metallic nanoparticles; Ag, Pt and Pd have been embedded between the anatase particles using in situ reduction step. The structural properties of the as-synthesized samples were investigated by X-ray diffraction, transmission electron microscopic and N2 adsorption-desorption isotherm ( S BET). The electrochemical studies for the as-prepared anode materials including, cyclic voltammetry and electrochemical impedance spectroscopy indicated a significant improvement in the electronic conductivity of the lithium-TiO2 cells. Therefore, the charge-discharge rates were noticeably promoted as a result of the enhancement of Li-ion diffusion and charge transfer. The cycling results of Pd-TiO2 revealed a marvelous improvement in both charge and discharge capacities by 89.4 and 88 % after 10 cycles at C/5 rate. Generally, all the as-prepared TiO2 nanocomposites showed enhanced specific capacity, cycling stability and rate capability compared to the pure TiO2, providing a promising behavior for use as anodes in lithium ion batteries (LIBs).

  13. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions.

    PubMed

    Pereira, Thulio C; Conceição, Carlos A F; Khan, Alamgir; Fernandes, Raquel M T; Ferreira, Maira S; Marques, Edmar P; Marques, Aldaléa L B

    2016-11-05

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions

    NASA Astrophysics Data System (ADS)

    Pereira, Thulio C.; Conceição, Carlos A. F.; Khan, Alamgir; Fernandes, Raquel M. T.; Ferreira, Maira S.; Marques, Edmar P.; Marques, Aldaléa L. B.

    2016-11-01

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique.

  15. Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes.

    PubMed

    Thangavelu, Kokulnathan; Raja, Nehru; Chen, Shen-Ming; Liao, Wei-Cheng

    2017-09-01

    Amalgamation of noble metal nanomaterials on graphene flakes potentially paves one way to improve their physicochemical properties. This paper deals with the simultaneous electrochemical deposition of gold and palladium nanoparticles on graphene flakes (Au/PdNPs-GRF) for the sensitive determination of caffeic acid (CA). The physiochemical properties of the prepared Au/PdNPs-GRF was characterized by using numerous analytical techniques such as scanning electron microscopy, electron dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, Raman spectroscopy and electrochemical impedance spectroscopy. The enhanced electrochemical determination of CA at Au/PdNPs deposition on GRF were studied by using cyclic voltammetry and differential pulse voltammetry. In results, Au/PdNPs-GRF electrode exhibited an excellent electrocatalytic activity towards CA with wide linear range and low limit of detection of 0.03-938.97µM and 6nM, respectively. Eventually, the Au/PdNPs-GRF was found as a selective and stable active material for the sensing of CA. In addition, the proposed sensor showed the adequate results in real sample analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Electrochemical Nanoparticle-Enzyme Sensors for Screening Bacterial Contamination in Drinking Water

    PubMed Central

    Chen, Juhong; Jiang, Ziwen; Ackerman, Jonathan D.; Yazdani, Mahdieh; Hou, Singyuk

    2015-01-01

    Traditional plating and culturing methods used to quantify bacteria commonly require hours to days from sampling to results. We present here a simple, sensitive and rapid electrochemical method for bacteria detection in drinking water based on gold nanoparticle-enzyme complexes. The gold nanoparticles were functionalized with positively charged quaternary amine headgroups that could bind to enzymes through electrostatic interactions, resulting in inhibition of enzymatic activity. In the presence of bacteria, the nanoparticles released from the enzymes and preferentially bound to the bacteria, resulting in an increase in enzyme activity, releasing a redox-active phenol from the substrate. We employed this strategy for the electrochemical sensing of Escherichia coli and Staphylococcus aureus, resulting in a rapid detection (<1h) with high sensitivity (102 CFU·mL−1). PMID:26042607

  17. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.

  18. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory.

    PubMed

    Ehsani, A; Mahjani, M G; Hosseini, M; Safari, R; Moshrefi, R; Mohammad Shiri, H

    2017-03-15

    Inhibition performance of Thymus vulgaris plant leaves extract (thyme) as environmentally friendly (green) inhibitor for the corrosion protection of stainless steel (SS) type 304 in 1.0molL -1 HCl solution was studied by potentiodynamic polarization, electrochemical impedance (EIS) and electrochemical noise measurements (EN) techniques. The EN data were analyzed with FFT technique to make the spectral power density plots. The calculations were performed by MATLAB 2014a software. Geometry optimization and calculation of the structural and electronic properties of the molecular system of inhibitor have been carried out using UB3LYP/6-311++G ∗∗ level. Moreover, the results obtained from electrochemical noise analysis were compared with potentiodynamic polarization and electrochemical impedance spectroscopy. All of the used techniques showed positive effect of green inhibitor with increasing inhibitor concentration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    PubMed Central

    Bakierska, Monika; Świętosławski, Michał; Dziembaj, Roman; Molenda, Marcin

    2016-01-01

    In this work, nanostructured LiMn2O4 (LMO) and LiMn2O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI) layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material. PMID:28773819

  20. Electrochemical Impedance Spectroscopy for Real-Time Detection of Lipid Membrane Damage Based on a Porous Self-Assembly Monolayer Support.

    PubMed

    Zhang, Meng; Zhai, Qingyu; Wan, Liping; Chen, Li; Peng, Yu; Deng, Chunyan; Xiang, Juan; Yan, Jiawei

    2018-06-19

    Layer-by-layer dissolution and permeable pore formation are two typical membrane damage pathways, which induce membrane function disorder and result in serious disease, such as Alzheimer's disease, Keshan disease, Sickle-cell disease, and so on. To effectively distinguish and sensitively monitor these two typical membrane damage pathways, a facile electrochemical impedance strategy was developed on a porous self-assembly monolayer (pSAM) supported bilayer lipid membrane (BLM). The pSAM was prepared by selectively electrochemical reductive desorption of the mercaptopropionic acid in a mixed mercaptopropionic acid/11-mercaptoundecanoic acid self-assembled monolayer, which created plenty of nanopores with tens of nanometers in diameter and several nanometers in height (defined as inner-pores). The ultralow aspect ratio of the inner-pores was advantageous to the mass transfer of electrochemical probe [Fe(CN) 6 ] 3-/4- , simplifying the equivalent electric circuit for electrochemical impedance spectroscopy analysis at the electrode/membrane interface. [Fe(CN) 6 ] 3-/4- transferring from the bulk solution into the inner-pore induce significant changes of the interfacial impedance properties, improving the detection sensitivity. Based on these, the different membrane damage pathways were effectively distinguished and sensitively monitored with the normalized resistance-capacitance changes of inner-pore-related parameters including the electrolyte resistance within the pore length ( R pore ) and the metal/inner-pore interfacial capacitance ( C pore ) and the charge-transfer resistance ( R ct-in ) at the metal/inner-pore interface.

  1. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    PubMed

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  2. Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

    PubMed Central

    Chai, Changhoon; Takhistov, Paul

    2010-01-01

    The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560

  3. High sensitivity and label-free detection of Enterovirus 71 by nanogold modified electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Yu; Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Yang, Jyh-Yuan; Chang, Chia-Ching

    2013-03-01

    Enterovirus 71 (EV71), which is the most fulminant and invasive species of enterovirus, can cause children neurologic complications and death within 2-3 days after fever and rash developed. Besides, EV71 has high sequence similarity with Coxsackie A 16 (CA16) that makes differential diagnosis difficult in clinic and laboratory. Since conventional viral diagnostic method cannot diagnose EV71 quickly and EV71 can transmit at low viral titer, the patients might delay in treatment. A quick, high sensitive, and high specific test for EV71 detection is pivotal. Electrochemical impedance spectroscopy (EIS) has been applied for detecting bio-molecules as biosensors recently. In this study, we try to build a detection platform for EV71 detection by nanogold modified EIS probe. The result shows that our probe can detect 3.6 VP1/50 μl (one EV71 particle has 60 VP1) in 3 minutes. The test can also distinguish EV71 from CA16 and lysozyme. Diagnosis of enterovirus 71 by electrochemical impedance spectroscopy has the potential to apply in clinic.

  4. Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation

    DTIC Science & Technology

    2012-09-27

    Technical Research Publication 3. DATES COVERED (From - To) 09/27/2010 – 09/26/2012 4. TITLE AND SUBTITLE Application of Symbolic Regression to...relationships are not well described. In this paper these tools and techniques are described in detail, and the results of the application of these...585) 424-1990 Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation Carl

  5. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN.

    PubMed

    Gu, Wenshu; Zhu, Pei; Jiang, Donglei; He, Xingxing; Li, Yun; Ji, Jian; Zhang, Lijuan; Sun, Yange; Sun, Xiulan

    2015-08-15

    In this study, a novel and simple cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON) and zearalenone (ZEN) on BEL-7402 cells. The sensor was fabricated by modification with AuNPs, p-aminothiophenol, and folic acid in succession. The BEL-7402 cells which had a good activity were adhered on the electrode through the high affinity between the folate receptor and folic acid selectivity. We used the collagen to maintain the cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate the individual and combined toxicity of DON and ZEN. Our results indicate that DON and ZEN caused a marked decrease in the cell viability in a dose-dependent manner. The value of electrochemical impedance spectroscopy decreased with the concentration of DON and ZEN in range of 0.1-20, 0.1-50 μg/ml with the detection limit as 0.03, 0.05 μg/ml, respectively, the IC50 for DON and ZEN as obtained by the proposed electrochemical method were 7.1 μg/ml and 24.6 μg/ml, respectively, and the combination of two mycotoxins appears to generate an additive response. The electrochemical cytotoxicity evaluation result was confirmed by biological assays. Compared to conventional methods, this electrochemical test is inexpensive, highly sensitive, and fast to respond, with long-term monitoring and real-time measurements. The proposed method provides a new avenue for evaluating the toxicity of mycotoxins. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    PubMed

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was

  7. Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase.

    PubMed

    Pan, Hong-zhi; Yu, Hong-wei; Wang, Na; Zhang, Ze; Wan, Guang-cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-11-20

    We describe the fabrication of a sensitive electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase (KPC). The highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-NPs) and graphene (Gr). Then Au-NPs/Gr/GCE was characterized by scanning electro microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization detection was measured by diffierential pulse voltammetry (DPV) using methylene blue (MB) as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-12) to 1 × 10(-7)mol/L, with a detection limit of 2 × 10(-13)mol/L. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The results demonstrated that the Au-NPs/Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for determination of KPC. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.

    PubMed

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-02-04

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step.

  9. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification

    PubMed Central

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R2) and root mean square errors of prediction (RMSEP) were determined as R2 > 0.944 and RMSEP < 1.782 for PLS and R2 > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317

  10. A comparitive investigation of electrochemical charge storage properties on β, γ, δ and λ-MnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Shafi, P. Muhammed; Johnson, Chelsea; Bose, A. Chandra

    2018-04-01

    Manganese dioxide and Manganese dioxide based materials have long been used in various energy storage systems because of their outstanding electrochemical behavior, low cost, and environmental compatibility. In recent years, many studies had focused on its nano scale applications due to the structural flexibility and the unique physicochemical properties. The basic crystal structure of manganese dioxide configures of one manganese atom surrounded by six oxygen atoms to form an octahedron. Here β-MnO2, γ-MnO2, λ-MnO2 and δ-MnO2 nanoparticles have been successfully synthesized by simple precipitation methods. Powder X-Ray Diffraction (XRD) analyses were performed for the identification and examination of the crystalline phase structures. Presence of functional groups and purity of the sample were evaluated by Fourier Transform Infrared Spectroscopy (FTIR). Morphology studies were carried out via Scanning Electron Microscopy (SEM). Electrochemical performances of the β, γ and δ phases were characterized by cyclic voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). Among the four electrodes, δ-MnO2 exhibited the highest value for specific capacitance. These results show that the prepared MnO2 electrodes are good materials for supercapacitor application, especially δ-MnO2.

  11. Bounded diffusion impedance characterization of battery electrodes using fractional modeling

    NASA Astrophysics Data System (ADS)

    Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît

    2017-06-01

    This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.

  12. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Guodong; Wu, Hong

    2008-03-03

    We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less

  13. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  14. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  15. Corrosion protection of copper by polypyrrole film studied by electrochemical impedance spectroscopy and the electrochemical quartz microbalance

    NASA Astrophysics Data System (ADS)

    Lei, Yanhua; Ohtsuka, Toshiaki; Sheng, Nan

    2015-12-01

    Polypyrrole (PPy) films were synthesized on copper in solution of sodium di-hydrogen phosphate and phytate for corrosion protection. The protection properties of PPy films were comparatively investigated in NaCl solution. During two months immersion, the PPy film doped with phytate anions, working as a cationic perm-selective membrane, inhibited the dissolution of copper to 1% of bare copper. Differently, the PPy film doped with di-hydrogen phosphate anions, possessing anionic perm-selectivity, was gradually reduced, and inhibited the dissolution to 7.8% of bare copper. Degradation of the PPy films was studied by comparing the electrochemical impedance spectroscopy change at different immersion time and Raman spectra change after immersion.

  16. Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in themore » high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on

  17. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor

    PubMed Central

    Sun, Kai; Chang, Yong; Zhou, Binbin; Wang, Xiaojin; Liu, Lin

    2017-01-01

    This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide–kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications. PMID:28331314

  18. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-07-21

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  19. Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface

    PubMed Central

    Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali

    2016-01-01

    Electrode polarization at the electrolyte/electrode interface is often undesirable for bio-sensing applications, where charge accumulated over an electrode at constant potential causes large potential drop at the interface and low measurement sensitivity. In this study, novel rough electrodes were developed for decreasing electrical impedance at the interface. The electrodes were fabricated using electrochemical deposition of gold and sintering of gold nanoparticles. The performances of the gold electrodes were compared with platinum black electrodes. A constant phase element model was used to describe the interfacial impedance. Hundred folds of decrease in interfacial impedance were observed for fractal gold electrodes and platinum black. Biotoxicity, contact angle, and surface morphology of the electrodes were investigated. Relatively low toxicity and hydrophilic nature of the fractal and granulated gold electrodes make them suitable for bioimpedance and cell electromanipulation studies compared to platinum black electrodes which are both hydrophobic and toxic. PMID:27695132

  20. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  1. Nanoparticle-based electrochemical sensors for the detection of lactate and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Uzunoglu, Aytekin

    In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors in O2-lean environments. To address this challenge, the surface of the sensors must be modified with oxygen rich materials. In this regard, we developed a novel electrochemical lactate biosensor design by exploiting the oxygen storage capacity of CeO2 and CeO 2-CuO nanoparticles. By the introduction of CeO2 nanoparticles into the enzyme layer of the sensors, negative interference effect of ascorbate which resulted from the formation of oxygen-lean regions was eliminated successfully. When CeO2-based design was exposed to higher degree of O2 -depleted environments, however, the response current of the biosensors experienced an almost 21 % decrease, showing that the OSC of CeO2 was not high enough to sustain the enzymatic reactions. When CeO2-CuO nanoparticles, which have 5 times higher OSC than pristine CeO2, were used as an oxygen supply in the enzyme layer, the biosensors did not show any drop in the performance when moving from oxygen-rich to oxygen-lean conditions. In the second part of the study, PdCu/SPCE and PdAg/rGO-based electrochemical H2O2 sensors were designed and their performances were evaluated to determine their sensitivity, linear range, detection limit, and storage stability. In addition, practical applicability of the sensors was studied in human serum. The

  2. Evaluation of Alkylamine Modified Pt Nanoparticles as Oxygen Reduction Reaction Electrocatalyst for Fuel Cells via Electrochemical Impedance Spectroscopy.

    PubMed

    Joshi, Prerna; Okada, Toshihiko; Miyabayashi, Keiko; Miyake, Mikio

    2018-05-15

    Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.

  3. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  4. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus.

    PubMed

    Ranjbar, Saba; Shahrokhian, Saeed

    2018-04-27

    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) spectrophotometric methods. Each aptasensor modification step was monitored with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The fabricated aptasensor exhibited a wide linear dynamic range (1.2 × 10 1 to 1.2 × 10 8 ) CFU mL -1 with a LOD of 1 CFU mL -1 and was be capable to accurate detection and determination of Staphylococcus aureus in human blood serum as a clinical sample with a complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Spinel lithium manganese oxide nanoparticles: unique molten salt synthesis strategy and excellent electrochemical performances.

    PubMed

    Wang, Xiong; Zhu, Juanjuan; Liu, Yingjie

    2009-11-01

    As a promising candidate cathode material, spinel lithium manganese oxide nanoparticles were successfully synthesized through a novel molten salt synthesis route at relatively low temperature, using manganese dioxide nanowires as precursor. A variety of techniques were applied to characterize the spinel nanomaterial, including X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The average particle size of the resulting spinel nanoparticles was about 80 nm with narrow distribution. As cathode material for rechargeable lithium ion battery, the electrochemical properties were investigated. All the results show that the electrochemical performances of the homogeneous spinel nanoparticles were improved, which might be ascribed to large specific surface area, fairly narrow size distribution, and the unique synthesis strategy.

  6. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.

    PubMed

    Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan

    2009-06-30

    Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.

  7. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  8. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Lin, Yuehe

    2005-09-15

    Electrochemical sensor for detection of organophosphate (OP) pesticides and nerve agents using zirconia (ZrO₂) nanoparticles as selective sorbents is presented. Zirconia nanoparticles were electrodynamically deposited onto the polycrystalline gold electrode by cyclic voltammetry. Because of a strong affinity of zirconia to the phosphoric group, nitroaromatic OPs strongly bind to the ZrO₂ nanoparticle surface. The electrochemical characterization and anodic stripping voltammetric performance of bound OPs were evaluated using cyclic voltammetric and square-wave voltammetric (SWV) analysis. SWV was used to monitor the amount of bound OPs and provide simple, fast, and facile quantitative methods for nitroaromatic OP compounds. The sensor surface canmore » be regenerated by successively running SWV scanning. Operational parameters, including the amount of nanoparticles, adsorption time, and the pH of the reaction medium have been optimized. The stripping voltammetric response is highly linear over the 5–200 ng/mL (ppb) methyl parathion range examined (2-min adsorption), with a detection limit of 1 ng/mL (10 min accumulation), and good precision (RSD=5.3 %, n = 10). The promising stripping voltammetric performances open new opportunities for fast, simple, and sensitive analyzing of OPs in environmental and biological samples. These findings can lead to a widespread use of electrochemical sensors to detect OP contaminates.« less

  9. The use of electrochemical impedance spectroscopy (EIS) to measure the corrosion of metals in contact with wood

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    Although preservative treatments prolong the life of wood, they can also contribute to the corrosion of fasteners. The corrosion of fasteners merits further study because it can affect the long-term durability of structures and fundamental knowledge of corrosion in wood is limited. The goal of this study is to determine the viability of electrochemical impedance...

  10. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    DOEpatents

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  11. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.

    1989-01-01

    Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.

  12. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    NASA Astrophysics Data System (ADS)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  13. Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood

    Treesearch

    Samuel L. Zelinka; Lorraine Ortiz-Candelaria; Donald S. Stone; Douglas R. Rammer

    2009-01-01

    Currently, many of the polymer-coated fasteners on the market are designed for improved corrosion performance in treated wood; yet, there is no way to evaluate their corrosion performance. In this study, a common technique for measuring the corrosion performance of polymer-coated metals, electrochemical impedance spectroscopy (EIS), was used to evaluate commercial...

  14. Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault

    2016-01-28

    Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the timemore » evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.« less

  15. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    NASA Astrophysics Data System (ADS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  16. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.

    PubMed

    Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu

    2014-06-01

    A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.

  17. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  18. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    PubMed

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  19. A Nanoporous Alumina Membrane Based Electrochemical Biosensor for Histamine Determination with Biofunctionalized Magnetic Nanoparticles Concentration and Signal Amplification

    PubMed Central

    Ye, Weiwei; Xu, Yifan; Zheng, Lihao; Zhang, Yu; Yang, Mo; Sun, Peilong

    2016-01-01

    Histamine is an indicator of food quality and indispensable in the efficient functioning of various physiological systems. Rapid and sensitive determination of histamine is urgently needed in food analysis and clinical diagnostics. Traditional histamine detection methods require qualified personnel, need complex operation processes, and are time-consuming. In this study, a biofunctionalized nanoporous alumina membrane based electrochemical biosensor with magnetic nanoparticles (MNPs) concentration and signal amplification was developed for histamine determination. Nanoporous alumina membranes were modified by anti-histamine antibody and integrated into polydimethylsiloxane (PDMS) chambers. The specific antibody modified MNPs were used to concentrate histamine from samples and transferred to the antibody modified nanoporous membrane. The MNPs conjugated to histamine were captured in the nanopores via specific reaction between histamine and anti-histamine antibody, resulting in a blocking effect that was amplified by MNPs in the nanopores. The blockage signals could be measured by electrochemical impedance spectroscopy across the nanoporous alumina membrane. The sensing platform had great sensitivity and the limit of detection (LOD) reached as low as 3 nM. This biosensor could be successfully applied for histamine determination in saury that was stored in frozen conditions for different hours, presenting a potentially novel, sensitive, and specific sensing system for food quality assessment and safety support. PMID:27782087

  20. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    NASA Astrophysics Data System (ADS)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  1. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay.

    PubMed

    Hori, Fumitaka; Harada, Yuji; Kuretake, Tatsumi; Uno, Shigeyasu

    2016-01-01

    A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.

  2. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  3. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime.

    PubMed

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-06-07

    Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.

  4. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  5. Sandwiching spherical 1,2-dioleoyltrimethylammoniumpropane liposome in gold nanoparticle on solid transducer for electrochemical ultrasensitive DNA detection and transfection.

    PubMed

    Shankara Narayanan, Jeyaraman; Bhuvana, Mohanlal; Dharuman, Venkataraman

    2014-08-15

    Cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium propane (DOTAP) liposome is spherically sandwiched in gold nanoparticle (abbreviated as sDOTAP-AuNP) onto a gold electrode surface. The sDOTAP-AuNP is applied for electrochemical label free DNA sensing and Escherichia coli cell transfection for the first time. Complementary target (named as hybridized), non-complementary target (un-hybridized) and single base mismatch target (named as SMM) hybridized surfaces are discriminated sensitively and selectively in presence of [Fe(CN)6](3-/4-). Double strand specific intercalator methylene blue in combination with [Fe(CN)6](3-) is used to enhance target detection limit down to femtomolar concentration. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) techniques are used for characterizing DNA sensing. High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) techniques are used to confirm the spherical nature of the sDOTAP-AuNP-DNA composite in solution and on the solid surface. DNA on the sDOTAP-ssDNA is transferred by potential stripping method (+0.2V (Ag/AgCl)) into buffer solution containing E. coli cells. The transfection is confirmed by the contrast images for the transfected and non-transfected cell from Confocal Laser Scanning Microscopy (CLSM). The results demonstrate effectiveness of the electrochemical DNA transfection method developed and could be applied for other cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode.

    PubMed

    Kong, Fen-Ying; Xu, Mao-Tian; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-10-15

    In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Song; Huang, Hao, E-mail: huanghao@dlut.edu.cn; Wu, Aimin

    2016-10-15

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in themore » electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.« less

  8. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    PubMed

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  9. Application Electrochemical Impedance Spectroscopy Methods to Evaluation Corrosion Behavior of Stainless steels 304 in Nanofluids Media

    NASA Astrophysics Data System (ADS)

    Hadi Prajitno, Djoko; Umar, Efrizon; Gustaman Syarif, Dani

    2017-01-01

    Corrosion is a common problem in many engineering metals and alloys. Electrochemical methods are commonly instrument to use as tool to study the corrosion behavior of the metals and alloy. This method was examined interaction between a surface of the metals and alloys in corrosive media. The present paper, the effects of nano particle ZrO2 as an additive to aqua de mineralized on the corrosion behavior of stainless steel were investigated. Electrochemical impedance spectroscopy (EIS) testing was performed in both de mineralized water and demineralized water contain nano particle 0,01% ZrO2 as Nano fluid. Surface morphology examination of the specimens showed that microstructure of stainless steel 304 alloys relatively unchanged after corrosion and EIS testing. According to the corrosion potential examination of the stainless steel 304 in nanofluid media, it showed that stainless steel 304 actively corroded in nanofluida media. The value of anodic Tafel slope stainless steel 304 in nanofluid higher compare with in demineralized water. Tafel polarization examination show that corrosion rate of stainless steel 304 in nanofluid higher compare with corrosin rate in demineralized media.EIS technique show that impedance of stainless steel 304 in nanofluid lower compare with in demineralized media, resulting in an increase in the corrosion rates of these stainless steel 304 specimens in nano fluids

  10. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    PubMed Central

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  11. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    PubMed

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  12. Electrochemical performance of PVA stabilized nickel ferrite nanoparticles via microwave route

    NASA Astrophysics Data System (ADS)

    William, J. Johnson; Babu, I. Manohara; Muralidharan, G.

    2017-05-01

    Nanosized nickel ferrite nanoparticles were effectively synthesized through microwave route.PVA is used as a stabilizer. The cubic inverse spinel crystal structure was identified from the X-ray diffraction pattern. FTIR spectrum identified the octahedral site vibrations of the Ni2+ ions and tetrahedral sites vibrations of Fe3+ ions, which additionally confirms the existence of nickel ferrite nanoparticles. Nano-granular morphology was observed from scanning electron microscope. The tuning of morphology was clearly seen in SEM images. Electrochemical performance of nickel ferrite nanoparticles was studied using cyclic voltammetry and chronopotentiometry. Highest specific capacitance of 459 F g-1 was achieved through cyclic voltammetry at 2 mV s-1 for NF10. Also, non-linearity was observed in chronopotentiometry which confirms the pseudocapacitance nature of nickel ferrite nanoparticles. The estimated specific capacitance was 341 F g-1 at 2.5 A g-1.

  13. New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan T.

    This dissertation presents the construction and application of micro and nanoscale electrodes for electroanalytical analysis. The studies presented herein encompass two main areas: electrochemical catalysis, and studies of the dynamics of single cell exocytosis. The first portion of this dissertation engages the use of Pt nanoelectrodes to study the stability and electrocatalytic properties of materials. A single nanoparticle electrode (SNPE) was fabricated by immobilizing a single Au nanoparticle on a Pt disk nanoelectrode via an amine-terminated silane cross linker. In this manner we were able to effectively study the electrochemistry and electrocatalytic activity of single Au nanoparticles and found that the electrocatalytic activity is dependent on nanoparticle size. This study can further the understanding of the structure-function relationship in nanoparticle based electrocatalysis. Further work was conducted to probe the stability of Pt nanoelectrodes under conditions of potential cycling. Pt based catalysts are known to deteriorate under such conditions due to losses in electrochemical surface area and Pt dissolution. By using Pt disk nanoelectrodes we were able to study Pt dissolution via steady-state voltammetry. We observed an enhanced dissolution rate and higher charge density on nanoelectrodes than that previously found on macro scale electrodes. The goal of the second portion of this dissertation is to develop new analytical methods to study the dynamics of exocytosis from single cells. The secretion of neurotransmitters plays a key role in neuronal communication, and our studies highlight how bipolar electrochemistry can be employed to enhance detection of neurotransmitters from single cells. First, we developed a theory to quantitatively characterize the voltammetric behavior of bipolar carbon fiber microelectrodes and secondly applied those principles to single cell detection. We showed that by simply adding an additional redox mediator to the back

  14. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries.

    PubMed

    Liu, Huiqiao; Cao, Kangzhe; Xu, Xiaohong; Jiao, Lifang; Wang, Yijing; Yuan, Huatang

    2015-06-03

    To inhibit the aggregation of TiO2 nanoparticles and to improve the electrochemical kinetics of TiO2 electrode, a hybrid material of ultrasmall TiO2 nanoparticles in situ grown on rGO nanosheets was obtained by ultraphonic and reflux methods. The size of the TiO2 particles was controlled about 10 nm, and these particles were evenly distributed across the rGO nanosheets. When used for the anode of a sodium ion battery, the electrochemical performance of this hybrid TiO2@rGO was much improved. A capacity of 186.6 mAh g(-1) was obtained after 100 cycles at 0.1 A g(-1), and 112.2 mAh g(-1) could be maintained at 1.0 A g(-1), showing a high capacity and good rate capability. On the basis of the analysis of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the achieved excellent electrochemical performance was mainly attributed to the synergetic effect of well-dispersed ultrasmall TiO2 nanoparticles and conductive graphene network and the improved electrochemical kinetics. The superior electrochemical performance of this hybrid material on lithium storage further confirmed the positive effect of rGO.

  15. An Audio Jack-Based Electrochemical Impedance Spectroscopy Sensor for Point-of-Care Diagnostics.

    PubMed

    Jiang, Haowei; Sun, Alex; Venkatesh, A G; Hall, Drew A

    2017-02-01

    Portable and easy-to-use point-of-care (POC) diagnostic devices hold high promise for dramatically improving public health and wellness. In this paper, we present a mobile health (mHealth) immunoassay platform based on audio jack embedded devices, such as smartphones and laptops, that uses electrochemical impedance spectroscopy (EIS) to detect binding of target biomolecules. Compared to other biomolecular detection tools, this platform is intended to be used as a plug-and-play peripheral that reuses existing hardware in the mobile device and does not require an external battery, thereby improving upon its convenience and portability. Experimental data using a passive circuit network to mimic an electrochemical cell demonstrate that the device performs comparably to laboratory grade instrumentation with 0.3% and 0.5° magnitude and phase error, respectively, over a 17 Hz to 17 kHz frequency range. The measured power consumption is 2.5 mW with a dynamic range of 60 dB. This platform was verified by monitoring the real-time formation of a NeutrAvidin self-assembled monolayer (SAM) on a gold electrode demonstrating the potential for POC diagnostics.

  16. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  17. A new protocol for the distribution of MnO2 nanoparticles on rGO sheets and the resulting electrochemical performance

    NASA Astrophysics Data System (ADS)

    Samdani, Jitendra; Samdani, Kunda; Kim, Nam Hoon; Lee, Joong Hee

    2017-03-01

    Herein, reduced graphene oxide (rGO)/MnO2 hybrid materials were prepared via a direct redox reaction between MnCl2 and KMnO4 on reduced graphene oxide (rGO). A systematic study was carried out to understand the role of KMnO4. The morphology and microstructure of the as-prepared composite was characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman Spectroscopy. Results indicate that the concentrations of KMnO4 have a detrimental effect on the distribution of MnO2 nanoparticles on rGO sheets and hence on electrochemical properties. The electrochemical capacitive behavior of the as-prepared composite was investigated using cyclic voltammetry (CV), galvanostatic charge discharge, and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 aqueous electrolyte solution. At the optimum concentration of KMnO4, the as-prepared rGM-1 composite shows a high specific capacitance of 366 F/g at a scan rate of 10 mV/s. The composite also exhibits good electrocatalytic activity towards the oxidation of dopamine (DA), exhibiting a low detection limit of 2.3 × 10-7 M with a wide linear range between 2.5 × 10-7 M and 2.30 × 10-4 M. Hence, the use of rGO/MnO2 at an optimized concentration of KMnO4 is a potential competitive candidate in supercapacitor and biosensor applications.

  18. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin).

    PubMed

    Jiang, Donglei; Ji, Jian; An, Lu; Sun, Xiulan; Zhang, Yinzhi; Zhang, Genyi; Tang, Lili

    2013-12-15

    A novel cell-based electrochemical biosensor was developed to quantify major shrimp allergen Pen a 1 (tropomyosin) and to assess its immunoglobulin E (IgE)-mediated hypersensitivity. Rat basophilic leukemia (RBL-2H3) mast cells, encapsulated in type I collagen, were immobilized on a self-assembled l-cysteine/gold nanoparticle (AuNPsCys)-modified gold electrode to monitor IgE-mediated mast cell sensitization and activation. The exposure of dinitrophenol-bovine serum albumin (DNP-BSA), as a model antigen that stimulates mast cells, induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner which efficiently measured degranulation of anti-DNP IgE-stimulated mast cells. Then this mast cell-based biosensor was applied into quantification for the shrimp allergen with anti-shrimp tropomyosin IgE-sensitization. The electrochemical impedance spectroscopy (EIS) results showed that the impedance value (Ret) increased with the concentration of purified shrimp allergen Pen a 1 (tropomyosin) in range of 0.5-0.25 μg mL(-1) with the detection limit as 0.15 μg mL(-1), and the electrochemical result was confirmed by β-hexosaminidase assay and scanning electron microscopic morphological (SEM) analysis. Thus, a simple, label-free, and sensitive method for the determination of shrimp allergens was proposed and demonstrated here, implying a highly versatile biosensor for food allergen detection and prediction. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Real-time electrochemical impedance spectroscopy diagnosis of the solid oxide fuel cell for marine power applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Hironori; Kitahara, Tatsumi

    2017-11-01

    We have investigated the behavior of an operating solid oxide fuel cell (SOFC) with supplying a simulated syngas to develop diagnosis method of the SOFC for marine power applications fueled with liquefied natural gas (LNG). We analyze the characteristics of a syngas-fueled intermediate temperature microtubular SOFC at 500 ∘C for accelerated deterioration by carbon deposition as a model case by electrochemical impedance spectroscopy (EIS) to in-situ find parameters useful for the real-time diagnosis. EIS analyses are performed by complex nonlinear least squares (CNLS) curve fitting to measured impedance spectra with an equivalent electric circuit model consisting of several resistances and capacitances attributed to the anode and cathode processes as well as Ohmic resistance of the cell. The characteristic changes of those circuit parameters by internal reforming and anode degradation are extracted, showing that they can be used for the real-time diagnosis of operating SOFCs.

  20. Interaction of anions with lipid cubic phase membranes, an electrochemical impedance study.

    PubMed

    Meynaq, Mohammad Yaser Khani; Lindholm-Sethson, Britta; Tesfalidet, Solomon

    2018-05-29

    Electrochemical impedance spectroscopy is useful to monitor anionic interactions with a Lipid Cubic Phase, as previously demonstrated for cationic interaction (Khani Meynaq et al., 2016). It was expected that the smaller hydrophilic anions, acetate and chloride, would interact differently than the large tryptophan anion with its hydrophobic tail. The impedance measurements enabled estimation of resistances and capacitances of a freestanding lipid cubic phase membrane at exposure to 4 and 40 mM solutions of NaCl, NaOAc and NaTrp. Small-angle X-ray scattering was used for cubic phase identification and to track structural changes within the cubic phase when exposed to the different electrolytes. The membrane resistance increases at exposure to the electrolytes in the order Cl -  < OAc -  < Trp - . The membrane resistance decreases with time at exposure to the hydrophilic anions and increases with time at Trp - exposure. The membrane capacitances were lower for NaTrp compared to NaCl and NaOAc at the corresponding concentrations which is consistent with the results from SAXRD. It is concluded that Trp - ions do not enter the aqueous channels of the cubic phase but are strongly adsorbed to the membrane/electrolyte interface leading to large alteration of the lipid phase structure and a high membrane resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nandhini, S.; Muralidharan, G.

    2018-04-01

    The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.

  2. Investigation on Electrochemical Properties of Polythiophene Nanocomposite with Graphite Derivatives as Supercapacitor Material on Breath Figure-Decorated PMMA Electrode

    NASA Astrophysics Data System (ADS)

    Azimi, Mona; Abbaspour, Mohsen; Fazli, Ali; Setoodeh, Hamideh; Pourabbas, Behzad

    2018-03-01

    Breath figures have been formed by the direct breath figure method on polymethyl methacrylate electrode sand hexagonal oriented holes with 0.5- to 10- μm2 surface area have been created. Deposition of materials on the electrodes has been performed by the spray-coating method. polythiophene (PTh) nanoparticles, polythiophene-graphene oxide (PTh-GO) and polythiophene-reduced graphene oxide (PTh-G) nanocomposites were synthesized by emulsion polymerization, while characterization of synthetic materials have been carried out by Fourier transform infrared, Χ-ray diffraction, transmission electron microscopy, UV-Vis spectroscopy and field emission scanning electron microscopy techniques. Also, the electrochemical properties of the designed electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. Specific capacitance of porous electrodes coated by PTh nanoparticles, PTh-GO and PTh-G nanocomposites were calculated from cyclic voltammetry curves at 5 mV/s scan rate, andthe values are 3.5 F/g, 16.39 F/g, and 28.68 F/g, respectively. Also, the energy density of each electrode at 5 mV/s scan rate has been calculated and the results show that incorporation of GO and G nanolayers with PTh nanoparticles enhances the electrochemical properties of electrodes.

  3. Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol

    NASA Astrophysics Data System (ADS)

    Shah, Muhammad Tariq; Balouch, Aamna; Panah, Pirah; Rajar, Kausar; Mahar, Ali Muhammad; Khan, Abdullah; Jagirani, Muhammad Saqaf; Khan, Humaira

    2018-06-01

    In this study, magnetite (Fe3O4) nanoparticles were synthesized by a simple and facile chemical co-precipitation method at ambient laboratory conditions. The synthesized Fe3O4 nanostructures were characterized for their morphology, size, crystalline structure and component analysis using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and electron dispersive x-ray spectroscopy. The Fe3O4 nanoparticles showed semi-spherical geometry with an average particle diameter up to 14 nm. The catalytic properties of Fe3O4 nanoparticles were evaluated for electrochemical oxidation of methanol. For this purpose, the magnetite NPs were coated on the surface of an indium tin oxide (ITO) electrode and used as a working electrode in the electrochemical oxidation of methanol. The effect of potential scan rate, the concentration of methanol, the volume of electrolyte and catalyst (Fe3O4 NPs) deposition volume was studied to get high peak current densities for methanol oxidation. The stability and selectivity of the fabricated electrode (Fe3O4/ITO) were also assessed during the electrochemical process. This study revealed that the Fe3O4/ITO electrode was highly stable and selective towards methanol electrochemical oxidation in basic (KOH) media. Bare ITO and Fe3O4 NPs modified glassy (Fe3O4/GCE) electrodes were also tested in the electro-oxidation study of methanol, but their peak current density responses were very low as compared to the Fe3O4/ITO electrode, which showed high electrocatalytic activity towards methanol oxidation under similar conditions. We hope that Fe3O4 nanoparticles (NPs) will be an alternative for methanol oxidation as compared to the expensive noble metals (Pt, Au, and Pd) for energy generation processes.

  4. Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Madhan Kumar, A.; Fida Hassan, S.; Sorour, Ahmad A.; Paramsothy, M.; Gupta, M.

    2018-06-01

    In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.

  5. Study of fibrinogen adsorption on hydroxyapatite and TiO2 surfaces by electrochemical piezoelectric quartz crystal impedance and FTIR-ATR spectroscopy.

    PubMed

    Yang, Qin; Zhang, Youyu; Liu, Meiling; Ye, Min; Zhang, YuQin; Yao, Shouzhuo

    2007-07-30

    The electrochemical piezoelectric quartz crystal impedance (EQCI), a combined technique of piezoelectric quartz crystal impedance (PQCI), electrochemical impedance (EI), and Fourier transform infrared spectroscopy-attenuated total internal reflectance spectroscopy (FTIR-ATR) were used to in situ study the adsorption process of fibrinogen onto the surface of biomaterials-TiO2 and hydroxyapatite (Ca5(PO4)3OH, HAP). The equivalent circuit parameters, the resonance frequencies and the half peak width of the conductance spectrum of the two biomaterial-modified piezoelectric quartz crystal (PQC) resonances as well as the FTIR-ATR spectra of fibrinogen during fibrinogen adsorption on TiO2 and HAP particles modified electrode surface were obtained. The adsorption kinetics and mechanism of fibrinogen were investigated and discussed as well. The results suggested that two consecutive steps occurred during the adsorption of fibrinogen onto TiO2 and hydroxyapatite (HAP) surface. The fibrinogen molecules were firstly adsorbed onto the surface, and then the rearrangement of adsorbed fibrinogen or multi-layered adsorption occurred. The FTIR-ATR spectroscopy investigations showed that the secondary structure of fibrinogen molecules was altered during the adsorption and the adsorption kinetics of fibrinogen related with the variety of biomaterials. These experimental results suggest a way for enriching biological analytical science and developing new applications of analytical techniques, such as PQCI, EI, and FTIR-ATR.

  6. Electrochemical immunosensor based on poly (3,4-ethylenedioxythiophene) modified with gold nanoparticle to detect aflatoxin B1.

    PubMed

    Sharma, Arati; Kumar, A; Khan, Raju

    2017-07-01

    Gold nanoparticles (Au-NPs) functionalized Poly (3,4-ethylenedioxythiophene) (PEDOT) bioelectrodes were fabricated layer by layer deposition on ITO electrode for detection of aflatoxin B 1 . The monoclonal anti-aflatoxin antibodies (Anti-AFB 1 ) were immobilized over the surface of PEDOT/Au-NPs/ITO using EDC/NHS coupling. The surface morphology and characteristics of the modified electrodes were investigated by scanning electron microscope and contact angle measurements. The electrochemical analysis of the fabricated immunoelectrode and the immobilization of the antibodies have been evaluated and confirmed by performing Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Fourier Transform Infrared Spectroscopy (FTIR). Decrease in the value of electron transfer resistance (R et ) and increase in the peak current values after incorporation of Au-NPs signifies the enhanced properties of PEDOT embedded Au-NPs. The heterogeneous rate constant (k s ) and transfer coefficient (α) have been determined by using Laviron's method. The fabricated immunosensor exhibits high sensitive amperometric response of 3.72μAngmL -1 towards AFB 1 concentration in a linear range of 1-25ngmL -1 with detection limit (LOD) of 0.0045ngmL -1 and limit of quantification (LOQ) of 0.0156ngmL -1 . The fabricated immunoelectrode shows a reproducibility of 96.13% and 94.5% towards real maize sample spiked with AFB 1 of concentration 30ngmL -1 and 50ngmL -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.

    PubMed

    Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M

    2013-06-25

    We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.

  8. The Novel Immunobiosensors for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy.

    PubMed

    Zhang, Deng; Chen, Songyue; Qin, Lifeng; Li, Rong; Wang, Ping; Li, Yanbin

    2005-01-01

    Immunobiosensors were developed for detection of Escherichia coli O157:H7 based on the surface immobilization of monoclone antibodies onto indium tin oxide (ITO) electrodes. The immobilization of antibodies onto ITO chips was carried out by silanization. The effects of epoxysilane monolayer, the antibody layer on the electrochemical properties of the electrode, and the combined target bacteria were analyzed through cyclic voltammetry and electrochemical impedance spectroscopy. By using Randles model as the equivalent circuit, the concentration of the target bacteria can be quantitatively analyzed in terms of the change of electron transfer resistance. The biosensor could detect the target bacteria with a detection limit of 4×103CFU/mL. A linear response was found between 4×103- 4×106CFU/mL. This biosensor was characterized with high sensitivity, excellent selectivity, short detection time and easy operation It has a promising application in clinical laboratory diagnoses, environmental detection and food safety.

  9. Hydrothermally derived nanoporous titanium dioxide nanorods/nanoparticles and their influence in dye-sensitized solar cell as a photoanode

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Govindaraj; Narendhiran, Santhosh; Muthu, Senthil Pandian; Mukhopadhyay, Sumita; Perumalsamy, Ramasamy

    2017-12-01

    Titanium dioxide is a promising wide band gap semiconducting material for dye-sensitized solar cell. The poor electron transport properties still remain a challenge with conventional nanoparticles. Here, we synthesized TiO2 nanorods/nanoparticles by hydrothermal method to improve the charge transport properties. The structural and morphological information of the prepared nanorods/nanoparticles was analysed with X-ray diffraction and electron microscopy analysis, respectively. A high power conversion efficiency of 7.7% is achieved with nanorods/nanoparticles employed device under 100 mW/cm2. From the electrochemical impedance analysis, superior electron transport properties have been found for synthesized TiO2 nanorods/nanoparticles employed device than commercial P25 nanoparticles based device.

  10. Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Dong Jun; Yoon, Jung Woon; Lee, Chang Soo; Bae, Youn-Sang; Kim, Jong Hak

    2018-05-01

    We report a high-performance electrochemical capacitor based on covalent organic framework (COF)-derived microporous carbon (MPC) nanoparticles and electrochemically polymerized polypyrrole (Ppy) as a pseudocapacitive material. The COF, Schiff-based network-1 (SNW-1) nanoparticles are prepared via a condensation reaction between melamine and terephthalaldehyde, and the resultant MPC film is prepared via a screen-printing method. The MPC film exhibits a bimodal porous structure with micropores and macropores, resulting in both a large surface area and good electrolyte infiltration. Ppy is synthesized potentio-statically (0.8 V vs. Ag/AgCl) by varying the reaction time, and successful synthesis of Ppy is confirmed via Raman spectroscopy. The specific capacitance with the Ppy coating is enhanced by up to 2.55 F cm-2 due to the synergetic effect of pseudocapacitance and reduced resistance.

  11. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads.

    PubMed

    Tang, Dianping; Su, Biling; Tang, Juan; Ren, Jingjing; Chen, Guonan

    2010-02-15

    A novel nanoparticle-based electrochemical immunoassay of carbohydrate antigen 125 (CA125) as a model was designed to couple with a microfluidic strategy using anti-CA125-functionalized magnetic beads as immunosensing probes. To construct the immunoassay, thionine-horseradish peroxidase conjugation (TH-HRP) was initially doped into nanosilica particles using the reverse micelle method, and then HRP-labeled anti-CA125 antibodies (HRP-anti-CA125) were bound onto the surface of the synthesized nanoparticles, which were used as recognition elements. Different from conventional nanoparticle-based electrochemical immunoassays, the recognition elements of the immunoassay simultaneously contained electron mediator and enzyme labels and simplified the electrochemical measurement process. The sandwich-type immunoassay format was used for the online formation of the immunocomplex in an incubation cell and captured in the detection cell with an external magnet. The electrochemical signals derived from the carried HRP toward the reduction of H(2)O(2) using the doped thionine as electron mediator. Under optimal conditions, the electrochemical immunoassay exhibited a wide working range from 0.1 to 450 U/mL with a detection limit of 0.1 U/mL CA125. The precision, reproducibility, and stability of the immunoassay were acceptable. The assay was evaluated for clinical serum samples, receiving in excellent accordance with results obtained from the standard enzyme-linked immunosorbent assay (ELISA) method. Concluding, the nanoparticle-based assay format provides a promising approach in clinical application and thus represents a versatile detection method.

  12. A low-cost and miniaturized potentiostat for sensing of biomolecular species such as TNF-α by electrochemical impedance spectroscopy.

    PubMed

    Pruna, Raquel; Palacio, Francisco; Baraket, Abdoullatif; Zine, Nadia; Streklas, Angelos; Bausells, Joan; Errachid, Abdelhamid; López, Manel

    2018-02-15

    Miniaturizing potentiostats, keeping their cost low and yet preserving full measurement characteristics (e.g. bandwidth, determination of capacitive/inductive contribution to sensor's impedance and parallel screening) is still an unresolved challenge in bioelectronics. In this work, the combination of simple analogue circuitry together with powerful microcontrollers and a digital filter implementation is presented as an alternative to complex and incomplete architectures reported in the literature. A low-cost acquisition electronic system fully integrated with a biosensors platform containing eight gold working microelectrodes and integrated reference and counter electrodes was developed and validated. The manufacturing cost of the prototype was kept below 300 USD. The performance of the proposed device was benchmarked against a commercial impedance analyzer through the electrochemical analysis of a highly sensitive biosensor for the detection of tumor necrosis factor α (TNF-α) within the randomly chosen range of 266pg/mL to 666ng/mL in physiological medium (PBS). A strong correlation between the outputs of both devices was found in a critical range of frequencies (1-10Hz), and several TNF-α cytokine concentrations were properly discriminated. These results are very promising for the development of low-cost, portable and miniaturized electrochemical systems for point-of-care and environmental diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance

    NASA Astrophysics Data System (ADS)

    Babauta, Jerome T.; Beyenal, Haluk

    2017-07-01

    The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.

  14. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  15. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    PubMed Central

    MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie

    2015-01-01

    In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638

  16. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less

  17. High rate performance supercapacitor based on Nb2O5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    In the present communication, we report the successful preparation of Nb2O5 nanoparticles from precursor NbCl5 using hydrothermal method, followed by thermal annealing. The surface morphology of the as-prepared material was studied using scanning electron microscopy (SEM) while crystal structure and vibrational response was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The observed results indicate the successful synthesis of Nb2O5 nanoparticles. The electrochemical properties of the material was investigated in two-electrode assembly in 1 M LiClO4 solution using the techniques of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Both EIS and CV studies show high rate performance of the assembled supercapacitor cells. Fabricated cell offers low response time (˜17.1 ms), and the shape of CV pattern remains almost rectangular, even for high scan rates (˜20 V s-1).

  18. Electrochemical monitoring of high-temperature molten-salt corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, G.; Stott, F.H.; Dawson, J.L.

    1990-02-01

    Hot molten-salt corrosion can cause serious metal degradation in boiler plant, incinerators, and furnaces. In this research, electrochemical-impedance and electrochemical-noise techniques have been evaluated for the monitoring of hot-corrosion processes in such plants. Tests have been carried out on Ni-1% Co and Alloy 800, a commercial material of interest to operators of industrial plants. Electrochemical-impedance and electrochemical-noise data were compared with the results of metallographic examination of the test alloys and showed reasonable correlation between the electrochemical data and the actual degradation processes. This preliminary work indicated that the electrochemical techniques show considerable promise as instruments for the monitoring ofmore » high-temperature corrosion processes.« less

  19. PdCo alloy nanoparticle-embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite.

    PubMed

    Liu, Dong; Guo, Qiaohui; Zhang, Xueping; Hou, Haoqing; You, Tianyan

    2015-07-15

    PdCo alloy nanoparticle-embedded carbon nanofiber (PdCo/CNF) prepared by electrospinning and thermal treatment was employed as a high-performance platform for the determination of hydrogen peroxide and nitrite. The as-obtained PdCo/CNF were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behaviors of the resultant biosensor. The proposed PdCo/CNF-based biosensor showed excellent analytical performances toward hydrogen peroxide (detection limit: 0.1 μM; linear range: 0.2 μM-23.5 mM) and nitrite (detection limit: 0.2 μM; linear range: 0.4-30 μM and 30-400 μM). The superior analytical properties could be attributed to the synergic effect and firmly embedment of well-dispersed PdCo alloy nanoparticles. These attractive electrochemical properties make this robust electrode material promising for the development of effective electrochemical sensors. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ângelo, Joana; Magalhães, Pedro; Andrade, Luísa; Mendes, Adélio

    2016-11-01

    The photocatalytic activity of a commercial titanium dioxide (P25) and of an in-house prepared P25/graphene composite is assessed according to standard ISO 22197-1:2007. The photoactivity performances of bare and composite TiO2-based materials were further studied by electrochemical impedance spectroscopy (EIS) technique to better understand the function of the graphene in the composite. EIS experiments were performed using a three-electrode configuration, which allows obtaining more detailed information about the complex charge transfer phenomena at the semiconductor/electrolyte interface. The Randles equivalent circuit was selected as the most suitable for modelling the present photocatalysts. The use of the graphene composite allows a more effective charge separation with lower charge transfer resistance and less e-/h+ recombination on the composite photocatalyst, reflected in the higher values of NO conversion.

  1. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications.

    PubMed

    Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan

    2018-04-18

    In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Association of Electrochemical Therapy With Optical, Mechanical, and Acoustic Impedance Properties of Porcine Skin.

    PubMed

    Moy, Wesley J; Su, Erica; Chen, Jason J; Oh, Connie; Jing, Joe C; Qu, Yueqiao; He, Youmin; Chen, Zhongping; Wong, Brian J F

    2017-12-01

    The classic management of burn scars and other injuries to the skin has largely relied on soft-tissue transfer to resurface damaged tissue with local tissue transfer or skin graft placement. In situ generation of electrochemical reactions using needle electrodes and an application of current may be a new approach to treat scars and skin. To examine the changes in optical, mechanical, and acoustic impedance properties in porcine skin after electrochemical therapy. This preclinical pilot study, performed from August 1, 2015, to November 1, 2016, investigated the effects of localized pH-driven electrochemical therapy of ex vivo porcine skin using 24 skin samples. Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application time. Specimens were analyzed using optical coherence tomography, optical coherence elastography, and ultrasonography. Ultrasonography was performed under 3 conditions (n = 2 per condition), optical coherence tomography was performed under 2 conditions (n = 2 per condition), and optical coherence elastography was performed under 2 conditions (n = 2 per condition). The remaining samples were used for the positive and negative control groups (n = 10). Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application. Tissue softening was observed at the anode and cathode sites as a result of electrochemical modification. Volumetric changes were noted using each optical and acoustic technique. A total of 24 ex vivo porcine skin samples were used for this pilot study. Optical coherence tomography measured spatial distribution of superficial tissue changes around each electrode site. At 4 V for 3 minutes, a total volumetric effect of 0.47 mm3 was found at the anode site and 0.51 mm3 at the cathode site. For 5 V for 3 minutes, a total volumetric effect

  3. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples.

    PubMed

    Motaharian, Ali; Motaharian, Fatemeh; Abnous, Khalil; Hosseini, Mohammad Reza Milani; Hassanzadeh-Khayyat, Mohammad

    2016-09-01

    In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol(-1)) for diazinon with two linear ranges of 2.5 × 10(-9) to 1.0 × 10(-7) mol L(-1) (R (2) = 0.9971) and 1.0 × 10(-7) to 2.0 × 10(-6) mol L(-1) (R (2) = 0.9832) and also a detection limit of 7.9 × 10(-10) mol.L(-1). The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53-100.86 %. Graphical abstract Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon.

  4. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    PubMed

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Electrochemical Impedance Spectroscopic Study on Eu 2+ and Sr 2+ Using Liquid Metal Cathodes in Molten Chlorides

    NASA Astrophysics Data System (ADS)

    Matsumiya, Masahiko; Takagi, Ryuzo

    2000-08-01

    For the pyrochemical reprocessing of spent metallic nuclear fuels in molten salt baths it is important to investigate the behavior of the electrochemically negative elements Eu and Sr, which are significant fission products. Voltammetric and chronopotentiometric studies have shown that the reduction of Eu 2+ and Sr 2+ on liquid Pb cathodes in molten chloride baths at 1073 K follows the alloy formation reaction: Eu 2+ + 2e- + 3Pb → EuPb 3 and Sr 2+ + 2e- + 3Pb → SrPb 3 . In the present work these alloy formation reactions were studiedby electrochemical impedance spectroscopy. Analysis of the spectra showed that the electronic exchange of Eu 2+ /Eu and Sr 2+ /Sr is quasi-re-versible. Moreover, the experimental results allowed the determination of the kinetic parameters of EU 2+ /EU and Sr 2+ /Sr, the diffusion coefficients of these species in molten chloride baths, and also the diffusion layer thickness.

  6. High-Selectivity Electrochemical Conversion of CO 2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode

    DOE PAGES

    Song, Yang; Peng, Rui; Hensley, Dale K.; ...

    2016-09-28

    Carbon dioxide is a pollutant, but also a potential carbon source provided an efficient means to convert it to useful products. Herein we report a nanostructured catalyst for the direct electrochemical reduction of dissolved CO 2 to ethanol with high Faradaic efficiency (63%) and high selectivity (84%). The catalyst is comprised of Cu nanoparticle on a highly textured, N-doped graphene film. Detailed electrochemical analysis and complementary DFT calculations indicate a novel mechanism in which multiple active sites, working sequentially, control the coupling of carbon monoxide radicals and mediate the subsequent electrochemical reduction to alcohol.

  7. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-12-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  8. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  9. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun

    2018-05-26

    In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.

  10. Electrodeposition of hydroxyapatite nanoparticles onto ultra-fine TiO2 nanotube layer by electrochemical reaction in mixed electrolyte.

    PubMed

    Park, Su-Jung; Jang, Jae-Myung

    2011-08-01

    Electrochemical depositions of HAp nanoparticles onto Ultra-fine TiO2 nanotube layer were carried out by the electrochemical reaction in mixed electrolyte of 1.6 M (NH4)H2PO4 + 0.8 M NH4F containing 0.15 and 0.25 wt% HAp. The Ca/P ratios of the HAp nanoparticles were evaluated by EDS analysis and their values were 1.53 and 1.66 respectively. The distribution quantity of Ca and P were remained at the middle region of TiO2 nanotube, but the Ti element was mainly stayed at the bottom of barrier layer from the result of line scanning diagram. Especially, adsorbed phosphate ions facilitated nucleation of nanophase calcium phosphate material inside the TiO2 nanotubu layer that resulted in vertical growth of HAp nanoparticles. These surfaces and structures were all effective for biocompatibility from the SBF tests.

  11. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  12. The internalization of fluorescence-labeled PLA nanoparticles by macrophages.

    PubMed

    Li, Fengjuan; Zhu, Aiping; Song, Xiaoli; Ji, Lijun; Wang, Juan

    2013-09-10

    Rhodamine B (RhB)-labeled PLA nanoparticles were prepared through surface grafting copolymerization of glycidyl methacrylate (GMA) onto PLA nanoparticles during the emulsion/evaporation process. RhB firstly interacts with sodium dodecyl sulfate (SDS) through electrostatic interaction to form hydrophobic complex (SDS-RhB). Due to the high-affinity of SDS-RhB with GMA, hydrophilic RhB can be successfully combined into PLA nanoparticles. The internalization of RhB-labeled PLA nanoparticles by macrophages was investigated with fluorescence microscope technology. The effects of the PLA nanoparticle surface nature and size on the internalization were investigated. The results indicate that the PLA particles smaller than 200 nm can avoid the uptake of phagocytosis. The bigger PLA particles (300 nm) with polyethylene glycol (PEG) surface showed less internalization by macrophage compared with those with poly(ethylene oxide-propylene oxide) copolymer (F127) or poly(vinyl alcohol) (PVA) surface. The "stealth" function of PEG on the PLA nanoparticles from internalization of macrophages due to the low protein adsorption is revealed by electrochemical impedance technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  14. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  15. Structural, magnetic and impedance spectroscopic analysis of LaFeO3 nano-particles

    NASA Astrophysics Data System (ADS)

    Rao, T. Lakshmana; Pradhan, M. K.; Dash, S.

    2018-04-01

    Physical properties are known to be drastically varied with crystallite size and in a multifunctional material this size reduction is seem to be interesting. One such material is chosen as LaFeO3 nanoparticles which have been prepared by wet-chemical route. The average particle size found to be in the order of 45nm in which the chemical content of the unit cell has been verified. A distorted orthorhombic structure with Pbnm space group is possessed by this nanoparticle. From the bifurcation of ZFC and FC in low field, behavior of inverse susceptibility and the small hysteresis loop favors the material to be in a weak FM state well below the Neel temperature. The electrical behavior and the conduction mechanism above room temperature have been studied by cole-cole plot of the Impedance spectra. The high frequency depressed semi circles represent the grain conduction while the intermediate frequency semi circles appear may be due to grain boundary effect.

  16. Biophysical and electrochemical properties of Self-assembled noncovalent SWNT/DNA hybrid and electroactive nanostructure

    NASA Astrophysics Data System (ADS)

    Mirzapoor, Aboulfazl; Ranjbar, Bijan

    2017-09-01

    DNA self-assembled hybrid nanostructures are widely used in recent research in nanobiotechnology. Combination of DNA with carbon based nanoparticles such as single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and carbon quantum dot were applied in important biological applications. Many examples of biosensors, nanowires and nanoelectronic devices, nanomachine and drug delivery systems are fabricated by these hybrid nanostructures. In this study, a new hybrid nanostructure has been fabricated by noncovalent interactions between single or double stranded DNA and SWNT nanoparticles and biophysical properties of these structures were studied comparatively. Biophysical properties of hybrid nanostructures studied by circular dichroism, UV-vis and fluorescence spectroscopy techniques. Also, electrochemical properties studied by cyclic voltammetry, linear sweep voltammetry, square wave voltammetry, choronoamperometry and impedance spectroscopy (EIS). Results revealed that the biophysical and electrochemical properties of SWNT/DNA hybrid nanostructures were different compare to ss-DNA, ds-DNA and SWNT singly. Circular dichroism results showed that ss-DNA wrapped around the nanotubes through π-π stacking interactions. The results indicated that after adding SWNT to ss-DNA and ds-DNA intensity of CD and UV-vis spectrum peaks were decreased. Electrochemical experiments indicated that the modification of single-walled carbon nanotubes by ss-DNA improves the electron transfer rate of hybrid nanostructures. It was demonstrated SWNT/DNA hybrid nanostructures should be a good electroactive nanostructure that can be used for electrochemical detection or sensing.

  17. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    NASA Astrophysics Data System (ADS)

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-02-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 - 2.0 × 108 cells mL-1), a low limit of detection (79 cells mL-1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  18. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  19. Probing the chemistry of nickel/metal hydride battery cells using electrochemical impedance spectroscopy

    NASA Technical Reports Server (NTRS)

    Isaac, Bryan J.

    1994-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for investigating the chemical and physical processes occurring at electrode surfaces. It offers information about electron transfer at interfaces, kinetics of reactions, and diffusion characteristics of the bulk phase between the electrodes. For battery cells, this technique offers another advantage in that it can be done without taking the battery apart. This non-destructive analysis technique can thus be used to gain a better understanding of the processes occurring within a battery cell. This also raises the possibility of improvements in battery design and identification or prediction of battery characteristics useful in industry and aerospace applications. EIS as a technique is powerful and capable of yielding significant information about the cell, but it also requires that the many parameters under investigation can be resolved. This implies an understanding of the processes occurring in a battery cell. Many battery types were surveyed in this work, but the main emphasis was on nickel/metal hydride batteries.

  20. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  1. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface ofmore » carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.« less

  2. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine

    PubMed Central

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-01-01

    Several neurological disorders such as Alzheimer’s disease and Parkinson’s disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations. PMID:29186040

  3. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine.

    PubMed

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-11-29

    Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.

  4. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds.

    PubMed

    Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S

    2012-11-12

    This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Method for fabrication and verification of conjugated nanoparticle-antibody tuning elements for multiplexed electrochemical biosensors.

    PubMed

    La Belle, Jeffrey T; Fairchild, Aaron; Demirok, Ugur K; Verma, Aman

    2013-05-15

    There is a critical need for more accurate, highly sensitive and specific assay for disease diagnosis and management. A novel, multiplexed, single sensor using rapid and label free electrochemical impedance spectroscopy tuning method has been developed. The key challenges while monitoring multiple targets is frequency overlap. Here we describe the methods to circumvent the overlap, tune by use of nanoparticle (NP) and discuss the various fabrication and characterization methods to develop this technique. First sensors were fabricated using printed circuit board (PCB) technology and nickel and gold layers were electrodeposited onto the PCB sensors. An off-chip conjugation of gold NP's to molecular recognition elements (with verification technique) is described as well. A standard covalent immobilization of the molecular recognition elements is also discussed with quality control techniques. Finally use and verification of sensitivity and specificity is also presented. By use of gold NP's of various sizes, we have demonstrated the possibility and shown little loss of sensitivity and specificity in the molecular recognition of inflammatory markers as "model" targets for our tuning system. By selection of other sized NP's or NP's of various materials, the tuning effect can be further exploited. The novel platform technology developed could be utilized in critical care, clinical management and at home health and disease management. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.

    2005-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were

  7. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    NASA Astrophysics Data System (ADS)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  8. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Efficient fluorescence quenching in electrochemically exfoliated graphene decorated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Hurtado-Morales, M.; Ortiz, M.; Acuña, C.; Nerl, H. C.; Nicolosi, V.; Hernández, Y.

    2016-07-01

    High surface area graphene sheets were obtained by electrochemical exfoliation of graphite in an acid medium under constant potential conditions. Filtration and centrifugation processes played an important role in order to obtain stable dispersions in water. Scanning electron microscopy and transmission electron microscopy imaging revealed highly exfoliated crystalline samples of ∼5 μm. Raman, Fourier transform infrared and x-ray photoelectron spectroscopy further confirmed the high quality of the exfoliated material. The electrochemically exfoliated graphene (EEG) was decorated with gold nanoparticles (AuNPs) using sodium cholate as a buffer layer. This approach allowed for a non-covalent functionalization without altering the desirable electronic properties of the EEG. The AuNP-EEG samples were characterized with various techniques including absorbance and fluorescence spectroscopy. These samples displayed a fluorescence signal using an excitation wavelength of 290 nm. The calculated quantum yield (Φ) for these samples was 40.04%, a high efficiency compared to previous studies using solution processable graphene.

  10. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites.

    PubMed

    He, Baoshan; Du, Gengan

    2018-05-01

    In the current study, a sensitive electrochemical sensing strategy based on aptamer (APT) for detection of sulfadimidine (SM 2 ) was developed. A bare gold electrode (AuE) was first modified with 2-aminoethanethiol (2-AET) through self-assembly, used as linker for the subsequent immobilization of multi-walled carbon nanotubes and gold nanoparticle composites (MWCNTs/AuNPs). Then, the thiolated APT was assembled onto the electrode via sulfur-gold affinity. When SM 2 existed, the APT combined with SM 2 and formed a complex structure. The specific binding of SM 2 and APT increased the impedance, leading to hard electron transfer between the electrode surface and the redox probe [Fe(CN) 6 ] 3-/4- and producing a significant reduction of the signal. The SM 2 concentration could be reflected by the current difference of the peak currents before and after target binding. Under optimized conditions, the linear dynamic range is from 0.1 to 50 ng mL -1 , with a detection limit of 0.055 ng mL -1 . The sensor exhibited desirable selectivity against other sulfonamides and performs successfully when analyzing SM 2 in pork samples. Graphical abstract A new electrochemical biosensor for ultrasensitive detection of sulfadimidine (SM 2 ) by using a gold electrode modified with MWCNTs/AuNPs for signal amplification and aptamer (APT) for selectivity improvement.

  11. The promise of electrochemical impedance spectroscopy as novel technology for the management of patients with diabetes mellitus.

    PubMed

    Adamson, Teagan Leigh; Eusebio, Francis Ang; Cook, Curtiss B; LaBelle, Jeffrey T

    2012-09-21

    Self-monitoring of blood glucose is the standard of care in management of hyperglycemia among patients with diabetes mellitus. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using electrochemical impedance spectroscopy (EIS) technology is explored. The enzyme glucose oxidase (GOx) was fixed to gold electrodes and a sine wave of sweeping frequencies was induced using a wide range of concentrations of glucose. Each frequency in the impedance sweep was analyzed for the highest response and R-squared value. The frequency with both factors optimized is specific for the glucose-GOx binding interaction and was determined to be 1.17 kHz in purified solutions in both higher and lower ranges of glucose. The correlation between the impedance response and concentration at the low range of detection (0-100 mg dL(-1) of glucose) was determined to be 3.53 ohm/ln (mg dL(-1)) with an R-squared value of 0.90 with a 39 mg dL(-1) lower limit of detection. The same frequency of 1.17 kHz was verified in whole blood under the same glucose range. The above data confirm that EIS offers a new method of glucose detection as an alternative to current technology in use by patients. Additionally, the unique frequency response of individual markers allows for modulation of signals so that several other markers important in the management of diabetes could be measured with a single sensor.

  12. Detecting Corrosion Resistance of Coated Steel Rebars by Electrochemical Technique (eis)

    NASA Astrophysics Data System (ADS)

    Ryou, J.; Shah, S.

    Electrochemical impedance spectroscopy (EIS) is one of the electrochemical techniques used in materials science. The present measurements are used to evaluate the corrosion resistance of new types of coated steel rebar used in reinforced concrete. In this study, Si-based coating materials are used and evaluated, because adding Si to metals and alloys, including steel, generally increases their corrosion, oxidation, and erosion resistance. The result suggests that electrochemical impedance spectroscopy may be useful for monitoring corrosion activity on coated steel rebars. Based upon impedance changes, it appears that the silicon powder coating bonds well to the steel, and that the coating has a good performance.

  13. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  14. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    NASA Astrophysics Data System (ADS)

    Rocha, Paulo R. F.; Schlett, Paul; Kintzel, Ulrike; Mailänder, Volker; Vandamme, Lode K. J.; Zeck, Gunther; Gomes, Henrique L.; Biscarini, Fabio; de Leeuw, Dago M.

    2016-10-01

    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.

  15. Photocatalytic studies of electrochemically synthesized polysaccharide-functionalized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaur, Simranjeet; Kaur, Harpreet

    2018-05-01

    The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.

  16. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    PubMed

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  17. Synthesis, characterization, and electrochemical behavior of Au@Pd core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wicaksono, W. P.; Ivandini, T. A.

    2017-04-01

    Au@Pd core shell nanoparticles (Au@Pd CSNPs) were successfully synthesized using a seed-mediated growth method. Firstly, a pale pink gold seed solution was used to produce a pale purple gold nanoparticles (AuNPs) core solution. Then, three series of Pd shell thickness using 20μ, 100 μL, and 500 μL of PdCl2 produced purple, brown, and deep brown of Au@Pd CSNPs respectively. A strong absorbance UV-Visible spectrum with peaks at 285 nm and 535 nm was identified for AuNPs formation. The disappearance of the peak at 535 nm was indicated the Au@Pd CSNPs formation. The electrochemical properties were examined in phosphate buffer pH 7 using cyclic voltammetry technique with boron-doped diamond (BDD) as working electrode showed a couple oxidation and reduction peak of gold at 0.67 V and at 0.33 V, respectively. The Au@Pd CNPs will be used for modification of BDD electrodes.

  18. Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Junwei; Yan, Xingbin; Xue, Qunji

    A series of cobalt oxide/multi-walled carbon nanotube (Co 3O 4/MWCNT) composites are successfully synthesized by a facile chemical co-precipitation method followed by a simple thermal treatment process. The morphology and structure of as-obtained composites are characterized by X-ray diffraction, scanning electron microscopy, and N 2-adsorption/desorption measurements, and the electrochemical properties are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). For all Co 3O 4/MWCNT composites, MWCNTs are well dispersed in the loosely packed Co 3O 4 nanoparticles. Among them, the Co 3O 4-5%MWCNT composite exhibits the highest specific surface area of 137 m 2 g -1 and a mesoporous structure with a narrow distribution of pore size from 2 to 10 nm. Because of the synergistic effects coming from Co 3O 4 nanoparticles and MWCNTs, the electrochemical performances of pure Co 3O 4 material are significantly improved after adding MWCNTs. The Co 3O 4-5%MWCNT composite shows the largest specific capacitance of 418 F g -1 at a current density of 0.625 A g -1 in 2 M KOH electrolyte. Furthermore, this composite exhibits good cycling stability and lifetime. Therefore, based on the above investigation, such Co 3O 4/MWCNT composite could be a potential candidate for supercapacitors.

  19. The graphene oxide membrane immersing in the aqueous solution studied by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjing; Chen, Zhe; Yao, Lei; Wang, Xiao; Fu, Ping; Lin, Zhidong

    2018-04-01

    The interlayer spacing of graphene oxide (GO) is a key property for GO membrane. To probe the variation of interlayer spacing of the GO membrane immersing in KCl aqueous solution, electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD) and computational calculation was utilized in this study. The XRD patterns show that soaking in KCl aqueous solution leads to an increase of interlayer spacing of GO membrane. And the EIS results indicate that during the immersing process, the charge transfer resistance of GO membrane decreases first and then increases. Computational calculation confirms that intercalated water molecules can result in an increase of interlayer spacing of GO membrane, while the permeation of K+ ions would lead to a decrease of interlayer spacing. All the results are in agreement with each other. It suggests that during the immersing process, the interlayer spacing of GO enlarges first and then decreases. EIS can be a promisingly online method for examining the interlayer spacing of GO in the aqueous solution.

  20. Electrochemical biosensors for biocontaminant detection consisting of carbon nanotubes, platinum nanoparticles, dendrimers, and enzymes.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko; Nagatani, Naoki

    2013-12-15

    The presented approach provides the advanced development of effective, rapid, and versatile electrochemical sensors for a small amount of analytes on potential, cheap, and disposable printed chips. The electrocatalytic activity of this biosensor revealed the feasible detection of hydrogen peroxide at low potential (~0.09 V) and the detection of a biocontaminant inhibitor (organophosphorus pesticide) in a wide range of concentrations. This efficiency comes from the chemical immobilization of catalysts (Pt nanoparticles) and electron transfer-enlarging materials (carbon nanotubes) on an electrode. Especially, dendrimers raise the stable conjugation of enzymes (acetylcholinesterase/choline oxidase/peroxidase) as well as nanoparticles and carbon nanotubes on an electrode. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Porphyran-capped gold nanoparticles modified carbon paste electrode: a simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lima, Dhésmon; Calaça, Giselle Nathaly; Viana, Adriano Gonçalves; Pessôa, Christiana Andrade

    2018-01-01

    The application of carbon paste electrodes modified with porphyran-capped gold nanoparticles (CPE/AuNps-PFR) to detect an important anticancer drug, 5-fluorouracil (5-FU), is described. Gold nanoparticles (AuNps) were synthesized through a green one-pot route, by using porphyran (PFR) (a sulfated polysaccharide extracted from red seaweed) as reducing and stabilizing agent. The reaction temperature and the concentrations of AuCl4- and PFR for AuNps-PFR synthesis were optimized by using a 23 full factorial design with central point assayed in triplicate. The smallest particle size (128.7 nm, obtained by DLS) was achieved by employing a temperature of 70 °C and AuCl4- and PFR concentrations equal to 2.5 mmol L-1 and 0.25 mg mL-1, respectively. The AuNps-PFR nanocomposite was characterized by UV-vis spectroscopy, FTIR, DLS, TEM, XRD and zeta potential, which proved that PFR was effective at reducing and capping the AuNps. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments showed that the nanocomposite could enhance the electrochemical performance of the electrodes, as a consequence of the high conductivity and large surface area presented by the AuNps. The CPE/AuNps-PFR was able to electrocatalyze the oxidation of 5-FU by CV and differential pulse voltammetry (DPV). A linear relationship between the DPV peak currents and 5-FU concentration was verified in the range from 29.9 to 234 μmol L-1 in 0.04 mol L-1 BR buffer solution pH 8.0. Detection and quantification limits were found to be 0.66 and 2.22 μmol L-1, respectively. Besides the good sensitivity, CPE/AuNps-PFR showed reproducibility and did not suffer significant interference from potentially electroative biological compounds. The good analytical performance of the modified electrode was confirmed for determining 5-FU in pharmaceutical formulations, with good percent recoveries (ranging from 96.6 to 101.4%) and an acceptable relative standard deviation (RSD = 2.80%).

  2. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.

    PubMed

    Su, Y; Zhitomirsky, I

    2013-02-14

    The electrophoretic deposition (EPD) method has been developed for the fabrication of MnO(2)-multiwalled carbon nanotube (MWCNT) films for application in electrochemical supercapacitors (ESs). For MWCNT applications, which depend on electrical conductivity, it is challenging to achieve dispersion and EPD of pristine MWCNT and avoid defects due to chemical treatment or functionalization. An important finding was the possibility of efficient dispersion and controlled EPD of MWCNT using calconcarboxylic acid (CCA). Moreover, the use of CCA allowed efficient dispersion of MnO(2) in concentrated suspensions and EPD of MnO(2) films. The comparison of the experimental data for chromotrope FB (CFB) and CCA and chemical structures of the molecules provided insight into the mechanism of CCA adsorption on MnO(2). The fabrication of stable suspensions of MnO(2) nanoparticles containing MWCNT, and controlled codeposition of both materials is a crucial aspect in the EPD of composites. The new approach was based on the use of CCA as a charging and dispersing agent for EPD of MnO(2) nanoparticles and MWCNT. The deposition yield measurements at various experimental conditions and Fourier transform infrared spectroscopy data, coupled with results of electron microscopy, thermogravimetric, and differential thermal analysis provided evidence of the formation of MnO(2)-MWCNT composites. The electrochemical testing results and impedance spectroscopy data showed good capacitive behavior of the composite films and the beneficial effect of MWCNTs.

  3. Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension.

    PubMed

    Silva, Jesús G; Cárdenas, Rey A; Quiróz, Alan R; Sánchez, Virginia; Lozano, Lucila M; Pérez, Nadia M; López, Jaime; Villanueva, Cleva; González, César A

    2014-06-01

    Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10-100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique.

  4. Corrosion Behavior of Stainless Steels in Neutral and Acidified Sodium Chloride Solutions by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolady, M. R.; Vinje, R. D.

    2004-01-01

    The objective of this work was to evaluate the corrosion performance of three alloys by Electrochemical Impedance Spectroscopy (EIS) and to compare the results with those obtained during a two-year atmospheric exposure study.' Three alloys: AL6XN (UNS N08367), 254SM0 (UNS S32154), and 304L (UNS S30403) were included in the study. 304L was included as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaC1 in 0.lN HC1, and 3.55% NaC1 in 1.ON HC1. These conditions were expected to be less severe, similar, and more severe respectively than the conditions at NASA's Kennedy Space Center launch pads.

  5. Electrochemical Biosensors - Sensor Principles and Architectures

    PubMed Central

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  6. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode.

    PubMed

    Lee, Eunhee; Kim, Daekun; You, Jung-Min; Kim, Seul Ki; Yun, Mira; Jeon, Seungwon

    2012-12-01

    Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.

  7. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  8. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    NASA Astrophysics Data System (ADS)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  9. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)

    PubMed Central

    Ouyang, Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue, Zi-Ling

    2012-01-01

    We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNPs layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol-gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNPs layer is then self-assembled on the surface of the sol-gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1,200 ng L−1 and a low detection limit of 2.9 ng L−1. In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy. PMID:22444528

  10. Thermal stability and electrochemical properties of PVP-protected Ru nanoparticles synthesized at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Devi, Pooja; Shivling, V. D.

    2017-08-01

    Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.

  11. Evaluation of inorganic zinc-rich primers using Electrochemical Impedance Spectroscopy (EIS)

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1993-01-01

    This investigation explores the use of Electrochemical Impedance Spectroscopy (EIS) in combination with beach exposure as a short term method for analyzing the performance of twenty-one zinc-rich primers. The twenty-one zinc-rich primers were: Carboline CZ-11, Ameron Devoe-Marine Catha-Coat 304, Briner V-65, Ameron D-21-9, Sherwin Williams Zinc Clad II, Carboline CZ-D7, Ameron D-4, Dupont Ganicin 347WB, Porter TQ-4374H, Inorganic Coatings IC-531, Subox Galvanox IV, Southern Coatings Chemtec 600, Glidden Glidzinc 5530, Byco SP-101, Tnemec 90E-75, Devoe Catha-Coat 302H, Glidden Glidzinc 5536, Koppers 701, Ameron D-21-5, Coronado 935-152, and Subox Galvanoz V. Data were also collected on galvanized steel for comparison purposes. A library of Bode magnitude plots was generated for each coating including curves for the initial time and after each week of atmospheric exposure as Beach Corrosion Test Site near the Space Shuttle launch pad at the Kennedy Space Center for up to three weeks. An examination of the variation of the Bode magnitude plots with atmospheric exposure revealed no clearly identifiable trend at this point that could distinguish between the good and the poor coatings. The test will be continued by including EIS measurements after six months and one year of atmospheric exposure.

  12. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles.

    PubMed

    Yan, Jun; Liu, Shi; Zhang, Zhenqin; He, Guangwu; Zhou, Ping; Liang, Haiying; Tian, Lulu; Zhou, Xuemin; Jiang, Huijun

    2013-11-01

    Pd-Pt bimetallic nanoparticles anchored on functionalized reduced graphene oxide (RGO) nanomaterials were synthesized via a one-step in situ reduction process, in which Pt and Pd ions were first attached to poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene oxide (GO) sheets, and then the encased metal ions and GO were subjected to simultaneous reduction by ethylene glycol. The as-prepared Pd3Pt1/PDDA-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical methods. In addition, an electrochemical sensor based on the graphene nanocomposites was fabricated for the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in their ternary mixture. Three well-separated voltammetric peaks along with remarkable increasing electro-oxidation currents were obtained in differential pulse voltammetry (DPV) measurements. Under the optimized conditions, there were linear relationships between the peak currents and the concentrations in the range of 40-1200 μM for AA, 4-200 μM for DA and 4-400 μM for UA, with the limit of detection (LOD) (based on S/N=3) of 0.61, 0.04 and 0.10 μM for AA, DA and UA, respectively. This improved electrochemical performance can be attributed to the synergistic effect of metallic nanoparticles and RGO and the combination of the bimetallic nanoparticles. Furthermore, the practical electroanalytical utility of the sensor was demonstrated by the determination of AA, DA and together with UA in human urine and blood serum samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy.

    PubMed

    Di Turo, Francesca; Montoya, Noemí; Piquero-Cilla, Joan; De Vito, Caterina; Coletti, Fulvio; Favero, Gabriele; Doménech-Carbó, Antonio

    2017-02-22

    Voltammetry of microparticles (VMP) and electrochemical impedance spectroscopy (EIS) techniques, complemented by SEM-EDX and Raman spectroscopy, were applied to a set of 15 Roman bronze coins and one Tessera from the temple of Magna Mater (Rome, Italy). The archaeological site, dated back between the second half and the end of the 4th century A.D., presented a complicated stratigraphic context. Characteristic voltammetric patterns for cuprite and tenorite for sub-microsamples of the corrosion layers of the coins deposited onto graphite electrodes in contact with 0.10 M HClO 4 aqueous solution yielded a grouping of the coins into three main groups. This grouping was confirmed and refined using EIS experiments of the coins immersed in air-saturated mineral water using the reduction of dissolved oxygen as a redox probe. The electrochemical grouping of coins corroborated the complex stratigraphy of the archaeological site and, above all, the reuse of the coins during the later periods due to the economic issues related to the fall of the Roman Empire. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.

    PubMed

    Bian, Yinghui; Li, Chunya; Li, Haibing

    2010-05-15

    In this paper, a new electrochemical sensor, based on modified silver nanoparticles, was fabricated using one-step electrodeposition approach. The para-sulfonatocalix[6]arene-modified silver nanoparticles coated on glassy carbon electrode (pSC(6)-Ag NPs/GCE) was characterized by attenuated total reflection IR spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), etc. The pSC(6) as the host are highly efficient to capture organophosphates (OPs), which dramatically facilitates the enrichment of nitroaromatic OPs onto the electrochemical sensor surface. The combination of the host-guest supramolecular structure and the excellent electrochemical catalytic activities of the pSC(6)-Ag NPs/GCE provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. In this work, methyl parathion (MP) was used as a nitroaromatic OP model for testing the proposed sensor. In comparison with Ag NPs-modified electrode, the cathodic peak current of MP was amplified significantly. Differential pulse voltammetry was used for the simultaneous determination of MP. Under optimum conditions, the current increased linearly with the increasing concentration of MP in the range of 0.01-80microM, with a detection limit of 4.0nM (S/N=3). The fabrication reproducibility and stability of the sensor is better than that of enzyme-based electrodes. The possible underlying mechanism is discussed.

  15. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport.

    PubMed

    Lundgren, Anders; Hedlund, Julia; Andersson, Olof; Brändén, Magnus; Kunze, Angelika; Elwing, Hans; Höök, Fredrik

    2011-10-15

    A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates. The observed responses were represented with an equivalent circuit, suggesting that the differences primarily originate from the presence of a conductive aqueous layer between the lipid bilayers and the SiO(2). In addition, by adding the ion channel gramicidin D to bilayers supported on SiO(2), channel-mediated charge transport could be measured with high sensitivity (resolution around 1 pA). © 2011 American Chemical Society

  16. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

    PubMed Central

    Lee, Chang-Seuk; Yu, Su Hwan; Kim, Tae Hyun

    2017-01-01

    Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from −1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality. PMID:29301209

  17. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell

    NASA Astrophysics Data System (ADS)

    Balasundaram, Manikandan; Ramar, Vishwanathan; Yap, Christopher; Lu, Li; Tay, Andrew A. O.; Palani, Balaya

    2016-10-01

    We report here thermal behaviour and various components of heat loss of 18650-type LiFePO4/graphite cell at different testing conditions. In this regard, the total heat generated during charging and discharging processes at various current rates (C) has been quantified in an Accelerating Rate Calorimeter experiment. Irreversible heat generation, which depends on applied current and internal cell resistance, is measured under corresponding charge/discharge conditions using intermittent pulse techniques. On the other hand, reversible heat generation which depends on entropy changes of the electrode materials during the cell reaction is measured from the determination of entropic coefficient at various states of charge/discharge. The contributions of irreversible and reversible heat generation to the total heat generation at both high and low current rates are evaluated. At every state of charge/discharge, the nature of the cell reaction is found to be either exothermic or endothermic which is especially evident at low C rates. In addition, electrochemical impedance spectroscopy measurements are performed on above 18650 cells at various states of charge to determine the components of internal resistance. The findings from the impedance and thermal loss analysis are helpful for understanding the favourable states of charge/discharge for battery operation, and designing better thermal management systems.

  18. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent ismore » explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.« less

  19. Electrochemical comparison of nickel and nickel hydroxide nanoparticles composited with reduced graphene oxide and polyaniline for their supercapacitor application

    NASA Astrophysics Data System (ADS)

    Viswanthan, Aranganathan; Shetty, Adka Nityananda

    2018-04-01

    The reduced graphene oxide/polyaniline/Ni(OH)2 (GP-Ni(OH)2) and reduced graphene oxide/polyaniline/Ni (GP-Ni) nanocomposites were synthesized by facile in situ single step chemical method. The constituents were confirmed by powder-XRD, and the electrochemical characterizations were carried out using cyclic voltammetry(CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The electrochemical contribution of Ni(OH)2 and Ni to their supercapacitance along with reduced graphene oxide and polyaniline was compared. The GP-Ni nanocomposite exhibited a specific capacitance of 266.66 F g-1, energy density of 53.33 W h kg-1 and power density of 1385 W kg-1 at a current density of 0.25 A g-1 and the results were enhanced to 21% and more promising than that of nanocomposite GP-Ni(OH)2.

  20. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  1. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine.

    PubMed

    Bhakta, Arvind K; Mascarenhas, Ronald J; D'Souza, Ozma J; Satpati, Ashis K; Detriche, Simon; Mekhalif, Zineb; Dalhalle, Joseph

    2015-12-01

    Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode (Fe-MWCNTs/MCPE) was prepared by bulk-modification method. The electrochemical impedance spectroscopy (EIS) suggests least charge transfer resistance at the modified electrode. The electrochemical behavior of UA was studied in 0.1M phosphate buffer solution (PBS) of pH3.0 using cyclic voltammetry (CV) while differential pulse voltammetry (DPV) was used for quantification. The spectroelectrochemial study of oxidation of UA at Fe-MWCNTs/MCPE showed a decrease in the absorbance of two peaks with time, which are ascribed to π to π(⁎) and n to π(⁎) transitions. Under optimum condition, the DPV response offered two linear dynamic ranges for UA in the concentration range 7.0×10(-8)M-1.0×10(-6)M and 2.0×10(-6)M-1.0×10(-5)M with detection limit (4.80±0.35)×10(-8)M (S/N=3). The practical analytical application of this sensor was successfully evaluated by determination of spiked UA in clinical samples, such as human blood serum and urine with good percentage recovery. The proposed electrochemical sensor offers a simple, reliable, rapid, reproducible and cost effective analysis of a quaternary mixture of biomolecules containing AA, DA, UA and Tyr which was free from mutual interferences. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    PubMed

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  3. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  4. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  5. Development of an electrochemical biosensor for vitamin B12 using D-phenylalanine nanotubes

    NASA Astrophysics Data System (ADS)

    Moazeni, Maryam; Karimzadeh, Fathallah; Kermanpur, Ahmad; Allafchian, Alireza

    2018-01-01

    In the past decades, biosensors are one of the most interesting topics among researchers and scientist. The biosensors are used in several applications such as determining food quality, control and diagnose clinical problems and metabolic control. Therefore, many efforts have been carried out to design and develop a new generation of these systems. On the other hand nanotechnology by improving the performance of sensors has created an excellent outlook. Using nanomaterials such as nanoparticles, nanotubes, nanowires, and nanorods in diagnostic tools has been significantly increased accuracy, sensitivity and improved detection limits in sensors. In this study, the one-dimensional morphology of the D-phenylalanine was assembled on the surface of the gold electrode. In the next step electrochemical performance of the modified electrode was investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pals Voltammograms (DPV). Finally, by measuring the different concentrations of vitamin B12, the detection limit of the biosensor was obtained 1.6 µM.

  6. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.

    PubMed

    Chauhan, Nidhi; Chawla, Sheetal; Pundir, C S; Jain, Utkarsh

    2017-03-15

    An essential biological sensor for acetylcholine (ACh) detection is constructed by immobilizing enzymes, acetylcholinesterase (AChE) and choline oxidase (ChO), on the surface of iron oxide nanoparticles (Fe 2 O 3 NPs), poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) nanocomposite modified fluorine doped tin oxide (FTO). The qualitative and quantitative measurements of nanocomposites properties were accomplished by scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This prepared biological sensor delineated a wide linear range of 4.0nM to 800μM with a response time less than 4s and detection limit (based on S/N ratio) of 4.0nM. The sensor showed perfect sensitivity, excessive selectivity and stability for longer period of time during storage. Besides its very high-sensitivity, the biosensor has displayed a low detection limit which is reported for the first time in comparison to previously reported ACh sensors. By fabricating Fe 2 O 3 NPs/rGO/PEDOT modified FTO electrode for determining ACh level in serum samples, the applicability of biosensor has increased immensely as the detection of the level neurotransmitter is first priority for patients suffering from memory loss or Alzheimer's disease (AD). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An Electrochemical DNA Sensing System Using Modified Nanoparticle Probes for Detecting Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro

    2017-01-01

    We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.

  8. Electrochemical Impedance Analysis of a PEDOT:PSS-Based Textile Energy Storage Device

    PubMed Central

    Gokceoren, Argun Talat; Odhiambo, Sheilla Atieno; De Mey, Gilbert; Hertleer, Carla; Van Langenhove, Lieva

    2017-01-01

    A textile-based energy storage device with electroactive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)) polymer functioning as a solid-state polyelectrolyte has been developed. The device was fabricated on textile fabric with two plies of stainless-steel electroconductive yarn as the electrodes. In this study, cyclic voltammetry and electrochemical impedance analysis were used to investigate ionic and electronic activities in the bulk of PEDOT:PSS and at its interfaces with stainless steel yarn electrodes. The complex behavior of ionic and electronic origins was observed in the interfacial region between the conductive polymer and the electrodes. The migration and diffusion of the ions involved were confirmed by the presence of the Warburg element with a phase shift of 45° (n = 0.5). Two different equivalent circuit models were found by simulating the model with the experimental results: (QR)(QR)(QR) for uncharged and (QR)(QR)(Q(RW)) for charged samples. The analyses also showed that the further the distance between electrodes, the lower the capacitance of the cell. The distribution of polymer on the cell surface also played important role to change the capacitance of the device. The results of this work may lead to a better understanding of the mechanism and how to improve the performance of the device. PMID:29283427

  9. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    PubMed

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages. Copyright © 2015. Published by Elsevier B.V.

  10. Electrochemical impedance spectroscopy system and methods for determining spatial locations of defects

    DOEpatents

    Glenn, David F.; Matthern, Gretchen E.; Propp, W. Alan; Glenn, Anne W.; Shaw, Peter G.

    2006-08-08

    A method and apparatus for determining spatial locations of defects in a material are described. The method includes providing a plurality of electrodes in contact with a material, applying a sinusoidal voltage to a select number of the electrodes at a predetermined frequency, determining gain and phase angle measurements at other of the electrodes in response to applying the sinusoidal voltage to the select number of electrodes, determining impedance values from the gain and phase angle measurements, computing an impedance spectrum for an area of the material from the determined impedance values, and comparing the computed impedance spectrum with a known impedance spectrum to identify spatial locations of defects in the material.

  11. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry.

    PubMed

    Battistel, Dario; Baldi, Franco; Gallo, Michele; Faleri, Claudia; Daniele, Salvatore

    2015-01-01

    Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag(0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    PubMed

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  13. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane

    PubMed Central

    Liu, Ying; Zhang, Zhen; Zhang, Quanxuan; Baker, Gregory L.; Worden, R. Mark

    2013-01-01

    Engineered nanomaterials (ENM) have desirable properties that make them well suited for many commercial applications. However, a limited understanding of how ENM’s properties influence their molecular interactions with biomembranes hampers efforts to design ENM that are both safe and effective. This paper describes the use of a tethered bilayer lipid membrane (tBLM) to characterize biomembrane disruption by functionalized silica-core nanoparticles. Electrochemical impedance spectroscopy was used to measure the time trajectory of tBLM resistance following nanoparticle exposure. Statistical analysis of parameters from an exponential resistance decay model was then used to quantify and analyze differences between the impedance profiles of nanoparticles that were unfunctionalized, amine-functionalized, or carboxyl-functionalized. All of the nanoparticles triggered a decrease in membrane resistance, indicating nanoparticle-induced disruption of the tBLM. Hierarchical clustering allowed the potency of nanoparticles for reducing tBLM resistance to be ranked in the order amine > carboxyl ~ bare silica. Dynamic light scattering analysis revealed that tBLM exposure triggered minor coalescence for bare and amine-functionalized silica nanoparticles but not for carboxyl-functionalized silica nanoparticles. These results indicate that the tBLM method can reproducibly characterize ENM-induced biomembrane disruption and can distinguish the BLM-disruption patterns of nanoparticles that are identical except for their surface functional groups. The method provides insight into mechanisms of molecular interaction involving biomembranes and is suitable for miniaturization and automation for high-throughput applications to help assess the health risk of nanomaterial exposure or identify ENM having a desired mode of interaction with biomembranes. PMID:24060565

  14. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    PubMed

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A multifunctional label-free electrochemical impedance biosensor for Hg(2+), adenosine triphosphate and thrombin.

    PubMed

    Chen, Lifen; Chen, Zhong-Ning

    2015-01-01

    A multifunctional label-free biosensor for the detection of Hg(2+), adenosine triphosphate and thrombin has been developed based on the changing of the electrochemical impedance spectroscopy (EIS) from the modified electrodes when nucleic acid subunits interacting with different targets. The modified electrode consists of three interaction sections, including DNA with T-T mismatch recognizing Hg(2+) to form T-Hg(2+)-T complex, split DNA chip against ATP, and DNA domin against thrombin to form G-quadruplex. Upon DNA interaction with thrombin or ATP, an increased charge transfer resistance (Rct) had been detected. However, a decreased Rct against Hg(2+) was obtained. The Rct difference (ΔRct) has relationship with the concentration of the different targets, Hg(2+), ATP and thrombin can be selectively detected with the detection limit of 0.03, 0.25, and 0.20 nmol L(-1), respectively. To separately detect the three analytes existing in the same sample, ATP aptamer, G-rich DNA strands and EDTA were applied to mask ATP, Hg(2+) or thrombin separately. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin.

    PubMed

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Xing, Xianrong; Li, Jie; Cui, Min; Huang, Jiadong

    2012-01-01

    A molecularly imprinted electrochemical sensor was fabricated based on gold electrode decorated by chitosan-platinum nanoparticles (CS-PtNPs) and graphene-gold nanoparticles (GR-AuNPs) nanocomposites for convenient and sensitive determination of erythromycin. The synergistic effects of CS-PtNPs and GR-AuNPs nanocomposites improved the electrochemical response and the sensitivity of the sensor. The molecularly imprinted polymers (MIPs) were prepared by HAuCl(4), 2-mercaptonicotinic acid (MNA) and erythromycin. Erythromycin and MNA were used as template molecule and functional monomer, respectively. They were first assembled on the surface of GR-AuNPs/CS-PtNPs/gold electrode by the formation of Au-S bonds and hydrogen-bonding interactions. Then the MIPs were formed by electropolymerization of HAuCl(4), MNA and erythromycin. The sensor was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), UV-visible (UV-vis) absorption speactra and amperometry. The linear range of the sensor was from 7.0 × 10(-8)mol/L-9.0 × 10(-5)mol/L, with the limit of detection (LOD) of 2.3 × 10(-8)mol/L (S/N=3). The sensor showed high selectivity, excellent stability and good reproducibility for the determination of erythromycin, and it was successfully applied to the detection of erythromycin in real spiked samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Investigation of disorder and its effect on electrical transport in electrochemically doped polymer devices by current-voltage and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rahman Khan, Motiur; Anjaneyulu, P.; Koteswara Rao, K. S. R.; Menon, R.

    2017-03-01

    We report on the analysis of temperature-dependent current-voltage characteristics and impedance measurements of electrochemically doped poly(3-methylthiophene) devices at different doping levels. The extent of doping is carefully tailored such that only the bulk-limited transport mechanism prevails. A transition from exponentially distributed trap-limited transport to trap-free space-charge-limited current is observed in current-voltage conduction upon increasing the doping. The obtained trap densities (3.2  ×  1016 cm-3 and 8.6  ×  1015 cm-3) and trap energies (31.7 meV and 16.6 meV) for different devices signify the variation in disorder with doping, which is later supported by impedance measurements. Impedance-frequency data for various devices can not be explained using the parallel resistance-capacitance (RC) model in the equivalent circuit. However, this was established by incorporating a constant phase element Q (CPE) instead of the capacitance parameter. It should be emphasized that low doping devices in particular are best simulated with two CPE elements, while the data related to other devices are fitted well with a single CPE element. It is also observed from evaluated circuit parameters that the spatial inhomogeneity and disorder are the cause of variability in different samples, which has an excellent correlation with the temperature-dependent current-voltage characteristics.

  18. Electrochemically Controlled Reconstitution of Immobilized Ferritins for Bioelectronic Applications

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hong; King, Glen C.; Watt, Gerald D.

    2007-01-01

    Site-specific reconstituted nanoparticles were fabricated via electrochemically-controlled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstituted Pt-cored ferritins. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of site-specific electrochemical biomineralization with a protein cage loads ferritins with different core materials. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This first demonstration of electrochemically controlled site-specific reconstitution of biomolecules provides a new tool for biomineralization and opens the way to produce the bio-templated nanoparticles by electrochemical control. The nanosized platinum-cored ferritins on gold displayed good catalytic activity for the electrochemical reduction of oxygen, which is applicable to biofuel cell applications. This results in a smaller catalyst loading on the electrodes for fuel cells or other bioelectronic devices.

  19. Thermodynamic and Kinetic Properties of the Electrochemical Cell.

    ERIC Educational Resources Information Center

    Smith, Donald E.

    1983-01-01

    Describes basic characteristics of the electrochemical cell. Also describes basic principles of electrochemical procedures and use of these concepts to explain use of the term "primarily" in discussions of methods primarily responsive to equilibrium cell potential, bulk ohmic resistance, and the Faradaic impedance. (JN)

  20. Electrochemically induced actuation of liquid metal marbles

    NASA Astrophysics Data System (ADS)

    Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P.; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-06-01

    Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles

  1. Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine.

    PubMed

    Xu, Qingjun; Wang, Guixiang; Zhang, Mingming; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang

    2018-04-13

    The authors describe an electrochemical aptasensor for thrombin that is based on the use of a glassy carbon electrode (GCE) modified with polydopamine that is loaded with silver nanoparticles (PDA/AgNPs). The use of AgNPs improves the conductivity of the film and increases the surface area of the GCE. PDA was deposited on the GCE via self-polymerization, and the thrombin binding aptamer was grafted onto the PDA-modified GCE by a single step reaction. Residual electrode surface was blocked with 6-mercapto-1-hexanol. On exposure to thrombin, the electrochemical impedance of the modified electrode increases gradually. Response is linear in the 0.1 pM to 5.0 nM thrombin concentration range, and the limit of detection is as low as 36 fM. The method is selective and capable of detecting thrombin in diluted human serum. In our perception, such a GCE modified with AgNP in a PDA matrix may be applied to many other analytes for which appropriate aptamers are available. Graphical abstract Schematic of an electrochemical aptasensor for sensitive and selective thrombin detection based on the use of a self-polymerized polydopamine film loaded with silver nanoparticles.

  2. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation

    PubMed Central

    Sowa, Maciej

    2018-01-01

    Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC) plasma electrolytic oxidation (PEO). Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO2)2, Ca(HCOO)2 and Mg(CH3COO)2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR)]) and R(Q[R(Q[RW])]). The inclusion of W in the circuit helped to fit the low-frequency part of the samples PEO-ed at 400 V, hinting at the important role of diffusion in the corrosion resistance of the PEO coatings described in the research. PMID:29614014

  3. Synergetic effects of Al3+ doping and graphene modification on the electrochemical performance of V2O5 cathode materials.

    PubMed

    Zhu, Kai; Qiu, Hailong; Zhang, Yongquan; Zhang, Dong; Chen, Gang; Wei, Yingjin

    2015-03-01

    A series of V2O5-based cathode materials that include V2O5 and Al0.14 V2O5 nanoparticles, V2O5/reduced graphene oxide (RGO), and Al0.16 V2O5/RGO nanocomposites are prepared by a simple soft chemical method. XRD and Raman scattering show that the Al ions reside in the interlayer space of the materials. These doping ions strengthen the V−O bonds of the [VO5] unit and enhance the linkage of the [VO5] layers, which thus increases the structural stability of V2O5. SEM and TEM images show that the V2O5 nanoparticles construct a hybrid structure with RGO that enables fast electron transport in the electrode matrix. The electrochemical properties of the materials are studied by charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Of all the materials tested, the one that contained both Al ions and RGO (Al0.16 V2O5/RGO) exhibited the highest discharge capacity, the best rate capability, and excellent capacity retention. The superior electrochemical performance is attributed to the synergetic effects of Al(3+) doping and RGO modification, which not only increase the structural stability of the V2O5 lattice but also improve the electrochemical kinetics of the material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Composited reduced graphene oxide into LiFePO4/Li2SiO3 and its electrochemical impedance spectroscopy properties

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Rus, Y. B.; Aimon, A. H.; Iskandar, F.; Winata, T.; Abdullah, M.; Khairurrijal, K.

    2017-03-01

    LiFePO4 is commonly used as cathode material for Li-ion batteries due to its stable operational voltage and high specific capacity. However, it suffers from certain disadvantages such as low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to analyse the effect of reduced graphene oxide (rGO) on the electrochemical properties of LiFePO4/Li2SiO3 composite. This composite was synthesized by a hydrothermal method. Fourier transform infrared spectroscopy measurement identified the O-P-O, Fe-O, P-O, and O-Si-O- bands in the LiFePO4/Li2SiO3 composite. X-ray diffraction measurement confirmed the formation of LiFePO4. Meanwhile, Raman spectroscopy confirmed the number of rGO layers. Further, scanning electron microscopy images showed that rGO was distributed around the LiFePO4/Li2SiO3 particles. Finally, the electrochemical impedance spectroscopy results showed that the addition of 1 wt% of rGO to the LiFePO4/Li2SiO3 composite reduced charge transfer resistance. It may be concluded that the addition of 1 wt% rGO to LiFePO4/Li2SiO3 composite can enhance its electrochemical performance as a cathode material.

  5. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    NASA Astrophysics Data System (ADS)

    Lakshmi, R. V.; Aruna, S. T.; Sampath, S.

    2017-01-01

    The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  6. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  7. Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Haitang; Li, Bingyue; Cui, Rongjing; Xing, Ruimin; Liu, Shanhu

    2017-10-01

    The key step in the fabrication of highly active electrochemical sensors is seeking multifunctional nanocomposites as electrode modified materials. In this study, the gold nanoparticle-decorated helical carbon nanotube nanocomposites (AuNPs-HCNTs) were fabricated for rutin detection because of its superior sensitivity, the chemical stability of AuNPs, and the superior conductivity and unique 3D-helical structure of helical carbon nanotubes. Results showed the prepared nanocomposites exhibited superior electrocatalytic activity towards rutin due to the synergetic effects of AuNPs and HCNTs. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.1 to 31 μmol/L for rutin with a low detectable limit of 81 nmol/L. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples.

  8. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    PubMed

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kun; Miao, Peng; Tang, Yuguo, E-mail: tangyg@sibet.ac.cn

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  10. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid.

    PubMed

    Ezhil Vilian, A T; Rajkumar, Muniyandi; Chen, Shen-Ming

    2014-03-01

    Highly loaded zirconium oxide (ZrO2) nanoparticles were supported on graphene oxide (ERGO/ZrO2) via an in situ, simple and clean strategy on the basis of the electrochemical redox reaction between zirconyl chloride and graphene oxide (ZrOCl2 and GO). The electrochemical measurements and surface morphology of the as prepared nanocomposite were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). This ZrO2 decorated reduced graphene oxide nanocomposite modified GCE (ERGO/ZrO2) exhibits a prominent electrocatalytic activity toward the selective detection and determination of dopamine (DA) and paracetamol (PA) in presence of ascorbic acid (AA). The peaks of linear sweep voltammetry (LSV) for DA and PA oxidation at ERGO/ZrO2 modified electrode surface were clearly separated from each other when they co-existed in the physiological pH (pH 7.0) with a potential value of 140 mV (between AA and DA) and 330 mV (between AA and PA). It was, therefore, possible to simultaneously determine DA and PA in the samples at ERGO/ZrO2 nanocomposite modified GCE. Linear calibration curves were obtained for 9-237 μM of PA and DA. The ERGO/ZrO2 nanocomposite electrode has been satisfactorily used for the determination of DA and PA in the presence of AA at pharmaceutical formulations in human urine samples with a linear range of 3-174 μM. The proposed biosensor shows a wide linear range, low detection limit, good reproducibility and acceptable stability, providing a biocompatible platform for bio sensing and bio catalysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  12. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    PubMed

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  13. A simple high-yield synthesis of high-purity Hägg carbide (χ-Fe5C2) nanoparticles with extraordinary electrochemical properties.

    PubMed

    Malina, Ondřej; Jakubec, Petr; Kašlík, Josef; Tuček, Jiří; Zbořil, Radek

    2017-07-27

    Iron carbides are of eminent interest in both fundamental scientific research and in the industry owing to their properties such as excellent mechanical strength and chemical inertness. They have been found very effective in Fischer-Tropsch synthesis exploring heterogeneous catalysis for the production of chemicals such as liquid fuel and they have also been employed as successful promoters for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). However, so far there have been only a few reports on the application of iron carbide nanoparticles in the field of electrochemical sensing. Here, we present a stable form of Hägg carbide nanoparticles synthesized from a rare form of iron(iii) oxide (β-Fe 2 O 3 ). The as-prepared nanomaterial was characterized employing X-ray powder diffraction and Mössbauer spectroscopy to prove its composition as well as an extraordinary high purity level. It turned out that Hägg carbide nanoparticles prepared by thermally treated β-Fe 2 O 3 exhibited excellent electrochemical properties including low charge transfer resistivity (R ct ) compared to the other tested materials. Moreover, the Hägg carbide nanoparticles were tested as a promising electrocatalyst for voltammetric detection of the antibiotic metronidazole proving its practical applicability.

  14. A Highly Sensitive Oligonucleotide Hybridization Assay for Klebsiella pneumoniae Carbapenemase with the Probes on a Gold Nanoparticles Modified Glassy Carbon Electrode.

    PubMed

    Pan, Hong-zhi; Yu, Hong- Wei; Wang, Na; Zhang, Ze; Wan, Guang-Cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-01-01

    To develop a new electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase, a highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-nano). The Au-nano/GCE was characterized by scanning electromicroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The hybridization detection was measured by differential pulse voltammetry using methylene blue as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-11) to 1 × 10(-8) M, with an LOD of 1 × 10(-12) M. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The Au-nano/GCE showed significant improvement in electrochemical characteristics, and this biosensor was successfully applied for determination of K. pneumoniae.

  15. Improved Electrochemical Performance of Carbon-Coated LiFeBO 3 Nanoparticles for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoping; Wang, Yiping; Hu, Querui

    2015-09-01

    Carbon-coated LiFeBO 3 nanoparticles have been successfully prepared by surfactant-assisted ball milling and a size selection process based on centrifugal separation. We observed monodispersed LiFeBO 3 nanoparticles with dimensions of 10–20 nm by transmission electron microscope. The introduced surfactant acts as the dispersant as well as the carbon source for LiFeBO 3 nanoparticles. Greatly improved discharge capacities of 190.4 mA h g –1 at 0.1 C and 106.6 mA h g –1 at 1 C rate have been achieved in the LiFeBO 3 nanoparticles when cycling the cells between 1.0 V and 4.8 V. Meanwhile, the as-prepared micro-size LiFeBO 3more » electrodes show lower discharge capacities of 142 mA h g –1 and 93.3 mA h g –1 at 0.1 C and 1 C rates. Moreover, the post-treated LiFeBO 3 nanostructure has drastically enhanced the electrochemical performance due to the short diffusion length and ameliorated electrical contract between LiFeBO 3 nano particles.« less

  16. ITO/gold nanoparticle/RGD peptide composites to enhance electrochemical signals and proliferation of human neural stem cells.

    PubMed

    Kim, Tae-Hyung; El-Said, Waleed Ahmed; An, Jeung Hee; Choi, Jeong-Woo

    2013-04-01

    A cell chip composed of ITO, gold nanoparticles (GNP) and RGD-MAP-C peptide composites was fabricated to enhance the electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The structural characteristics of the fabricated surfaces were confirmed by both scanning electron microscopy and surface-enhanced Raman spectroscopy. HB1.F3 cells were allowed to attach to various composites electrodes in the cell chip and the material-dependent effects on electrochemical signals and cell proliferation were analyzed. The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to be the best material in regards to enhancing the voltammetric signals of HB1.F3 cells when exposed to cyclic voltammetry, as well as for increasing cell proliferation. Differential pulse voltammetry was performed to evaluate the adverse effects of doxorubicin on HB1.F3 cells. In these experiments, negative correlations between cell viability and chemical concentrations were obseved, which were more sensitive than MTT viability assay especially at low concentrations (<0.1 μg/mL). In this basic science study, a cell chip composed of ITO, gold nanoparticles and RGD-MAP-C peptide composites was fabricated to enhance electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to best enhance the voltammetric signals of the studied cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode.

    PubMed

    Rawal, Rachna; Chawla, Sheetal; Pundir, Chandra Shekhar

    2012-01-15

    A sulfite oxidase (SO(X)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto carboxylated gold coated magnetic nanoparticles (Fe(3)O(4)@GNPs) electrodeposited onto the surface of a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) chemistry. An amperometric sulfite biosensor was fabricated using SO(X)/Fe(3)O(4)@GNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode. The working electrode was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) before and after immobilization of SO(X). The biosensor showed optimum response within 2s when operated at 0.2V (vs. Ag/AgCl) in 0.1 M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and detection limit were 0.50-1000 μM and 0.15 μM (S/N=3) respectively. Biosensor was evaluated with 96.46% recovery of added sulfite in red wine and 1.7% and 3.3% within and between batch coefficients of variation respectively. Biosensor measured sulfite level in red and white wines. There was good correlation (r=0.99) between red wines sulfite value by standard DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) method and the present method. Enzyme electrode was used 300 times over a period of 4 months, when stored at 4 °C. Biosensor has advantages over earlier biosensors that it has excellent electrocatalysis towards sulfite, lower detection limit, higher storage stability and no interference by ascorbate, cysteine, fructose and ethanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode.

    PubMed

    Gopalan, Anantha Iyengar; Lee, Kwang-Pill; Manesh, Kalayil Manian; Santhosh, Padmanabhan; Kim, Jun Heon; Kang, Jae Soo

    2007-03-15

    A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Au(nano)-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10nm. Electrochemical behavior of the PAT-Au(nano)-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Au(nano)-ME exhibits two well defined anodic peaks at the potential of 75 and 400mV for the oxidation of AA and DA, respectively with a potential difference of 325mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Au(nano)-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Au(nano)-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.

  19. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    PubMed

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  20. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior.

    PubMed

    Shahrousvand, Mohsen; Hoseinian, Monireh Sadat; Ghollasi, Marzieh; Karbalaeimahdi, Ali; Salimi, Ali; Tabar, Fatemeh Ahmadi

    2017-05-01

    Nowadays, the discovery of cell behaviors and their responses in communication with the stem cell niches and/or microenvironments are one of the major topics in tissue engineering and regenerative medicine. In this study, incorporated organic-inorganic polyurethane (PU) nanocomposites were prepared for better understanding of cell signaling and the effect of magnetite nanoparticles on cell proliferation and cell responses. The properties of PU-IONs were evaluated by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic-force microscopy (AFM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). The presence of the iron oxide nanoparticles (IONs) affects on the properties of polyurethane nanocomposites such as bulk morphology, mechanical, electrochemical, and biological properties. The electrical conductivity and hydrophilicity of PU-IONs were improved by increasing the magnetite nanoparticles; therefore water absorption, biodegradation and cell viability were changed. The biocompatibility of PU-IONs was investigated by MTT assay, cell attachment and cell staining. According to the results, the magnetite polyurethane nanocomposites could be a potential choice for cell therapy and tissue engineering, especially nerve repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electrochemically deposited Cu2O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Mavrokefalos, Christos K.; Hasan, Maksudul; Rohan, James F.; Compton, Richard G.; Foord, John S.

    2017-06-01

    Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu2O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu2O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu2O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu2O/BDD showed a much higher current density (-0.33 mA/cm2) and photoconversion efficiency (0.28%) compared to the unmodified Cu2O/BDD electrode, which are only -0.12 mA/cm2 and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu2O surface is a crucial parameter in this regard.

  2. Optical, electrochemical and thermal properties of Mn2+ doped CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Muruganandam, S.; Anbalagan, G.; Murugadoss, G.

    2015-08-01

    Mn2+ doped (1-5 and 10 %) CdS nanoparticles have been synthesized by the chemical precipitation method using polyvinylpyrrolidone as a capping agent. The particle size, morphology and optical properties have been studied by X-ray powder diffraction, transmission electron microscopy, UV-Visible and photoluminescence spectroscopy. Powder diffraction data have confirmed that the crystallite size is around 2-5 nm. The band gap of the nanoparticles has been calculated using UV-Visible absorption spectra. An optimum concentration, Mn2+ (3 %) has been selected by optical study. The functional groups of the capping agent have been identified by fourier transform infrared spectroscopy study. The presence of dopant (Mn2+) has been confirmed by electron paramagnetic resonance spectroscopy. Thermal properties of CdS:Mn2+ have been analyzed using thermogravimetric-differential thermal analyser. The electrochemical properties of the undoped and doped samples have been studied by cyclic voltammetry for electrode applications. In addition, magnetic properties of Mn2+ doped CdS have been studied using a vibrating sample magnetometer.

  3. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  4. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel

    PubMed Central

    Atta, Ayman M.; El-Mahdy, Gamal A.; Al-Lohedan, Hamad A.; Al-Hussain, Sami A.

    2014-01-01

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement. PMID:24758936

  5. Synthesis of environmentally friendly highly dispersed magnetite nanoparticles based on rosin cationic surfactants as thin film coatings of steel.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-04-22

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  6. Highly sensitive dual mode electrochemical platform for microRNA detection

    NASA Astrophysics Data System (ADS)

    Jolly, Pawan; Batistuti, Marina R.; Miodek, Anna; Zhurauski, Pavel; Mulato, Marcelo; Lindsay, Mark A.; Estrela, Pedro

    2016-11-01

    MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.

  7. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336

    PubMed Central

    O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616

  8. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties.

    PubMed

    Elemike, Elias E; Fayemi, Omolola E; Ekennia, Anthony C; Onwudiwe, Damian C; Ebenso, Eno E

    2017-04-29

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs). The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red spectrophotometer (FTIR). TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT)-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN)₆] 4- /[Fe(CN)₆] 3- redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm²) > GCE/MWCNT (270 mA/cm²) > GCE (80 mA/cm²) > GCE/CA-Ag (7.93 mA/cm²). The silver nanoparticles were evaluated for their antibacterial properties against Gram negative ( Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa ) and Gram positive ( Bacillus subtilis and Staphylococcus aureus ) pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate). Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to

  9. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode.

    PubMed

    Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Razmi, Zahra; Hajati, Shaaker

    2018-08-30

    The determination of gallic acid (GA) and uric acid (UA) is essential due to their biological properties. Numerous methods have been reported for the analysis of GA and UA in various real samples. However, the development of a simple, rapid and practical sensor still remains a great challenge. Here, a carbon paste electrode (CPE) was modified by nanocomposite containing zirconia nanoparticles (ZrO 2 NPs), Choline chloride (ChCl) and gold nanoparticles (AuNPs) to construct ZrO 2 -ChCl-AuNPs/CPE as electrochemical sensor for the simultaneous electro-oxidation of GA and UA. Characterization was performed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The modified electrode was investigated by different methods including electrochemical impedance spectroscopy and cyclic voltammetry. Kinetic parameters such as charge transfer coefficient, standard heterogeneous electron transfer rate constant and other parameters were calculated via voltammetry techniques. Differential pulse voltammetry was used for simultaneous determination of GA and UA applying the ZrO 2 -ChCl-AuNPs/CPE electrode. At the optimum conditions, this sensor showed a linear response in the ranges 0.22- 55 and 0.12-55 µM for GA and UA, respectively. In addition, low detection limits of 25 and 15 nM were obtained for GA and UA, respectively. Furthermore, ZrO 2 -ChCl-AuNPs/CPE was successfully applied for the independent determination of GA in green tea and fruit juice as well as the simultaneous determination of GA and UA in human urine samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  11. An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles.

    PubMed

    Subramanian, Palaniappan; Motorina, Anastasiia; Yeap, Weng Siang; Haenen, Ken; Coffinier, Yannick; Zaitsev, Vladimir; Niedziolka-Jonsson, Joanna; Boukherroub, Rabah; Szunerits, Sabine

    2014-04-07

    Nanostructured boron-doped diamond has been investigated as a sensitive impedimetric electrode for the detection of immunoglobulin G (IgG). The immunosensor was constructed in a three-step process: (i) reactive ion etching of flat boron-doped diamond (BDD) interfaces to synthesize BDD nanowires (BDD NWs), (ii) electrochemical deposition of nickel nanoparticles (Ni NPs) on the BDD NWs, and (iii) immobilization of biotin-tagged anti-IgG onto the Ni NPs. Electrochemical impedance spectroscopy (EIS) was used to follow the binding of IgG at different concentrations without the use of any additional label. A detection limit of 0.3 ng mL(-1) (2 nM) with a dynamic range up to 300 ng mL(-1) (2 μM) was obtained with the interface. Moreover, the study demonstrated that this immunosensor exhibits good stability over time and allows regeneration by incubation in ethylenediaminetetraacetic acid (EDTA) aqueous solution.

  12. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  13. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  14. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    PubMed

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  16. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles.

    PubMed

    Gandouzi, Islem; Tertis, Mihaela; Cernat, Andreea; Bakhrouf, Amina; Coros, Maria; Pruneanu, Stela; Cristea, Cecilia

    2018-04-01

    The design and development of an electrochemical sensor for the sensitive and selective determination of pyoverdine, a virulence factor secreted by Pseudomonas aeruginosa, bacteria involved in nosocomial infections is presented in this work. The presence of pyoverdine in water and body fluids samples can be directly linked to the presence of the Pseudomonas bacteria, thus being a nontoxic and low cost marker for the detection of water pollution as well as for the biological contamination of other media. The sensor was elaborated using layer-by-layer technique for the deposition of a graphene‑gold nanoparticles composite film on the graphite-based screen printed electrode, from aqueous suspension. Under optimal conditions, the electrochemical signal corresponding to the pyoverdine oxidation process was proportional to its concentration, showing a wide linear range from 1 to 100μmolL -1 and a detection limit of 0.33μmolL -1 . This sensor discriminate with satisfactory recoveries the target analyte in different real matrices and also exhibited low response to other interfering species, proving that this technique is promising for medical and environmental applications. In addition, the proposed nanocomposite platform presented good reproducibility, high and long term stability, the sensitivity for pyoverdine remain unchanged after being stored at 4°C for four weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Temperature dependence of acoustic impedance for specific fluorocarbon liquids

    NASA Astrophysics Data System (ADS)

    Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  18. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis.

    PubMed

    Angelov, Svilen D; Koenen, Sven; Jakobi, Jurij; Heissler, Hans E; Alam, Mesbah; Schwabe, Kerstin; Barcikowski, Stephan; Krauss, Joachim K

    2016-01-12

    Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with particles <10 nm, which also showed the most stable impedance dynamics during stimulation for 3 weeks and the lowest total power of local field potential during neuronal activity recording. Histological analysis revealed that NP-coating did not affect glial reactions or neural cell-count. Coating with NP <10 nm may improve electrode's impedance stability without affecting biocompatibility. Increased impedance after NP-coating may improve neural recording due to better signal-to-noise ratio.

  19. Ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on platinum nanoparticles anchored on cobalt oxide/graphene nanosheets for signal amplification.

    PubMed

    Liu, Li; Tian, Lihui; Zhao, Guanhui; Huang, Yuzhen; Wei, Qin; Cao, Wei

    2017-09-15

    An ultrasensitive sandwich-type electrochemical immunosensor was developed for quantitative monitoring of Alpha fetoprotein (AFP). To achieve this objective, an incorporated signal amplification strategy of platinum nanoparticles anchored on cobalt oxide/graphene nanosheets (Pt NPs/Co 3 O 4 /graphene) was proposed by acting as the label of secondary antibodies. The prepared label not only empowered by advantages of each component but exhibited better electrochemical performance than single Pt NPs, Co 3 O 4 and graphene, which has shown large specific surface area and good catalytic activity towards the reduction of H 2 O 2 . Meanwhile, the nanocomposite of gold nanoparticles adhered on 3-mercaptopropyltriethoxysilane functionalized graphene sheets (Au@MPTES-GS) was used as matrix to accelerate electron transfer and immobilize primary antibodies in this system. The signal amplification mechanism of the matrix and the label were explored successfully. Under optimal conditions, the electrochemical immunosensor exhibited a wide linear range from 0.1 pg mL -1 to 60 ng mL -1 with a low detection limit of 0.029 pg mL -1 for AFP. The proposed immunosensor may have promising application in the clinical diagnosis of AFP and other tumor markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  1. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    NASA Astrophysics Data System (ADS)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  2. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    PubMed

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  4. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole-Chitosan-Titanium Dioxide Nanocomposite Films.

    PubMed

    Al-Mokaram, Ali M A Abdul Amir; Yahya, Rosiyah; Abdi, Mahnaz M; Mahmud, Habibun Nabi Muhammad Ekramul

    2017-05-31

    The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO₂) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO₂ nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO₂ NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO₂ in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1-14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO₂ nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  5. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode.

    PubMed

    Chawla, Sheetal; Rawal, Rachna; Kumar, Dheeraj; Pundir, Chandra Shekhar

    2012-11-01

    A method is described for construction of a highly sensitive amperometric biosensor for measurement of total phenolic compounds in wine by immobilizing laccase covalently onto nanocomposite of silver nanoparticles (AgNPs)/zinc oxide nanoparticles (ZnONPs) electrochemically deposited onto gold (Au) electrode. Scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy were applied for characterization of the surface morphology of the modified electrode, and cyclic voltammetry was used to investigate the electrochemical properties of the proposed electrode toward the oxidation of guaiacol. The linearity between the oxidation current and the guaiacol concentration was obtained in a range of 0.1 to 500μM with a detection limit of 0.05μM (signal-to-noise ratio (S/N)=3) and sensitivity of 0.71μAμM(-1)cm(-2). The electrode showed increased oxidation and reduced reduction current with the deposition of AgNPs/ZnONPs on it. R(CT) values of ZnONPs/Au, AgNPs/ZnONPs/Au, and laccase/AgNPs/ZnONPs/Au electrode were 220, 175, and 380Ω, respectively. The biosensor showed an optimal response within 8s at pH 6.0 (0.1M acetate buffer) and 35°C when operated at 0.22V against Ag/AgCl. Analytical recovery of added guaiacol was 98%. The method showed a good correlation (r=0.99) with the standard spectrophotometric method, with the regression equation being y=1.0053x-3.5541. The biosensor lost 25% of its initial activity after 200 uses over 5months. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Study of the Photocatalytic Property of Polysulfone Membrane Incorporating TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Xingxing; Zhou, Weiqi; Chen, Zhe; Yao, Lei

    In order to investigate the effect of the incorporated nanoparticles on the photocatalytic property of the hybrid membranes, the uncovered and covered polysulfone/TiO2 hybrid membranes were prepared. Positron annihilation γ-ray spectroscopy coupled with a positron beam was utilized to examine the depth profiles of the two membranes. The photocatalytic activities of the membranes were evaluated by the degradation of Rhodamine B (RhB) aqueous solution under the irradiation of Xe lamp. UV-Vis spectroscopy was applied to study the UV transmission through the polysulfone layer. Electrochemical impedance spectroscopy was used to detect the photo-generated charges by the covered membrane during the irradiation. It can be found that UV light can penetrate through the covered layer (about 230nm), and the incorporated nanoparticles can still generate charges under irradiation, which endows the photocatalytic ability of the covered membrane.

  7. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles.

    PubMed

    Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A

    2018-03-25

    Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  8. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide.

    PubMed

    Rajaram, Rajendran; Mathiyarasu, Jayaraman

    2018-05-30

    In this work, we report a methodology for the quantification of Homocysteine (HcySH) at neutral pH (pH-7.0) using Au nanoparticles incorporated reduced graphene oxide (AuNP/rGO/GCE) modified glassy carbon electrode. The modified electrode was characterized using SEM and XRD techniques. The electrode exhibited a typical behavior against the standard redox probe [Fe(CN) 6 ] 3-/4- and resulted in 0.06 V peak to peak potential value. The modified electrode exhibited electrocatalytic activity towards electrochemical biosensing of HcySH, which is established using voltammetric studies. HcySH oxidation peak potential is observed at 0.12 V on AuNP/rGO/GCE which is 0.7 V cathodic than bare glassy carbon electrode (0.82 V). The large peak potential shift observed is reasoned as the interaction of SH group of HcySH with the gold nanoparticles and the electrocatalytic property of reduced graphene oxide that enhances the electrochemical detection at reduced overpotential. Further, successive addition of HcySH showed a linear increment in the sensitivity within the concentration range of 2-14 mM. From an amperometric protocol, the limit of detection is found as 6.9 μM with a sensitivity of 14.8 nA/μM. From a set of cyclic voltammetric measurements, it is observed that the electrode produces a linear signal on the concentration of HcySH in the presence of hydrogen peroxide. Thus it can be concluded that the matrix can detect HcySH even in the presence of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohui; Zhou, Yingke; Tu, Xiaofeng; Zhang, Zhongtang; Du, Guodong

    2017-02-01

    A three-dimensional graphene aerogel supporting LiFePO4 nanoparticles (LFP/GA) has been synthesized by a hydrothermal process. The morphology and microstructure of LFP/GA were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis. The electrochemical properties were evaluated by constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. Well-distributed LFP nanoparticles are anchored on both sides of graphene and then assemble into a highly porous three-dimensional aerogel architecture. Conductive graphene networks provide abundant paths to facilitate the transfer of electrons, while the aerogel structures offer plenty of interconnected open pores for the storage of electrolyte to enable the fast supply of Li ions. The LFP and graphene aerogel composites present superior specific capacity, rate capability and cycling performance in comparison to the pristine LFP or LFP supported on graphene sheets and are thus promising for lithium-ion battery applications.

  10. Mediatorless Impedance Studies with Titanium Dioxide Conjugated Gold Nanoparticles for Hydrogen Peroxide Detection

    PubMed Central

    Abdul Halim, Nur Hamidah; Lee, Yook Heng; Marugan, Radha Swathe Priya Malon; Hashim, Uda

    2017-01-01

    An impedimetric-based biosensor constructed using gold nanoparticles (AuNP) entrapped within titanium dioxide (TiO2) particles for hydrogen peroxide (H2O2) detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS) at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb), which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD) of 1 × 10−5 M without a redox mediator. PMID:28927005

  11. Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity.

    PubMed

    Ling, Pinghua; Lei, Jianping; Jia, Li; Ju, Huangxian

    2016-01-21

    A simple and rapid electrochemical sensor is constructed for the detection of telomerase activity based on the electrocatalysis of platinum nanoparticle (Pt NP) encapsulated metal-organic frameworks (MOFs), which are synthesized by one-pot encapsulation of Pt NPs into prototypal MOFs, UiO-66-NH2. Integrating with the efficient electrocatalysis of Pt@MOFs towards NaBH4 oxidation, this biosensor shows the wide dynamic correlation of telomerase activity from 5 × 10(2) to 10(7) HeLa cells mL(-1) and the telomerase activity in a single HeLa cell was calculated to be 2.0 × 10(-11) IU, providing a powerful platform for detecting telomerase activity.

  12. Electrochemical method for measuring corrosion of metals in wood

    Treesearch

    Samuel L. Zelinka; Douglas Rammer

    2006-01-01

    Preliminary studies have shown that electrochemical methods, especially Electrochemical Impedance Spectroscopy (EIS), appear to have great promise for measuring the corrosion rate of metals in wood. One of the major reasons for using these techniques is the ability to maintain moisture content and temperature at conditions encountered in service while measuring the...

  13. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  14. Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons.

    PubMed

    Das, Ritu; Goel, Ajay K; Sharma, Mukesh K; Upadhyay, Sanjay

    2015-12-15

    We report the DNA probe functionalized electrochemical genosensor for the detection of Bacillus anthracis, specific towards the regulatory gene atxA. The DNA sensor is fabricated on electrochemically deposited gold nanoparticle on self assembled layer of (3-Mercaptopropyl) trimethoxysilane (MPTS) on GC electrode. DNA hybridization is monitored by differential pulse voltammogram (DPV). The modified GC electrode is characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) method. We also quantified the DNA probe density on electrode surface by the chronocoulometric method. The detection is specific and selective for atxA gene by DNA probe on the electrode surface. No report is available for the detection of B. anthracis by using atxA an anthrax toxin activator gene. In the light of real and complex sample, we have studied the PCR amplicons of 303, 361 and 568 base pairs by using symmetric and asymmetric PCR approaches. The DNA probe of atxA gene efficiently hybridizes with different base pairs of PCR amplicons. The detection limit is found to be 1.0 pM (S/N ratio=3). The results indicate that the DNA sensor is able to detect synthetic target as well as PCR amplicons of different base pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Studies of the Use of Electrochemical Impedance Spectroscopy to Characterize and Assess the Performance of Lacquers Used to Protect Aluminum Sheet and Can Ends

    NASA Astrophysics Data System (ADS)

    Ali, Mohammad

    This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.

  16. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  17. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  18. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    NASA Astrophysics Data System (ADS)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  19. Synthesis of NiS-Graphene Nanocomposites and its Electrochemical Performance for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan Abhishek; Ravuri, Syamsai; Ramachandran, R.; Santhosh, R.; Ghosh, Sourav; Sitaraman, S. R.; Grace, Andrews Nirmala

    The aim of this work is to synthesize nickel sulfide-graphene (NiS/G) nanocomposites with different compositions and to analyze the structural and electrochemical capacity and compatibility for their application as supercapacitor material with enhanced charge storage capacity and reduced impedance. NiS nanoparticles (NPs) loaded on graphene were synthesized at various concentrations of graphene by a simple hydrothermal route from nickel sulphate and graphene oxide as precursors in the presence of PVP as surfactant and thioacetamide (TAA) as sulfur source. The composites structural, morphological and physical properties were analyzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier Transform-infrared (FT-IR) analysis. SEM measurements showed the presence of surface attachment of the NiS NPs onto the graphene sheets. To assess the properties of the nanocomposites for their applicability in supercapacitors, electrochemical analysis was carried out in 6M KOH electrolyte. Three different samples with different graphene contents — GNiS-10 with 10 wt.%, GNiS-20 with 20 wt.% and GNiS-40 with 40 wt.% were prepared. The specific capacitances obtained for the nanocomposites were calculated to be 84.33F/g, 129.66F/g, 187.53F/g at 10mV/s scan rate, respectively. The EIS data showed that the loading of NiS NPs on graphene caused the reduction in impedance at high frequency and has a long cycle life (over 1000 cycles).

  20. Electrochemical impedance spectroscopy for quantitative interface state characterization of planar and nanostructured semiconductor-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Meng, Andrew C.; Tang, Kechao; Braun, Michael R.; Zhang, Liangliang; McIntyre, Paul C.

    2017-10-01

    The performance of nanostructured semiconductors is frequently limited by interface defects that trap electronic carriers. In particular, high aspect ratio geometries dramatically increase the difficulty of using typical solid-state electrical measurements (multifrequency capacitance- and conductance-voltage testing) to quantify interface trap densities (D it). We report on electrochemical impedance spectroscopy (EIS) to characterize the energy distribution of interface traps at metal oxide/semiconductor interfaces. This method takes advantage of liquid electrolytes, which provide conformal electrical contacts. Planar Al2O3/p-Si and Al2O3/p-Si0.55Ge0.45 interfaces are used to benchmark the EIS data against results obtained from standard electrical testing methods. We find that the solid state and EIS data agree very well, leading to the extraction of consistent D it energy distributions. Measurements carried out on pyramid-nanostructured p-Si obtained by KOH etching followed by deposition of a 10 nm ALD-Al2O3 demonstrate the application of EIS to trap characterization of a nanostructured dielectric/semiconductor interface. These results show the promise of this methodology to measure interface state densities for a broad range of semiconductor nanostructures such as nanowires, nanofins, and porous structures.

  1. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  2. Electrochemical impedance spectroscopy study on polymerization of L-lysine on electrode surface and its application for immobilization and detection of suspension cells.

    PubMed

    Huang, Baozhen; Jia, Ningming; Chen, Lina; Tan, Liang; Yao, Shouzhuo

    2014-07-15

    Poly-L-lysine (PLL), which has been employed as a conductive polymer in the construction of some electrochemical sensors, can be prepared using L-lysine by cyclic voltammetry (CV) with a wide potential range. However, the presented explanation and description about its polymerization mechanism seems oversimplified because the self-reaction of electrode and the electrolysis of solvent at high potential are ignored. This work presents an intensive investigation on the relevant reactions during the process of PLL-polymerization using CV, X-ray photoelectron spectroscopy, Fourier transform-infrared spectroscopy, and electrochemical impedance spectroscopy. At a higher positive potential, the transfer from lysine molecules to cation radicals and the polymerization reaction on the glassy carbon electrode (GCE) could be achieved, accompanied by the activation of GCE, the formation of oxygen-containing functional groups, and the generation of oxygen derived from the oxidation of water. The adsorbed oxygen had a seriously negative effect on the formation of PLL unless it suffered reduction at a lower negative potential. The charge transfer through the electrochemical polymerized PLL film was seriously hindered by the immobilization of suspension cells due to the electrostatic interaction. The charge-transfer resistance difference (ΔR(ct)) was increased with the enhancement of the cell number (N(cells)) and the 1/ΔR(ct) value displayed a linear response with 1/N(cells) in the range of 5.0 × 10(2)-1.0 × 10(5) cells with a detection limit of 180 cells estimated at a signal-to-noise ratio of 3. A sensitive electrochemical sensor for the quantitative detection of suspension cells was developed.

  3. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    NASA Astrophysics Data System (ADS)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  4. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  5. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE PAGES

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...

    2018-06-01

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  6. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method.

    PubMed

    Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M

    2018-05-11

    In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).

  7. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material.

    PubMed

    Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E

    2009-12-15

    The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.

  8. An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid.

    PubMed

    Rezaei, Behzad; Shams-Ghahfarokhi, Leila; Havakeshian, Elaheh; Ensafi, Ali A

    2016-09-01

    In this paper, an electrochemical biosensor based on gold and palladium nano particles-modified nanoporous stainless steel (Au-Pd/NPSS) electrode has been introduced for the simultaneous determination of levodopa (LD) and uric acid (UA). To prepare the electrode, the stainless steel was anodized to fabricate NPSS and then Cu was electrodeposited onto the nanoporous steel by applying the multiple step potential. Finally, the electrode was immersed into a gold and palladium precursor's solution by the atomic ratio of 9:1 to form Au-Pd/NPSS through the galvanic replacement reaction. Morphological aspects, structural properties and the electroanalytical behavior of the Au-Pd/NPSS electrode were studied using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and voltammetric techniques. Also, differential pulse voltammetry (DPV) was used for the simultaneous determination of LD and UA. According to results, the surface of Au-Pd/NPSS electrode contained Au and Pd nanoparticles with an average diameter of 75nm. The electrode acted better than Au/NPSS and Pd/NPSS electrodes for the simultaneous determination of LD and UA, with the peak separation potential of about 220mV. Also, the calibration plot for LD was in two linear concentration ranges of 5.0-10.0 and 10.0-55.0μmolL(-1) and for UA, it was in the range of 100-1200μmolL(-1). The detection limit for LD and UA was 0.2 and 15μmolL(-1), respectively. The modified electrode had a good performance for LD and UA detection in urine, blood serum and levodopa C-Forte tablet. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles.

    PubMed

    Li, Yuan; Tian, Rui; Zheng, Xingwang; Huang, Rongfu

    2016-08-31

    The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy.

    PubMed

    Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana

    2015-07-29

    Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.

  11. Testing and analyses of electrochemical cells using frequency response

    NASA Technical Reports Server (NTRS)

    Norton, O. A., Jr.; Thomas, D. L.

    1992-01-01

    The feasibility of electrochemical impedance spectroscopy as a method for analyzing battery state of health and state of charge was investigated. Porous silver, zinc, nickel, and cadmium electrodes as well as silver/zinc cells were studied. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two silver/zinc cells, one apparently good and the other dead. The experimental data were fit to equivalent circuit models.

  12. Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pattnaik, Sambhu Prasad; Behera, Arjun; Martha, Satyabadi; Acharya, Rashmi; Parida, Kulamani

    2018-01-01

    Bismuth ferrite (BFO) nanoparticles prepared by solid state reaction route were characterized by various characterization techniques such as XRD, FESEM, HRTEM, UV-Vis DRS, PL etc., and their photocatalytic activities were evaluated by decolorization of aqueous solution of Congo red (CR) under solar light. The photocatalytic activity of BFO was increased by increasing the preparation temperature from 350 to 500 °C and then decreased with rise in temperature. The results of electrochemical measurements such as linear sweep voltammetry (LSV), electrochemical impedence (EIS), and Mott-Schottky analysis of BFO nanoparticles corroborated the findings of their photocatalytic activity. The enhanced photocatalytic response of the sample prepared at 500 °C is attributed to its smallest band gap, minimum crystallite size (30 nm), efficient separation, and lowest possible recombination of photo-generated charge carriers. The effects of amount of nano-BFO, irradiation time, initial CR concentration, and BFO calcination temperature on the decolorization of CR were examined. It was observed that 1 g/L nano-BFO calcined at 500 °C can decolorize up to 77% a 10-ppm CR dye solution under solar irradiation for 60 min. The studies included scavenger tests for identification of reactive species and a possible mechanism of dye decolorization.

  13. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.

    PubMed

    Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.

  14. Characterization of damaged skin by impedance spectroscopy: chemical damage by dimethyl sulfoxide.

    PubMed

    White, Erick A; Orazem, Mark E; Bunge, Annette L

    2013-10-01

    To relate changes in the electrochemical impedance spectra to the progression and mechanism of skin damage arising from exposure to dimethyl sulfoxide (DMSO). Electrochemical impedance spectra measured before and after human cadaver skin was treated with neat DMSO or phosphate buffered saline (control) for 1 h or less were compared with electrical circuit models representing two contrasting theories describing the progression of DMSO damage. Flux of a model lipophilic compound (p-chloronitrobenzene) was also measured. The impedance spectra collected before and after 1 h treatment with DMSO were consistent with a single circuit model; whereas, the spectra collected after DMSO exposure for 0.25 h were consistent with the model circuits observed before and after DMSO treatment for 1 h combined in series. DMSO treatments did not significantly change the flux of p-chloronitrobenzene compared to control. Impedance measurements of human skin exposed to DMSO for less than about 0.5 h were consistent with the presence of two layers: one damaged irreversibly and one unchanged. The thickness of the damaged layer increased proportional to the square-root of treatment time until about 0.5 h, when DMSO affected the entire stratum corneum. Irreversible DMSO damage altered the lipophilic permeation pathway minimally.

  15. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.

    PubMed

    Ma, Yibo; Liu, Junsong; Li, Hongdong

    2017-06-15

    In this study, we designed and fabricated an electrochemical impedance aptasensor based on Au nanoparticles (Au-NPs) coated boron-doped diamond (BDD) modified with aptamers, and 6-mercapto-1-hexanol (MCH) for the detection of bisphenol A (BPA). The constructed BPA aptasensor exhibits good linearity from 1.0×10 -14 to 1.0×10 -9 molL -1 . The detection limitation of 7.2×10 -15 molL -1 was achieved, which can be attributed to the synergistic effect of combining BDD with Au-NPs, aptamers, and MCH. The examine results of BPA traces in Tris-HCl buffer and in milk, UV spectra of aptamer/BPA and interference test revealed that the novel aptasensors are of high sensitivity, specificity, stability and repeatability, which could be promising in practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

    NASA Astrophysics Data System (ADS)

    Pandey, Pratibha; Merwyn, S.; Agarwal, G. S.; Tripathi, B. K.; Pant, S. C.

    2012-01-01

    Copper (II) oxide multi-armed nanoparticles composed of 500-1000 nm long radiating nanospicules with 100-200 nm width near the base and 50-100 nm width at the tapered ends and 25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 °C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, s taphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 μg/mL nano CuO killed 3 × 108 CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 × 106 CFU/mL E. coli were killed by 100 and 10 μg/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

  17. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Shen, D. H.; Surampudi, S.; Attia, A. I.; Halpert, G.

    1993-01-01

    The two-terminal alternating current impedance of Li/TiS2 rechargeable cells was studied as a function of frequency, state-of-charge, and extended cycling. Analysis based on a plausible equivalent circuit model for the Li/TiS2 cell leads to evaluation of kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interfaces. To investigate the causes of cell degradation during extended cycling, the parameters evaluated for cells cycled 5 times were compared with the parameters of cells cycled over 600 times. The findings are that the combined ohmic resistance of the electrolyte and electrodes suffers a tenfold increase after extended cycling, while the charge-transfer resistance and diffusional impedance at the TiS2/electrolyte interface are not significantIy affected. The results reflect the morphological change and increase in area of the anode due to cycling. The study also shows that overdischarge of a cathode-limited cell causes a decrease in the diffusion coefficient of the lithium ion in the cathode.

  18. The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells

    DOE PAGES

    Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...

    2017-02-18

    Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less

  19. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    PubMed Central

    AL-Mokaram, Ali M. A. Abdul Amir; Yahya, Rosiyah; Abdi, Mahnaz M.; Mahmud, Habibun Nabi Muhammad Ekramul

    2017-01-01

    The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell. PMID:28561760

  20. Evaluation of inorganic zinc-rich primers using Electrochemical Impedance Spectroscopy (EIS) in combination with atmospheric exposure

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1994-01-01

    This investigation explored the use of Electrochemical Impedance Spectroscopy (EIS) in combination with atmospheric exposure as a short term method for analyzing the performance of twenty-one commercially available zinc-rich primers. The twenty-one zinc-rich primers were: Carboline CZ-11, Ameron Devoe-Marine Catha-Coat 304, Briner V-65, Ameron D-21-9, Sherwin Williams Zinc Clad II, Carboline CZ-D7, Ameron D-4, Dupont Ganicin 347WB, Porter TQ-4374H, Inorganic Coatings IC-531, Subox Galvanox IV, Southern Coatings Chemtec 600, GLidden Glidzinc 5530, Byco SP-101, Tnemec 90E-75, Devoe Catha-Coat 302H, Glidden Glidzinc 5536, Koppers 701, Ameron D-21-5, Coronado 935-152, and Subox Galvanox V. Data were also collected on galvanized steel for comparison purposes. A library of Bode magnitude plots was generated for each coating including curves for the initial time and after each week of atmospheric exposure at the Beach Corrosion Test site near the Space Shuttle launch pad at the Kennedy Space Center for up to four weeks. Subsequent measurements were collected after 8 weeks and after one year of atmospheric exposure. Analysis of the impedance data was performed with the purpose of identifying parameters that could be used to predict the long-term performance of zinc-rich primers. It has been shown that there is a correlation between the long-term performance of zinc-rich primers and several parameters obtained from EIS measurements in combination with atmospheric exposure. The equivalent circuit R2(R2C(R3W)) provided a satisfactory fit for the EIS data. The corrosion potential and the R2 resistance are parameters indicative of the galvanic mechanism of protection. The capacitance of the coating is related to the barrier mechanism of protection.

  1. Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs.

    PubMed

    Jiang, Donglei; Zhu, Pei; Jiang, Hui; Ji, Jian; Sun, Xiulan; Gu, Wenshu; Zhang, Genyi

    2015-08-15

    In this study, a novel electrochemical rat basophilic leukemia cell (RBL-2H3) cell sensor, based on fluorescent magnetic beads, has been developed for the detection and evaluation of different allergens in foodstuffs. Fluorescein isothiocyanate (FITC) was successfully fused inside the SiO2 layer of SiO2 shell-coated Fe3O4 nanoparticles, which was superior to the traditional Fe3O4@SiO2@FITC modification process. The as-synthesized fluorescent magnetic beads were then encapsulated with lipidosome to form cationic magnetic fluorescent nanoparticles (CMFNPs) for mast cell magnetofection. The CMFNPs were then characterized by SEM, TEM, VSM, FTIR, and XRD analyses, and transfected into RBL-2H3 cells through a highly efficient, lipid-mediated magnetofection procedure. Magnetic glassy carbon electrode (MGCE), which possesses excellent reproducibility and regeneration qualities, was then employed to adsorb the CMFNP-transfected RBL-2H3 cells activated by an allergen antigen for electrochemical assay. Results show that the exposure of model antigen-dinitrophenol-bovine serum albumin (DNP-BSA) to anti-DNP IgE-sensitized mast cells induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner. The detection limit was identified at 3.3×10(-4) ng/mL. To demonstrate the utility of this mast cell-based biosensor for detection of real allergens in foodstuffs, Anti-Pen a1 IgE and Anti-PV IgE-activated cells were employed to quantify both shrimp allergen tropomyosin (Pen a 1) and fish allergen parvalbumin (PV). Results show high detection accuracy for these targets, with a limit of 0.03 μg/mL (shrimp Pen a 1) and 0.16 ng/mL (fish PV), respectively. To this effect, we conclude the proposed method is a facile, highly sensitive, innovative electrochemical method for the evaluation of food allergens. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.

    PubMed

    Sarkar, A; Kerr, J B; Cairns, E J

    2013-07-22

    Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CVD graphene sheets electrochemically decorated with "core-shell" Co/CoO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bayev, V. G.; Fedotova, J. A.; Kasiuk, J. V.; Vorobyova, S. A.; Sohor, A. A.; Komissarov, I. V.; Kovalchuk, N. G.; Prischepa, S. L.; Kargin, N. I.; Andrulevičius, M.; Przewoznik, J.; Kapusta, Cz.; Ivashkevich, O. A.; Tyutyunnikov, S. I.; Kolobylina, N. N.; Guryeva, P. V.

    2018-05-01

    The paper reports on the first successful fabrication of Co-graphene composites by electrochemical deposition of Co nanoparticles (NPs) on the sheets of twisted graphene. Characterization of the surface morphology and element mapping of twisted graphene decorated with Co NPs by transmission and scanning electron microscopy in combination with the energy-dispersive X-ray spectroscopy reveals the formation of isolated quasi-spherical oxidized Co NPs with the mean diameter 〈 d〉 ≈ 220 nm and core-shell structure. X-ray photoelectron spectroscopy indicates that the core of deposited NPs consists of metal Co while the shell is CoO. Composite Co-graphene samples containing core-shell NPs reveal an exchange bias field up to 160 Oe at 4 K as detected by vibrating sample magnetometry after the field cooling procedure.

  4. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    PubMed Central

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-01-01

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766

  5. Corrosion Resistance Characterization of Coating Systems Used to Protect Aluminum Alloys Using Electrochemical Impedance Spectroscopy and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gambina, Federico

    In this study, the corrosion protection provided by of a number of chromate and chromate-free coatings systems was characterized in detail. High-solids SrCrO4-pigmented epoxy primers applied to 2024 and 7075 substrates were subject to salt spray exposure testing for 30 days. Samples were removed periodically and an electrochemical impedance measurement (EIS) was made. Although none of the coatings tested showed visual evidence of corrosion, the total impedance of the samples decreased by as much as two orders of magnitude. An analysis of capacitance showed that the primer coatings rapidly took up water from the exposure environment, but the coating-metal remained passive despite the fact that it was wet. These results support the idea that chromate coatings protect by creating a chromate-rich electrolyte within the coating that is passivating to the underlying metal substrate. They also suggest that indications of metal substrate passivity found in the low-frequency capacitive reactance of the impedance spectra are a better indicator of corrosion protection than the total impedance. The low-frequency capacitive reactance from EIS measurements is also good at assessing the protectiveness of chromate-free coatings systems. Fifteen different coatings systems comprising high-solids, chromate-free primers and chromate-free conversion coatings were applied to 2024 and 7075 substrates. These coatings were subject to salt spray exposure and EIS measurements. All coatings were inferior to coating systems containing chromate, but changes in the capacitive reactance measured in EIS was shown to anticipate visual indications of coating failure. A predictive model based on neural networks was trained to recognize the pattern in the capacitive reactance in impedance spectra measured after 48 hours of exposure and make an estimate of remaining coating life. A sensitivity analysis was performed to prune the impedance inputs. As a result of this analysis, a very simple but highly

  6. Impedance dispersion analysis of drug-membrane interactions

    NASA Astrophysics Data System (ADS)

    Tacheva, Bilyana; Paarvanova, Boyana; Ivanov, Ivan T.; Karabaliev, Miroslav

    2017-11-01

    Thin lipid films modified glassy carbon electrodes (GCE) were used in this work as model system for studying the interactions between two antipsychotic phenothiazine drugs, chlorpromazine and thioridazine, and the lipid fraction of the biomembranes. The lipid films on the electrode surface were obtained through the thinning of film-forming lipid solution deposited between an electrolyte phase and the working GC electrode. The effects of the drugs on the lipid film structure were investigated by electrochemical impedance spectroscopy (EIS). To characterize the electric properties of the lipid film the impedance of the working GCE is modeled with an equivalent circuit consisting of parallel capacitance Cp and resistance Rp. These capacitance and resistance are not frequency independent but could be calculated as equivalent Cp and Rp for each measured frequency of the impedance spectrum and presented as functions of the frequency f, Cp = Cp(f) and Rp= Rp(f). For the lipid films used in this work, it is demonstrated that both Cp(f) and Rp(f) are well approximated with power-law functions. This behavior implies that the impedance Z of the films could be analysed in terms of the well-known constant-phase angle element (CPE), which is often used to describe the interfacial impedance of solid working electrodes.

  7. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  8. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  9. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  10. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  11. Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles.

    PubMed

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2014-08-07

    Nanoparticles of TiO(2) or SnO(2) on screen-printed carbon (SP) electrodes have been developed for evaluating their potential application in the electrochemical sensing of volatiles in fruits and plants. These metal oxide nanoparticle-modified electrodes possess high sensitivity and low detection limit for the detection of p-ethylguaiacol, a fingerprint compound present in the volatile signature of fruits and plants infected with a pathogenic fungus Phytophthora cactorum. The electroanalytical data obtained using cyclic voltammetry and differential pulse voltammetry showed that both SnO(2) and TiO(2) exhibited high sensitivity (174-188 μA cm(-2) mM(-1)) and low detection limits (35-62 nM) for p-ethylguaiacol detection. The amperometric detection was highly repeatable with RSD values ranging from 2.48 to 4.85%. The interference studies show that other common plant volatiles do not interfere in the amperometric detection signal of p-ethylguaiacol. The results demonstrate that metal oxides are a reasonable alternative to expensive electrode materials such as gold or platinum for amperometric sensor applications.

  12. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

    NASA Astrophysics Data System (ADS)

    Shen, Xuan; Xia, Xiaohong; Du, Yongling; Wang, Chunming

    2017-09-01

    An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.

  13. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels.

    PubMed

    An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen

    2012-02-15

    A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

    PubMed

    Liu, Ran; Duay, Jonathon; Lee, Sang Bok

    2010-07-27

    MnO2 nanoparticle enriched poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires are fabricated by simply soaking the PEDOT nanowires in potassium permanganate (KMnO4) solution. The structures of these MnO2 nanoparticle enriched PEDOT nanowires are characterized by SEM and TEM, which show that the MnO2 nanoparticles have uniform sizes and are finely dispersed in the PEDOT matrix. The chemical constituents and bonding of these composite nanowires are characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and infrared spectroscopy, which indicate that the formation and dispersion of these MnO2 nanoparticles into the nanoscale pores of the PEDOT nanowires are most likely triggered by the reduction of KMnO4 via the redox exchange of permanganate ions with the functional group on PEDOT. Varying the concentrations of KMnO4 and the reaction time controls the loading amount and size of the MnO2 nanoparticles. Cyclic voltammetry and galvanostatic charge-discharge are used to characterize the electrochemical properties of these MnO2 nanoparticle loaded PEDOT nanowires. Due to their extremely high exposed surface area with nanosizes, the pristine MnO2 nanoparticles in these MnO2 nanoparticle enriched PEDOT nanowires show very high specific capacitance (410 F/g) as the supercapacitor electrode materials as well as high Li+ storage capacity (300 mAh/g) as cathode materials of Li ion battery, which boost the energy storage capacity of PEDOT nanowires to 4 times without causing excessive volume expansion in the polymer. The highly conductive and porous PEDOT matrix facilitates fast charge/discharge of the MnO2 nanoparticles and prevents them from agglomerating. These synergic properties enable the MnO2 nanoparticle enriched PEDOT nanowires to be promising electrode materials for supercapacitors and lithium ion batteries.

  15. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    PubMed

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries.

    PubMed

    Ko, Minseong; Chae, Sujong; Jeong, Sookyung; Oh, Pilgun; Cho, Jaephil

    2014-08-26

    Although various Si-based graphene nanocomposites provide enhanced electrochemical performance, these candidates still yield low initial coloumbic efficiency, electrical disconnection, and fracture due to huge volume changes after extended cycles lead to severe capacity fading and increase in internal impedance. Therefore, an innovative structure to solve these problems is needed. In this study, an amorphous (a) silicon nanoparticle backboned graphene nanocomposite (a-SBG) for high-power lithium ion battery anodes was prepared. The a-SBG provides ideal electrode structures-a uniform distribution of amorphous silicon nanoparticle islands (particle size <10 nm) on both sides of graphene sheets-which address the improved kinetics and cycling stability issues of the silicon anodes. a-Si in the composite shows elastic behavior during lithium alloying and dealloying: the pristine particle size is restored after cycling, and the electrode thickness decreases during the cycles as a result of self-compacting. This noble architecture facilitates superior electrochemical performance in Li ion cells, with a specific energy of 468 W h kg(-1) and 288 W h kg(-1) under a specific power of 7 kW kg(-1) and 11 kW kg(-1), respectively.

  17. Gramicidin ion channels in a lipid bilayer supported on polyelectrolyte multilayer films: an electrochemical impedance study.

    PubMed

    Diamanti, Eleftheria; Gutiérrez-Pineda, Eduart; Politakos, Nikolaos; Andreozzi, Patrizia; Rodriguez-Presa, María José; Knoll, Wolfgang; Azzaroni, Omar; Gervasi, Claudio A; Moya, Sergio E

    2017-12-06

    Supported membranes on polymer cushions are of fundamental interest as models for cell membranes. The use of polyelectrolyte multilayers (PEMs) assembled by the layer by layer (LbL) technique as supports for a bilayer allows for easy integration of the lipid bilayer on surfaces and devices and for nanoscale tunable spacing of the lipid bilayer. Controlling ionic permeability in lipid bilayers supported on PEMs triggers potential applications in sensing and as models for transport phenomena in cell membranes. Lipid bilayers displaying gramicidin channels are fabricated on top of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) multilayer films, by the assembly of vesicles of phosphatidylcholine and phosphatidylserine, 50 : 50 M/M, carrying gramicidin (GA). Quartz crystal microbalance with dissipation shows that the vesicles with GA fuse into a bilayer. Atomic force microscopy reveals that the presence of GA alters the bilayer topography resulting in depressions in the bilayer of around 70 nm in diameter. Electrochemical impedance spectroscopy (EIS) studies show that supported bilayers carrying GA have smaller resistances than the bilayers without GA. Lipid layers carrying GA display a higher conductance for K + than for Na + and are blocked in the presence of Ca 2+ .

  18. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    NASA Astrophysics Data System (ADS)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  19. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    PubMed

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  1. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  2. Enhanced activity of CaFeMg layered double hydroxides-supported gold nanodendrites for the electrochemical evolution of oxygen and hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Havakeshian, Elaheh; Salavati, Hossein; Taei, Masoumeh; Hasheminasab, Fatemeh; Seddighi, Mohadeseh

    2018-02-01

    In this study, Au was electrodeposited on a support of CaFeMg layered double hydroxide and then, its catalytic activity was investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Field emission scanning electron microscopy images showed that a uniform porous film of aggregated nano-particles of the LDH has been decorated with Au nanodendrite-like structures (AuNDs@LDH). The results obtained from polarization curves, Tafel plots and electrochemical impedance spectroscopy showed that the AuNDs@LDH exhibits lower overpotential, higher current density, faster kinetics and enhanced stability for both of the OER and HER, in comparison with the single AuNPs and LDH catalysts.

  3. Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M

    2015-01-14

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  4. A novel broadband impedance method for detection of cell-derived microparticles

    PubMed Central

    Lvovich, Vadim; Srikanthan, Sowmya; Silverstein, Roy L.

    2010-01-01

    A novel label-free method is presented to detect and quantify cell-derived microparticles (MPs) by the electrochemical potential-modulated electrochemical impedance spectroscopy (EIS). MPs are present in elevated concentrations during pathological conditions and play a major role in the establishment and pathogenesis of many diseases. Considering this, accurate detection and quantification of MPs is very important in clinical diagnostics and therapeutics. A combination of bulk solution electrokinetic sorting and interfacial impedance responses allows achieving detection limits as low as several MPs per µL. By fitting resulting EIS spectra with an equivalent electrical circuit, the bulk solution electrokinetic and interfacial impedance responses were characterized. In the bulk solution two major relaxations were prominent - β-relaxation in low MHz region due to the MP capacitive membrane bridging, and α-relaxation at ∼ 10 kHz due to counter ions diffusion. At low frequencies (10-0.1 Hz) at electrochemical potentials exceeding −100 mV, a facile interfacial Faradaic process of oxidation in MPs coupled with diffusion and non Faradaic double layer charging dominate, probably due to oxidation of phospholipids and/or proteins on the MP surface and MP lysis. Buffer influence on the MP detection demonstrated that that a relatively low conductivity Tyrode’s buffer background solution is preferential for the MP electrokinetic separation and characterization. This study also demonstrated that standard laboratory methods such as flow cytometry underestimate MP concentrations, especially those with smaller average sizes, by as much as a factor of 2 to 40. PMID:20729061

  5. A novel broadband impedance method for detection of cell-derived microparticles.

    PubMed

    Lvovich, Vadim; Srikanthan, Sowmya; Silverstein, Roy L

    2010-10-15

    A novel label-free method is presented to detect and quantify cell-derived microparticles (MPs) by the electrochemical potential-modulated electrochemical impedance spectroscopy (EIS). MPs are present in elevated concentrations during pathological conditions and play a major role in the establishment and pathogenesis of many diseases. Considering this, accurate detection and quantification of MPs is very important in clinical diagnostics and therapeutics. A combination of bulk solution electrokinetic sorting and interfacial impedance responses allows achieving detection limits as low as several MPs per μL. By fitting resulting EIS spectra with an equivalent electrical circuit, the bulk solution electrokinetic and interfacial impedance responses were characterized. In the bulk solution two major relaxations were prominent-β-relaxation in low MHz region due to the MP capacitive membrane bridging, and α-relaxation at ∼10 kHz due to counter ions diffusion. At low frequencies (10-0.1 Hz) at electrochemical potentials exceeding -100 mV, a facile interfacial Faradaic process of oxidation in MPs coupled with diffusion and non-Faradaic double layer charging dominate, probably due to oxidation of phospholipids and/or proteins on the MP surface and MP lysis. Buffer influence on the MP detection demonstrated that a relatively low conductivity Tyrode's buffer background solution is preferential for the MP electrokinetic separation and characterization. This study also demonstrated that standard laboratory methods such as flow cytometry underestimate MP concentrations, especially those with smaller average sizes, by as much as a factor of 2-40. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    PubMed

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  7. Electrocatalytic effect of polyvinyl pyrrolidone capped platinum nanoparticles electrodeposited on platinum electrode for ammonia oxidation

    NASA Astrophysics Data System (ADS)

    Mayedwa, Noluthando; Matinise, Nolubabalo; Mongwaketsi, Nametso; Maaza, Malik

    2018-05-01

    The aim of this work was to study structural and kinetic parameters as well as the mechanism of platinum nanoparticles (PtNP) reduced with sodium borohydride (NaBH4) and capped with polyvinyl pyrrolidone (PVP). The nanoparticles were supported on Pt electrode for ammonia oxidation in fuel cell application. X-ray diffraction (XRD) was used to study structural composition and high resolution transmission electron microscopy (HRTEM) was used for morphological study of the nanoalloy. The electrocatalysts were studied in alkaline solution of potassium hydroxide (KOH) by cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). CV showed that the ammonia oxidation over potential for PtNP was -431 mV and with exchange current density of 1.726 × 10-4 A. EIS showed that the charge transfer resistance (Rct) of PtNP was the lowest (Rct = 1.943 × 106 Ω) compared to that of bare Pt working electrode (2.0604 × 106 Ω), indicating that the Pt nanoparticles have good conductivity and played an important role in accelerating the transfer of electrons.

  8. Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  9. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  10. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery

    PubMed Central

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603

  11. Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles

    PubMed Central

    Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo

    2016-01-01

    Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration. PMID:27465437

  12. Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles

    NASA Astrophysics Data System (ADS)

    Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo

    2016-07-01

    Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration.

  13. A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode.

    PubMed

    Zabardasti, Abedin; Afrouzi, Hossein; Talemi, Rasoul Pourtaghavi

    2017-07-01

    In this work, we have prepared a nano-material modified pencil graphite electrode for the sensing of valproic acid (VA) by immobilization 3-aminopropyletriethoxy silane coated magnetic nanoparticles (APTES-MNPs) on the pencil graphite surface (PGE). Electrochemical studies indicated that the APTES-MNPs efficiently increased the electron transfer kinetics between VA and the electrode and the free NH 2 groups of the APTES on the outer surface of magnetic nanoparticles can interact with carboxyl groups of VA. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for VA determination. Under the optimized conditions, the reduction peak current of VA is found to be proportional to its concentration in the range of 1.0 (±0.2) to 100.0 (±0.3) ppm with a detection limit of 0.4 (±0.1) ppm. The whole sensor fabrication process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods with using [Fe(CN) 6 ] 3-/4- as an electrochemical redox indicator. The prepared modified electrode showed several advantages such as high sensitivity, selectivity, ease of preparation and good repeatability, reproducibility and stability. The proposed method was applied to determination of valproic acid in blood plasma samples and the obtained results were satisfactory accurate. Copyright © 2017. Published by Elsevier B.V.

  14. Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples.

    PubMed

    Meenakshi, S; Devi, S; Pandian, K; Devendiran, R; Selvaraj, M

    2016-12-01

    Sunlight assisted reduction of silver ions were accomplished for the synthesis of silver nanoparticles incorporated within the mesoporous silicate framework of zeolite Y. The zeolite-Y and AgNP/Zeo-Y were characterized by field emission scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption BET isotherm and X-ray diffraction techniques. The incorporation of silver nanoparticles within the porous framework was further confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. An enhanced electrocatalytic oxidation of biologically important molecules like dopamine and uric acid using AgNP/Zeo-Y modified glassy carbon electrode has been developed. A simultaneous oxidation of DA and UA peaks were obtained at +0.31V and +0.43V (vs. Ag/AgCl) using AgNP/Zeo-Y/GCE under the optimum experimental condition. A well-resolved peak potential window (~120mV) for the oxidation of both DA and UA were observed at AgNP/Zeo-Y/GCE system. The calibration curves for DA and UA were obtained within the dynamic linear range of 0.02×10(-6) to 0.18×10(-6)M (R(2)=0.9899) and 0.05×10(-6) to 0.7×10(-6)M (R(2)=0.9996) and the detection limits were found to be 1.6×10(-8)M and 2.51×10(-8)M by using differential pulse voltammetry (DPV) method. The proposed method was successfully applied for the determination of both DA and UA in human urine samples with a related standard deviation was <3%, and n=5 using the standard addition method. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.

    PubMed

    Li, Shuang; Liu, Jinglong; Lu, Yanli; Zhu, Long; Li, Candong; Hu, Lijiang; Li, Jun; Jiang, Jing; Low, Szeshin; Liu, Qingjun

    2018-06-01

    Localized surface plasmon resonance (LSPR) induced charge separation were concentrated on the metal nanoparticles surface, which made it sensitive to the surface refractive index changes during optical sensing. Similarly, electrochemical detection was based on the electron transformation on the electrode surface. Herein, we fabricated a nanochip by decorating a nanocone-array substrate with gold nanoparticles and silver nanoparticles for dynamic electro-optical spectroscopy. Mercaptophenyl boronic acid (MPBA) was immobilized firmly on the nanochip by the metal-S bond for sensitive sialic acid sensing. Owing to the high stability of gold nanoparticles and the high sensitivity of silver nanoparticles, the nanochip showed good performance in LSPR detection with rich and high responses. Besides, the nanochip also showed sensitive electrical signals during electrochemical detection due to the excitation of the energetic charges from the nanoparticles surface to the reaction system. The dynamic electro-optical spectroscopy was based on a unique combination of LSPR and linear sweep voltammetry (LSV). On the one hand, electrochemical signals activated the electrons on the nanochip to promote the propagation and resonance of surface plasmon. On the other hand, LSPR concentrated the electrons on the nanochip surface, which made the electrons easily driven to enhance the current in electrochemical detection. Results showed that mutual promotion of electrochemical-LSPR on nanochip covered a linear dynamic range from 0.05 mM to 5 mM on selective sialic acid detection with a low detection limit of 17 μM. The synchronous amplification of the electro-optical response during electrochemical-LSPR, opened up a new perspective for efficient and sensitive biochemical detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-07-21

    In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.

  17. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    PubMed Central

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  18. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.

    PubMed

    Rezaei, B; Lotfi-Forushani, H; Ensafi, A A

    2014-04-01

    A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus.

    PubMed

    Abbaspour, Abdolkarim; Norouz-Sarvestani, Fatemeh; Noori, Abolhassan; Soltani, Noushin

    2015-06-15

    Staphylococcus aureus (S. aureus) is one of the most important human pathogens and causes numerous illnesses. In this study, we report a sensitive and highly selective dual-aptamer-based sandwich immunosensor for the detection of S. aureus. In this bioassay system, a biotinylated primary anti-S.aureus aptamer was immobilized on streptavidin coated magnetic beads (MB), which serves as a capture probe. A secondary anti-S.aureus aptamer was conjugated to silver nanoparticles (Apt-AgNP) that sensitively reports the detection of the target. In the presence of target bacterium, an Apt/S.aureus/apt-AgNP sandwich complex is formed on the MB surface and the electrochemical signal of AgNPs followed through anodic stripping voltammetry. The proposed sandwich assay benefits from advantageous of a sandwich assay for increased specificity, MB as carriers of affinity ligands for solution-phase recognition and fast magnetic separation, AgNPs for signal amplification, and an electrochemical stripping voltammetry read-out as a simple and sensitive detection. The electrochemical immunosensor shows an extended dynamic range from 10 to 1×10(6) cfu/mL with a low detection limit of 1.0 cfu/mL (S/N=3). Furthermore, the possible interference of other analog bacteria was studied. To assess the general applicability of this sensor, we investigated the quantification of S. aureus in real water samples. The results were compared to the experimental results obtained from a plate counting method, which demonstrated an acceptable consistency. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.

    PubMed

    Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K

    2016-12-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. Copyright © 2016. Published by Elsevier B.V.

  1. An electrochemical sensor device for measuring blood ammonia at the point of care.

    PubMed

    Brannelly, N T; Killard, A J

    2017-05-15

    The level of ammonia in blood is relevant in a number of medical conditions. While ammonia is a marker of dysfunction, elevated ammonia is itself a serious medical emergency and can lead to significant and permanent neurological impairment if not addressed quickly. Blood ammonia testing is typically performed in the central laboratory. While a number of point of care devices have been developed, these are based on classical enzymatic or colorimetric principles and have not been widely adopted. In this work, an electrochemical sensor device was developed for measuring blood ammonia. The device was based on the deposition of polyaniline nanoparticle films onto screen printed interdigitated electrodes using inkjet printing and their integration into a polymer microfabricated device with a polytetrafluoroethylene membrane. The device required a 52µL serum sample and measured the change in impedance of the sensor with respect to air at 1kHz, 5mV rms. The device was capable of the measurement of ammonia in serum across the physiologically relevant range of 25-200µM (r 2 =0.9984) and had a limit of detection of 12µM (n =3). The device showed no significant issues with common electrochemical interferences in blood. The device was also validated against a commercial spectrophotometric assay which resulted in excellent correlation (r =0.9699, p<0.0001) between both methods (n =3). When stored under desiccation, devices displayed minimal variation over time (0.64%) with respect to their impedance in air (n =12) and could be stored in desiccant for at least five months. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    PubMed

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure.

    PubMed

    Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2017-07-15

    In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS 2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H 2 O 2 ). Hybrid structure composed of MoS 2 NP and GO (GO@MoS 2 ) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H 2 O 2 detection. Formation and immobilization of GO@MoS 2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS 2 . Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H 2 O 2 , the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS 2 . This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H 2 O 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide

    PubMed Central

    Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Liu, Min; Chen, Qiang; Zhou, Jun

    2017-01-01

    Hydrogen peroxide (H2O2) plays important signaling roles in normal physiology and disease. However, analyzing the actions of H2O2 is often impeded by the difficulty in detecting this molecule. Herein, we report a novel nanocomposite-based electrochemical sensor for non-enzymatic detection of H2O2. Graphene oxide (GO) was selected as the dopant for the synthesis of polyaniline (PANI), leading to the successful fabrication of a water-soluble and stable GO-PANI composite. GO-PANI was subsequently subject to cyclic voltammetry to generate reduced GO-PANI (rGO-PANI), enhancing the conductivity of the material. Platinum nanoparticles (PtNPs) were then electrodeposited on the surface of the rGO-PANI-modified glassy carbon electrode (GCE) to form an electrochemical H2O2 sensor. Compared to previously reported sensors, the rGO-PANI-PtNP/GCE exhibited an expanded linear range, higher sensitivity, and lower detection limit in the quantification of H2O2. In addition, the sensor displayed outstanding reproducibility and selectivity in real-sample examination. Our study suggests that the rGO-PANI-PtNP/GCE may have broad utility in H2O2 detection under physiological and pathological conditions. PMID:28035076

  5. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application.

    PubMed

    Rastgar, Shokoufeh; Shahrokhian, Saeed

    2014-02-01

    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity for electro-oxidation of RIF than either GO, RGO nanosheets or Ni(OH)2 nanoparticles. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of RGO nanosheets (such as high density of edge plane sites, subtle electronic characteristics and attractive π-π interaction) and unique properties of metal nanoparticles. Under the optimized analysis conditions, the modified electrode showed two oxidation processes for rifampicin at potentials about 0.08 V (peak I) and 0.69 V (peak II) in buffer solution of pH 7.0 with a wide linear dynamic range of 0.006-10.0 µmol L(-1) and 0.04-10 µmol L(-1) with a detection limit of 4.16 nmol L(-1) and 2.34 nmol L(-1) considering peaks I and II as an analytical signal, respectively. The results proved the efficacy of the fabricated modified electrode for simple, low cost and highly sensitive medicine sensor well suited for the accurate determinations of trace amounts of rifampicin in the pharmaceutical and clinical preparations. © 2013 Elsevier B.V. All rights reserved.

  7. Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Guang; Dai, Sheng

    2010-01-01

    Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF6/EC-PC-DMC (1/1/3, by weight) and 1.0 M LiBF4/EC-PC-DMC (1/1/3, by weight) under a current density of 0.075 mA cm-2. LM was also used as an additive to the electrolyte of 1.0 M LiPF6/EC-DMC-DEC (1/1/1, by volume) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that themore » decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO2 electrodes.« less

  8. Construction of Chitosan-Zn-Based Electrochemical Biosensing Platform for Rapid and Accurate Assay of Actin.

    PubMed

    Sun, Chong; Zou, Ye; Wang, Daoying; Geng, Zhiming; Xu, Weimin; Liu, Fang; Cao, Jinxuan

    2018-06-07

    This work reports a study on the development of a sensitive immunosensor for the assay of actin, which is fabricated using sensing material chitosan-Zn nanoparticles (NPs) and anti-actin modified on glassy carbon electrode respectively. The prepared materials were characterized using transmission electron microscope (TEM), fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) spectra, and circular dichroism (CD) techniques. Meanwhile, the electrochemical properties were studied by linear sweep voltammetric (LSV), electrochemical impedance spectra (EIS), and differential pulse voltammetry (DPV). According to the experiments, under the optimum conditions, the linear fitting equation was I (μA) = -17.31 + 78.97c (R² = 0.9948). The linear range was from 0.0001 to 0.1 mg/mL and the detection limit (LOD, S/N = 3) was 21.52 ng/mL. The interference studies were also performed for checking the sensors' selectivity to actin. With better properties of the chitosan-Zn NPs, the modified electrode is considered as a better candidate than Western blot or immunohistochemical method for real-time usability. The detection limit reported is the lowest till date and this method provides a new approach for quality evaluation.

  9. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A

    NASA Astrophysics Data System (ADS)

    Chen, Xuerong; Ji, Liudi; Zhou, Yikai; Wu, Kangbing

    2016-05-01

    Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through electrochemical reduction under different potentials such as -0.60, -0.50, -0.40, -0.30 and -0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A (TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole (MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a sensitive and simple electrochemical method was developed for the direct determination of TBBPA, with detection limit of 0.12 μg L-1 (0.22 nM). The practical applications in water samples manifest that this new sensing system is accurate and feasible.

  10. Electrochemical Impedance Spectroscopy and Corrosion Behavior of Co/CeO2 Nanocomposite Coatings in Simulating Body Fluid Solution

    NASA Astrophysics Data System (ADS)

    Benea, Lidia

    2013-02-01

    A series of Co/CeO2 (25 nm) nanocomposite coating materials by electrodeposition were successfully prepared containing different cerium oxide composition in the cobalt-plating bath. Stainless steel (304L) was used as support material for nanocomposite coatings. The nano-CeO2 is uniformly incorporated into cobalt matrix, and the effect on surface morphologies was identified by scanning electron microscopy with energy-dispersive X-ray analysis. Codeposition of nano-CeO2 particles with cobalt disturbs the regular surface morphology of the cobalt coatings. It should be noted that the as-prepared Co/CeO2 nanocomposite coatings were found to be much superior in corrosion resistance over those of pure cobalt coatings materials based on a series of electrochemical impedance spectroscopy measurements in simulating body fluid solution. With increase in the nano-CeO2 particles concentration in the cobalt electrolyte, it is observed that the corrosion resistance of Co/CeO2 increases. Co/CeO2 nanocomposite coatings have higher polarization resistance as compared with pure cobalt layers in simulating body fluid solution.

  11. Ceramic composite separators coated with moisturized ZrO(2) nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries.

    PubMed

    Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-28

    We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.

  12. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode.

    PubMed

    Smith, Scott R; Seenath, Ryan; Kulak, Monika R; Lipkowski, Jacek

    2015-09-15

    Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.

  13. In-pile electrochemical measurements on AISI 316 L(N) IG and EUROFER 97 I: experimental results

    NASA Astrophysics Data System (ADS)

    Vankeerberghen, Marc; Bosch, Rik-Wouter; Van Nieuwenhoven, Rudi

    2003-02-01

    In-pile electrochemical measurements were performed in order to investigate the effect of radiation on the electrochemical corrosion behaviour of two materials: reduced activation ferritic-martensitic steel EUROFER 97 and stainless steel AISI 316 L(N) IG. The corrosion potential was continuously monitored during the whole irradiation period. At regular intervals and under various flux levels, polarisation resistance measurements and electrochemical impedance spectroscopy were performed. Polarisation curves were recorded at the end of the reactor cycle. Analysis showed that the corrosion potential increased and the polarisation resistance decreased with the flux level. The impedance data showed two semi-circles in the Nyquist diagram which contracted with increasing flux level. A fit of the impedance data yielded a decrease of solution and polarisation resistances with the flux level. The polarisation curves could be fitted with a standard Butler-Volmer representation after correction for the solution resistance and showed an increase in the corrosion current density with the flux level.

  14. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase: An Exposure Biomarker of Organophosphate Pesticides and Nerve AgentsOrganophosphate Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Wang, Jun; Barry, Richard C.

    A nanoparticle-based electrochemical immunosensor has been developed for the detection of phosphorylated acetylcholinesterase (AChE) adducts, which is a potential exposure biomarker for organophosphate pesticides (OP) and chemical warfare nerve agent exposures. Zirconia nanoparticles (ZrO2 NPs) were used as selective sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) were used as tags to label monoclonal anti-AChE antibody to track the immunorecognition events. The sandwich-like immunoreactions were performed among the ZrO2 NPs, which were pre-coated on a screen printed electrode (SPE) by electrodeposition, phosphorylated AChE and QD-anti-AChE. The captured QD tags were determined on the SPE by electrochemicalmore » stripping analysis of its metallic component (cadmium) after an acid-dissolution step. Paraoxon was used as a model OP insecticide to prepare the phosphorylated AChE adduct to demonstrate the proof of principle for this sensor technology. The paraoxon-AChE adduct was characterized by Fourier Transform Infrared Spectrum, and the binding affinity of anti-AChE to the paraoxon-AChE was validated with an enzyme-linked immunosorbent assay. The parameters (e.g., amount of ZrO2 NP, QD-anti-AChE concentration,) that govern the electrochemical response of immunosensors were optimized. The voltammetric response of the immunosensor is highly linear over the range of 10 pM to 4 nM paraoxon-AChE, and the limit of detection is estimated to be 8 pM. This new nanoparticle-based electrochemical immunosensor thus provides a sensitive and quantitative tool for biomonitoring exposure to OP pesticides and nerve agents.« less

  15. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  16. Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.

    PubMed

    Mazloum-Ardakani, Mohammad; Rajabzadeh, Nooshin; Benvidi, Ali; Heidari, Mohammad Mehdi

    2013-12-15

    We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH-ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    PubMed

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impedances of electrochemically impregnated nickel electrodes as functions of potential, KOH concentration, and impregnation method

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1989-01-01

    Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.

  19. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    PubMed

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes.

    PubMed

    Zhang, Wei; Zong, Peisong; Zheng, Xiuwen; Wang, Libin

    2013-04-15

    We demonstrate a novel high-performance DNA hybridization biosensor with a carbon nanotubes (CNTs)-based nanocomposite membrane as the enhanced sensing platform. The platform was constructed by homogenously distributing ordered FePt nanoparticles (NPs) onto the CNTs matrix. The surface structure and electrochemical performance of the FePt/CNTs nanocomposite membrane were systematically investigated. Such a nanostructured composite membrane platform could combine with the advantages of FePt NPs and CNTs, greatly facilitate the electron-transfer process and the sensing behavior for DNA detection, leading to excellent sensitivity and selectivity. The complementary target genes from acute promyelocytic leukemia could be quantified in a wide range of 1.0×10⁻¹² mol/L to 1.0×10⁻⁶ mol/L using electrochemical impedance spectroscopy, and the detection limit was 2.1×10⁻¹³ mol/L under the optimal conditions. In addition, the DNA electrochemical biosensor was highly selective to discriminate single-base or double-base mismatched sequences. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    PubMed

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.

    2004-01-01

    Type 304L stainless steel (304L SS) tubing is currently used in various supply lines that service the Orbiter at NASA's John F. Kennedy Space Center Launch Pads in Florida (USA). The atmosphere at the Space Shuffle launch site is very corrosive due to a combination of factors, such as the proximity of the Atlantic Ocean and the concentrated hydrochloric acid produced by the fuel combustion reaction in the solid rocket boosters. The acidic chloride environment is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as 304L SS. Stainless steel tubing is susceptible to pitting corrosion that can cause cracking and rupture of both high-pressure gas and fluid systems. Outages in the systems where failures occur can impact the normal operation of the shuttle and launch schedules. The use of a more corrosion resistant tubing alloy for launch pad applications would greatly reduce the probability of failure, improve safety, lessen maintenance costs, and reduce downtime. A study which included ten alloys was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. The study included atmospheric exposure at NASA's John F. Kennedy Space Center outdoor corrosion test site near the launch pads and electrochemical measurements in the laboratory which included DC techniques and electrochemical impedance spectroscopy (EIS). This paper presents the results from EIS measurements on three of the alloys: AL6XN (UN N08367), 254SMO (UNS S32l54), and 304L SS (UNS S30403). Type 304L SS was included in the study as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaCl in O.1N HC1, and 3.55% NaCl in 1.ON HC1. The solutions were chosen to simulate environments that were expected to be less, similar, and more aggressive, respectively, than those present at the Space Shuttle launch pads. The results from the EIS measurements were analyzed to

  3. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor.

    PubMed

    Li, Feng; Feng, Yan; Dong, Pingjun; Yang, Limin; Tang, Bo

    2011-01-15

    A novel protocol for development of DNA electrochemical biosensor based on gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE) was proposed, which was carried out by the self-assembly of AuNPs on the mercaptophenyl film (MPF) via simple electrografting of in situ generated mercaptophenyl diazonium cations. The resulting MPF was covalently immobilized on GCE surface via C-C bond with high stability, which was desirable in fabrication of excellent performance biosensors. Probe DNA was self-assembled on AuNPs through the well-known Au-thiol binding. The recognition of fabricated DNA electrochemical biosensor toward complementary single-stranded DNA was determined by differential pulse voltammetry with the use of Co(phen)(3)(3+) as the electrochemical indicator. Taking advantage of amplification effects of AuNPs and stability of MPF, the developed biosensor could detect target DNA with the detection limit of 7.2×10(-11) M, which also exhibits good selectivity, stability and regeneration ability for DNA detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Impedance characteristics of nanoparticle-LiCoO{sub 2}+PVDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panjaitan, Elman, E-mail: elmanp@batan.go.id; Kartini, Evvy, E-mail: kartini@batan.go.id; Honggowiranto, Wagiyo

    2016-02-08

    The impendance of np-LiCoO{sub 2}+xPVDF, as a cathode material candidate for lithium-ion battery (LIB), has been characterized using impedance spectroscopy for x = 0, 5, 10, 15 and 20 volume percentage (%v/v) and for frequencies in the 42 Hz to 5 MHz range. Both real and imaginary components of the impedance were found to be frequency dependent, and both tend to increase for increasing PVDF (polyvinyilidene fluoride) concentration, except that for 10% PVDF both real and imaginary components of impedance are smaller than for 5%. The mechanism for relaxation time for each addition of PVDF was analyzed using Cole-Cole plots. The analysismore » showed that the relaxation times of the nanostructured LiCoO{sub 2} with PVDF additive is relatively constant. Further, PVDF addition increases the bulk resistance and decreases the bulk capacitance of the nanostructured LiCoO{sub 2}.« less

  5. Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing Zinc Oxide Nanoparticles on Mild Steel in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Raj, X. Joseph

    2017-07-01

    The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.

  6. Nucleic acid-based electrochemical nanobiosensors.

    PubMed

    Abi, Alireza; Mohammadpour, Zahra; Zuo, Xiaolei; Safavi, Afsaneh

    2018-04-15

    The detection of biomarkers using sensitive and selective analytical devices is critically important for the early stage diagnosis and treatment of diseases. The synergy between the high specificity of nucleic acid recognition units and the great sensitivity of electrochemical signal transductions has already shown promise for the development of efficient biosensing platforms. Yet nucleic-acid based electrochemical biosensors often rely on target amplification strategies (e.g., polymerase chain reactions) to detect analytes at clinically relevant concentration ranges. The complexity and time-consuming nature of these amplification methods impede moving nucleic acid-based electrochemical biosensors from laboratory-based to point-of-care test settings. Fortunately, advancements in nanotechnology have provided growing evidence that the recruitment of nanoscaled materials and structures can enhance the biosensing performance (particularly in terms of sensitivity and response time) to the level suitable for use in point-of-care diagnostic tools. This Review highlights the significant progress in the field of nucleic acid-based electrochemical nanobiosensing with the focus on the works published during the last five years. Copyright © 2017. Published by Elsevier B.V.

  7. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subban, Chinmayee V.; Zhou, Qin; Hu, Anthony

    2010-11-19

    The materials currently used in proton-exchange membrane fuel cells (PEMFCs) require complex control of operating conditions to make them sufficiently durable to permit commercial deployment. One of the major materials challenges to allow simplification of fuel cell operating strategies is the discovery of catalyst supports that are much more stable to oxidative decomposition than currently used carbon blacks. Here we report the synthesis and characterization of Ti 0.7W 0.3O 2 nanoparticles (approximately 50 nm diameter), a promising doped metal oxide that is a candidate for such a durable catalyst support. The synthesized nanoparticles were platinized, characterized by electrochemical testing, andmore » evaluated for stability under PEMFC and other oxidizing acidic conditions. Ti 0.7W 0.3O 2 nanoparticles show no evidence of decomposition when heated in a Nafion solution for 3 weeks at 80 °C. In contrast, when heated in sulfuric, nitric, perchloric, or hydrochloric acid, the oxide reacts to form salts such as titanylsulfatehydrate from sulfuric acid. Electrochemical tests show that rates of hydrogen oxidation and oxygen reduction by platinum nanoparticles supported on Ti 0.7W 0.3O 2 are comparable to those of commercial Pt on carbon black.« less

  8. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  9. X-ray and Electrochemical Impedance Spectroscopy Diagnostic Investigations of Liquid Water in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Antonacci, Patrick

    In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.

  10. Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching

    NASA Astrophysics Data System (ADS)

    Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram

    2016-01-01

    This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.

  11. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.

    PubMed

    Sun, Duanping; Lu, Jing; Chen, Zuanguang; Yu, Yanyan; Mo, Manni

    2015-07-23

    In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au-thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer-AuNPs-HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1×10(2) to 1×10(7) cells mL(-1) and high sensitivity with a low detection limit of 30 cells mL(-1). Furthermore, after the electrochemical detection, the activation potential of -0.9 to -1.7V was performed to break Au-thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The role of lipopolysaccharide on the electrochemical behavior of titanium.

    PubMed

    Barão, V A; Mathew, M T; Assunção, W G; Yuan, J C; Wimmer, M A; Sukotjo, C

    2011-05-01

    Lipopolysaccharide (LPS) may induce peri-implantitis and implant failure. However, the role of LPS in titanium (Ti) electrochemical behavior remains unknown. We hypothesized that LPS in saliva with different pHs affects Ti corrosion properties. Thirty-six Ti discs (15 mm × 3 mm) were divided into 12 groups according to saliva pH (3, 6.5, and 9) and Escherichia coli LPS concentration (0, 0.15, 15, and 150 µg/mL). Electrochemical tests, such as open circuit potential, potentiodynamic, and electrochemical impedance spectroscopy, were conducted in a controlled environment. Data were evaluated by Pearson correlation and regression analysis (α = 0.05). LPS and pH affected Ti corrosive behavior. In general, lower pH and higher LPS concentration accelerated Ti corrosion. In the control group, the increase of pH significantly reduced the corrosion rate and increased the capacitance of the double layer. In LPS groups, the decrease of pH significantly increased the corrosion rate of Ti. LPS negatively influenced Ti corrosion behavior. C(dl), capacitance of double layer; E(corr), corrosion potential; EIS, electrochemical impedance spectroscopy; I(corr), corrosion current density; I(pass), passivation current density; LPS, lipopolysaccharide; OCP, open circuit potential; R(p), polarization resistance; Ti, titanium.

  13. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE PAGES

    Alfonso, Dominic R.; Kauffman, Douglas R.

    2017-08-14

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  14. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, Dominic R.; Kauffman, Douglas R.

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  15. Study of the dopamine effect into cell solutions by impedance analysis

    NASA Astrophysics Data System (ADS)

    Paivana, G.; Apostolou, T.; Kaltsas, G.; Kintzios, S.

    2017-11-01

    Electrochemical Impedance Spectroscopy (EIS) has become a technique that is frequently used for biological assays. Impedance is defined as a complex - valued generalization of resistance and varies depending on its use per application field. In health sciences, bioimpedance is widely used as non-invasive and low cost alternative in many medical areas that provides valuable information about health status. This work focuses on assessing the effects of a bioactive substance applied to immobilized cells. Dopamine was used as a stimulant in order to implement impedance analysis with a specific type of cells. Dopamine constitutes one of the most important catecholamine neurotransmitters in both the mammalian central and peripheral nervous systems. The main purpose is to extract calibration curves at different frequencies with known dopamine concentrations in order to describe the behavior of cells applied to dopamine using an impedance measurement device. For comparison purposes, non-immobilized cells were tested for the same dopamine concentrations.

  16. Evolution of Reduced Graphene Oxide-SnS2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries.

    PubMed

    Modarres, Mohammad H; Lim, Jonathan Hua-Wei; George, Chandramohan; De Volder, Michael

    2017-06-22

    Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide-tin sulfide (rGO-SnS 2 ) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS 2 nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance.

  17. Evolution of Reduced Graphene Oxide–SnS2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries

    PubMed Central

    2017-01-01

    Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide–tin sulfide (rGO-SnS2) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS2 nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance. PMID:28804530

  18. Simulated impedance of diffusion in porous media

    DOE PAGES

    Cooper, Samuel J.; Bertei, Antonio; Finegan, Donal P.; ...

    2017-07-27

    This paper describes the use of a frequency domain, finite-difference scheme to simulate the impedance spectra of diffusion in porous microstructures. We investigate both open and closed systems for a range of ideal geometries, as well as some randomly generated synthetic volumes and tomographically derived microstructural data. In many cases, the spectra deviate significantly from the conventional Warburg-type elements typically used to represent diffusion in equivalent circuit analysis. Furthermore, a key finding is that certain microstructures show multiple peaks in the complex plane, which may be misinterpreted as separate electrochemical processes in real impedance data. This is relevant to batterymore » electrode design as the techniques for nano-scale fabrication become more widespread. This simulation tool is provided as an open-source MatLab application and is freely available online as part of the TauFactor platform.« less

  19. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  20. Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin-gold nano composite.

    PubMed

    Krithiga, N; Viswanath, K Balaji; Vasantha, V S; Jayachitra, A

    2016-05-15

    In this report, we have successfully fabricated an immunosensor for detection of Pseudomonas aeruginosa in water. The monoclonal antibody was immobilized on the surface modified with CCLP (Calcium Cross-Linked Pectin)-Au NPs (gold nanoparticles)/Glassy Carbon Electrode. The building of the immunosensor was evaluated in each step by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The electrochemical detection was done based on the anti rabbit IgG HRP (Horseradish Peroxidase) which binds to the immune complex and the response was observed using Hydro Quininone (HQ) and Hydrogen peroxide (H2O2) in PB (Phosphate Buffer) electrolyte. From the results, the sensitivity range is from 10(1) to 10(7)CFU/ml and LOD is calculated as 9×10(2)CFU/ml. The developed immunosensor also have high selectivity, stability, reproducibility and reusability. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Novel electrochemical immune sensor based on Hep-PGA-PPy nanoparticles for detection of α-Fetoprotein in whole blood.

    PubMed

    Xu, Tingting; Chi, Bo; Gao, Jian; Chu, Meilin; Fan, Wenlu; Yi, Meihui; Xu, Hong; Mao, Chun

    2017-07-18

    A simple and accurate immune sensor for quantitative detection of α-Fetoprotein (AFP) was developed based on the immobilization of antigen on the surface of Hep-PGA-PPy nanoparticles modified glassy carbon electrodes (GCE). The obtained Hep-PGA-PPy nanoparticles were characterized by fourier transform infrared (FT-IR) spectra and transmission electron microscopy (TEM). And the blood compatibility of Hep-PGA-PPy nanoparticles was investigated by in vitro coagulation tests, hemolysis assay and whole blood adhesion tests. Combining the conductive property of polypyrrole (PPy) and the biocompatibility of heparin (Hep), the Hep-PGA-PPy nanoparticles could improve not only the anti-biofouling effect the electrode, but also improved the electrochemical properties of the immune sensor. Under optimal conditions, the proposed immune sensor could detect AFP in a linear range from 0.1 to 100 ng mL -1 with a detection limit of 0.099 ng mL -1 at the signal-to-noise ratio of 3, and it also possessed good reproducibility and storage stability. Furthermore, the detection of AFP in five human blood samples also showed satisfactory accuracy with low relative errors. Thus, the developed immune sensor which showed acceptable reproducibility, selectivity, stability and accuracy could be potentially used for the detection of whole blood samples directly. Copyright © 2017. Published by Elsevier B.V.

  2. TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics

    NASA Astrophysics Data System (ADS)

    Wood, Paul; Sinton, David

    2010-08-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.

  3. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction.

    PubMed

    Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying

    2017-12-15

    In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  5. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy

    PubMed Central

    Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-01-01

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature (Tm) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above—as well as below—the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10−2–105 Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm. The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures. PMID:28678160

  6. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    PubMed

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  7. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1.

    PubMed

    Xia, Shuang; Zhu, Pei; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan

    2017-11-15

    A simple and convenient cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON), zearalenone (ZEN), and Aflatoxin B 1 (AFB 1 ) on Hep G2 cells. The sensor was modified in succession with AuNPs (gold nanoparticles), cysteamine, and laminin. The cells interacting with laminin formed tight cell-to-electrode contacts, and collagen was used to maintain cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate mycotoxin toxicity. Experimental results show that DON, ZEN, and AFB 1 caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of DON, ZEN, and AFB 1 in the range of 0.01-20, 0.1-50, and 0.1-3.5μg/mL, and IC 50 obtained using the developed method was 48.5, 59.0, and 3.10μg/mL, respectively. A synergistic effect was observed between DON and ZEN, an additive effect was observed between DON and AFB 1 , and an antagonism effect was found in the binary mixtures of ZEN and AFB 1 and ternary mixtures. These results were confirmed via CCK-8 assay. Utilizing SEM, we found that cells treated with mycotoxins caused significant changes in cell morphology, thus lessening cell adsorption and impedance reduction. Biological assay indicated that EIS patterns correlated with [Ca 2+ ] i concentrations and apoptosis and necrotic cells ratios, thus effecting electrochemical signals. This method is simpler, more convenient, sensitive, and has a quicker response rate than most conventional cytotoxicity evaluation methods. Copyright © 2017. Published by Elsevier B.V.

  8. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.

    PubMed

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-09-08

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.

  9. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  10. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  11. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  12. Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.

    2018-06-01

    Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.

  13. High-density CMOS Microelectrode Array System for Impedance Spectroscopy and Imaging of Biological Cells.

    PubMed

    Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann

    2017-01-26

    A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.

  14. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    PubMed

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  15. Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles.

    PubMed

    Li, Guiyin; Li, Shanshan; Wang, Zhihong; Xue, Yewei; Dong, Chenyang; Zeng, Junxiang; Huang, Yong; Liang, Jintao; Zhou, Zhide

    2018-04-15

    Sensitive and accurate detection of tumor markers is critical to early diagnosis, point-of-care and portable medical supervision. Alpha fetoprotein (AFP) is an important clinical tumor marker for hepatocellular carcinoma (HCC), and the concentration of AFP in human serum is related to the stage of HCC. In this paper, a label-free electrochemical aptasensor for AFP detection was fabricated using AFP-aptamer as the recognition molecule and thionin/reduced graphene oxide/gold nanoparticles (TH/RGO/Au NPs) as the sensor platform. With high electrocatalytic property and large specific surface area, RGO and Au NPs were employed on the screen-printed carbon electrode to load TH molecules. The TH not only acted as a bridging molecule to effectively capture and immobilize AFP-aptamer, but as the electron transfer mediator to provide the electrochemical signal. The AFP detection was based on the monitoring of the electrochemical current response change of TH by the differential pulse voltammetry. Under optimal conditions, the electrochemical responses were proportional to the AFP concentration in the range of 0.1-100.0 μg/mL. The limit of detection was 0.050 μg/mL at a signal-to-noise ratio of 3. The proposed method may provide a promising application of aptamer with the properties of facile procedure, low cost, high selectivity in clinic. Copyright © 2018. Published by Elsevier Inc.

  16. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite.

    PubMed

    Liu, Zhiguang; Guo, Yujing; Dong, Chuan

    2015-05-01

    In this report, a new nanocomposite was successfully synthesized by chemical deposition of nickel nanoparticles (NiNPs) on polyvinylpyrrolidone (PVP) stabilized graphene nanosheets (GNs) with chitosan (CS) as the protective coating. The as obtained nanocomposite (PVP-GNs-NiNPs-CS) was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Benefiting from the synergistic effect of GNs (large surface area and high conductivity), NiNPs (high electrocatalytic activity towards the glucose oxidation) and CS (good film-forming and antifouling ability), a nonenzymatic electrochemical glucose sensor was established. The nanocomposite displays greatly enhanced electrocatalytic activity towards the glucose oxidation in NaOH solution. The PVP-GNs-NiNPs-CS based electrochemical glucose sensor demonstrates good sensitivity, wide linear range (0.1 μM-0.5 mM), outstanding detection limit (30 nM), attractive selectivity, good reproducibility, high stability as well as prominent feasibility for the real sample analysis. The proposed experiment might open up a new possibility for widespread use of non-enzymatic sensors for monitoring blood glucose owing to its advantages of low cost, simple preparation and excellent properties for glucose detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors.

    PubMed

    Bindewald, Eduardo H; Schibelbain, Arthur F; Papi, Maurício A P; Neiva, Eduardo G C; Zarbin, Aldo J G; Bergamini, Márcio F; Marcolino-Júnior, Luiz H

    2017-10-01

    This study describes a new route for preparation of a nanocomposite between graphene oxide (GO) and bismuth nanoparticles (BiNPs) and its evaluation as modifier electrode for development of electrochemical sensors. BiNPs were synthesized under ultrasound conditions using Bi(NO 3 ) 3 as metal precursor and ascorbic acid (AA) as reducing agent/passivating. Some experimental parameters of BiNPs synthesis such as Bi 3+ :AA molar ratio and reaction time were conducted aiming the best voltammetric performance of the sensor. Glassy carbon electrodes (GCE) were modified by drop-casting with the BiNPs dispersions and anodic stripping voltammetry measurements were performed and revealed an improvement in the sensitivityfor determination of Cd(II) and Pb(II) compared to an unmodified electrode. The best electrochemical response was obtained for a BiNPs synthesis with Bi 3+ :AA molar ratio of 1:6 and reaction time of 10min, which yielded Bi metallic nanoparticles with average size of 5.4nm confirmed by XRD and TEM images, respectively. GO was produced by graphite oxidation using potassium permanganate and exfoliated with an ultrasound tip. GO-BiNPs nanocomposite was obtained by a simple mixture of GO and BiNPs dispersions in water and kept under ultrasonic bath for 1h. GCE were modified with a nanocomposite suspension containing 0.3 and 1.5mgmL -1 of GO and BiNPs in water, respectively. Under optimized conditions, the proposed nanocomposite was evaluated on the voltammetric determination of Pb (II) and Cd (II), leading to a linear response range between 0.1 and 1.4μmolL -1 for both cations, with limit of detection of 30 and 27nmolL -1 , respectively. These results indicate the great potential of the GO-BiNPs nanocomposite for improving the sensitivity of voltammetric procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus.

    PubMed

    Huy, Tran Quang; Hien Thanh, Nguyen Thi; Thuy, Nguyen Thanh; Chung, Pham Van; Hung, Pham Ngoc; Le, Anh-Tuan; Hong Hanh, Nguyen Thi

    2017-03-01

    Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID 50 (Tissue Culture Infective Dose) after 30min, and 10TCID 50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID 50 , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells.

    PubMed

    Wang, Kun; He, Meng-Qi; Zhai, Fu-Heng; He, Rong-Huan; Yu, Yong-Liang

    2017-05-01

    Simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. A sandwich electrochemical biosensor was developed based on polyadenine (polydA)-aptamer modified gold electrode (GE) and polydA-aptamer functionalized gold nanoparticles/graphene oxide (AuNPs/GO) hybrid for the label-free and selective detection of breast cancer cells (MCF-7) via a differential pulse voltammetry (DPV) technique. Due to the intrinsic affinity between multiple consecutive adenines of polydA sequences and gold, polydA modified aptamer instead of thiol terminated aptamer was immobilized on the surface of GE and AuNPs/GO. The label-free MCF-7 cells could be recognized by polydA-aptamer and self-assembled onto the surface of GE. The polydA-aptamer functionalized AuNPs/GO hybrid could further bind to MCF-7 cells to form a sandwich sensing system. Characterization of the surface modified GE was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using Fe(CN) 6 3-/4- as a redox probe. Under the optimized experimental conditions, a detection limit of 8 cellsmL -1 (3σ/slope) was obtained for MCF-7 cells by the present electrochemical biosensor, along with a linear range of 10-10 5 cellsmL -1 . By virtue of excellent sensitivity, specificity and repeatability, the present electrochemical biosensor provides a potential application in point-of-care cancer diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhancement of Electrochemical Performance of LiMn2O4 Spinel Cathode Material by Synergetic Substitution with Ni and S

    PubMed Central

    Bakierska, Monika; Świętosławski, Michał; Gajewska, Marta; Kowalczyk, Andrzej; Piwowarska, Zofia; Chmielarz, Lucjan; Dziembaj, Roman; Molenda, Marcin

    2016-01-01

    Nickel and sulfur doped lithium manganese spinels with a nominal composition of LiMn2−xNixO4–ySy (0.1 ≤ x ≤ 0.5 and y = 0.01) were synthesized by a xerogel-type sol-gel method followed by subsequent calcinations at 300 and 650 °C in air. The samples were investigated in terms of physicochemical properties using X-ray powder diffraction (XRD), transmission electron microscopy (EDS-TEM), N2 adsorption-desorption measurements (N2-BET), differential scanning calorimetry (DSC), and electrical conductivity studies (EC). Electrochemical characteristics of Li/Li+/LiMn2−xNixO4–ySy cells were examined by galvanostatic charge/discharge tests (CELL TEST), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The XRD showed that for samples calcined at 650 °C containing 0.1 and 0.2 mole of Ni single phase materials of Fd-3m group symmetry and nanoparticles size of around 50 nm were obtained. The energy dispersive X-ray spectroscopy (EDS) mapping confirmed homogenous distribution of nickel and sulfur in the obtained spinel materials. Moreover, it was revealed that the adverse phase transition at around room temperature typical for the stoichiometric spinel was successfully suppressed by Ni and S substitution. Electrochemical results indicated that slight substitution of nickel (x = 0.1) and sulfur (y = 0.01) in the LiMn2O4 enhances the electrochemical performance along with the rate capability and capacity retention. PMID:28773491

  1. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Are Nanoparticles Spherical or Quasi-Spherical?

    PubMed

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A sensitive sandwich-type electrochemical aptasensor for thrombin detection based on platinum nanoparticles decorated carbon nanocages as signal labels.

    PubMed

    Gao, Fenglei; Du, Lili; Zhang, Yu; Zhou, Fuyi; Tang, Daoquan

    2016-12-15

    In this work, a novel and sensitive sandwich-type electrochemical aptasensor has been developed for thrombin detection based on platinum nanoparticles (Pt NPs) decorated carbon nanocages (CNCs) as signal tags. The morphological and compositional of the Pt NPs/CNCs were examined using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The results showed that the Pt NPs with about 3-5nm in diameter were well dispersed on the surface of CNCs. The thiolated aptamer was firstly immobilized on the gold electrode to capture the thrombin molecules, and then aptamer functionalized Pt NPs/CNCs nanocomposites were used to fabricate a sandwich sensing platform. Then, the high-content Pt NPs on carbon nanocages acting as hydrogen peroxide-mimicking enzyme catalyzed the reduction of H2O2, resulting in significant electrochemical signal amplification. Differential pulse voltammetry is employed to detect thrombin with different concentrations. Under optimized conditions, the approach provided a good linear response range from 0.05 pM to 20nM with a low detection limit of 10fM. This Pt NPs/CNCs-based aptasensor shows good precision, acceptable stability and reproducibility, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    PubMed

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles.

    PubMed

    Kanchana, P; Sekar, C

    2015-02-25

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0×10(-7) to 3.5×10(-4) M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  7. Reagent ratio dependent physical properties and electrochemical performance of NiO nanoparticles synthesized using solvent deficient approach

    NASA Astrophysics Data System (ADS)

    Kore, R. M.; Thakur, A. V.; Fugare, B. Y.; Lokhande, B. J.

    2018-04-01

    In the present study, we report synthesis of NiO nanoparticles by varying the reagent ratio of nickel nitrate and ammonium bicarbonate using solvent deficient approach. The synthesis process involves the solid state grinding reaction of nickel nitrate and different mole ratio of ammonium bicarbonate varying from 0.5 to 4, to obtain the precursor followed by rinsing and annealing at 300°C for 2 h. The XRD and FTIR analysis is carried to confirm the formation of NiO nanoparticles. The XRD analysis confirms the cubic structure of NiO. The peaks observed in FTIR confirms the presence of Ni - O vibration mode. The FESEM images shows the particle size is larger for lower content of ammonium bicarbonate and decreases with increase in amount of bicarbonate added. Electrochemical performance clearly indicates the specific capacitance increases from 0.5 to 2 and further decreases with increase in the ammonium bicarbonate. The maximum achieved specific capacitance is 1218 Fg-1 for the reagent ratio 2 of ammonium bicarbonate.

  8. In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques.

    PubMed

    García-Alonso, M C; Saldaña, L; Alonso, C; Barranco, V; Muñoz-Morris, M A; Escudero, M L

    2009-05-01

    In this work, the in situ interaction between Ti-6Al-4V alloy and osteoblastic cells has been studied by electrochemical techniques as a function of time. The interaction has been monitored for cell adhesion and growth of human osteoblastic Saos-2 cells on Ti-6Al-4V samples. The study has been carried out by electrochemical techniques, e.g., studying the evolution of corrosion potential with exposure time and by electrochemical impedance spectroscopy. The impedance results have been analyzed by using different equivalent circuit models that simulate the interface state at each testing time. The adhesion of the osteoblastic cells on the Ti-6Al-4V alloy leads to surface areas with different cell coverage rates, thus showing the different responses in the impedance diagrams with time. The effect of the cells on the electrochemical response of Ti-6Al-4V alloy is clearly seen after 4 days of testing, in which two isolated and well-differentiated time constants are clearly observed. One of these is associated with the presence of the cells and the other with a passive film on the Ti-6Al-4V alloy. After 7 days of culture, the system is governed by a resistive component over a wide frequency range which is associated with an increase in the cell coverage rate on the surface due to the extracellular matrix.

  9. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  10. Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition.

    PubMed

    Lin, Dajie; Mei, Chengyang; Liu, Aili; Jin, Huile; Wang, Shun; Wang, Jichang

    2015-04-15

    A cascade signal amplification strategy through combining surface-initiated enzymatic polymerization (SIEP) and the subsequent deposition of strepavidin functionalized silver nanoparticles (AgNPs) was proposed. The first step of constructing the electrochemical immunosensor involves covalently immobilizing capture antibody on a chitosan modified glass carbon electrode, which then catalyzes DNA addition of deoxynucleotides (dNTP) at the 3'-OH group by terminal deoxynucleotidyl transferase (TdT), leading to the formation of long single-stranded DNAs labeled with numerous biotins. Following the deposition of numerous strepavidin functionalized AgNPs on those long DNA chains, electrochemical stripping signal of silver was used to monitor the immunoreaction in KCl solution. Using α-fetoprotein as a model analyte, this amplification strategy could detect fetoprotein down to 0.046pg/mL with a wide linear range from 0.1pg/mL to 1.0ng/mL. The achieved high sensitivity and good reproducibility suggest that this cascade signal amplification strategy has great potential for detecting biological samples and possibly clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  12. Electrochemical and thermal studies of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Wenquan

    The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential

  13. Palladium nanoparticles deposited on graphene and its electrochemical performance for glucose sensing

    NASA Astrophysics Data System (ADS)

    Mijowska, Ewa; Onyszko, Magdalena; Urbas, Karolina; Aleksandrzak, Malgorzata; Shi, Xiaoze; Moszyński, Dariusz; Penkala, Krzysztof; Podolski, Jacek; El Fray, Mirosława

    2015-11-01

    This paper reports on the fabrication and characterization of glucose oxidase (GOx) immobilized onto a glassy carbon electrode (GCE) modified with reduced graphene oxide/palladium nanocomposite (RGO-Pd). Characterization tools showed well dispersed uniform Pd nanoparticles on a partly reduced graphene oxide surface. Cyclic voltammetry demonstrated successful immobilization of GOx on RGO-Pd modified GCE (GCE-RGO-Pd) using covalent bonding of GOx with RGO-Pd (RGO-Pd-GOx). Therefore, it was used as an electrochemical biosensor of glucose. RGO-Pd-GOx exhibited good electrocatalysis toward glucose in different glucose concentrations (from 2 to 10 mM, which includes the blood glucose levels of both normal and diabetic persons) with O2 saturated phosphate buffer solution (PBS) at pH 7.4. The system showed a linear increase in current at potential -0.085 V in the concentration range examined, with a correlation coefficient of 0.996. The sensitivity of the biosensor was 41.3 μA cm-2 mM-1, suggesting that RGO-Pd-GOx-modified GCE could be a potential candidate as a glucose sensor.

  14. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  15. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  16. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com; Roushani, Mahmoud; Department of Chemistry, Ilam University, Ilam

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was foundmore » that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.« less

  17. Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2012-11-01

    Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.

  18. Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors—Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Schauer, F.; Nádaždy, V.; Gmucová, K.

    2018-04-01

    There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.

  19. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO 2 Reduction: The Elucidation of Size and Surface Condition Effects

    DOE PAGES

    Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...

    2016-08-08

    Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less

  20. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y.Z., E-mail: singyuanzhi@sina.com; Zhou, J.F.; Song, Y., E-mail: songyang@mail.buct.edu.cn

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticlemore » for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.« less

  1. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  2. Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.; Balke, N.; Kalinin, S. V.

    2010-09-01

    Electrochemical insertion-deintercalation reactions are typically associated with significant change in molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration, and electrochemical impedance spectroscopy. This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10-nm level using electromechanical detection.

  3. Relation Between Crystal Structure and Electrochemical Performance of LiNi1/3Zn x Co1/3-xMn1/3O₂ (0.000 ≤ x ≤ 0.133).

    PubMed

    Wang, Xujun; Wan, Yong; Wang, Ruiqi; Xu, Xiantang; Wang, He; Chang, Mingning; Yuan, Feng; Ge, Xiaohui; Shao, Weiquan; Xu, Sheng

    2018-04-01

    LiNi1/3ZnxCo1/3-xMn1/3O2 (0.000 ≤ x ≤ 0.133) hollow microspheres are synthesized using MnO2 hollow microspheres both as a self-template and Mn source. These hollow microspheres, ~4 μm in diameter, are composed of approximately 300 nm basic nanoparticles. The XRD patterns of LiNi1/3ZnxCo1/3-xMn1/3O2 were analyzed by the RIETAN-FP program, and the obtained samples have a layered α-NaFeO2 structure. Electrochemical performances of the samples were carried out between 2.5 V and 4.5 V. The behavior of the lattice parameters is consistent with Cycling performance and rate performance change with increase of x. Compared with the others, the sample of x = 0.133 exhibits a relatively superior electrochemical performance. The specific capacity of x = 0.133 was increased by 10.7% than no-doped. In addition, the cyclic voltammograms curves of the second cycle show no significant alteration compared with the first cycle and the electrochemical impedance of zinc doping sample showed smaller transfer resistance than the no-doping sample.

  4. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    PubMed

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  5. Structure and magnetic/electrochemical properties of Cu-doped BiFeO3 nanoparticles prepared by a simple solution method

    NASA Astrophysics Data System (ADS)

    Khajonrit, Jessada; Phumying, Santi; Maensiri, Santi

    2016-06-01

    BiFe1- x Cu x O3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method analysis using the Barret-Joyner-Halenda (BJH) model, and X-ray absorption spectroscopy (XAS). Magnetization properties were obtained using a vibrating sample magnetometer (VSM) at room temperature. Magnetization was clearly enhanced by increasing Cu content and decreasing particle size. Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetization measurements showed that blocking temperature increased with increasing Cu content. Electrochemical properties were investigated by cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method. The performance of the fabricated supercapacitor was improved for the BiFe0.95Cu0.05O3 electrode. The highest specific capacitance was 568.13 F g-1 at 1 A g-1 and the capacity retention was 77.13% after 500 cycles.

  6. Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries

    PubMed Central

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-01-01

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306

  7. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    NASA Astrophysics Data System (ADS)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  8. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.

    PubMed

    Xie, Keyu; Guo, Min; Lu, Wei; Huang, Haitao

    2014-11-14

    A novel TiO₂ three-dimensional (3D) anode with an aligned TiO₂ nanotube/nanoparticle heterostructure (TiO₂ NTs/NPs) is developed by simply immersing as-anodized TiO₂ NTs into water and further crystallizing the TiO₂ NTs by post-annealing. The heterostructure, with its core in a tubular morphology and with both the outer and inner surface consisting of nanoparticles, is confirmed by FESEM and TEM. A reversible areal capacity of 0.126 mAh · cm(-2) is retained after 50 cycles for the TiO₂ NTs/NPs heterostructure electrode, which is higher than that of the TiO₂ NTs electrode (0.102 mAh · cm(-2) after 50 cycles). At the current densities of 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mA · cm(-2), the areal capacities are 0.142, 0.127, 0.117, 0.110, 0.104 and 0.089 mAh · cm(-2), respectively, for the TiO₂ NTs/NPs heterostructure electrode compared to the areal capacities of 0.123, 0.112, 0.105, 0.101, 0.094 and 0.083 mAh · cm(-2), respectively, for the the TiO₂ NTs electrode. The enhanced electrochemical performance is attributed to the unique microstructure of the TiO₂ NTs/NPs heterostructure electrode with the TiO₂ NT core used as a straight pathway for electronic transport and with TiO₂ NP offering enhanced surface areas for facile Li+ insertion/extraction. The results described here inspire a facile approach to fabricate a 3D anode with an enhanced electrochemical performance for lithium-ion microbattery applications.

  9. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles

    PubMed Central

    Bertok, Tomas; Sediva, Alena; Katrlik, Jaroslav; Gemeiner, Pavol; Mikula, Milan; Nosko, Martin; Tkac, Jan

    2016-01-01

    We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinylalcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade-1 and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade-1 with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade-1. These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids. PMID:23601864

  10. Cyclically optimized electrochemical processes

    NASA Astrophysics Data System (ADS)

    Ruedisueli, Robert Louis

    It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.

  11. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum.

    PubMed

    Wang, Dan; Dou, Wenchao; Zhao, Guangying; Chen, Yan

    2014-11-01

    In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO(4)](-).

    PubMed

    Zheng, J P; Goonetilleke, P C; Pettit, C M; Roy, D

    2010-05-15

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.

  13. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of l-tyrosine.

    PubMed

    Rahimi-Mohseni, Mohadeseh; Raoof, Jahan Bakhsh; Ojani, Reza; Aghajanzadeh, Tahereh A; Bagheri Hashkavayi, Ayemeh

    2018-07-01

    In this paper, a new and facile method for the electrochemical determination of l-tyrosine was designed. First, 3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticles were added to a paper disc. Then, the banana peel tissue and the mediator potassium hexacyanoferrate were dropped onto the paper, respectively. The modified paper disc was placed on the top of the graphite screen printed electrode and electrochemical characterization of this biosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy methods. The effective parameters like pH, banana peel tissue percentage, and the amount of mediator loading were optimized. l-tyrosine measurements were done by differential pulse voltammetry with a little sample (3 μL) for analysis. The biosensor showed a linear response for l-tyrosine in the wide concentration range of 0.05-600 μM and a low detection limit about 0.02 μM because of the co-catalytic effect of enzyme and nanoparticles. The stability of the biosensor and its selectivity were evaluated. This biosensor was applied for the voltammetric determination of l-tyrosine in the blood plasma sample. The results of the practical application study were comparable with the standard method (HPLC). In conclusion, a simple, inexpensive, rapid, sensitive and selective technique was successfully applied to the l-tyrosine analysis of the little samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nanoparticle shape evolution and proximity effects during tip-induced electrochemical processes

    DOE PAGES

    Yang, Sangmo; Paranthaman, Mariappan Parans; Noh, Tae Won; ...

    2016-01-08

    The voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When themore » grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag +/Ag redox reaction to Ag +-ion diffusion with the increase in the applied voltage and pulse duration. Our study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities.« less

  15. Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Kashyap, Manish K.; Sabharwal, Namita; Kumar, Sarvesh; Kumar, Ashok; Kumar, Parmod; Asokan, K.

    2017-11-01

    In order to elucidate the effect of transition metal (TM) doping, the impedance and dielectric responses of Co and/or Mn-doped TiO2 nanocrystalline powder samples with 3% doping concentration synthesized via sol gel technique, have been analyzed. X-ray diffraction (XRD) analysis confirms the formation of tetragonal TiO2 anatase phase for all studied samples without any extra impurity phase peaks. The variation in the grain size measured from field emission scanning electron microscope (FESEM) measurements for all the samples are in accordance with the change in crystallite size as obtained from XRD. The DC resistivity for pure TiO2 nanoparticles is the highest while codoped samples exhibit low resistivity. The temperature dependent dielectric constant and dielectric loss possess step like enhancement and show the relaxation behavior. At room temperature, the dielectric function and dielectric loss decrease rapidly with increase in frequency and become almost constant at the higher frequencies. Such a decrease in dielectric loss is suitable for energy storage devices.

  16. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  17. An Electrochemical Impedimetric Aptasensing Platform for Sensitive and Selective Detection of Small Molecules Such as Chloramphenicol

    PubMed Central

    Pilehvar, Sanaz; Dierckx, Tarryn; Blust, Ronny; Breugelmans, Tom; De Wael, Karolien

    2014-01-01

    We report on the aptadetection of chloramphenicol (CAP) using electrochemical impedance spectroscopy. The detection principle is based on the changes of the interfacial properties of the electrode after the interaction of the ssDNA aptamers with the target molecules. The electrode surface is partially blocked due to the formation of the aptamer-CAP complex, resulting in an increase of the interfacial electron-transfer resistance of the redox probe detected by electrochemical impedance spectroscopy or cyclic voltammetry. We observed that the ratio of polarization resistance had a linear relationship with the concentrations of CAP in the range of 1.76–127 nM, and a detection limit of 1.76 nM was obtained. The covalent binding of CAP-aptamer on the electrode surface combined with the unique properties of aptamers and impedimetric transduction leads to the development of a stable and sensitive electrochemical aptasensor for CAP. PMID:25004156

  18. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  19. An Electrochemical Genosensing Assay Based on Magnetic Beads and Gold Nanoparticle-Loaded Latex Microspheres for Vibrio cholerae Detection.

    PubMed

    Low, Kim-Fatt; Rijiravanich, Patsamon; Singh, Kirnpal Kaur Banga; Surareungchai, Werasak; Yean, Chan Yean

    2015-04-01

    An ultrasensitive electrochemical genosensing assay was developed for the sequence-specific detection of Vibrio cholerae DNA using magnetic beads as the biorecognition surface and gold nanoparticle-loaded latex microspheres (latex-AuNPs) as a signal-amplified hybridization tag. This biorecognition surface was prepared by immobilizing specific biotinylated capturing probes onto the streptavidin-coupled magnetic beads. Fabricating a hybridization tag capable of amplifying the electrochemical signal involved loading multiple AuNPs onto polyelectrolyte multilayer film-coated poly(styrene-co-acrylic acid) latex microspheres as carrier particles. The detection targets, single-stranded 224-bp asymmetric PCR amplicons of the V. cholerae lolB gene, were sandwich-hybridized to magnetic bead-functionalized capturing probes and fluorescein-labeled detection probes and tagged with latex-AuNPs. The subsequent electrochemical stripping analysis of chemically dissolved AuNPs loaded onto the latex microspheres allowed for the quantification of the target amplicons. The high-loading capacity of the AuNPs on the latex microspheres for sandwich-type dual-hybridization genosensing provided eminent signal amplification. The genosensing variables were optimized, and the assay specificity was demonstrated. The clinical applicability of the assay was evaluated using spiked stool specimens. The current signal responded linearly to the different V. cholerae concentrations spiked into stool specimens with a detection limit of 2 colony-forming units (CFU)/ml. The proposed latex-AuNP-based magnetogenosensing platform is promising, exhibits an effective amplification performance, and offers new opportunities for the ultrasensitive detection of other microbial pathogens.

  20. One-step engineered self-assembly Co3O4 nanoparticles to nanocubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagajyothi, P. C.; Pandurangan, M.; Sreekanth, T. V. M.; Shim, Jaesool

    2018-02-01

    Tricobalt tetraoxide or cobalt oxide (Co3O4) nanocubes (NCs) were synthesized from the self-assemblies of Co3O4 nanoparticles (NPs) via a simple one-step hydrothermal method. X-ray diffraction analysis confirmed the cubic crystal structure of Co3O4 NCs. The surface properties were investigated by x-ray photoelectron spectroscopy, which suggests the co-existence of Co in +2 and +3 states. The self-assemblies of aggregation of NPs to NCs were inspected using scanning electron microscopy, which is supported by transmission electron microscopy. The electrochemical properties of Co3O4 NCs were carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves and impedance analysis. The areal capacitance of 3.04 mF cm-2 was obtained at current density of 10 μA cm-2. The Co3O4 NCs electrode exhibits good long-cyclic stability with 92.1% capacitance retention over 3000 cycles. The CV, GCD and impedance curves of Co3O4 NCs were recorded after cyclic test, which are similar to the curves recorded before the test. Therefore, the Co3O4 NCs serves good candidate as positive electrode materials for asymmetric supercapacitors.

  1. Electrochemical Reconstitution of Biomolecules for Applications as Electrocatalysts for the Bionanofuel Cell

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila

    2004-01-01

    Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.

  2. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  3. A brief review on recent developments of electrochemical sensors in environmental application for PGMs.

    PubMed

    Silwana, Bongiwe; Van Der Horst, Charlton; Iwuoha, Emmanuel; Somerset, Vernon

    2016-12-05

    This study offers a brief review of the latest developments and applications of electrochemical sensors for the detection of Platinum Group Metals (PGMs) using electrochemical sensors. In particular, significant advances in electrochemical sensors made over the past decade and sensing methodologies associated with the introduction of nanostructures are highlighted. Amongst a variety of detection methods that have been developed for PGMs, nanoparticles offer the unrivaled merits of high sensitivity. Rapid detection of PGMs is a key step to promote improvement of the public health and individual quality of life. Conventional methods to detect PGMs rely on time-consuming and labor intensive procedures such as extraction, isolation, enrichment, counting, etc., prior to measurement. This results in laborious sample preparation and testing over several days. This study reviewed the state-of-the-art application of nanoparticles (NPs) in electrochemical analysis of environmental pollutants. This review is intended to provide environmental scientists and engineers an overview of current rapid detection methods, a close look at the nanoparticles based electrodes and identification of knowledge gaps and future research needs. We summarize electrodes that have been used in the past for detection of PGMs. We describe several examples of applications in environmental electrochemical sensors and performance in terms of sensitivity and selectivity for all the sensors utilized for PGMs detection. NPs have promising potential to increase competitiveness of electrochemical sensors in environmental monitoring, though this review has focused mainly on sensors used in the past decade for PGMs detection. This review therefore provides a synthesis of outstanding performances in recent advances in the nanosensor application for PGMs determination.

  4. Electrochemical Fabrication of Nanostructures on Porous Silicon for Biochemical Sensing Platforms.

    PubMed

    Ko, Euna; Hwang, Joonki; Kim, Ji Hye; Lee, Joo Heon; Lee, Sung Hwan; Tran, Van-Khue; Chung, Woo Sung; Park, Chan Ho; Choo, Jaebum; Seong, Gi Hun

    2016-01-01

    We present a method for the electrochemical patterning of gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) on porous silicon, and explore their applications in: (1) the quantitative analysis of hydroxylamine as a chemical sensing electrode and (2) as a highly sensitive surface-enhanced Raman spectroscopy (SERS) substrate for Rhodamine 6G. For hydroxylamine detection, AuNPs-porous silicon can enhance the electrochemical oxidation of hydroxylamine. The current changed linearly for concentrations ranging from 100 μM to 1.32 mM (R(2) = 0.995), and the detection limit was determined to be as low as 55 μM. When used as SERS substrates, these materials also showed that nanoparticles decorated on porous silicon substrates have more SERS hot spots than those decorated on crystalline silicon substrates, resulting in a larger SERS signal. Moreover, AgNPs-porous silicon provided five-times higher signal compared to AuNPs-porous silicon. From these results, we expect that nanoparticles decorated on porous silicon substrates can be used in various types of biochemical sensing platforms.

  5. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    NASA Astrophysics Data System (ADS)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  6. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor.

    PubMed

    Costa, Maurilia P; Andrade, Cesar A S; Montenegro, Rosana A; Melo, Fabio L; Oliveira, Maria D L

    2014-11-01

    In this work, a genosensor for the electrochemical detection of genomic DNA from Mycobacterium tuberculosis was developed. The biosensor is based on self-assembled monolayers of mercaptobenzoic acid (MBA) and magnetite nanoparticles (Fe3O4Nps) on bare gold electrode for immobilization of DNA probe. The aim of this work was the development of a platform based on cysteine-coated magnetic Fe3O4Nps linked via the carboxylate group from MBA to the work electrode surface and subsequently to the DNA probe. The probe-genome interaction was evaluated using a [Fe(CN)6](4-)/[Fe(CN)6](3-) redox pair. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the bioelectrochemical behavior of the sensor. Atomic force microscopy images showed Fe3O4Nps immobilized across the electrode surface. The interaction of the sensor with different genome DNA concentrations resulted in changes in the charge transfer resistance, indicating a possible use for tuberculosis detection at low concentrations (detection limit of 6ngμL(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of platinum nanoparticle deposition parameters on hydrogen peroxide transduction for applications in wearable electrochemical glucose biosensors

    NASA Astrophysics Data System (ADS)

    Cargill, Allison A.; Neil, Kathrine M.; Hondred, John A.; McLamore, Eric S.; Claussen, Jonathan C.

    2016-05-01

    Enhanced interest in wearable biosensor technology over the past decade is directly related to the increasing prevalence of diabetes and the associated requirement of daily blood glucose monitoring. In this work we investigate the platinum-carbon transduction element used in traditional first-generation glucose biosensors which rely on the concentration of hydrogen peroxide produced by the glucose-glucose oxidase binding scheme. We electrodeposit platinum nanoparticles on a commercially-available screen printed carbon electrode by stepping an applied current between 0 and 7.12 mA/cm2 for a varying number of cycles. Next, we examine the trends in deposition and the effect that the number of deposition cycles has on the sensitivity of electrochemical glucose sensing. Results from this work indicate that applying platinum nanoparticles to screen printed carbon via electrodeposition from a metal salt solution improves overall biosensor sensitivity. This work also pinpoints the amount of platinum (i.e., number of deposition cycles) that maximizes biosensor sensitivity in an effort to minimize the use of the precious metals, viz., platinum, in electrode fabrication. In summary, this work quantifies the relationship between platinum electrodeposition and sensor performance, which is crucial in designing and producing cost-effective sensors.

  8. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.

  9. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    PubMed

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Integrated ZnO nanoparticles on paper-based microfluidic: toward efficient analytical device for glucose detection based on impedance and FTIR measurement

    NASA Astrophysics Data System (ADS)

    Yuwono, Rio Akbar; Izdiharruddin, Mokhammad Fahmi; Wahyuono, Ruri Agung

    2016-11-01

    Microfluidic paper-based analytical devices decorated with ZnO nanospherical (nanoSPs) aggregates (ZnO-μPAD) for glucose detection have been fabricated. ZnO nanoSPs were prepared by wet chemical synthesis and integrated on the optimized geometry of ZnO-μPAD has 0.2 and 0.4 mm of channel width and length, respectively. Glucose detection measurements were based on electrochemical and infrared transmission measurements. The glucose concentrations were adjusted as 5, 6.5, and 9 mmol, i.e. typical glucose level for normal, pre-diabetes and diabetes, in a mixture of ringer lactate as simulated biological fluid and red blood cells. ZnO nanoSPs in this study possess an average aggregate size of 160 nm formed by clustered 18 nm crystallite size and ordered porous matrix as well as a surface area of 15 m2·g-1.The separation process of the glucose sample on ZnO-μPAD requires approximately 45 s. The glucose detection results show that both electrochemical-based and FTIR-based measurements perform a linear measurement system (R2 of 0.81 to 0.99) with a relatively high sensitivity. A linearly decreasing impedance spanning from 2.2 - 0.6 Ohm and linearly increasing ΔIR transmission spanning from 3 - 19% are obtained for glucose level ranging from 5 - 9 mmol.

  11. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal.

    PubMed

    Zhang, Junjun; Zhang, Wenjuan; Guo, Jinjin; Wang, Junchun; Zhang, Yuzhong

    2017-12-15

    In this study, a sandwich-type electrochemical immunosensor for the detection of C-reactive protein (CRP) is described. In design, Copper nanoparticles (Cu NPs) were used for signal tag and hybridization chain reaction (HCR)amplified output signal. The immunosensor fabrication involved three steps: (i) primary antibodies (Ab 1 ) were immobilized on the surface of gold nanoparticles (Au NPs); (ii) the sandwich-type structure formation contained "primary antibodies-antigen-secondary antibodies conjugated with primer (Ab 2 -S 0 )"; and (iii) long DNA concatemers intercalating amounts of Cu NPs was linked to the sandwich-type structure via hybridization reaction. Differential pulse voltammetry (DPV) was used to record the response signal of the immunosensor in phosphate-buffered saline (PBS). Under optimal conditions, the anodic peak currents of Cu NPs at the peak potential of about 0.08V(VS.SCE) were linear with the logarithm of CRP concentration in the range of 1.0 fg mL -1 to 100 ng mL -1 with a detection limit of 0.33 fg mL -1 (at signal/noise [S/N] = 3). In addition, the practical application of immunosensor was evaluated by analyzing CRP in real human serum samples, the recoveries obtained were within 95.3%-103.8%, indicating the immunosensor possessed potential application ability for practical disease diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-09-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm-2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER.

  13. Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles.

    PubMed

    Chauhan, Nidhi; Narang, Jagriti; Jain, Utkarsh

    2015-03-21

    Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 °C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 μM. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.

  14. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    PubMed

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  15. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  16. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    milling. Detailed systematic impedance analysis , electronic conductivity measurement and high-resolution electron microscopy studies have shown that...carbon particles determined by TEM analysis . Results of the studies so far have shown that Sn and Si-based nanocomposites appear to be quite promising... Analysis of the As-milled Powders 117 2. Electrochemical Characteristics of Si/SiC Nanocomposites 120 3. Microstructural/Morphological Analysis of

  17. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction.

    PubMed

    Abdel Hameed, R M; Medany, Shymaa S

    2018-03-01

    Nickel oxide nanoparticles were deposited on different carbon supports including activated Vulcan XC-72R carbon black (NiO/AC), multi-walled carbon nanotubes (NiO/MWCNTs), graphene (NiO/Gr) and graphite (NiO/Gt) through precipitation step followed by calcination at 400 °C. To determine the crystalline structure and morphology of prepared electrocatalysts, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed. The electrocatalytic activity of NiO/carbon support electrocatalysts was investigated towards urea electro-oxidation reaction in NaOH solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Urea oxidation peak current density was increased in the following order: NiO/AC < NiO/MWCNTs < NiO/Gr < NiO/Gt. Chronoamperometry test also showed an increased steady state oxidation current density for NiO/Gt in comparison to other electrocatalysts. The increased activity and stability of NiO/Gt electrocatalyst encourage the application of graphite as an efficient and cost-saving support to carry metal nanoparticles for urea electro-oxidation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz

    2014-06-01

    Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.

  19. Modified magnetic nanoparticles in an electrochemical method for the ochratoxin A determination in Vitis vinifera red grapes tissues.

    PubMed

    Fernández-Baldo, Martín A; Bertolino, Franco A; Messina, Germán A; Sanz, Maria I; Raba, Julio

    2010-12-15

    This work described the development and characterization of an electrochemical method using square wave voltammetry (SWV) combined with the use of modified magnetic nanoparticles (MNPs), which had shown a rapid and sensitive determination of ochratoxin A (OTA) in wine grapes (Cabernet Sauvignon, Malbec and Syrah) post-harvest tissues. The wine grapes were inoculated with Aspergillus ochraceus to obtain OTA in artificially infected samples. The OTA was directly determined using square-wave voltammetry. The current obtained is directly proportional to the concentration of OTA present in the samples. This method has been used for OTA determination in wine grapes and it was validated against a commercial ELISA test kit. The limits of detection calculated for electrochemical detection and the ELISA were 0.02 and 1.9 μg kg(-1), respectively and the coefficients of variation for accuracy and precision dates were below 5.5%. This method promises to be suitable for the detection and quantification of OTA in apparently healthy fruits post-harvest for assuring safety and quality of food as well as consumer's health. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Opto-electrochemical spectroscopy of metals in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, K., E-mail: khaledhabib@usa.net

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographicmore » interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.« less

  1. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solehudin, Agus, E-mail: asolehudin@upi.edu; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAHmore » concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.« less

  2. A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes.

    PubMed

    Bhavsar, Kinjal; Fairchild, Aaron; Alonas, Eric; Bishop, Daniel K; La Belle, Jeffrey T; Sweeney, James; Alford, T L; Joshi, Lokesh

    2009-10-15

    A biosensor for the serum cytokine, Interleukin-12 (IL-12), based upon a label-free electrochemical impedance spectroscopy (EIS) monitoring approach is described. Overexpression of IL-12 has been correlated to the diagnosis of Multiple Sclerosis (MS). An immunosensor has been fabricated by electroplating gold onto a disposable printed circuit board (PCB) electrode and immobilizing anti-IL-12 monoclonal antibodies (MAb) onto the surface of the electrode. This approach yields a robust sensor that facilitates reproducible mass fabrication and easy alteration of the electrode shape. Results indicate that this novel PCB sensor can detect IL-12 at physiological levels, <100 fM with f-values of 0.05 (typically <0.0001) in a label-free and rapid manner. A linear (with respect to log concentration) detectable range was achieved. Detection in a complex biological solution is also explored; however, significant loss of dynamic range is noted in the 100% complex solution. The cost effective approach described here can be used potentially for diagnosis of diseases (like MS) with known biomarkers in body fluids and for monitoring physiological levels of biomolecules with healthcare, food, and environmental relevance.

  3. Copper-doped titanium dioxide nanoparticles as dual-functional labels for fabrication of electrochemical immunosensors.

    PubMed

    Zhang, Sen; Ma, Hongmin; Yan, Liangguo; Cao, Wei; Yan, Tao; Wei, Qin; Du, Bin

    2014-09-15

    Constructions of versatile electroactive labels are key issues in the development of electrochemical immunosensors. In this study, copper-doped titanium dioxide nanoparticle (Cu@TiO2) was synthesized and used as labels for fabrication of sandwich-type electrochemical immunosensors on glassy carbon electrode (GCE). Due to the presence of copper ions, Cu@TiO2 shows a strong response current when coupled to an electrode. The prepared nanocomposite also shows high electrocatalytic activity towards reduction of hydrogen peroxide (H2O2). The dual functionality of Cu@TiO2 enables the fabrication of immunosensor using different detection modes, that is, square wave voltammetry (SWV) or chronoamperometry (CA). While Cu@TiO2 was used as labels of secondary antibodies (Ab2), carboxyl functionalized graphene oxide (CFGO) was used as electrode materials to immobilize primary antibodies (Ab1). Using human immunoglobulin G (IgG) as a model analyte, the immunosensor shows high sensitivity, acceptable stability and good reproducibility for both detection modes. Under optimal conditions, a linear range from 0.1 pg/mL to 100 ng/mL with a detection limit of 0.052 pg/mL was obtained for SWV analysis. For CA analysis, a wider linear range from 0.01 pg/mL to 100 ng/mL and a lower detection limit of 0.0043 pg/mL were obtained. The proposed metal ion-based enzyme-free and noble metal-free immunosensor may have promising applications in clinical diagnoses and many other fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Antibacterial Activity of Electrochemically Synthesized Colloidal Silver Nanoparticles Against Hospital-Acquired Infections

    NASA Astrophysics Data System (ADS)

    Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc

    2017-06-01

    This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.

  5. Investigating Electrochemical Processes in Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Cama, Christina A.

    mechanism are influenced by the electroactive material’s agglomerate and crystallite size. The rate of lithiation involving small crystallites is dependent on diffusion within the agglomerates; however, as the crystallite size increases, the lithiation rate is inhibited by diffusion within both the agglomerate and the crystallite. Battery chemistries beyond lithium can also lead to energy storage capabilities an order of magnitude higher than LIBs. Both magnesium-ion and lithium-sulfur battery chemistries are investigated in this dissertation. The properties of ionic liquid electrolytes are explored as safer alternatives to harmful Grignard-reagent electrolytes commonly used for magnesium chemistries. Electrochemical evaluation of the ionic liquid electrolytes found that although better conductivity can be achieved with unsaturated electrolytes like imidizolium based electrolytes, greater oxidative voltages are possible with saturated electrolytes like the piperidinium and pyridinium based electrolytes. The higher oxidative voltage is a promising attribute for high voltage applications. Cathode additives, including FeS2 and microporous carbon, are studied to inhibit polysulfide dissolution within the electrolyte of Li|S batteries. Although FeS2 exhibited promising electrochemistry as its own cathode, it was found to be an ineffective additive within sulfur cathodes. Instead, the properties of microporous carbons are explored to identify an appropriate carbon additive to both increase conductivity and impede polysulfide dissolution. A wood based carbon exhibited high capacity and long cycle life at low rate compared to conventional microporous carbons. As a whole, this research has provided valuable insight into the electrochemical processes taking place within a battery, as well as the factors which affect these processes. Electrochemical, spectroscopic, and various scattering methods are used to probe processes which span from the reactions occurring within the electrode

  6. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-Ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode.

    PubMed

    Pandey, Indu; Kant, Rama

    2016-03-15

    Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cr2O3 nanoparticles: Advanced electrode materials for high performance pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Babu, I. Manohara; William, J. Johnson; Muralidharan, G.

    2017-05-01

    Cr2O3 nanoparticles have been synthesized via simple and facile microwave irradiation method. The structural, morphological and electrochemical performances of Cr2O3 nanoparticles have been studied. Electrochemical analysis indicates the Cr2O3 electrodes to be good pseudocapacitor material with a specific capacitance (122 F g-1 at a constant current of 1 A g-1), high energy density (6.08 W h kg-1), large power density (218.98 W kg-1). These results allow us to state with confidence that new class of electrode materials with good electrochemical performance has been identified.

  8. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications.

    PubMed

    Souza, Maria E P; Lima, Lonetá; Lima, Carmo R P; Zavaglia, Cecília A C; Freire, Célia M A

    2009-02-01

    The electrochemical behaviour of two commercial titanium alloys Ti-6Al-4 V (ASTM F136) and Ti-13Nb-13Zr (ASTM F1713) was investigated in Ringer physiological solution at two pH values (5.5 and 7.0). The corrosion properties were examined by using electrochemical techniques: Potentiodynamic anodic polarization, cyclic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion properties of both alloys at different conditions were measured in terms of corrosion potential (E (corr)), corrosion current density (i (corr)) and passivation current density (i (pass)). Equivalent electrical circuits were used to modulate EIS data, in order to characterize alloys surface and better understanding the pH effect on the interface alloy/solution.

  9. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy.

    PubMed

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge

    2016-12-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. Copyright © 2016. Published by Elsevier B.V.

  10. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    PubMed

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Photocatalytic activity of Ag/ZnO core-shell nanoparticles with shell thickness as controlling parameter under green environment

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.

  12. Pd Nanoparticles Coupled to WO 2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Erdosy, Daniel P.; Mendoza-Garcia, Adriana

    We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of formic acid in 0.1 M HClO4; it has a mass activity of ~1600 mA/mgPd in a broad potential range of 0.4–0.85 V (vs RHE) and shows no obvious activity loss after a 12 h chronoamperometry test at 0.4 V. Ourmore » work demonstrates an important strategy to enhance Pd NP catalyst efficiency for energy conversion reactions.« less

  13. Fabrication and electrochemical performance of nickel- and gadolinium-doped ceria-infiltrated La0·2Sr0·8TiO3 anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jin; Shin, Jae-Hwa; Ji, Mi-Jung; Hwang, Hae-Jin

    2018-01-01

    In this work, nickel and gadolinium-doped ceria (GDC)-infiltrated lanthanum strontium titanate (LST) anodes are fabricated, and their electrode performances under a hydrogen atmosphere is investigated in terms of the Ni:GDC ratios and cell operating temperature. The Ni/GDC-infiltrated LST anode exhibits excellent electrode performance in comparison with the Ni- or GDC-infiltrated anodes, which is attributed to the synergistic effect of an extended triple-phase boundary length by GDC and good catalytic activity for hydrogen oxidation because of the Ni particles. The polarization resistances (Rp) of Ni/GDC-infiltrated LST are 0.07, 0.08, and 0.12 Ω cm2 at 800, 750, and 700 °C, respectively, which are approximately three orders of magnitude lower than that of the LST anode (68.5 Ω cm2 at 700 °C). The effect of Ni and GDC on the electrochemical performance of LST was also investigated by using electrochemical impedance spectroscopy (EIS). The anode polarization resistance (Rp) is confirmed to be dependent on the content and dispersion state (microstructure) of the Ni and GDC nanoparticles.

  14. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers.

    PubMed

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 % vol ), with a sensitivity of 9.13 μA/mM cm 2 (1574 μA/% vol cm 2 ) and a detection limit equal to 0.52 mM (0.003% vol ). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Facile synthesis of pyrite (FeS2/C) nanoparticles as an electrode material for non-aqueous hybrid electrochemical capacitors.

    PubMed

    Pham, Duong Tung; Baboo, Joseph Paul; Song, Jinju; Kim, Sungjin; Jo, Jeonggeun; Mathew, Vinod; Alfaruqi, Muhammad Hilmy; Sambandam, Balaji; Kim, Jaekook

    2018-03-29

    Pyrite (FeS2) is a promising electrode material for lithium ion batteries (LIBs) because of its high natural availability, low toxicity, cost-effectiveness, high theoretical capacity (894 mA h g-1) and high theoretical specific energy density (1270 W h kg-1, 4e-/FeS2). Nevertheless, the use of FeS2 in electrochemical capacitors was restricted due to fast capacity fading as a result of polysulfide (S/Sn2-) formation during the initial electrochemical cycling. In order to avoid the formation of polysulfides, we employed the strategy of utilizing an ether based electrolyte (1.0 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/diglyme (DGM)). Herein, we introduce FeS2/C as the Faradaic electrode for a non-aqueous hybrid electrochemical capacitor (NHEC) in combination with activated carbon (AC) as a non-Faradaic electrode, and 1.0 M LiTFSI/DGM as a non-aqueous electrolyte. Specifically, FeS2/C nanoparticles have been prepared via the sulfidation of a room temperature synthesized Fe-based MOF (metal organic framework) precursor. The fabricated FeS2/C∥AC NHEC, operating within the chosen voltage window of 0-3.2 V, delivered energy densities in the range of 63-9 W h kg-1 at power densities of 152-3240 W kg-1. Remarkable cycling stability with stable energy density retention for 2500 cycles at high power densities (729, 1186 and 3240 W kg-1) was observed.

  16. One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    PubMed

    Kumarasamy, Jayakumar; Camarada, María Belén; Venkatraman, Dharuman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-01-18

    A layer-by-layer (LBL) assembly was employed for preparing multilayer thin films with a controlled architecture and composition. In this study, we report the one-step coelectrodeposition-assisted LBL assembly of both gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) on the surface of a glassy carbon electrode (GCE) for the ultrasensitive electrochemical impedance sensing of DNA hybridization. A self-healable nanohybrid thin film with a three-dimensional (3D) alternate-layered nanoarchitecture was obtained by the one-step simultaneous electro-reduction of both graphene oxide and gold chloride in a high acidic medium of H 2 SO 4 using cyclic voltammetry and was confirmed by different characterization techniques. The DNA bioelectrode was prepared by immobilizing the capture DNA onto the surface of the as-obtained self-healable AuNP/rGO/AuNP/GCE with a 3D LBL nanoarchitecture via gold-thiol interactions, which then served as an impedance sensing platform for the label-free ultrasensitive electrochemical detection of DNA hybridization over a wide range from 1.0 × 10 -9 to 1.0 × 10 -13 g ml -1 , a low limit of detection of 3.9 × 10 -14 g ml -1 (S/N = 3), ultrahigh sensitivity, and excellent selectivity. This study presents a promising electrochemical sensing platform for the label-free ultrasensitive detection of DNA hybridization with potential application in cancer diagnostics and the preparation of a self-healable nanohybrid thin film with a 3D alternate-layered nanoarchitecture via a one-step coelectrodeposition-assisted LBL assembly.

  17. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G [Idaho Falls, ID

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  18. Electrochemical behavior of platinum nanoparticles on a carbon xerogel support modified with a [(trifluoromethyl)-benzenesulfonyl]imide electrolyte.

    PubMed

    Liu, Bing; Mei, Hua; DesMarteau, Darryl; Creager, Stephen E

    2014-12-11

    A monoprotic [(trifluoromethyl)benzenesulfonyl]imide (SI) superacid electrolyte was used to covalently modify a mesoporous carbon xerogel (CX) support via reaction of the corresponding trifluoromethyl aryl sulfonimide diazonium zwitterion with the carbon surface. Electrolyte attachment was demonstrated by elemental analysis, acid-base titration, and thermogravimetric analysis. The ion-exchange capacity of the fluoroalkyl-aryl-sulfonimide-grafted carbon xerogel (SI-CX) was ∼0.18 mequiv g(-1), as indicated by acid-base titration. Platinum nanoparticles were deposited onto the SI-grafted carbon xerogel samples by the impregnation and reduction method, and these materials were employed to fabricate polyelectrolyte membrane fuel-cell (PEMFC) electrodes by the decal transfer method. The SI-grafted carbon-xerogel-supported platinum (Pt/SI-CX) was characterized by X-ray diffraction and transmission electron microscopy to determine platinum nanoparticle size and distribution, and the findings are compared with CX-supported platinum catalyst without the grafted SI electrolyte (Pt/CX). Platinum nanoparticle sizes are consistently larger on Pt/SI-CX than on Pt/CX. The electrochemically active surface area (ESA) of platinum catalyst on the Pt/SI-CX and Pt/CX samples was measured with ex situ cyclic voltammetry (CV) using both hydrogen adsorption/desorption and carbon monoxide stripping methods and by in situ CV within membrane electrode assemblies (MEAs). The ESA values for Pt/SI-CX are consistently lower than those for Pt/CX. Some possible reasons for the behavior of samples with and without grafted SI layers and implications for the possible use of SI-grafted carbon layers in PEMFC devices are discussed.

  19. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification.

    PubMed

    Cui, Lin; Li, Yueying; Lu, Mengfei; Tang, Bo; Zhang, Chun-Yang

    2018-01-15

    Polynucleotide kinase (PNK) plays an essential role in cellular nucleic acid metabolism and the cellular response to DNA damage. However, conventional methods for PNK assay suffer from low sensitivity and involve multiple steps. Herein, we develop a simply electrochemical method for sensitive detection of PNK activity on the basis of Au nanoparticle (AuNP)-mediated lambda exonuclease cleavage-induced signal amplification. We use [Ru(NH 3 ) 6 ] 3+ as the electrochemically active indicator and design two DNA strands (i.e., strand 1 and strand 2) to sense PNK. The assembly of strand 2 on the AuNP surface leads to the formation of AuNP-strand 2 conjugates which can be subsequently immobilized on the gold electrode through the hybridization of strand 1 with strand 2 for the generation of a high electrochemical signal. The presence of PNK induces the phosphorylation of the strand 2-strand 1 hybrid and the subsequent cleavage of double-stranded DNA (dsDNA) by lambda exonuclease, resulting in the release of AuNP-strand 2 conjugates and [Ru(NH 3 ) 6 ] 3+ from the gold electrode surface and consequently the decrease of electrochemical signal. The PNK activity can be simply monitored by the measurement of [Ru(NH 3 ) 6 ] 3+ peak current signal. This assay is very sensitive with a detection limit of as low as 7.762 × 10 -4 UmL -1 and exhibits a large dynamic range from 0.001 to 10UmL -1 . Moreover, this method can be used to screen the PNK inhibitors, and it shows excellent performance in real sample analysis, thus holding great potential for further applications in biological researches and clinic diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.