Sample records for nanoparticles encapsulated stable

  1. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  2. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  3. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  4. Encapsulation of testosterone by chitosan nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  6. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-21

    It has been shown that encapsulation of dietary polyphenols leads to increased solubility and bioavailability of these micronutrients. The encapsulation of dietary polyphenols resveratrol, genistein, and curcumin by folic acid-PAMAM-G3 and folic acid-PAMAM-G4 nanoparticles was studied in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As folic acid-PAMAM nanoparticle size increased, the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol encapsulation induced major alterations of dendrimer morphology. Folic acid-PAMAM nanoconjugates are capable of delivery of polyphenols in vitro.

  7. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.

    PubMed

    Ben Yehuda Greenwald, Maya; Ben Sasson, Shmuel; Bianco-Peled, Havazelet

    2013-01-01

    Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.

  8. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  9. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    NASA Astrophysics Data System (ADS)

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2014-10-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using

  10. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    PubMed Central

    Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju

    2014-01-01

    The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399

  11. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.

    PubMed

    Min, Kyung Hyun; Park, Kyeongsoon; Kim, Yoo-Shin; Bae, Sang Mun; Lee, Seulki; Jo, Hyung Gon; Park, Rang-Woon; Kim, In-San; Jeong, Seo Young; Kim, Kwangmeyung; Kwon, Ick Chan

    2008-05-08

    To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5beta-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method and the drug loading efficiency was above 80%. CPT-encapsulated HGC (CPT-HGC) nanoparticles formed nano-sized self-aggregates in aqueous media (280-330 nm in diameter) and showed sustained release of CPT for 1 week. Also, HGC nanoparticles effectively protected the active lactone ring of CPT from the hydrolysis under physiological condition, due to the encapsulation of CPT into the hydrophobic cores in the HGC nanoparticles. The CPT-HGC nanoparticles exhibited significant antitumor effects and high tumor targeting ability towards MDA-MB231 human breast cancer xenografts subcutaneously implanted in nude mice. Tumor growth was significantly inhibited after i.v. injection of CPT-HGC nanoparticles at doses of 10 mg/kg and 30 mg/kg, compared to free CPT at dose of 30 mg/kg. The significant antitumor efficacy of CPT-HGC nanoparticles was attributed to the ability of the nanoparticles to show both prolonged blood circulation and high accumulation in tumors, as confirmed by near infrared (NIR) fluorescence imaging systems. Thus, the delivery of CPT to tumor tissues at a high concentration, with the assistance of HGC nanoparticles, exerted a potent therapeutic effect. These results reveal the promising potential of HGC nanoparticles-encapsulated CPT as a stable and effective drug delivery system in cancer therapy.

  12. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography.

    PubMed

    Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M

    2014-11-07

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.

  13. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  14. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.

    PubMed

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-09-26

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

  15. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles

    PubMed Central

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-01-01

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560

  16. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo

    NASA Astrophysics Data System (ADS)

    Ke, Li-jing; Gao, Guan-zhen; Shen, Yong; Zhou, Jian-wu; Rao, Ping-fan

    2015-11-01

    Many herbal medicines and compositions are clinically effective but challenged by its safety risks, i.e., aconitine (AC) from aconite species. The combined use of Radix glycyrrhizae (licorice) with Radix aconite L. effectively eliminates toxicity of the later while increasing efficacy. In this study, a boiling-stable 31-kDa protein (namely GP) was purified from licorice and self-assembled into nanoparticles (206.2 ± 2.0 nm) at pH 5.0, 25 °C. The aconitine-encapsulated GP nanoparticles (238.2 ± 1.2 nm) were prepared following the same procedure and tested for its toxicity by intraperitoneal injection on ICR mouse ( n = 8). Injection of GP-AC nanoparticles and the mixed licorice-aconite decoction, respectively, caused mild recoverable toxic effects and no death, while the aconitine, particle-free GP-AC mixture and aconite decoction induced sever toxic effects and 100 % death. Encapsulation of poisonous alkaloids into self-assembled herbal protein nanoparticles contributes to toxicity attenuation of combined use of herbs, implying a prototype nanostructure and a universal principle for the safer clinical applications of herbal medicines.

  17. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Alipour, Elnaz; Halverson, Duncan; McWhirter, Samantha; Walker, Gilbert C.

    2017-05-01

    Nanoparticles are widely studied for their potential medical uses in diagnostics and therapeutics. The interface between a nanoparticle and its target has been a focus of research, both to guide the nanoparticle and to prevent it from deactivating. Given nature's frequent use of phospholipid vesicles as carriers, much attention has been paid to phospholipids as a vehicle for drug delivery. The physical chemistry of bilayer formation and nanoparticle encapsulation is complex, touching on fundamental properties of hydrophobicity. Understanding the design rules for particle synthesis and encapsulation is an active area of research. The aim of this review is to provide a perspective on what preparative guideposts have been empirically discovered and how these are related to theoretical understanding. In addition, we aim to summarize how modern theory is beginning to help guide the design of functional particles that can effectively cross biological membranes.

  18. Alginate/cashew gum nanoparticles for essential oil encapsulation.

    PubMed

    de Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2014-01-01

    Alginate/cashew gum nanoparticles were prepared via spray-drying, aiming at the development of a biopolymer blend for encapsulation of an essential oil. Nanoparticles were characterized regarding to their hydrodynamic volume, surface charge, Lippia sidoides essential oil content and release profile, in addition to being analyzed by infrared spectroscopy (FT-IR), thermal analysis (TGA/DSC) and X-ray diffractometry. Nanoparticles in solution were found to have averaged sizes in the range 223-399 nm, and zeta potential values ranging from -30 to -36 mV. Encapsulated oil levels varied from 1.9 to 4.4% with an encapsulation efficiency of up to 55%. The in vitro release profile showed that between 45 and 95% of oil was released within 30-50h. Kinetic studies revealed that release pattern follow a Korsmeyer-Peppas mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles

    PubMed Central

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  20. Geraniol encapsulated in chitosan/gum arabic nanoparticles: a promising system for pest management in sustainable agriculture.

    PubMed

    de Oliveira, Jhones Luiz; Campos, Estefania Vangelie Ramos; Pereira, Anderson E S; Nunes, Lucas E S; da Silva, Camila C L; Pasquoto, Tatiane; Lima, Renata; Smaniotto, Giovani; Polanczyk, Ricardo Antonio; Fraceto, Leonardo F

    2018-05-07

    The nanoencapsulation of botanical compounds (such as geraniol) is an important strategy that can be used to increase the stability and efficiency of these substances in integrated pest management. In this study, chitosan/gum arabic nanoparticles containing geraniol were prepared and characterized. In addition, evaluation was made of the biological activity of geraniol encapsulated in chitosan/gum arabic nanoparticles towards whitefly (Bemisia tabaci). The optimized formulation showed a high encapsulation efficiency (>90%) and remained stable for about 120 days. The formulation protected the geraniol against degradation by UV radiation, and the in vitro release was according to a diffusion mechanism that was influenced by temperature. An attraction effect was observed for Bemisia tabaci, indicating the potential of this type of system for use in pest management, especially in trap devices.

  1. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    PubMed

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  2. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating.

    PubMed

    Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita

    2017-05-01

    Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.

  3. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  4. Synthesis of carbon-encapsulated metal nanoparticles from wood char

    Treesearch

    Yicheng Du; Chuji Wang; Hossein Toghiani; Zhiyong Cai; Xiaojian Liu; Jilei Zhang; Qiangu Yan

    2010-01-01

    Carbon-encapsulated metal nanoparticles were synthesized by thermal treatment of wood char, with or without transition metal ions pre-impregnated, at 900ºC to 1,100ºC. Nanoparticles with concentric multilayer shells were observed. The nanoparticles were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction...

  5. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  6. Stable Fe nanomagnets encapsulated inside vertically-aligned carbon nanotubes.

    PubMed

    Bondino, Federica; Magnano, Elena; Ciancio, Regina; Castellarin Cudia, Carla; Barla, Alessandro; Carlino, Elvio; Yakhou-Harris, Flora; Rupesinghe, Nalin; Cepek, Cinzia

    2017-12-06

    Well-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy. Our surface-sensitive measurements combined with the specific morphology of the studied VACNTs allow us to pinpoint the contribution of the surface oxidized or hydroxidized iron catalysts present at the VACNT-substrate interface.

  7. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation

    NASA Astrophysics Data System (ADS)

    Alver, Erol; Bulut, Mehmet; Metin, Ayşegül Ülkü; Çiftçi, Hakan

    2017-01-01

    Chitosan nanoparticles (CNPs) were prepared with ionotropic gelation between chitosan and tripolyphosphate for the removal of Congo Red. The production of chitosan nanoparticles and the dye removal process was carried out in one-step. The removal efficiency of Congo Red by encapsulation within chitosan from the aqueous solution and its storage stability are examined at different pH values. The influence of some parameters such as the initial dye concentration, pH value of the dye solution, electrolyte concentration, tripolyphosphate concentration, mixing time and speed on the encapsulation is examined. Congo Red removal efficiency and encapsulation capacity of chitosan nanoparticles were determined as above 98% and 5107 mg Congo Red/g chitosan, respectively.

  8. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin

    NASA Astrophysics Data System (ADS)

    Sadeghi, R.; Moosavi-Movahedi, A. A.; Emam-jomeh, Z.; Kalbasi, A.; Razavi, S. H.; Karimi, M.; Kokini, J.

    2014-09-01

    The desolvation method was successfully used to prepare nanoparticles from bovine serum albumin (BSA) using ethanol, acetone, and their mixtures (70:30 and 50:50, respectively). Ethanol and mixtures of ethanol and acetone led to the most spherical nanoparticles, while using pure acetone resulted in a mixture of spherical and rod shape nanoparticle. Acetone was the solvent with higher encapsulation efficiency equal to 99.2 ± 0.36 %. The polydispersity values of BSA NPs in this study were 0.045 ± 0.007, 0.065 ± 0.013, 0.091 ± 0.012, and 0.120 ± 0.016 for ethanol (100) 4×, Et:Ac (70:30) 4×, Et:Ac (50:50) 4×, and acetone (100) 3×, respectively. Encapsulation efficiencies of curcumin inside BSA NPs were 19.4 ± 2.2 and 19.8 ± 1.6 % for 1.0 and 1.5 molar ratios of curcumin to BSA, respectively. Crosslinking using glutaraldehyde improved the stability of BSA NPs and curcumin-loaded BSA NPs and both groups of nanoparticles were stable for 1 month; the lyophilized curcumin-loaded BSA NPs were able to redisperse in water. The particle size and polydispersity index of redispersed NPs were higher than the original NPs before lyophilization. The size distribution study shows that after 10 s of sonication most nanoparticles were well dispersed; however, a small but significant fraction formed aggregates. Sonication for 10 s decreased the effective diameter and polydispersity of the redispersed nanoparticles, while increasing the sonication time to 20 s did not show significant changes. In vitro release study of curcumin from BSA NPs showed that these biocompatible nanoparticles have the ability to be used as a carrier to improve controlled release of curcumin.

  9. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    PubMed Central

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681

  10. Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds.

    PubMed

    Alphonsa, B Maria; Sudheesh Kumar, P T; Praveen, G; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2014-05-01

    In vitro evaluation of antibacterial and antifungal drugs encapsulated fibrin nanoparticles to prove their potential prospect of using these nanocomponent for effective treatment of microbial infested wounds. Surfactant-free oil-in-water emulsification-diffusion method was adopted to encapsulate 1 mg/ml each of antimicrobial drugs (Ciprofloxacin and Fluconazole) in 4 ml of aqueous fibrinogen suspension and subsequent thrombin mediated cross linking to synthesize drug loaded fibrin nanoparticles. Ciprofloxacin loaded fibrin nanoparticles (CFNPs) showed size range of 253 ± 6 nm whereas that of Fluconazole loaded fibrin nanoparticles (FFNPs) was 260 ± 10 nm. Physico chemical characterizations revealed the firm integration of antimicrobial drugs within fibrin nanoparticles. Drug release studies performed at physiological pH 7.4 showed a release of 16% ciprofloxacin and 8% of fluconazole while as the release of ciprofloxacin at alkaline pH 8.5, was 48% and that of fluconazole was 37%. The antimicrobial activity evaluations of both drug loaded systems independently showed good antibacterial activity against Escherichia coli (E.coli), Staphylococcus aureus (S. aureus) and antifungal activity against Candida albicans (C. albicans). The in vitro toxicity of the prepared drug loaded nanoparticles were further analyzed using Human dermal fibroblast cells (HDF) and showed adequate cell viability. The efficacies of both CFNPs and FFNPs for sustained delivery of encapsulated anti microbial drugs were evaluated in vitro suggesting its potential use for treating microbial infested wounds (diabetic foot ulcer).

  11. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  12. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.

    PubMed

    Wen, Yang; Zhu, Yujie; Langrock, Alex; Manivannan, Ayyakkannu; Ehrman, Sheryl H; Wang, Chunsheng

    2013-08-26

    Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one-step aerosol spraying of surface-modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50-100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene-encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open-ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g⁻¹ (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g⁻¹ at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene-encapsulated Si anodes combined with the scalable and one-step aerosol synthesis technique makes this material very promising for lithium ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    NASA Astrophysics Data System (ADS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  14. Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin.

    PubMed

    Martinez, Nelida Y; Andrade, Patricia F; Durán, Nelson; Cavalitto, Sebastian

    2017-10-01

    In the present work, a double emulsion was developed for the encapsulation of Bovine Serum Albumin (BSA) as a model protein for the future encapsulation of viral proteins. The first emulsion polydispersity index (PDI) was studied with increasing concentrations of poly (ε-caprolactone) (PCL) as stabilizer (from 16% w/v to 5% w/v) and polyvinyl alcohol (PVA) as the surfactant in the second emulsion at 1.5% w/v. Results suggest that at decreasing concentrations of PCL the PDI of the emulsion also decrease, indicating that viscosity of the emulsion is crucial in the homogeneity of the resultant size distribution of the nanoparticles. When PVA concentration in the second emulsion was increased from 1.5% w/v to 2.5% w/v the PDI also increased. To study the relationship between the structure of the surfactant in the second emulsion and the resultant BSA encapsulation, emulsions were prepared with Pluronic F68 and PVA both at 1.5% w/v and PCL in the first emulsion at 5% w/v. Results indicated that Pluronic F68 was a better stabilizer because at the same experimental conditions encapsulation of BSA was 1.5 higher than PVA. FTIR studies confirmed the presence of BSA in the nanoparticles. SEM and TEM microscopies showed a size distribution of 300nm-500nm size of nanoparticles. Circular dichroism studies demonstrated that the secondary structure of the protein was conserved after the encapsulation into the nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues

    NASA Astrophysics Data System (ADS)

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent.Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the

  16. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  17. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles.

    PubMed

    Durand, L; Habran, N; Henschel, V; Amighi, K

    2010-01-01

    The aim of this study was to encapsulate ethylhexyl methoxycinnamate (EMC), a commonly used UVB filter, in a solid lipid matrix in order to obtain microparticles and then nanoparticles to reduce its photo-instability under UV light exposure. Glyceryl behenate, rice bran wax and ozokerite were investigated for encapsulating EMC. The suspensions of nanoparticles contained 70% encapsulated EMC (relative to the lipid mass). The absorbance level at 310 nm of suspensions containing nanoparticles was more than twice that of those containing microparticles. So, decreasing the size of particles improved the efficiency of light protection, regardless of the lipid material used. Moreover, free EMC presented a 30% loss of its efficiency after 2 h of irradiation, whereas the three NLC formulations showed a loss of absorbency between 10% and 21%. The in vitro cutaneous penetration test did not show a higher potential penetration for EMC contained in nanosuspensions compared to free EMC.

  18. 3D Graphene Oxide-encapsulated Gold Nanoparticles to Detect Neural Stem Cell Differentiation

    PubMed Central

    Kim, Tae-Hyung; Lee, Ki-Bum; Choi, Jeong-Woo

    2013-01-01

    Monitoring of stem cell differentiation and pluripotency is an important step for the practical use of stem cells in the field of regenerative medicine. Hence, a new non-destructive detection tool capable of in situ monitoring of stem cell differentiation is highly needed. In this study, we report a 3D graphene oxide-encapsulated gold nanoparticle that is very effective for the detection of the differentiation potential of neural stem cells (NSCs) based on surface-enhanced Raman spectroscopy (SERS). A new material, 3D GO-encapsulated gold nanoparticle, is developed to induce the double enhancement effect of graphene oxide and gold nanoparticle on SERS signals which is only effective for undifferentiated NSCs. The Raman peaks achieved from undifferentiated NSCs on the graphene oxide (GO)-encapsulated gold nanoparticles were 3.5 times higher than peaks obtained from normal metal structures and were clearly distinguishable from those of differentiated cells. The number of C=C bonds and the raman instensity at 1656cm−1 was found to show a positive correlation, which matches the differentiation state of the NSCs. Moreover, the substrate composed of 3D GO-encapsulated gold nanoparticles was also effective at distinguishing the differentiation state of single NSC by using electrochemical and electrical techniques. Hence, the proposed technique can be used as a powerful non-destructive in situ monitoring tool for the identification of the differentiation potential of various kinds of stem cells (mesenchymal, hematopoietic, and neural stem cells). PMID:23937915

  19. Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing.

    PubMed

    Rasekh, Manoochehr; Ahmad, Zeeshan; Cross, Richard; Hernández-Gil, Javier; Wilton-Ely, James D E T; Miller, Philip W

    2017-06-05

    Naturally occurring polymers are promising biocompatible materials that have many applications for emerging therapies, drug delivery systems, and diagnostic agents. The handling and processing of such materials still constitutes a major challenge, which can limit the full exploitation of their properties. This study explores an ambient environment processing technique: coaxial electrospray (CO-ES) to encapsulate genistein (an isoflavonoid and model drug), superparamagnetic iron oxide nanoparticles (SPIONs, 10-15 nm), and a fluorophore (BODIPY) into a layered (triglyceride tristearin shell) particulate system, with a view to constructing a theranostic agent. Mode mapping of CO-ES led to an optimized atomization engineering window for stable jetting, leading to encapsulation of SPIONs within particles of diameter 0.65-1.2 μm and drug encapsulation efficiencies of around 92%. Electron microscopy was used to image the encapsulated SPIONs and confirm core-shell triglyceride encapsulation in addition to further physicochemical characterization (AFM, FTIR, DSC, and TGA). Cell viability assays (MTT, HeLa cells) were used to determine optimal SPION loaded particles (∼1 mg/mL), while in vitro release profile experiments (PBS, pH = 7.4) demonstrate a triphasic release profile. Further cell studies confirmed cell uptake and internalization at selected time points (t = 1, 2, and 4 h). The results suggest potential for using the CO-ES technique as an efficient way to encapsulate SPIONs together with sensitive drugs for the development of multimodal particles that have potential application for combined imaging and therapy.

  20. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  1. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures.

    PubMed

    Ten Hove, J B; Wang, J; van Leeuwen, F W B; Velders, A H

    2017-12-07

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by combining positively charged PAMAM dendrimers with a negative-neutral block copolymer. The number of particles per dendrimicelle can be controlled by mixing DENs with empty PAMAM dendrimers. The dendrimicelles are stable in solution for months and provide improved resistance for the nanoparticles against degradation. The dendrimicelle strategy provides a flexible platform with a plethora of options for variation in the type of nanoparticles, dendrimers and block copolymers used, and hence is tunable for applications ranging from nanomedicine to catalysis.

  2. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.

    PubMed

    Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja

    2014-02-01

    This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  4. Magnetic separation of carbon-encapsulated Fe nanoparticles from thermally-treated wood char

    Treesearch

    Sung Phil Mun; Zhiyong Cai; Jilei Zhang

    2013-01-01

    Wood char,a by-product from the fast-pyrolysis process of southern yellow pine wood for bio-oil production, was carbonized with Fenano particles (FeNPs) as a catalyst to prepare carbon-encapsulated Fe nanoparticles. A magnetic separation method was tested to isolate carbon-encapsulated Fe nano particles from the carbonized char. X-ray diffraction pattern clearly shows...

  5. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles.

    PubMed

    Gu, Yuyang; Chen, Chuyi; Tu, Juan; Guo, Xiasheng; Wu, Hongyi; Zhang, Dong

    2016-03-01

    Encapsulated microbubbles coupled with magnetic nanoparticles, one kind of hybrid agents that can integrate both ultrasound and magnetic resonance imaging/therapy functions, have attracted increasing interests in both research and clinic communities. However, there is a lack of comprehensive understanding of their dynamic behaviors generated in diagnostic and therapeutic applications. In the present work, a hybrid agent was synthesized by integrating superparamagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles (named as SPIO-albumin microbubbles). Then, both the stable and inertial cavitation thresholds of this hybrid agent were measured at varied SPIO concentrations and ultrasound parameters (e.g., frequency, pressure amplitude, and pulse length). The results show that, at a fixed acoustic driving frequency, both the stable and inertial cavitation thresholds of SPIO-albumin microbubble should decrease with the increasing SPIO concentration and acoustic driving pulse length. The inertial cavitation threshold of SPIO-albumin microbubbles also decreases with the raised driving frequency, while the minimum sub- and ultra-harmonic thresholds appear at twice and two thirds resonance frequency, respectively. It is also noticed that both the stable and inertial cavitation thresholds of SonoVue microbubbles are similar to those measured for hybrid microbubbles with a SPIO concentration of 114.7 μg/ml. The current work could provide better understanding on the impact of the integrated SPIOs on the dynamic responses (especially the cavitation activities) of hybrid microbubbles, and suggest the shell composition of hybrid agents should be appropriately designed to improve their clinical diagnostic and therapeutic performances of hybrid microbubble agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion.

    PubMed

    Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W; Hicks, Tacey L; Yoon, Jennifer; Saven, Jeffery G; Dmochowski, Ivan J

    2017-07-18

    Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.

  7. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  8. Enhanced Immunomodulatory Activity of Gelatin-Encapsulated Rubus coreanus Miquel Nanoparticles

    PubMed Central

    Seo, Yong Chang; Choi, Woon Yong; Lee, Choon Geun; Cha, Seon Woo; Kim, Young Ock; Kim, Jin-Chul; Drummen, Gregor P. C.; Lee, Hyeon Yong

    2011-01-01

    The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-α) from B- and T-cells on average at a ~2–3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune

  9. Encapsulation of Mo₂C in MoS₂ inorganic fullerene-like nanoparticles and nanotubes.

    PubMed

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-02-21

    Mo(2)C nanoparticles encapsulated within MoS(2) inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  10. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis.

    PubMed

    Zhang, Tingting; Zhao, Hongyu; He, Shengnan; Liu, Kai; Liu, Hongyang; Yin, Yadong; Gao, Chuanbo

    2014-07-22

    Ultrasmall gold nanoparticles (us-AuNPs, <3 nm) have been recently recognized as surprisingly active and extraordinarily effective green catalysts. Their stability against sintering during reactions, however, remains a serious issue for practical applications. Encapsulating such small nanoparticles in a layer of porous silica can dramatically enhance the stability, but it has been extremely difficult to achieve using conventional sol-gel coating methods due to the weak metal/oxide affinity. In this work, we address this challenge by developing an effective protocol for the synthesis of us-AuNP@SiO2 single-core/shell nanospheres. More specifically, we take an alternative route by starting with ultrasmall gold hydroxide nanoparticles, which have excellent affinity to silica, then carrying out controllable silica coating in reverse micelles, and finally converting gold hydroxide particles into well-protected us-AuNPs. With a single-core/shell configuration that prevents sintering of nearby us-AuNPs and amino group modification of the Au/SiO2 interface that provides additional coordinating interactions, the resulting us-AuNP@SiO2 nanospheres are highly stable at high temperatures and show high activity in catalytic CO oxidation reactions. A dramatic and continuous increase in the catalytic activity has been observed when the size of the us-AuNPs decreases from 2.3 to 1.5 nm, which reflects the intrinsic size effect of the Au nanoparticles on an inert support. The synthesis scheme described in this work is believed to be extendable to many other ultrasmall metal@oxide nanostructures for much broader catalytic applications.

  11. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review.

    PubMed

    McClements, David Julian

    2018-03-01

    There are many examples of bioactive proteins and peptides that would benefit from oral delivery through functional foods, supplements, or medical foods, including hormones, enzymes, antimicrobials, vaccines, and ACE inhibitors. However, many of these bioactive proteins are highly susceptible to denaturation, aggregation or hydrolysis within commercial products or inside the human gastrointestinal tract (GIT). Moreover, many bioactive proteins have poor absorption characteristics within the GIT. Colloidal systems, which contain nanoparticles or microparticles, can be designed to encapsulate, retain, protect, and deliver bioactive proteins. For instance, a bioactive protein may have to remain encapsulated and stable during storage and passage through the mouth and stomach, but then be released within the small intestine where it can be absorbed. This article reviews the application of food-grade colloidal systems for oral delivery of bioactive proteins, including microemulsions, emulsions, nanoemulsions, solid lipid nanoparticles, multiple emulsions, liposomes, and microgels. It also provides a critical assessment of the characteristics of colloidal particles that impact the effectiveness of protein delivery systems, such as particle composition, size, permeability, interfacial properties, and stability. This information should be useful for the rational design of medical foods, functional foods, and supplements for effective oral delivery of bioactive proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery.

    PubMed

    Bai, Linyi; Chao, Dongliang; Xing, Pengyao; Tou, Li Juan; Chen, Zhen; Jana, Avijit; Shen, Ze Xiang; Zhao, Yanli

    2016-06-15

    The lithium-sulfur (Li-S) battery presents a promising rechargeable energy storage technology for the increasing energy demand in a worldwide range. However, current main challenges in Li-S battery are structural degradation and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling, resulting in the corrosion and loss of active materials. Herein, we developed novel hybrids by employing metal-organic polyhedron (MOP) encapsulated PVP-functionalized sulfur nanoparticles (S@MOP), where the active sulfur component was efficiently encapsulated within the core of MOP and PVP as a surfactant was helpful to stabilize the sulfur nanoparticles and control the size and shape of corresponding hybrids during their syntheses. The amount of sulfur embedded into MOP could be controlled according to requirements. By using the S@MOP hybrids as cathodes, an obvious enhancement in the performance of Li-S battery was achieved, including high specific capacity with good cycling stability. The MOP encapsulation could enhance the utilization efficiency of sulfur. Importantly, the structure of the S@MOP hybrids was very stable, and they could last for almost 1000 cycles as cathodes in Li-S battery. Such high performance has rarely been obtained using metal-organic framework systems. The present approach opens up a promising route for further applications of MOP as host materials in electrochemical and energy storage fields.

  13. A comparative photophysicochemical study of phthalocyanines encapsulated in core-shell silica nanoparticles.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-02-25

    This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles

    PubMed Central

    Woodhead, Jeffrey L.; Hall, Carol K.

    2011-01-01

    We use discontinuous molecular dynamics (DMD) computer simulation to investigate the encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles as a function of packing fraction, polymer volume fraction, solute mole fraction, and the interaction parameters between the hydrophobic head blocks and between the head and the solute. The encapsulation efficiency increases with increasing polymer volume fraction and packing fraction but decreases with increasing head-head interaction strength. The latter is due to an increased tendency for the solute to remain on the micelle surface. We compared two different nanoparticle assembly methods, one in which the solute and copolymer co-associate and the other in which the copolymer micelle is formed before the introduction of solute. The assembly method does not affect the encapsulation efficiency but does affect the solute uptake kinetics. Both head-solute interaction strength and head-head interaction strength affect the density profile of the micelles; increases in the former cause the solute to distribute more evenly throughout the micelle, while increases in the latter cause the solute to concentrate further from the center of the micelle. We explain our results in the context of a model of drug insertion into micelles formulated by Kumar and Prud’homme; as conditions become more conducive to micelle formation, a stronger energy barrier to solute insertion forms which in turn decreases the encapsulation efficiency of the system. PMID:21918582

  15. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles.

    PubMed

    Liu, Lanxia; Ma, Pingchuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Song, Cunxian; Leng, Xigang; Kong, Deling; Ma, Guilei

    2016-03-10

    In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles. In vivo experiments further revealed that "both" nanoparticles significantly more effectively provided not only adequate initial antigen exposure but also long-term antigen persistence at the injection site. Data from flow cytometry and ELISA analyses demonstrated elevated in vivo immune responses from mice that were immunized with nanoparticles-delivered OVA when compared with free OVA. In addition, "in" and "both" nanoparticles elicited significantly higher antigen-specific immune response than "out" nanoparticles and free OVA. These results suggest that the location of antigen entrapment is an important factor in modulating the immune responses of antigens delivered by nanoparticles. Overall, we propose here a promising approach for the future design of vaccines using cationic lipid-PLGA nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles.

    PubMed

    Harmia, T; Speiser, P; Kreuter, J

    1986-01-01

    The present study was undertaken in order to encapsulate pilocarpin into nanoparticles. Two principally different methods for manufacturing these particles were investigated. Firstly, pilocarpin was dissolved in an aqueous medium in which the polymerization was carried out, and secondly, the polymerizing monomer was kept saturated with the drug solution under acidic conditions resulting in an incorporation into the nanoparticles in an aqueous environment. The amount of pilocarpin that could be incorporated into the nanoparticles was found to be largely influenced by the temperature at which the nanoparticles were produced and by the stabilizers used. At low temperatures, up to 60 per cent of pilocarpin nitrate could be encapsulated into butylcyanoacrylate nanoparticles using emulsion polymerization techniques. Larger amounts of pilocarpin could not be incorporated because of the hydrophilicity of the salts of this drug. The physico-chemical characteristics of the nanoparticles are reported: the particle size and morphology were determined by scanning and transmission electron microscopy and photon correlation spectrometry. The average particle size was about 100 nm. The results obtained in this study show that photon correlation spectrometry is a suitable method for the sizing of nanoparticles.

  17. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.

    PubMed

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-19

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  18. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-01

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  19. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Molecular recognition between insulin and dextran encapsulated gold nanoparticles.

    PubMed

    Lee, Kai-Chieh; Chiang, Hsiang-Ling; Chiu, Wei-Ru; Chen, Yu-Chie

    2016-11-01

    Insulin is a peptide hormone that can regulate the metabolism of carbohydrates and lipids. This hormone is closely related to glucose-uptake in cells and can control blood glucose levels. Dextran is a polysaccharide composed of glucose units. In this study, we discovered that dextran-encapsulated gold nanoparticles (AuNPs@Dextran) and nanoclusters (AuNCs@Dextran) can be used to recognize insulin. The dissociation constant of insulin toward AuNPs@Dextran was estimated to be ∼5.3 × 10 -6  M. The binding site on insulin toward the dextran on the nanoprobes was explored as well. It was found that the sequence of numbers 1-22 on the insulin B chain can interact with the dextran encapsulated nanoprobes. Additionally, we also demonstrated that the dextran-encapsulated nanoprobes could be used as concentration probes to selectively enrich trace amounts of insulin (∼1 pM) from serum samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  2. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    NASA Astrophysics Data System (ADS)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  3. Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles

    PubMed Central

    2017-01-01

    Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, SAXS, DCP, and TGA analysis indicates encapsulation of up to hundreds of silica nanoparticles per vesicle. In the present study, the thermally triggered release of these encapsulated silica nanoparticles is examined by cooling to 0 °C for 30 min, which causes in situ vesicle dissociation. Transmission electron microscopy studies confirm the change in diblock copolymer morphology and also enable direct visualization of the released silica nanoparticles. Time-resolved small-angle X-ray scattering is used to quantify the extent of silica release over time. For an initial silica concentration of 5% w/w, cooling induces a vesicle-to-sphere transition with subsequent nanoparticle release. For higher silica concentrations (20 or 30% w/w) cooling only leads to perforation of the vesicle membranes, but silica nanoparticles are nevertheless released through the pores. For vesicles prepared in the presence of 30% w/w silica, the purified silica-loaded vesicles were cooled to 0 °C for 30 min, and SAXS patterns were collected every 15 s. A new SAXS model has been developed to determine both the mean volume fraction of encapsulated silica within the vesicles and the scattering length density. Satisfactory data fits to the experimental SAXS patterns were obtained using this model. PMID:28626247

  4. Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes

    NASA Astrophysics Data System (ADS)

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-01-01

    Mo2C nanoparticles encapsulated within MoS2 inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  5. Encapsulation efficacy of natural and synthetic photosensitizers by silica nanoparticles for photodynamic applications.

    PubMed

    Makhadmeh, Ghaseb Naser; Abdul Aziz, Azlan; Abdul Razak, Khairunisak; Abu Noqta, Osama

    2015-12-01

    This study analysed the physical effects of Cichorium Pumilum (CP), as a natural photosensitizer (PS), and Protoporphyrin IX (PpIX), as a synthetic PS, encapsulated with silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentrations of CP and PpIX, needed to destroy Red Blood Cells (RBC), were determined and the efficacy of encapsulated CP and PpIX were compared with naked CP and PpIX was verified. The results confirmed the applicability of CP and PpIX encapsulated in SiNPs on RBCs, and established a relationship between the encapsulated CP and PpIX concentration and the time required to rupture 50% of the RBCs (t50). The CP and PpIX encapsulated in SiNPs exhibited higher efficacy compared with that of naked CP and PpIX, respectively, and CP had less efficacy compared with PpIX.

  6. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications.

    PubMed

    Sotoma, Shingo; Hsieh, Feng-Jen; Chen, Yen-Wei; Tsai, Pei-Chang; Chang, Huan-Cheng

    2018-01-23

    Highly stable lipid-encapsulated fluorescent nanodiamonds (FNDs) are produced by photo-crosslinking of diacetylene-containing lipids physically attached to the FND surface. Not only is this coating method simple and fast, but also it gives the FND-lipid hybrids favorable properties for bioapplications. The hybrids are useful as fluorescent biolabels as well as fiducial markers for correlative light and electron microscopy.

  7. Design of biodegradable nanoparticles: a novel approach to encapsulating poorly soluble phytochemical ellagic acid

    NASA Astrophysics Data System (ADS)

    Bala, I.; Bhardwaj, V.; Hariharan, S.; Sitterberg, J.; Bakowsky, U.; Kumar, M. N. V. Ravi

    2005-12-01

    Nanosizing of poorly water soluble drugs or incorporating them into nanoparticles to increase their solubility and thereby the bioavailability has become a favoured approach today. This work describes a novel method for encapsulating poorly water soluble phytochemical ellagic acid that is also sparingly soluble/insoluble in routine solvents used to prepare nanoparticles.

  8. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  9. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism.

    PubMed

    Tiwari, Manindra Nath; Agarwal, Swati; Bhatnagar, Priyanka; Singhal, Naveen Kumar; Tiwari, Shashi Kant; Kumar, Pradeep; Chauhan, Lalit Kumar Singh; Patel, Devendra Kumar; Chaturvedi, Rajnish Kumar; Singh, Mahendra Pratap; Gupta, Kailash Chand

    2013-12-01

    For some instances of Parkinson disease (PD), current evidence in the literature is consistent with reactive oxygen species being involved in the etiology of the disease. The management of PD is still challenging owing to its ambiguous etiology and lack of permanent cure. Because nicotine offers neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, the neuroprotective efficacy of nicotine-encapsulated poly(lactic-co-glycolic) acid (PLGA) nanoparticles and the underlying mechanism of improved efficacy, if any, over bulk nicotine were assessed in this study. The selected indicators of oxidative stress, dopaminergic neurodegeneration and apoptosis, were measured in both in vitro and rodent models of parkinsonism in the presence or absence of "nanotized" or bulk nicotine. The levels of dopamine and its metabolites were measured in the striatum, nicotine and its metabolite in the nigrostriatal tissues while the immunoreactivities of tyrosine hydroxylase (TH), metallothionein-III (MT-III), inducible nitric oxide synthase (iNOS) and microglial activation were checked in the substantia nigra of controls and treated mice. GSTA4-4, heme oxygenase (HO)-1, tumor suppressor protein 53 (p53), caspase-3, lipid peroxidation (LPO), and nitrite levels were measured in the nigrostriatal tissues. Nicotine-encapsulated PLGA nanoparticles improved the endurance of TH-immunoreactive neurons and the number of fiber outgrowths and increased the mRNA expression of TH, neuronal cell adhesion molecule, and growth-associated protein-43 over bulk against 1-methyl-4-phenyl pyridinium ion-induced degeneration in the in vitro model. MPTP reduced TH immunoreactivity and levels of dopamine and its metabolites and increased microglial activation, expression of GSTA4-4, iNOS, MT-III, HO-1, p53, and caspase-3, and levels of nitrite and LPO. Whereas both bulk nicotine and nicotine-encapsulated PLGA nanoparticles modulated the changes toward controls, the modulation

  10. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Iftikhar, Mariam; Ndoi, Adela; Scappaticci, Steven J; Lisi, George P; Buzard, Kaitlyn L; Garvey, Elizabeth M

    2012-10-16

    Cytochrome c (cyt. c) has been encapsulated in silica sol-gels and processed to form bioaerogels with gas-phase activity for nitric oxide through a simplified synthetic procedure. Previous reports demonstrated a need to adsorb cyt. c to metal nanoparticles prior to silica sol-gel encapsulation and processing to form aerogels. We report that cyt. c can be encapsulated in aerogels without added nanoparticles and retain structural stability and gas-phase activity for nitric oxide. While the UV-visible Soret absorbance and nitric oxide response indicate that cyt. c encapsulated with nanoparticles in aerogels remains slightly more stable and functional than cyt. c encapsulated alone, these properties are not very different in the two types of aerogels. From UV-visible and Soret circular dichroism results, we infer that cyt. c encapsulated alone self-organizes to reduce contact with the silica gel in a way that may bear at least some resemblance to the way cyt. c self-organizes into superstructures of protein within aerogels when nanoparticles are present. Both the buffer concentration and the cyt. c concentration of solutions used to synthesize the bioaerogels affect the structural integrity of the protein encapsulated alone within the dried aerogels. Optimized bioaerogels are formed when cyt. c is encapsulated from 40 mM phosphate buffered solutions, and when the loaded cyt. c concentration in the aerogel is in the range of 5 to 15 μM. Increased viability of cyt. c in aerogels is also observed when supercritical fluid used to produce aerogels is vented over relatively long times.

  12. Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis.

    PubMed

    Li, Yuan; Chopra, Nitin

    2015-05-21

    Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.

  13. Engineering of layered, lipid-encapsulated drug nanoparticles through spray-drying.

    PubMed

    Sapra, Mahak; Mayya, Y S; Venkataraman, Chandra

    2017-06-01

    Drug-containing nanoparticles have been synthesized through the spray-drying of submicron droplet aerosols by using matrix materials such as lipids and biopolymers. Understanding layer formation in composite nanoparticles is essential for the appropriate engineering of particle substructures. The present study developed a droplet-shrinkage model for predicting the solid-phase formation of two non-volatile solutes-stearic acid lipid and a set of drugs, by considering molecular volume and solubility. Nanoparticle formation was simulated to define the parameter space of material properties and process conditions for the formation of a layered structure with the preferential accumulation of the lipid in the outer layer. Moreover, lipid-drug demarcation diagrams representing a set of critical values of ratios of solute properties at which the two solutes precipitate simultaneously were developed. The model was validated through the preparation of stearic acid-isoniazid nanoparticles under controlled processing conditions. The developed model can guide the selection of solvents, lipids, and processing conditions such that drug loading and lipid encapsulation in composite nanoparticles are optimized. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  15. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  16. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells

    PubMed Central

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-01-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004

  17. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    PubMed

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  18. Preparation and Efficacy of a Live Newcastle Disease Virus Vaccine Encapsulated in Chitosan Nanoparticles

    PubMed Central

    Gao, Ting-ting; Li, Wei; Zhao, Yan; Zhang, Feng-qiang; Wu, Jin; Cui, Xianlan; Wang, Yun-Feng

    2012-01-01

    Background Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine. Methodology/Principal Findings A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9. Conclusions/Significance NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles. PMID:23285276

  19. The efficacy of methylene blue encapsulated in silica nanoparticles compared to naked methylene blue for photodynamic applications.

    PubMed

    Makhadmeh, Ghaseb Naser; Abdul Aziz, Azlan; Abdul Razak, Khairunisak

    2016-05-01

    This study analyzed the physical effects of methylene blue (MB) encapsulated within silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentration of MB needed to destroy red blood cells (RBCs) was determined, and the efficacy of encapsulated MB-SiNPs compared to that of naked MB was verified. The results confirmed the applicability of MB encapsulated in SiNPs on RBCs, and established a relationship between the concentration of the SiNP-encapsulated MB and the time required to rupture 50% of the RBCs (t50). The MB encapsulated in SiNPs exhibited higher efficacy compared to that of naked MB.

  20. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  1. Multiplexed highly sensitive detections of cancer biomarkers in thermal space using encapsulated phase change nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Liyuan; Hong, Yan; Ma, Zeyu; Kaittanis, Charalambos; Perez, J. Manuel; Su, Ming

    2009-07-01

    We describe a multiplexed highly sensitive method to detect cancer biomarkers using silica encapsulated phase change nanoparticles as thermal barcodes. During phase changes, nanoparticles absorb heat energy without much temperature rise and show sharp melting peaks (0.6 °C). A series of phase change nanoparticles of metals or alloys can be synthesized in such a way that they melt between 100 and 700 °C, thus the multiplicity could reach 1000. The method has high sensitivity (8 nM) that can be enhanced using materials with large latent heat, nanoparticles with large diameter, or reducing the grafting density of biomolecules on nanoparticles.

  2. Antiplasmodial Activity and Toxicological Assessment of Curcumin PLGA-Encapsulated Nanoparticles

    PubMed Central

    Busari, Zulaikha A.; Dauda, Kabiru A.; Morenikeji, Olajumoke A.; Afolayan, Funmilayo; Oyeyemi, Oyetunde T.; Meena, Jairam; Sahu, Debasis; Panda, Amulya K.

    2017-01-01

    Curcumin is a polyphenolic pigment isolated from the rhizomes of Curcuma longa (turmeric), a medicinal plant widely used in the ancient Indian and Chinese medicine. The antiplasmodial activity of curcumin is often hampered by its fast metabolism and poor water solubility, thus its incorporation into a delivery system could circumvent this problem. This study aimed to evaluate the in vivo antiplasmodial activity and the toxicity assessment of curcumin incorporated into poly (lactic-co-glycolic) acid (PLGA) nanoparticles. Curcumin was loaded with poly (D,L-lactic-co-glycolic acid) (PLGA) using solvent evaporation from oil-in-water single emulsion method. The nanoparticles were characterized and evaluated in vivo for antimalarial activities using Peter’s 4-day suppressive protocol in mice model. Hematological and hepatic toxicity assays were performed on whole blood and plasma, respectively. In vivo anti-parasitic test and toxicity assays for free and encapsulated drug were performed at 5 and 10 mg/kg. In vitro cytotoxicity of free and PLGA encapsulated curcumin (Cur-PLGA) to RAW 264.7 cell line was also determined at varying concentrations (1000–7.8 μg/mL). The size and entrapment efficiency of the nanoparticulate drug formulated was 291.2 ± 82.1 nm and 21.8 ± 0.4 respectively. The percentage parasite suppression (56.8%) at 5 mg/kg was significantly higher than in free drug (40.5%) of similar concentration (p < 0.05) but not at 10 mg/kg (49.5%) at 4-day post-treatment. There were no significant differences in most of the recorded blood parameters in free curcumin and PLGA encapsulated nanoparticulate form (p > 0.05) except in lymphocytes which were significantly higher in Cur-PLGA compared to the free drug (p < 0.05). There were no significant differences in hepatotoxic biomarkers; aspartate aminotransferase and alanine aminotransferase concentrations in various treatment groups (p > 0.05). At higher concentrations (1000 and 500 μg/mL), Cur-PLGA entrapped

  3. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment

    NASA Astrophysics Data System (ADS)

    Eka Putra, Gusti Ngurah Putu; Huang, Leaf; Hsu, Yih-Chih

    2016-03-01

    The knowledge of manipulating size of biomaterials encapsulated drug into nano-scale particles has been researched and developed in treating cancer. Cancer is the second worldwide cause of death, therefore it is critical to treat cancers challenging with therapeutic modality of various mechanisms. Our preliminary investigation has studied cisplatin encapsulated into lipid-based nanoparticle and examined the therapeutic effect on xenografted animal model. We used mice with tumor volume ranging from 195 to 214 mm3 and then few mice were grouped into three groups including: control (PBS), lipid platinum chloride (LPC) nanoparticles and CDDP (cis-diamminedichloroplatinum(II) at dose of 3mg cisplatin /kg body weight. The effect of the treatment was observed for 12 days post-injection. It showed that LPC NPs demonstrated a better therapeutic effect compared to CDDP at same 3mg cisplatin/kg drug dose of tumor size reduction, 96.6% and 11.1% respectively. In addition, mouse body weight loss of LPC, CDDP and PBS treated group are 12.1%, 24.3% and 1.4%. It means that by compared to CDDP group, LPC group demonstrated less side effect as not much reduction of body weight have found. Our findings have shown to be a potential modality to further investigate as a feasible cancer therapy modality.

  4. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.

    PubMed

    Fei, Huilong; Peng, Zhiwei; Yang, Yang; Li, Lei; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-07-11

    LiFePO4 encapsulated in graphene nanoshells (LiFePO4@GNS) nanoparticles were synthesized by solid state reaction between graphene-coated Fe nanoparticles and LiH2PO4. The resulting nanocomposite was demonstrated to be a superior lithium-ion battery cathode with improved cycle and rate performances.

  5. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.

    PubMed

    François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier

    2011-11-04

    Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile.

    PubMed

    Kumar, Nagendra; Chaurasia, Sundeep; Patel, Ravi R; Khan, Gayasuddin; Kumar, Vikas; Mishra, Brahmeshwar

    2017-03-01

    Atorvastatin calcium (ATR), a second generation statin drug, was encapsulated in eudragit RSPO-based polymeric nanoparticles. The effect of independent variables (polymer content, stabilizer concentration, volume of chloroform and homogenization speed) on response variables (mean diameter particle size and entrapment efficiency) were investigated by employing central composite experimental design. All the independent variables were found to be significant for determining the response variables. Solid-state characterization study indicated the absence of physicochemical interaction between drug and polymer in formulation. Morphological study exhibited homogenous spherical shape of formulated nanoparticles. In vitro release study in phosphate buffer (pH 7.4) demonstrated sustained release profile over 24 h. Pharmacokinetic study in Charles Foster rats showed significant enhancement in oral bioavailability as compared to pure drug suspension. Efficacy study (lipid profile and blood glucose level) significantly justified the effectiveness of formulation having 50% less dose of ATR as compared to pure drug suspension. The effectiveness of formulation was further justified with an improved plasma safety profile of treated rats. Hence, ATR encapsulated eudragit RSPO nanoparticles can serve as potential drug delivery approach to enhance drug bioavailability, efficacy and safety profiles to alter existing marketed drug products.

  7. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shofiah, Siti; Muflihatun, Suharyadi, Edi

    2016-04-01

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.

  8. Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles.

    PubMed

    Bernela, Manju; Ahuja, Munish; Thakur, Rajesh

    2016-06-05

    Bromelain-loaded katira gum nanoparticles were synthesized using 3 level optimization process and desirability approach. Nanoparticles of the optimized batch were characterized using particle size analysis, zeta potential, transmission electron microscopy and Fourier-transform infrared spectroscopy. Investigation of their in vivo anti-inflammatory activity by employing carrageenan induced rat-paw oedema method showed that encapsulation of bromelain in katira gum nanoparticles substantially enhanced its anti-inflammatory potential. This may be attributed to enhanced absorption owing to reduced particle size or to protection of bromelain from acid proteases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes.

    PubMed

    Yoksan, Rangrong; Jirawutthiwongchai, Jatesuda; Arpo, Kridsada

    2010-03-01

    The encapsulation of ascorbyl palmitate (AP) in chitosan particles was carried out by droplet formation via an oil-in-water emulsion, followed by droplet solidification via ionic gelation using sodium triphosphate pentabasic (TPP) as a cross-linking agent. The success of AP encapsulation was confirmed by FT-IR, UV-vis spectrophotometry, TGA, and XRD techniques. The obtained AP-loaded chitosan particles were spherical in shape with an average diameter of 30-100nm as observed by SEM and TEM. Loading capacity (LC) and encapsulation efficiency (EE) of AP in the nanoparticles were about 8-20% and 39-77%, respectively, when the initial AP concentration was in the range of 25-150% (w/w) of chitosan. Augmentation of the initial AP concentration led to an increase of LC and a reduction of EE. The amount of AP released from the nanoparticles in ethanol and tris buffer (pH approximately 8.0) increased with increasing LC and decreasing TPP concentration.

  10. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity

    NASA Astrophysics Data System (ADS)

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2013-12-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile

  11. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  12. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy

    PubMed Central

    Trigo Gutierrez, Jeffersson Krishan; Zanatta, Gabriela Cristina; Ortega, Ana Laura Mira; Balastegui, Maria Isabella Cuba; Sanitá, Paula Volpato; Pavarina, Ana Cláudia; Barbugli, Paula Aboud

    2017-01-01

    Curcumin (CUR) has been used as photosensitizer in antimicrobial Photodynamic Therapy (aPDT). However its poor water solubility, instability, and scarce bioavalibility hinder its in vivo application. The aim of this study was to synthesize curcumin in polymeric nanoparticles (NP) and to evaluate their antimicrobial photodynamic effect and cytoxicity. CUR in anionic and cationic NP was synthesized using polylactic acid and dextran sulfate by the nanoprecipitation method. For cationic NP, cetyltrimethylammonium bromide was added. CUR-NP were characterized by physicochemical properties, photodegradation, encapsulation efficiency and release of curcumin from nanoparticles. CUR-NP was compared with free CUR in 10% dimethyl sulfoxide (DMSO) as a photosensitizer for aPDT against planktonic and biofilms (mono-, dual- and triple-species) cultures of Streptococcus mutans, Candida albicans and Methicillin-Resistant Staphylococcus aureus. The cytotoxicity effect of formulations was evaluated on keratinocytes. Data were analysed by parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests (α = 0.05). CUR-NP showed alteration in the physicochemical properties along time, photodegradation similar to free curcumin, encapsulation efficiency up to 67%, and 96% of release after 48h. After aPDT planktonic cultures showed reductions from 0.78 log10 to complete eradication, while biofilms showed no antimicrobial effect or reductions up to 4.44 log10. Anionic CUR-NP showed reduced photoinactivation of biofilms. Cationic CUR-NP showed microbicidal effect even in absence of light. Anionic formulations showed no cytotoxic effect compared with free CUR and cationic CUR-NP and NP. The synthesized formulations improved the water solubility of CUR, showed higher antimicrobial photodynamic effect for planktonic cultures than for biofilms, and the encapsulation of CUR in anionic NP reduced the cytotoxicity of 10% DMSO used for free CUR. PMID:29107978

  13. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    NASA Astrophysics Data System (ADS)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.

    2008-05-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.

  14. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    PubMed Central

    Cheng, Kuo-Wei; Hsu, Shan-hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. PMID:28280341

  15. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    PubMed

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  16. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm.

    PubMed

    Panwar, Richa; Pemmaraju, Suma C; Sharma, Asvene K; Pruthi, Vikas

    2016-06-01

    Candida albicans, an opportunistic fungal pathogen is a major causative agent of superficial to systemic life-threating biofilm infections on indwelling medical devices. These biofilms acts as double edge swords owing to their resistance towards antibiotics and immunological barriers. To overcome this threat ferulic acid encapsulated chitosan nanoparticles (FA-CSNPs) were formulated to assess its efficacy as an antibiofilm agent against C. albicans. These FA-CSNPs were synthesized using ionotropic gelation method and observed through field emission scanning electron microscopy (FESEM) and fluorescent microscopy. Assessment of successful encapsulation and stability of ferulic acid into chitosan nanoparticles was made using Fourier transform infrared spectrum (FTIR), (1)H NMR and thermal analyses. Synthesized FA-CSNPs, were found to be cytocompatible, when tested using Human Embryonic Kidney (HEK-293) cell lines. XTT assay revealed that FA-CSNPs reduced the cell metabolic activity of C. albicans upto 22.5% as compared to native ferulic acid (63%) and unloaded CSNPs (88%) after 24 h incubation. Disruption of C. albicans biofilm architecture was visualized by FESEM. Results highlighted the potential of FA-CSNPs to be used as an effective alternative to the conventional antifungal therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls).

    PubMed

    Bell, Steven E J; Sirimuthu, Narayana M S

    2004-11-01

    Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I(nic)/I(pyr) against the concentration of nicotine were non-linear but plotting I(nic)/I(pyr) against [nicotine](x)(x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R(2) typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.

  18. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  19. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate.

    PubMed

    Perugini, P; Simeoni, S; Scalia, S; Genta, I; Modena, T; Conti, B; Pavanetto, F

    2002-10-10

    The aim of this study was to investigate the influence of nanoparticle-based systems on the light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC). Ethylcellulose (EC) and poly-D,L-lactide-co-glycolide (PLGA) were used as biocompatible polymers for the preparation of the particulate systems. The "salting out" method was used for nanoparticle preparation and several variables were evaluated in order to optimize product characteristics. The photodegradation of the sunscreen agent in emulsion vehicles was reduced by encapsulation into the PLGA nanoparticles (the extent of degradation was 35.3% for the sunscreen-loaded nanoparticles compared to 52.3% for free trans-EHMC) whereas the EC nanoparticle system had no significant effect. Therefore, PLGA nanoparticles loaded with trans-EHMC improve the photostability of the sunscreen agent.

  20. Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity.

    PubMed

    Ling, Pinghua; Lei, Jianping; Jia, Li; Ju, Huangxian

    2016-01-21

    A simple and rapid electrochemical sensor is constructed for the detection of telomerase activity based on the electrocatalysis of platinum nanoparticle (Pt NP) encapsulated metal-organic frameworks (MOFs), which are synthesized by one-pot encapsulation of Pt NPs into prototypal MOFs, UiO-66-NH2. Integrating with the efficient electrocatalysis of Pt@MOFs towards NaBH4 oxidation, this biosensor shows the wide dynamic correlation of telomerase activity from 5 × 10(2) to 10(7) HeLa cells mL(-1) and the telomerase activity in a single HeLa cell was calculated to be 2.0 × 10(-11) IU, providing a powerful platform for detecting telomerase activity.

  1. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.

    PubMed

    Choi, Won San; Koo, Hye Young; Kim, Dong-Yu

    2008-05-06

    Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.

  2. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI.

    PubMed

    Cheng, Ziyong; Dai, Yunlu; Kang, Xiaojiao; Li, Chunxia; Huang, Shanshan; Lian, Hongzhou; Hou, Zhiyao; Ma, Pingan; Lin, Jun

    2014-08-01

    A facile method for transferring hydrophobic iron oxide nanoparticles (IONPs) from chloroform to aqueous solution via encapsulation of FITC-modified gelatin based on the hydrophobic-hydrophobic interaction is described in this report. Due to the existence of large amount of active groups such as amine groups in gelatin, the fluorescent labeling molecules of fluorescein isothiocyanate (FITC) and platinum (IV) prodrug functionalized with carboxylic groups can be conveniently conjugated on the IONPs. The nanoparticles carrying Pt(IV) prodrug exhibit good anticancer activities when the Pt(IV) complexes are reduced to Pt(II) in the intracellular environment, while the pure Pt(IV) prodrug only presents lower cytotoxicity on cancer cells. Meanwhile, fluorescence of FITC on the surface of nanoparticles was completely quenched due to the possible Förster Resonance Energy Transfer (FRET) mechanism and showed a fluorescence recovery after gelatin release and detachment from IONPs. Therefore FITC as a fluorescence probe can be used for identification, tracking and monitoring the drug release. In addition, adding pancreatic enzyme can effectively promote the gelatin release from IONPs owing to the degradation of gelatin. Noticeable darkening in magnetic resonance image (MRI) was observed at the tumor site after in situ injection of nanoparticles, indicating the IONPs-enhanced T2-weighted imaging. Our results suggest that the gelatin encapsulated Fe3O4 nanoparticles have potential applications in multi-functional drug delivery system for disease therapy, MR imaging and fluorescence sensor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Co-encapsulation of CdSe/ZnS and CeO2 nanoparticles in waterborne polymer dispersions: enhancement of fluorescence emission under sunlight.

    PubMed

    De San Luis, Alicia; Paulis, Maria; Leiza, Jose Ramon

    2017-11-15

    Hybrid core/shell polymer particles with co-encapsulated quantum dots (QDs) (CdSe/ZnS) and CeO 2 nanoparticles have been synthesized in a two stage semi-batch emulsion polymerization process. In the first stage, both inorganic nanoparticles are incorporated into cross-linked polystyrene (PS) particles by miniemulsion polymerization. This hybrid dispersion is then used as the seed to produce the core/shell particles by starved feeding of methyl methacrylate and divinylbenzene (MMA/DVB) monomers. The core/shell hybrid dispersions maintained in the dark exhibit stable fluorescence emission over time, and notably their fluorescence intensity increases under sunlight, likely due to the effect of the co-encapsulated CeO 2 nanoparticles that change the optical properties of the environment of the quantum dot particles. The fluorescence increase depends on the QD : CeO 2 ratio, with the 1 : 2 ratio resulting in the highest increase (280%). Furthermore, a film forming hybrid latex has been synthesized using the former core/shell PS/QD/CeO 2 /PMMA particles as seeds and feeding under semi-batch conditions methyl methacrylate, butyl acrylate and acrylic acid. Films cast from this core/shell/shell hybrid dispersion also exhibit fluorescence, and as for the core/shell latex the fluorescence increases under sunlight exposure. Interestingly, the increase in the film is at least two times higher than that in the latex, which is attributed to the additional effect of the neighboring coalesced particles containing CeO 2 affecting the environment of the QDs.

  4. Effect of Photon Radiations in Semi-Rigid Artificial Tissue Sensitized by Protoporphyrin IX Encapsulated with Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Makhadmeh, Ghaseb N.; Aziz, Azlan Abdul; Razak, Khairunisak Abdul; Al-Akhras, M.-Ali H.

    2018-02-01

    This study involves the synthesis of Protoporphyrin IX (PpIX) encapsulated with Silica Nanoparticles (SiNPs) as an application for Photodynamic therapy. Semi-rigid artificial tissues with optical features similar to human tissue were used as sample materials to ascertain the efficacy of PpIX encapsulated with SiNPs. The disparity in optical characteristics (transmittance, reflectance, scattering, and absorption) of tissues treated with encapsulated PpIX and naked PpIX under light exposure (Intensity at 408 nm ~1.19 mW/cm2) was explored. The optimal exposure times required for naked PpIX and SiNPs encapsulated PpIX to engulf Red Blood Cells (RBCs) in the artificial tissue were subsequently measured. Comparative analysis showed that the encapsulated PpIX has a 91.5 % higher efficacy than naked PpIX. The results prove the applicability of PpIX encapsulated with SiNP on artificial tissue and possible use on human tissue.

  5. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  6. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    Beta-carotene (BC) was encapsulated by sodium caseinate (SC), whey protein isolate (WPI), and soybean protein isolate (SPI) by the homogenization-evaporation method forming nanoparticles of 78, 90 and 370 nm diameter. Indices of the chemical antioxidant assays, the reducing power, DPPH radical scave...

  7. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential atmore » 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.« less

  8. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shofiah, Siti, E-mail: esuharyadi@ugm.ac.id; Muflihatun,; Suharyadi, Edi

    2016-04-19

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles comparable sizes have been studied in detail. NiFe{sub 2}O{sub 4} were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe{sub 2}O{sub 4} was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe{sub 2}O{sub 4}more » as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe{sub 2}O{sub 4} became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe{sub 2}O{sub 3} phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe{sub 2}O{sub 4} nanoparticles.« less

  9. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    PubMed Central

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P.C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  10. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  11. Stability of anti-reflection coatings via the self-assembly encapsulation of silica nanoparticles by diazo-resins

    NASA Astrophysics Data System (ADS)

    Metzman, Jonathan S.; Ridley, Jason I.; Khalifa, Moataz B.; Heflin, James R.

    2015-12-01

    A modified silica nanoparticle (MSNP) solution was formed by the encapsulation of negatively charged silica nanoparticles by the UV-crosslinkable polycation oligomer diazo-resin (DAR). Appropriate DAR encapsulation concentrations were determined by use of zeta-potential and dynamic light scattering measurements. The MSNPs were used in conjunction with poly(styrene sulfonate) (PSS) to grow homogenous ionic self-assembled multilayer anti-reflection coatings. Stability was induced within the films by the exposure of UV-irradiation that allowed for crosslinking of the DAR and PSS. The films were characterized by UV/vis/IR spectroscopy and field emission scanning electron microscopy. The transmission and reflection levels were >98.5% and <0.05%, respectively. The refractive indices resided in the 1.25-1.26 range. The solvent stability was tested by sonication of the films in a ternary solvent (H2O/DMF/ZnCl2 3:5:2 w/w/w).

  12. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia

    PubMed Central

    Jia, Tianyu; Rao, Jingan; Zou, Lifang; Zhao, Shanhong; Yi, Zhihua; Wu, Bing; Li, Lin; Yuan, Huilong; Shi, Liran; Zhang, Chunping; Gao, Yun; Liu, Shuangmei; Xu, Hong; Liu, Hui; Liang, Shangdong; Li, Guilin

    2018-01-01

    Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP). Satellite glial cells (SGCs) enwrap the neuronal soma in the dorsal root ganglia (DRG). The purinergic 2 (P2) Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM). Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β) and connexin43 (Cx43) resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt) in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM. PMID:29422835

  13. Highly versatile SPION encapsulated PLGA nanoparticles as photothermal ablators of cancer cells and as multimodal imaging agents.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Romero-Aburto, Rebeca; Mitcham, Trevor; Mitchel, Keith A; Nagaoka, Yutaka; Bouchard, Richard R; Ajayan, Pulickel M; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2017-02-28

    We have designed versatile polymeric nanoparticles with cancer cell specific targeting capabilities via aptamer conjugation after the successful encapsulation of curcumin and superparamagnetic iron oxide nanoparticles (SPIONs) inside a PLGA nanocapsule. These targeted nanocomposites were selectively taken up by tumor cells, under in vitro conditions, demonstrating the effectiveness of the aptamer targeting mechanism. Moreover, the nanocomposite potentially functioned as efficient multiprobes for optical, magnetic resonance imaging (MRI) and photoacoustic imaging contrast agents in the field of cancer diagnostics. The hyperthermic ability of these nanocomposites was mediated by SPIONs upon NIR-laser irradiation. In vitro cytotoxicity was shown by curcumin-loaded nanoparticles as well as the photothermal ablation of cancer cells mediated by the drug-encapsulated nanocomposite demonstrated the potential therapeutic effect of the nanocomposite. In short, we portray the aptamer-conjugated nanocomposite as a multimodal material capable of serving as a contrast agent for MR, photoacoustic and optical imaging. Furthermore, the nanocomposite functions as a targetable drug nanocarrier and a NIR-laser inducible hyperthermic material that is capable of ablating PANC-1 and MIA PaCa-2 cancer cell lines.

  14. Encapsulation of Au Nanoparticles on a Silicon Wafer During Thermal Oxidation

    PubMed Central

    2013-01-01

    We report the behavior of Au nanoparticles anchored onto a Si(111) substrate and the evolution of the combined structure with annealing and oxidation. Au nanoparticles, formed by annealing a Au film, appear to “float” upon a growing layer of SiO2 during oxidation at high temperature, yet they also tend to become partially encapsulated by the growing silica layers. It is proposed that this occurs largely because of the differential growth rates of the silica layer on the silicon substrate between the particles and below the particles due to limited access of oxygen to the latter. This in turn is due to a combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion under the gold. We think that such behavior is likely to be seen for other metal–semiconductor systems. PMID:24163715

  15. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles.

    PubMed

    Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon

    2018-06-13

    In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.

  16. Use of Magnetic Nanoparticles to Monitor Alginate-Encapsulated βTC-tet Cells

    PubMed Central

    Constantinidis, Ioannis; Grant, Samuel C.; Simpson, Nicholas E.; Oca-Cossio, Jose A.; Sweeney, Carol A.; Mao, Hui; Blackband, Stephen J.; Sambanis, Athanassios

    2008-01-01

    Non-invasive monitoring of tissue-engineered constructs is an important component in optimizing construct design and assessing therapeutic efficacy. In recent years, cellular and molecular imaging initiatives have spurred the use of iron oxide based contrast agents in the field of NMR imaging. Although their use in medical research has been widespread, their application in tissue engineering has been limited. In this study, the utility of Monocrystalline Iron Oxide Nanoparticles (MION) as an NMR contrast agent was evaluated for βTC-tet cells encapsulated within alginate/poly-L-lysine/alginate (APA) microbeads. The constructs were labeled with MION in two different ways: (a) MION-labeled βTC-tet cells were encapsulated in APA beads (i.e., intracellular compartment); and (b) MION particles were suspended in the alginate solution prior to encapsulation so that the alginate matrix was labeled with MION instead of the cells (i.e., extracellular compartment). The data show that although the location of cells can be identified within APA beads, cell growth or rearrangement within these constructs cannot be effectively monitored, regardless of the location of MION compartmentalization. The advantages and disadvantages of these techniques and their potential use in tissue engineering are discussed. PMID:19165877

  17. Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy

    NASA Astrophysics Data System (ADS)

    Sanna, Vanna; Singh, Chandra K.; Jashari, Rahime; Adhami, Vaqar M.; Chamcheu, Jean Christopher; Rady, Islam; Sechi, Mario; Mukhtar, Hasan; Siddiqui, Imtiaz A.

    2017-02-01

    Earlier we introduced the concept of ‘nanochemoprevention’ i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa), and evaluated their efficacy in preclinical studies. First, we performed a molecular recognition of DCL- and AG-PEGylation on ligand binding on PSMA active site. Next, the biocompatible polymers PLGA-PEG-A were synthesized and used as base to conjugate DCL or AG to obtain the respective copolymers, needed for the preparation of targeted NPs. The resulting EGCG encapsulating NPs led to an enhanced anti-proliferative activity in PCa cell lines compared to the free EGCG. The behavior of EGCG encapsulated in NPs in modulating apoptosis and cell-cycle, was also determined. Then, in vivo experiments, in mouse xenograft model of prostatic tumor, using EGCG-loaded NPs, with a model of targeted nanosystems, were conducted. The obtained data supported our hypothesis of target-specific enhanced bioavailability and limited unwanted toxicity, thus leading to a significant potential for probable clinical outcome.

  18. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  19. Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.

    PubMed

    Terrón-Mejía, Ketzasmin A; Martínez-Benavidez, Evelin; Higuera-Ciapara, Inocencio; Virués, Claudia; Hernández, Javier; Domínguez, Zaira; Argüelles-Monal, Waldo; Goycoolea, Francisco M; López-Rendón, Roberto; Gama Goicochea, Armando

    2018-06-12

    The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.

  20. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE PAGES

    Du, Lei; Luo, Langli; Feng, Zhenxing; ...

    2017-07-05

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  1. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  2. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-02-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  3. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution.

    PubMed

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy-carbon core-shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10-30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2-6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  4. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  5. Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: synthesis and optical properties.

    PubMed

    Xi, Guangcheng; Yu, Shijun; Zhang, Rui; Zhang, Meng; Ma, Dekun; Qian, Yitai

    2005-07-14

    A novel nanostructure, cubic silicon carbide (3C-SiC) nanoparticles encapsulated in branched wavelike carbon nanotubes have been prepared by a reaction of 1,2-dimenthoxyethane (CH3OCH2CH2OCH3), SiCl4, and Mg in an autoclave at 600 degrees C. According to X-ray powder diffraction, the products are composed of 3C-SiC and carbon. TEM and HRTEM images show that the as-synthesized products are composed of 3C-SiC nanoparticles encapsulated in branched carbon nanotubes with wavelike walls. The diameter of the 3C-SiC cores is approximately 20-40 nm and the thickness of the carbon shells is about 3-5 nm. In Raman scattering spectroscopy, both the TO (Gamma) phonon line and the LO (Gamma) phonon line have red shifts about 6 cm(-1) relative to that for the bulk 3C-SiC. The photoluminescence (PL) spectrum shows that there are two emission peaks: blue light emission (431 nm) and violet light emission (414 nm). A sequential deposition growth process (with cores as the templates for the shells) for the nanostructure was proposed.

  6. Nanoprecipitation process: From encapsulation to drug delivery.

    PubMed

    Martínez Rivas, Claudia Janeth; Tarhini, Mohamad; Badri, Waisudin; Miladi, Karim; Greige-Gerges, Hélène; Nazari, Qand Agha; Galindo Rodríguez, Sergio Arturo; Román, Rocío Álvarez; Fessi, Hatem; Elaissari, Abdelhamid

    2017-10-30

    Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been used in the pharmaceutical and agricultural research as clean alternative for other drug carrier formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation, growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility. In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles. Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds. Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds. As a whole, process and formulation related parameters in nanoprecipitation technique have critical effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the biodistribution of the active loaded nanoparticles in different organs after administration via various routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two phases: a first phase of "burst release" which is followed by a second phase of prolonged release. Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity

    PubMed Central

    Harper-Leatherman, Amanda S.; Pacer, Elizabeth R.; Kosciuszek, Nina D.

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol–gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  8. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Pacer, Elizabeth R; Kosciuszek, Nina D

    2016-03-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol-gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development.

  9. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate.

    PubMed

    Huang, Caijin; Liu, Qiuwen; Fan, Wenjie; Qiu, Xiaoqing

    2015-11-16

    Reactivity is of great importance for metal nanoparticles used as catalysts, biomaterials and advanced sensors, but seeking for high reactivity seems to be conflict with high chemical stability required for metal nanoparticles. There is a subtle balance between reactivity and stability. This could be reached for colloidal metal nanoparticles using organic capping reagents, whereas it is challenging for powder metal nanoparticles. Here, we developed an alternative approach to encapsulate copper nanoparticles with a chemical inertness material--hexagonal boron nitride. The wrapped copper nanoparticles not only exhibit high oxidation resistance under air atmosphere, but also keep excellent promoting effect on thermal decomposition of ammonium perchlorate. This approach opens the way to design metal nanoparticles with both high stability and reactivity for nanocatalysts and their technological application.

  10. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate

    PubMed Central

    Huang, Caijin; liu, Qiuwen; Fan, Wenjie; Qiu, Xiaoqing

    2015-01-01

    Reactivity is of great importance for metal nanoparticles used as catalysts, biomaterials and advanced sensors, but seeking for high reactivity seems to be conflict with high chemical stability required for metal nanoparticles. There is a subtle balance between reactivity and stability. This could be reached for colloidal metal nanoparticles using organic capping reagents, whereas it is challenging for powder metal nanoparticles. Here, we developed an alternative approach to encapsulate copper nanoparticles with a chemical inertness material—hexagonal boron nitride. The wrapped copper nanoparticles not only exhibit high oxidation resistance under air atmosphere, but also keep excellent promoting effect on thermal decomposition of ammonium perchlorate. This approach opens the way to design metal nanoparticles with both high stability and reactivity for nanocatalysts and their technological application. PMID:26567862

  11. Double-phase-functionalized magnetic Janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers.

    PubMed

    Yabu, Hiroshi; Ohshima, Hiroyuki; Saito, Yuta

    2014-10-22

    Recently, anisotropic colloidal polymeric materials including Janus microparticles, which have two distinct aspects on their surfaces or interiors, have garnered much interest due to their anisotropic alignment and rotational orientation with respect to external electric or magnetic fields. Janus microparticles are also good candidates for pigments in "twisting ball type" electronic paper, which is considered promising for next-generation flexible display devices. We demonstrate here a universal strategy to encapsulate inorganic nanoparticles and to introduce different such inorganic nanoparticles into distinct polymer phases in Janus microparticles. TiO2 and Fe2O3 nanoparticles were separately encapsulated in two different mussel-inspired amphiphilic copolymers, and then organic-inorganic composite Janus microparticles were prepared by simple evaporation of solvent from the dispersion containing the polymer and nanoparticle. These Janus microparticles were observed to rotate quickly in response to applied magnetic fields.

  12. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  13. Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy

    PubMed Central

    Sanna, Vanna; Singh, Chandra K.; Jashari, Rahime; Adhami, Vaqar M.; Chamcheu, Jean Christopher; Rady, Islam; Sechi, Mario; Mukhtar, Hasan; Siddiqui, Imtiaz A.

    2017-01-01

    Earlier we introduced the concept of ‘nanochemoprevention’ i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa), and evaluated their efficacy in preclinical studies. First, we performed a molecular recognition of DCL- and AG-PEGylation on ligand binding on PSMA active site. Next, the biocompatible polymers PLGA-PEG-A were synthesized and used as base to conjugate DCL or AG to obtain the respective copolymers, needed for the preparation of targeted NPs. The resulting EGCG encapsulating NPs led to an enhanced anti-proliferative activity in PCa cell lines compared to the free EGCG. The behavior of EGCG encapsulated in NPs in modulating apoptosis and cell-cycle, was also determined. Then, in vivo experiments, in mouse xenograft model of prostatic tumor, using EGCG-loaded NPs, with a model of targeted nanosystems, were conducted. The obtained data supported our hypothesis of target-specific enhanced bioavailability and limited unwanted toxicity, thus leading to a significant potential for probable clinical outcome. PMID:28145499

  14. Dexamethasone acetate encapsulation into Trojan particles.

    PubMed

    Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas

    2008-05-22

    We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.

  15. Antidiabetic activity from cinnamaldydhe encapsulated by nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatingrum; Ngadiwiyana; Fachriyah, E.; Ismiyarto; Ariestiani, B.; Khikmah

    2018-04-01

    Diabetes mellitus (DM) is a disease characterized by chronic hyperglycemia and metabolic disorders of carbohydrates, proteins, and fats due to reduced function of insulin. Treatment of diabetes can be done by insulin therapy or hypoglycemic drugs. Hypoglycemic drugs usually contain compounds that can inhibit the action of α-glucosidase enzymes that play a role in breaking carbohydrates into blood sugar. Cinnamaldehyde has α-glucosidase inhibit activity because it has a functional group of alkene that is conjugated with a benzene ring and a carbonyl group. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74%. Inhibition test result showed that cinnamaldehyde-chitosan nanoparticles at 100 ppm could inhibit α-glucosidase activity in 23.9% with 134,13 in IC50. So it can be concluded that cinnamaldehyde can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  16. Au@Y 2O 3:Eu 3+ rare earth oxide hollow sub-microspheres with encapsulated gold nanoparticles and their optical properties

    NASA Astrophysics Data System (ADS)

    Min, Yu-Lin; Wan, Yong; Yu, Shu-Hong

    2009-01-01

    A facile method to synthesize novel Au@Y 2O 3:Eu 3+ hollow sub-microspheres encapsulated with moveable gold nanoparticle core and Y 2O 3:Eu 3+ as shell via two-step coating processes and a succeeding calcination process has been developed. Silica coating on citrate-stabilized gold nanoparticles with a size of 25 nm can be obtained through a slightly modified Stöber process. Gold particles coated with double shell silica and Eu doped Y(OH) 3 can be obtained by coating on the Au@SiO 2 spheres through simply adding Y(NO 3) 3, Eu(NO 3) 3 and an appropriate quantity of NH 3·H 2O. Au@Y 2O 3:Eu 3+ hollow sub-microspheres with moveable individual Au nanoparticle as core can be obtained after calcination of Au@Y 2O 3:Eu 3+ particles at 600 °C for 2 h. These new core-shell structures with encapsulated gold nanoparticles have combined optical properties of both the Au nanoparticles and the Y 2O 3:Eu 3+ phosphor materials which might have potential applications.

  17. Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications† †Electronic supplementary information (ESI) available: Experimental section, additional characterization and reaction results. See DOI: 10.1039/c7sc04724j

    PubMed Central

    Fang, Ruiqi; Tian, Panliang; Yang, Xianfeng

    2018-01-01

    The development of efficient encapsulation strategies has attracted intense interest for preparing highly active and stable heterogeneous metal catalysts. However, issues related to low loadings, costly precursors and complex synthesis processes restrict their potential applications. Herein, we report a novel and general strategy to encapsulate various ultrafine metal-oxides nanoparticles (NPs) into the mesoporous KIT-6. The synthesis is facile, which only involves self-assembly of a metal–organic framework (MOF) precursor in the silica mesopores and a subsequent calcination process to transform the MOF into metal-oxide NPs. After the controlled calcination, the metal-oxide NPs produced from MOF decomposition are exclusively confined and uniformly distributed in the mesopores of KIT-6 with high metal loadings. Benefitting from the encapsulation effects, as-synthesized Co@KIT-6 materials exhibit superior catalytic activity and recycling stability in biomass-derived HMF oxidation under mild reaction conditions. PMID:29675231

  18. Redox-Active Carbohydrate-Coated Nanoparticles: Self-Assembly of a Cyclodextrin-Polystyrene Glycopolymer with Tetrazine-Naphthalimide.

    PubMed

    Gross, Andrew J; Haddad, Raoudha; Travelet, Christophe; Reynaud, Eric; Audebert, Pierre; Borsali, Redouane; Cosnier, Serge

    2016-11-15

    The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via β-cyclodextrin inclusion complexes. A β-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.

  19. Cholesteryl Pullulan Encapsulated TNF-α Nanoparticles Are an Effective Mucosal Vaccine Adjuvant against Influenza Virus

    PubMed Central

    Nagatomo, Daiki; Taniai, Madoka; Ariyasu, Harumi; Taniguchi, Mutsuko; Aga, Miho; Ariyasu, Toshio; Ohta, Tsunetaka; Fukuda, Shigeharu

    2015-01-01

    We encapsulated tumor necrosis factor-α (TNF-α), a major proinflammatory cytokine, into cholesteryl pullulan (CHP) to prepare TNF/CHP nanoparticles. In this report, we describe the immune-enhancing capability of the nanoparticles to act as a vaccine adjuvant. TNF/CHP nanoparticles showed excellent storage stability and enhanced host immune responses to external immunogens. The nanoparticles were effective via the nasal route of administration for inducing systemic IgG1 as well as mucosal IgA. We applied the nanoparticles in a model experimental influenza virus infection to investigate their adjuvant ability. TNF/CHP nanoparticles combined with a conventional split vaccine protected mice via nasal administration against a lethal challenge of A/PR/8/34 (H1N1) influenza virus. Mechanistic studies showed that the nanoparticles enhanced antigen uptake by dendritic cells (DCs) and moderately induced the expression of inflammation-related genes in nasopharynx lymphoid tissue (NALT), leading to the activation of both B and T cells. Preliminary safety study revealed no severe toxicity to TNF/CHP nanoparticles. Slight-to-moderate influences in nasal mucosa were observed only in the repeated administration and they seemed to be reversible. Our data show that TNF/CHP nanoparticles effectively enhance both humoral and cellular immunity and could be a potential adjuvant for vaccines against infectious diseases, especially in the mucosa. PMID:26421290

  20. Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In Vitro characterization as an effective aerosol formulation in pulmonary diseases

    PubMed Central

    2012-01-01

    Background Alpha 1- antitrypsin (α1AT) belongs to the superfamily of serpins and inhibits different proteases. α1AT protects the lung from cellular inflammatory enzymes. In the absence of α1AT, the degradation of lung tissue results to pulmonary complications. The pulmonary route is a potent noninvasive route for systemic and local delivery. The aerosolized α1AT not only affects locally its main site of action but also avoids remaining in circulation for a long period of time in peripheral blood. Poly (D, L lactide-co glycolide) (PLGA) is a biodegradable and biocompatible polymer approved for sustained controlled release of peptides and proteins. The aim of this work was to prepare a wide range of particle size as a carrier of protein-loaded nanoparticles to deposit in different parts of the respiratory system especially in the deep lung. Various lactide to glycolide ratio of the copolymer was used to obtain different release profile of the drug which covers extended and rapid drug release in one formulation. Results Nonaqueous and double emulsion techniques were applied for the synthesis of nanoparticles. Nanoparticles were characterized in terms of surface morphology, size distribution, powder X-ray diffraction (XRD), encapsulation efficiency, in vitro drug release, FTIR spectroscopy and differential scanning calorimetry (DSC). To evaluate the nanoparticles cytotoxicity, cell cytotoxicity test was carried out on the Cor L105 human epithelial lung cancer cell line. Nanoparticles were spherical with an average size in the range of 100 nm to 1μ. The encapsulation efficiency was found to be higher when the double emulsion technique was applied. XRD and DSC results indicated that α1AT encapsulated in the nanoparticles existed in an amorphous or disordered-crystalline status in the polymer matrix. The lactic acid to glycolic acid ratio affects the release profile of α1AT. Hence, PLGA with a 50:50 ratios exhibited the ability to release %60 of the drug within 8

  1. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    PubMed

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  2. Antioxidant activity from encapsulated Cinnamaldehyde-Chitosan

    NASA Astrophysics Data System (ADS)

    Ariestiani, Bonita; Purbowatingrum; Ngadiwiyana; Ismiyarto; Fachriyah, Enny; Nurani, Khikmah

    2018-05-01

    Cinnamaldehyde compound is a powerful antioxidant agent that can effectively combat the free radicals referred to superoxide anions and hydroxy radicals, as well as other free radicals in in vitro testing. An antioxidant is an electron donor or reductant. antioxidants are also compounds that can inhibit oxidation reactions by binding to free radicals and highly reactive molecules. As a result, cell damage will be inhibited. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74,389% also antioxidant activity test showed that cinnamaldehyde encapsulated by nanochitosan could inhibit free radicals of 223.44 in IC50.

  3. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  4. Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper.

    PubMed

    Wei, Dafu; Chen, Yan; Zhang, Youwei

    2016-01-20

    Taking advantage of the self-assembly between the components, novel stable antibacterial nanoparticles were efficiently fabricated via a facile one-step co-polymerization of acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA) on a mixed aqueous solution of poly(hexamethylene guanidine hydrochloride) (PHMG) and hydroxyethylcellulose (HEC). The z-average hydrodynamic diameters of the nanoparticles ranged from 220 nm to 450 nm. The inner layer of the nanoparticles is composed of water-insoluble interpolymer complexes of PHMG and PAA networks, while the outer layer is composed of PHMG and HEC. The nanoparticles are stabilized by electrostatic interactions, hydrogen bonding interactions, and the chemical bonds. The nanoparticle solution remained stable in a wide pH range of 2.0-12.0 and at salt concentrations below 0.25 mol/L. The nanoparticles were incorporated into handsheets using a dipping treatment. The resulted handsheets exhibited excellent antimicrobial activities even after multiple water washing treatments. The nanoparticles are promising in fabricating paper, water-based coatings and textiles with permanent antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    NASA Astrophysics Data System (ADS)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  6. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    PubMed

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    PubMed

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.

  8. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    PubMed

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of silica-encapsulated silver nanoparticles as contrast agents intended for dual-energy mammography.

    PubMed

    Karunamuni, Roshan; Naha, Pratap C; Lau, Kristen C; Al-Zaki, Ajlan; Popov, Anatoliy V; Delikatny, Edward J; Tsourkas, Andrew; Cormode, David P; Maidment, Andrew D A

    2016-09-01

    Dual-energy (DE) mammography has recently entered the clinic. Previous theoretical and phantom studies demonstrated that silver provides greater contrast than iodine for this technique. Our objective was to characterize and evaluate in vivo a prototype silver contrast agent ultimately intended for DE mammography. The prototype silver contrast agent was synthesized using a three-step process: synthesis of a silver core, silica encapsulation and PEG coating. The nanoparticles were then injected into mice to determine their accumulation in various organs, blood half-life and dual-energy contrast. All animal procedures were approved by the institutional animal care and use committee. The final diameter of the nanoparticles was measured to be 102 (±9) nm. The particles were removed from the vascular circulation with a half-life of 15 min, and accumulated in macrophage-rich organs such as the liver, spleen and lymph nodes. Dual-energy subtraction techniques increased the signal difference-to-noise ratio of the particles by as much as a factor of 15.2 compared to the single-energy images. These nanoparticles produced no adverse effects in mice. Silver nanoparticles are an effective contrast agent for dual-energy x-ray imaging. With further design improvements, silver nanoparticles may prove valuable in breast cancer screening and diagnosis. • Silver has potential as a contrast agent for DE mammography. • Silica-coated silver nanoparticles are biocompatible and suited for in vivo use. • Silver nanoparticles produce strong contrast in vivo using DE mammography imaging systems.

  10. Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS2 by Fluoropolymer Encapsulation and Superacid Treatment.

    PubMed

    Kim, Hyungjin; Lien, Der-Hsien; Amani, Matin; Ager, Joel W; Javey, Ali

    2017-05-23

    Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS 2 and WS 2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS 2 and WS 2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.

  11. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene.

    PubMed

    Khoshakhlagh, Khadije; Koocheki, Arash; Mohebbi, Mohebbat; Allafchian, Alireza

    2017-03-15

    In this study, the feasibility of developing Alyssum homolocarpum seed gum (AHSG) nanocapsules containing d-limonene by electrospraying has been investigated. d-limonene emulsions with constant AHSG (0.5% w/w) and various flavor concentrations (10-30% based on gum weight) with 0.1% Tween 20 were electrosprayed at 20kV and 0.1ml/h of flow rate. The effects of key parameters of emulsions (rheological properties, droplet size, surface tension and electrical conductivity) on the morphology of structures have been studied. The morphology of nanocapsules had strong dependency on solution properties. The aggregated irregular shaped nanoparticles were obtained from electrospraying of AHSG solution. After incorporation of 10 and 20% d-limonene, spherical nanocapsules were yielded. However, morphology of nanocapsules changed to nanofibers by increasing the flavor content to 30%. The encapsulation efficiency for 10 and 20% d-limonene loaded nanocapsules was around 87-93%. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were also employed to study the physicochemical characteristics of nanocapsules. These experiments provided evidences that electrosprayed AHSG nanoparticles introduce a novel and efficient carrier for encapsulation of bioactive ingredients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Development of Gd3N@C80 encapsulated redox nanoparticles for high-performance magnetic resonance imaging.

    PubMed

    Gao, Zhenyu; Nakanishi, Yusuke; Noda, Shoko; Omachi, Haruka; Shinohara, Hisanori; Kimura, Hiroyuki; Nagasaki, Yukio

    As novel magnetic resonance imaging (MRI) contrast agent, gadofullerene encapsulated redox nanoparticles (Gd 3 NPs) were prepared by encapsulation of Gd 3 N@C 80 in the core of core-shell-type polymer micelles composed of original polyamine with a reactive oxygen species (ROS)-scavenging ability. Because Gd 3 NPs possess biocompatible PEG shell with a smaller size (ca. 50 nm), they had high colloidal stability in a physiological environment, and showed low cytotoxicity. Specific accumulation of Gd 3 NPs in a tumor was confirmed in tumor-bearing mice after systemic administration. The tumor/muscle (T/M) ratio of the Gd ion reached five at 7.5 h after the administration. T 1 -weighted MRI signal enhancement of the T/M ratio increased by 8% at 6 h postinjection of Gd 3 NPs (Gd dose:14.35 μmol/kg). Although Gd 3 NPs showed a tendency for extended blood circulation, they did not have severe adverse effects, probably due to the confinement of Gd in a hydrophobic fullerene in addition to the ROS-scavenging capacity of these nanoparticles. In sharp contrast, systemic administration of Gd-chelate nanoparticles (GdCNPs) to mice disrupts liver function, increases leukocyte counts, and destroys spleen and skin tissues. Leaking of Gd ions from GdCNPs may cause such adverse effects. Based on these results, we expect that Gd 3 NPs is high-performance MRI contrast agents for tumor diagnosis.

  13. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  14. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ~87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.

  15. Formulation, Characterization and Pulmonary Deposition of Nebulized Celecoxib Encapsulated Nanostructured Lipid Carriers

    PubMed Central

    Patlolla, Ram R.; Chougule, Mahavir; Patel, Apurva R.; Jackson, Tanise; Tata, Prasad NV; Singh, Mandip

    2010-01-01

    The aim of the current study was to encapsulate celecoxib (Cxb) in the Nanostructured Lipid Carrier (Cxb-NLC) nanoparticles and evaluate the lung disposition of nanoparticles following nebulization in Balb/c mice. Cxb-NLC nanoparticles were prepared with Cxb, Compritol, Miglyol and sodium taurocholate using high-pressure homogenization. Cxb-NLC nanoparticles were characterized for physical and aerosol properties. In-vitro cytotoxicity studies were performed with A549 cells. The lung deposition and pharmacokinetic parameters of Cxb-NLC and Cxb solution (Cxb-Soln) formulations were determined using Inexpose™ system and Pari LC star jet nebulizer. The particle size and entrapment efficiency of Cxb-NLC formulation were 217 ± 20 nm and > 90%, respectively. The Cxb-NLC released the drug in controlled fashion, and in vitro aersolization of Cxb-NLC formulation showed FPF of 75.6 ± 4.6 %, MMAD of 1.6 ±0.13 μm and GSD of 1.2 ± 0.21. Cxb-NLC showed dose and time dependent cytotoxicity against A549 cells. Nebulization of Cxb-NLC demonstrated 4 fold higher AUCt/D in lung tissues compared to Cxb-Soln. The systemic clearance of Cxb-NLC was slower (0.93 L/h) compared to Cxb-Soln (20.03 L/h). Cxb encapsulated NLC were found to be stable and aerodynamic properties were within the respirable limits. Aerosolization of Cxb-NLC improved the Cxb pulmonary bioavailability compared to solution formulation which will potentially lead to better patient compliance with minimal dosing intervals. PMID:20153385

  16. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

  17. Novel synthesis approach for stable sodium superoxide (NaO2) nanoparticles for LPG sensing application

    NASA Astrophysics Data System (ADS)

    Nemade, Kailash; Waghuley, Sandeep

    2017-05-01

    The synthesis of stable superoxide is still great challenge for the researchers working in the field of materials science. Through this letter, we report the novel and simple synthesis approach for the preparation of stable sodium superoxide (NaO2) nanoparticles. NaO2 nanoparticles were prepared by a spray pyrolysis technique, under oxygen rich environment for gas sensing application. The texture characterizations show that as-obtained NaO2 nanoparticles have high structural purity. Most importantly, NaO2 nanoparticles exhibits higher sensing response, shorter response time and recovery time, low operating temperature and good stability during sensing of liquefied petroleum gas (LPG). The main accomplishment of present work is that as-fabricated sensor has low operating temperature (423 K), which is below auto-ignition temperature of LPG. The gas sensing mechanism of NaO2 nanoparticles was discussed without the conventional oxygen bridging mechanism. Through this short communication, LPG sensing application of stable sodium superoxide nanoparticle is explored.

  18. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention.

    PubMed

    Wang, Dongxu; Taylor, Ethan Will; Wang, Yijun; Wan, Xiaochun; Zhang, Jinsong

    2012-01-01

    Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size ("Nano-Se"), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.

  19. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention

    PubMed Central

    Wang, Dongxu; Taylor, Ethan Will; Wang, Yijun; Wan, Xiaochun; Zhang, Jinsong

    2012-01-01

    Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels. PMID:22619522

  20. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    PubMed Central

    Huo, Chengli; Ouyang, Jing; Yang, Huaming

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589

  1. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  2. Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector.

    PubMed

    Xu, Cheng; Yang, Darong; Mei, Lin; Lu, Bingan; Chen, Libao; Li, Qiuhong; Zhu, Haizhen; Wang, Taihong

    2013-04-10

    Surface modification of inorganic nanoparticles (NPs) is extremely necessary for biomedical applications. However, the processes of conjugating ligands to NPs surface are complicated with low yield. In this study, a hydrophilic shell with excellent biocompatibility was successfully constructed on individual gold NPs or gold nanorods (NRs) by encapsulating NPs or NRs in graphene oxide (GO) nanosheets through electrostatic self-assembly. This versatile and facile approach remarkably decreased the cytotoxicity of gold NPs or NRs capping with surfactant cetyltrimethylammonium bromide (CTAB) and provided abundant functional groups on NPs surface for further linkage of polyethylenimine (PEI). The PEI-functionalized GO-encapsulating gold NPs (GOPEI-AuNPs) were applied to delivery DNA into HeLa cells as a novel gene vector. It exhibited high transfection efficiency of 65% while retaining 90% viability of HeLa cells. The efficiency was comparable to commercialized PEI 25 kDa with the cytotoxicity much less than PEI. Moreover, the results on transfection efficiency was higher than PEI-functionalized GO, which can be attributed to the small size of NPs/DNA complex (150 nm at the optimal w/w ratio) and the spherical structure facilitating the cellular uptake. Our work paves the way for future studies focusing on GO-encapsulating, NP-based nanovectors.

  3. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    NASA Astrophysics Data System (ADS)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  4. Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation.

    PubMed

    Gallarate, Marina; Trotta, Michele; Battaglia, Luigi; Chirio, Daniela

    2009-08-01

    A method to produce solid lipid nanoparticles (SLN) from W/O/W multiple emulsions was developed applying the solvent-in-water emulsion-diffusion technique. Insulin was chosen as hydrophilic peptide drug to be dissolved in the acidic inner aqueous phase of multiple emulsions and to be consequently carried in SLN. Several partially water-miscible solvents with low toxicity were screened in order to optimize emulsions and SLN composition, after assessing that insulin did not undergo any chemical modification in the presence of the different solvents and under the production process conditions. SLN of spherical shape and with mean diameters in the 600-1200 nm range were obtained by simple water dilution of the W/O/W emulsion. Best results, in terms of SLN mean diameter and encapsulation efficiencies, were obtained using glyceryl monostearate as lipid matrix, butyl lactate as a solvent, and soy lecithin and Pluronic F68 as surfactants. Encapsulation efficiencies up to 40% of the loaded amount were obtained, owing to the actual multiplicity of the system; the use of multiple emulsion-derived SLN can be considered a useful strategy to encapsulate a hydrophilic drug in a lipid matrix.

  5. Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands.

    PubMed

    Pöselt, Elmar; Fischer, Steffen; Foerster, Stephan; Weller, Horst

    2009-12-15

    A novel type of ligand for biofunctionalization of nanoparticles is presented that comprises tailor-made triblock-copolymers consisting of a polyethylene imine binding block, a hydrophobic polycaprolactone and a terminal functionalized polyethelene oxide block. Phase transfer to water occurs simply by ligand and water addition and removal of the organic solvents. It is shown that the intermediate polycaprolacton block favors the attachment to the particle surface and shields the binding groups effectively from the solution. As a consequence, the particles exhibit an outstanding stability in various aqueous media for biological studies and give easy access to specific coupling reactions at the terminal end groups of the polyethylene oxide block. Controlling the ligand exchange parameters leads to self-assembly to either individual encapsulated nanoparticles or to multifunctional nanobeads.

  6. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    PubMed Central

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  7. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    NASA Astrophysics Data System (ADS)

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-02-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent.

  8. Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol

    NASA Astrophysics Data System (ADS)

    Ngadiwiyana; Purbowatiningrum; Fachriyah, Enny; Ismiyarto

    2017-02-01

    Atherosclerosis vascular disease with clinical manifestations such as cardiovascular disease and stroke are the leading cause of death in Indonesia. One solution to these problems is a natural antihypercholesterol medicine by utilizing Cinnamomum casia extract. However, the use of natural extracts to lower blood cholesterol levels do not provide optimal results because it is possible that the active components of extract have been degraded/damaged during the absorption process. So that, we need to do the research to get a combination of chitosan nanoparticles-Cinnamomum casia. extract as a compound which has an antihypercholesterol activity through the in vitro study. Modification of natural extracts encapsulated nanochitosan be a freshness in this study, which were conducted using the method of inclusion. The combination of both has the dual function of protecting the natural extracts from degradation and deliver the natural extracts to the target site. Analysis of nanochitosan using the Particle Size Analyzer (PSA) shows the particle size of synthesis product that is equal to 64.9 nm. Encapsulation efficiency of Cinnamomum casia extract-Chitosan Nanoparticles known through UV-VIS spectrophotometry test and obtained the efficiency encapsulation percentage of 84.93%. Zeta Potential at 193,3 mv that chitosan appropriate for a delivery drug. Antihypercholesterol activity tested in vitro assay that showed the extract-nanoparticle chitosan in concentration 150 ppm gave the highest cholesterol decreasing level in the amount of 49.66% w/v. So it can be concluded that Cinnamomum casia extract can be encapsulated in nanoparticles of chitosan and proved that it has a cholesterol-lowering effect through the in vitro study.

  9. Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Park, Gu -Gon; ...

    2017-01-03

    Here, we present a new Janus structured catalyst consisting of Pt nanoparticles on Fe–N–C nanoparticles encapsulated by graphene layers for the ORR. The ORR activity of the catalyst increases under potential cycling as the unique Janus nanostructure is further bonded due to a synergetic effect. The present study describes an important advanced approach for the future design of efficient, stable, and low-cost Pt-based electrocatalytic systems.

  10. A single-step aerosol process for in-situ surface modification of nanoparticles: Preparation of stable aqueous nanoparticle suspensions.

    PubMed

    Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra

    2016-02-15

    Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  12. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent.

    PubMed

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-15

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.

    PubMed

    Jeon, Yoon Tae; Moon, Je Yong; Lee, Gang Ho; Park, Jeunghee; Chang, Yongmin

    2006-01-26

    We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.

  14. Self-Assembled Lipid Nanoparticles for Oral Delivery of Heparin-Coated Iron Oxide Nanoparticles for Theranostic Purposes.

    PubMed

    Truzzi, Eleonora; Bongio, Chiara; Sacchetti, Francesca; Maretti, Eleonora; Montanari, Monica; Iannuccelli, Valentina; Vismara, Elena; Leo, Eliana

    2017-06-09

    Recently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool. SALNs were characterised for physico-chemical properties (particle size, surface charge, encapsulation efficiency, in vitro stability, and heparin leakage), as well as in vitro cytotoxicity by methyl thiazole tetrazolium (MTT) assay and cell internalisation in CaCo-2, a cell line model used as an indirect indication of intestinal lymphatic absorption. SALNs of about 180 nm, which are stable in suspension and have a high encapsulation efficiency (>90%) were obtained. SALNs were able to stabilise the heparin coating of Fe@hepa, which are typically unstable in physiological environments. Moreover, SALNs-Fe@hepa showed no cytotoxicity, although their ability to be internalised into CaCo-2 cells was highlighted by confocal microscopy analysis. Therefore, the results indicated that SALNs can be considered as a promising tool to orally deliver theranostic Fe@hepa into the lymphatic circulation, although further in vivo studies are needed to comprehend further potential applications.

  15. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  16. [Preparation of scopolamine hydrobromide nanoparticles-in-microsphere system].

    PubMed

    Lü, Wei-ling; Hu, Jin-hong; Zhu, Quan-gang; Li, Feng-qian

    2010-07-01

    This study is to prepare scopolamine hydrobromide nanoparticles-in-microsphere system (SH-NiMS) and evaluate its drug release characteristics in vitro. SH nanoparticles were prepared by ionic crosslinking method with tripolyphosphate (TPP) as crosslinker and chitosan as carrier. Orthogonal design was used to optimize the formulation of SH nanoparticles, which took the property of encapsulation efficiency and drug loading as evaluation parameters. With HPMC as carrier, adjusted the parameters of spray drying technique and sprayed the SH nanoparticles in microspheres encaposulated by HPMC was formed and which is called nanoparticles-in-microsphere system (NiMS). SH-NiMS appearances were observed by SEM, structure was obsearved by FT-IR and the release characteristics in vitro were evaluated. The optimized formulation of SH nanoparticles was TPP/CS 1:3 (w/w), HPMC 0.3%, SH 0.2%. The solution peristaltic speed of the spray drying technique was adjusted to 15%, and the temperature of inlet was 110 degrees C. The encapsulation product yeild, drug loading and particle sizes of SH-NiMS were 94.2%, 20.4%, and 1256.5 nm, respectively. The appearances and the structure of SH-NiMS were good. The preparation method of SH-NiMS is stable and reliable to use, which provide a new way to develop new dosage form.

  17. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  18. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  19. Magnetic state and phase composition of carbon-encapsulated Co@C nanoparticles according to 59Co, 13C NMR data and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mikhalev, K. N.; Germov, A. Yu; Uimin, M. A.; Yermakov, A. E.; Konev, A. S.; Novikov, S. I.; Gaviko, V. S.; Ponosov, Yu S.

    2018-05-01

    59Co, 13C NMR spectra, magnetization and Raman spectra of Co@C nanoparticles encapsulated in carbon have been analyzed. It has been shown that the cores of the nanoparticles consist of metallic cobalt with FCC structure and perhaps the carbide of cobalt Co3C. Carbon shell have been characterized as a highly defective structure similar to amorphous or glassy-like carbon, however, it may include a small amount of the carbon nanotubes.

  20. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  1. Inverse-Micelle-Encapsulated Water-Enabled Bond Breaking of Dialkyl Diselenide/Disulfide: A Critical Step for Synthesizing High- Quality Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzhna, Oksana; Li, Ying; Allison, Thomas C.

    2012-10-09

    Inverse-micelle-encapsulated water formed in the two-phase Brust-Schiffrin method (BSM) synthesis of Au nanoparticles (NPs) is identified as essential for dialkyl diselenide/disulfide to react with the Au(III) complex in which the Se-Se/S-S bond is broken, leading to formation of higher-quality Au NPs.

  2. The enhanced longevity and liver targetability of Paclitaxel by hybrid liposomes encapsulating Paclitaxel-conjugated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Zhang, Ning; Geng, Dong-Dong; Xue, Jing-Wei; Merritt, Mackenzie; Zhang, Can; Ding, Ya

    2014-12-30

    Organic and inorganic drug delivery systems both demonstrate their own advantages and challenges in practical applications. Combining these two drug delivery strategies in one system is expected to solve their current issues and achieve desirable functions. In this paper, gold nanoparticles (GNPs) and liposomes have been chosen as the model systems to construct a hybrid system and investigate its performance for the tumor therapy of Paclitaxel (PTX). The thiol-terminated polyethylene glycol (PEG400)-PTX derivative has been covalently modified on the surface of GNPs, followed by the encapsulation of PTX-conjugated GNPs (PTX-PEG400@GNPs) in liposomes. The hybrid liposomes solve the solubility and stability problems of gold conjugates and show high drug loading capacity. In vitro PTX release from the hybrid system maintains the similar sustained behavior demonstrated in its conjugates. Under the protection of a biocompatible liposome shell, encapsulated PTX shows enhanced circulation longevity and liver targetability compared to Taxol(®) and PTX-PEG400@GNPs suspension in the pharmacokinetic and biodistribution studies. These indicate that encapsulating drug-conjugated inorganic nanoparticles inside organic carriers maintains the superiority of both vehicles and improves the performance of hybrid systems. Although these attributes of hybrid liposomes lead to a better therapeutic capacity in a murine liver cancer model than that of the comparison groups, it shows no significant difference from Taxol(®) and conjugate suspension. This result could be due to the delayed and sustained drug release from the system. However, it indicates the promising potential for these hybrid liposomes will allow further construction of a compound preparation with improved performance that is based on their enhanced longevity and liver targetability of Paclitaxel. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.

    PubMed

    Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam

    2013-10-01

    Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine.

  4. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway.

    PubMed

    Verma, Raj Kumar; Yu, Wei; Singh, Surya Pratap; Shankar, Sharmila; Srivastava, Rakesh K

    2015-11-01

    Anthothecol, a limonoid isolated from plant Khaya anthotheca (Meliaceae), is an antimalarial compound. The objectives of this study were to examine the molecular mechanisms by which anthothecol-encapsulated PLGA-nanoparticles (Antho-NPs) regulate the behavior of pancreatic cancer stem cells (CSCs). Antho-NPs inhibited cell proliferation and colony formation, and induced apoptosis in pancreatic CSCs and cancer cell lines, but had no effects on human normal pancreatic ductal epithelial cells. Antho-NPs inhibited self-renewal capacity of pancreatic CSCs isolated from human and Kras(G12D) mice. Furthermore, antho-NPs suppressed cell motility, migration and invasion by up-regulating E-cadherin and inhibiting N-cadherin and Zeb1. In addition, Antho-NPs inhibited pluripotency maintaining factors and stem cell markers, suggesting their inhibitory role on CSC population. Anthothecol disrupted binding of Gli to DNA, and inhibited Gli transcription and Gli target genes. Our studies establish preclinical significance of Antho-NPs for the treatment and/or prevention of pancreatic cancer. Despite medical advances, the prognosis of pancreatic cancer remains poor. The search for an effective treatment has been under intensive research for some time. In this article, the authors investigated the efficacy and mechanism of anthothecol (an antimalarial compound), encapsulated by PLGA nanoparticles (Antho-NPs), against pancreatic cancer cell lines. It was found that Antho-NPs acted via the Sonic hedgehog signaling pathway and inhibited cancer stem cell growth. These results have provided important basis for further clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study.

    PubMed

    Peng, Shengfeng; Li, Ziling; Zou, Liqiang; Liu, Wei; Liu, Chengmei; McClements, David Julian

    2018-02-14

    There is great interest in developing colloidal delivery systems to enhance the water solubility and oral bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. In this study, a natural emulsifier was used to form sophorolipid-coated curcumin nanoparticles. The curcumin was loaded into sophorolipid micelles using a pH-driven mechanism based on the decrease in curcumin solubility at lower pH values. The sophorolipid-coated curcumin nanoparticles formed using this mechanism were relatively small (61 nm) and negatively charged (-41 mV). The nanoparticles also had a relatively high encapsulation efficiency (82%) and loading capacity (14%) for curcumin, which was present in an amorphous state. Both in vitro and in vivo studies showed that the curcumin nanoparticles had an appreciably higher bioavailability than that of free curcumin crystals (2.7-3.6-fold), which was mainly attributed to their higher bioaccessibility. These results may facilitate the development of natural colloidal systems that enhance the oral bioavailability and bioactivity of curcumin in food, dietary supplements, and pharmaceutical products.

  6. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    PubMed

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation of Organogel Nanoparticles as Drug Delivery System for Lipophilic Compounds.

    PubMed

    Martin, Baptiste; Brouillet, Fabien; Franceschi, Sophie; Perez, Emile

    2017-05-01

    The purpose of the study was to evaluate organogel nanoparticles as a drug delivery system by investigating their stability, according to the formulation strategy, and their release profile. The gelled nanoparticles were prepared by hot emulsification (above the gelation temperature) of an organogel in water, and cooling at room temperature. In the first step, we used DLS and DSC to select the most suitable formulations by optimizing the proportion of ingredients (HSA, PVA, castor oil) to obtain particles of the smallest size and greatest stability. Then, two lipophilic drug models, indomethacin and ketoconazole were entrapped in the nanoparticles made of castor oil gelled by 12-hydroxystearic acid. Thermal studies (DSC) confirmed that there was no significant alteration of gelling due to the entrapped drugs, even at 3% w/w. Very stable dispersions were obtained (>3 months), with gelled oil nanoparticles presenting a mean diameter between 250 and 300 nm. High encapsulation efficiency (>98%) was measured for indomethacin and ketoconazole. The release profile determined by in vitro dialysis showed an immediate release of the drug from the organogel nanoparticles, due to rapid diffusion. The study demonstrates the interest of these gelled oil nanoparticles for the encapsulation and the delivery of lipophilic active compounds.

  8. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  9. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  10. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastami, Tahereh Rohani; Entezari, Mohammad H., E-mail: moh_entezari@yahoo.com

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM).more » The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.« less

  11. From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: one-step organization via cross-linking molecules.

    PubMed

    Zhang, Qiaofei; Zhao, Guofeng; Zhang, Zhiqiang; Han, Lupeng; Fan, Songyu; Chai, Ruijuan; Li, Yakun; Liu, Ye; Huang, Jun; Lu, Yong

    2016-09-29

    A strategy of "macro-micro-nano" organization is reported for embedding oxide-encapsulated-nanoparticles onto monolithic substrates in one-step with the aid of molecularly defined cross-linking agents. Such catalysts, with enhanced heat/mass transfer and high permeability, are qualified for several harsh reaction processes such as CH 4 /VOC abatement, gas-phase hydrogenation of dimethyl oxalate and oxidative dehydrogenation of ethane.

  12. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  13. Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion.

    PubMed

    Horie, Masanori; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nishio, Keiko; Komaba, Lilian Kaede; Fukui, Hiroko; Nakamura, Ayako; Miyauchi, Arisa; Nakazato, Tetsuya; Kinugasa, Shinichi; Yoshida, Yasukazu; Hagihara, Yoshihisa; Morimoto, Yasuo; Iwahashi, Hitoshi

    2011-11-01

    Platinum nanoparticles have industrial application, for example in catalysis, and are used in consumer products such as cosmetics and supplements. Therefore, among the many nanoparticles, platinum is one of the more accessible nanoparticles for consumers. Most platinum nanoparticles that are used in cosmetics and supplements which have an anti-oxidant activity are modified particles. However, the cellular influences of pristine platinum nanoparticles are still unclear, although it has been reported that platinum nanoparticles induce oxidative stress. In this study, we investigated the cellular influences induced by pure pristine platinum nanoparticles. Platinum nanoparticles of 100% purity were dispersed in a cell culture medium and stable medium dispersion was obtained. The platinum nanoparticle medium dispersion was applied to two kinds of cultured cells, A549 and HaCaT cells, and the cellular influences were examined. Cell viability (MTT assay), cell proliferation (clonogenic assay), apoptosis induction (caspase-3 activity), intracellular ROS level (DCFH assay), and lipid peroxidation level (DPPP assay) were measured as markers of cellular influences. Transmission electron microscope observation showed cellular uptake of platinum nanoparticles. However, the platinum nanoparticles did not drive any markers. It is known that some metal oxide nanoparticles such as NiO and CuO show severe cytotoxicity via metal ion release. Compared with these toxic nanoparticles, the platinum nanoparticles used in this study did not release platinum ions into the culture media. These results suggest that the physically and chemically inactive cellular influences of platinum nanoparticles are small.

  14. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries.

    PubMed

    Chen, Hongwei; Dong, Weiling; Ge, Jun; Wang, Changhong; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2013-01-01

    We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g(-1) and a stable capacity of 930 mAh g(-1) after 50 cycles.

  15. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries

    PubMed Central

    Chen, Hongwei; Dong, Weiling; Ge, Jun; Wang, Changhong; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2013-01-01

    We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g−1 and a stable capacity of 930 mAh g−1 after 50 cycles. PMID:23714786

  16. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Chen, Hongwei; Dong, Weiling; Ge, Jun; Wang, Changhong; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2013-05-01

    We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g-1 and a stable capacity of 930 mAh g-1 after 50 cycles.

  17. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    PubMed

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  18. Essential oils: from extraction to encapsulation.

    PubMed

    El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A

    2015-04-10

    Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    PubMed

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  20. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yihuang; Wang, Zewei; He, Yanjie; Yoon, Young Jun; Jung, Jaehan; Zhang, Guangzhao; Lin, Zhiqun

    2018-02-01

    The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.

  1. Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions

    PubMed Central

    Macdonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.

    2016-01-01

    A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions. PMID:27982122

  2. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists ofmore » NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  3. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.

    PubMed

    Yi, Jiang; Lam, Tina I; Yokoyama, Wallace; Cheng, Luisa W; Zhong, Fang

    2014-09-03

    Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.

  4. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    PubMed

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  5. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics.

    PubMed

    Li, Yu-Ji; Dong, Ming; Kong, Fan-Min; Zhou, Jian-Ping

    2015-07-15

    Nanoparticulate system with theranostic applications has attracted significant attention in cancer therapeutics. In the present study, we have developed a novel composite PLGA NP co-encapsulated with anticancer drug (sorafenib) and magnetic NP (SPION). We have successfully developed nanosized folate-conjugated PEGylated PLGA nanoparticles (SRF/FA-PEG-PLGA NP) with both anticancer and magnetic resonance property. We have showed that FA-conjugated NP exhibits sustained drug release and enhanced cellular uptake in BEL7402 cancer cells. The targeted NP effectively suppressed the tumor cell proliferation and has improved the anticancer efficacy than that of free drug or non-targeted one. Additionally, enhanced MRI properties demonstrate this formulation has good imaging agent characteristics. Finally, SRF/FA-PEG-PLGA NP effectively inhibited the colony forming ability indicating its superior anticancer effect. Together, these multifunctional nanoparticles would be most ideal to improve the therapeutic response in cancer and holds great potential to be a part of future nanomedicine. Our unique approach could be extended for multiple biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  6. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of

  7. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing.

    PubMed

    Rapakousiou, Amalia; Deraedt, Christophe; Irigoyen, Joseba; Wang, Yanlan; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Moya, Sergio; Astruc, Didier

    2015-03-02

    The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.

  9. Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles

    PubMed Central

    2017-01-01

    Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require

  10. Silica Encapsulation of Ferrimagnetic Zinc Ferrite Nanocubes Enabled by Layer-by-layer Polyelectrolyte Deposition

    PubMed Central

    Park, Jooneon; Porter, Marc D.; Granger, Michael C.

    2016-01-01

    Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, due to the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, i.e., >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σs ~100 emu/g, m~4×10−13 emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrene sulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented. PMID:25756216

  11. Formulation design space for stable, pH sensitive crystalline nifedipine nanoparticles.

    PubMed

    Jog, Rajan; Unachukwu, Kenechi; Burgess, Diane J

    2016-11-30

    Enteric coated formulations protect drugs from degrading in the harsh environment of the stomach (acidic pH and enzymes), and promotes drug delivery to and absorption into the duodenum and/or later parts of the intestine. Four DoE models were applied to optimize formulation parameters for the preparation of pH sensitive nifedipine nanoparticles. Stability studies were performed on the optimized formulations to monitor any possible variation in particle size distribution, homogeneity index, surface charge and drug release (pH 1.2 and pH 6.8). Stability studies were performed for 3 months at 4°C, 25°C and 40°C. A combination of Eudragit ® L 100-55 and polyvinyl alcohol was determined to be the most effective in stabilizing the nanoparticle suspension. The average particle size distribution, polydispersity index and surface charge of the optimized pH sensitive nifedipine nanoparticles were determined to be 131.86±8.21nm, 0.135±0.008 and -7.631±0.146mV, respectively. Following three months storage, it was observed that the formulations stored at 4°C were stable in terms of particle size distribution, polydispersity index, surface charge, drug loading and drug release, whereas those stored at 25°C and 40°C were relatively unstable. A predictive model to prepare stable pH sensitive nifedipine nanoparticles, was successfully developed using multiple linear regression analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Layer-by-Layer Polyelectrolyte Encapsulation of Mycoplasma pneumoniae for Enhanced Raman Detection

    PubMed Central

    Rivera-Betancourt, Omar E.; Sheppard, Edward S.; Krause, Duncan C.; Dluhy, Richard A.

    2014-01-01

    Mycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency. Here we report the layer-by-layer (LBL) encapsulation of M. pneumoniae cells with Ag nanoparticles in a matrix of the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS). We evaluated nanoparticle encapsulated mycoplasma cells as a platform for the differentiation of M. pneumoniae strains using surface enhanced Raman scattering (SERS) combined with multivariate statistical analysis. Three separate M. pneumoniae strains (M129, FH and II-3) were studied. Scanning electron microscopy and fluorescence imaging showed that the Ag nanoparticles were incorporated between the oppositely charged polyelectrolyte layers. SERS spectra showed that LBL encapsulation provides excellent spectral reproducibility. Multivariate statistical analysis of the Raman spectra differentiated the three M. pneumoniae strains with 97 – 100% specificity and sensitivity, and low (0.1 – 0.4) root mean square error. These results indicated that nanoparticle and polyelectrolyte encapsulation of M. pneumoniae is a potentially powerful platform for rapid and sensitive SERS-based bacterial identification. PMID:25017005

  13. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection

    NASA Astrophysics Data System (ADS)

    Rahmer, J.; Antonelli, A.; Sfara, C.; Tiemann, B.; Gleich, B.; Magnani, M.; Weizenecker, J.; Borgert, J.

    2013-06-01

    Magnetic particle imaging (MPI) is a new medical imaging approach that is based on the nonlinear magnetization response of super-paramagnetic iron oxide nanoparticles (SPIOs) injected into the blood stream. To date, real-time MPI of the bolus passage of an approved MRI SPIO contrast agent injected into the tail vein of living mice has been demonstrated. However, nanoparticles are rapidly removed from the blood stream by the mononuclear phagocyte system. Therefore, imaging applications for long-term monitoring require the repeated administration of bolus injections, which complicates quantitative comparisons due to the temporal variations in concentration. Encapsulation of SPIOs into red blood cells (RBCs) has been suggested to increase the blood circulation time of nanoparticles. This work presents first evidence that SPIO-loaded RBCs can be imaged in the blood pool of mice several hours after injection using MPI. This finding is supported by magnetic particle spectroscopy performed to quantify the iron concentration in blood samples extracted from the mice 3 and 24 h after injection of SPIO-loaded RBCs. Based on these results, new MPI applications can be envisioned, such as permanent 3D real-time visualization of the vessel tree during interventional procedures, bleeding monitoring after stroke, or long-term monitoring and treatment control of cardiovascular diseases.

  14. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    PubMed Central

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  15. A New Method of Producing a Natural Antibacterial Peptide by Encapsulated Probiotics Internalized with Inulin Nanoparticles as Prebiotics.

    PubMed

    Cui, Lian-Hua; Yan, Chang-Guo; Li, Hui-Shan; Kim, Whee-Soo; Hong, Liang; Kang, Sang-Kee; Choi, Yun-Jaie; Cho, Chong-Su

    2018-04-28

    Synbiotics are a combination of probiotics and prebiotics, which lead to synergistic benefits in host welfare. Probiotics have been used as an alternative to antibiotics. Among the probiotics, Pediococcus acidilactici (PA) has shown excellent antimicrobial activity against Salmonella Gallinarum (SG) as a major poultry pathogen and has improved the production performances of animals. Inulin is widely used as a prebiotic for the improvement of animal health and growth. The main aim of this study is to investigate the effect of the antimicrobial activity of inulin nanoparticles (INs)-internalized PA encapsulated into alginate/chitosan/alginate (ACA) microcapsules (MCs) in future in vivo application. The prepared phthalyl INs (PINs) were characterized by DLS and FE-SEM. The contents of phthal groups in phthalyl inulin were estimated by ¹H-NMR measurement as 25.1 mol.-%. The sizes of the PINs measured by DLS were approximately 203 nm. Internalization into PA was confirmed by confocal microscopy and flow cytometry. Antimicrobial activity of PIN-internalized probiotics encapsulated into ACA MCs was measured by co-culture antimicrobial assays on SG. PIN-internalized probiotics had a higher antimicrobial ability than that of ACA MCs loaded with PA/inulin or PA. Interestingly, when PINs were treated with PA and encapsulated into ACA MCs, as a natural antimicrobial peptide, pediocin was produced much more in the culture medium compared with other groups inulin-loaded ACA MCs and PA-encapsulated into ACA MCs.

  16. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids

    PubMed Central

    Singh, Brahma Nand; Rawat, Ajay Kumar Singh; Khan, Wasi; Naqvi, Alim H.; Singh, Braj Raj

    2014-01-01

    During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The RL@ZnO nanoparticles were characterized by UV-visible (UV–vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV–vis spectra presented a characteristic absorbance peak at ∼360 nm for synthesized RL@ZnO nanoparticles. The XRD spectrum showed that RL@ZnO nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of RL@ZnO nanoparticles was assessed through 2,2–diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system. PMID:25187953

  17. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    NASA Astrophysics Data System (ADS)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  18. Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance

    DOE PAGES

    Crane, Cameron C.; Wang, Feng; Li, Jun; ...

    2017-02-21

    Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less

  19. Synthesis of Copper–Silica Core–Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Cameron C.; Wang, Feng; Li, Jun

    Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in the visible region; however, the LSPR peaks become weak and broad when exposed to air due to the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO 2 by employing trioctyl-n-phosphine (TOP)-capped Cu nanoparticles for the sol–gel reaction, yielding an aqueous Cu–SiO 2 core–shell suspension with stable and well-preserved LSPR properties of the Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was significantly reduced, thus allowing the Cu cores to sustain the sol–gel process used formore » coating the SiO 2 protection layer. It was found that the self-assembled TOP-capped Cu nanoparticles were spontaneously disassembled during the sol–gel reaction, thus recovering the LSPR of individual particles. During the disassembling progress, the extinction spectrum of the nanocube agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling process. The observed spectra match well with the numerical simulations. In conclusion, these Cu–SiO 2 core–shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu nanoparticles in aqueous environments.« less

  20. In-situ formation of nanoparticles within a silicon-based matrix

    DOEpatents

    Thoma, Steven G [Albuquerque, NM; Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM

    2008-06-10

    A method for encapsulating nanoparticles with an encapsulating matrix that minimizes aggregation and maintains favorable properties of the nanoparticles. The matrix comprises silicon-based network-forming compounds such as ormosils and polysiloxanes. The nanoparticles are synthesized from precursors directly within the silicon-based matrix.

  1. [Preparation of Oenothera biennis Oil Solid Lipid Nanoparticles Based on Microemulsion Technique].

    PubMed

    Piao, Lin-mei; Jin, Yong; Cui, Yan-lin; Yin, Shou-yu

    2015-06-01

    To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. The preparation process is simple, stable and feasible.

  2. Silica passivated conjugated polymer nanoparticles for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Bourke, Struan; Urbano, Laura; Olona, Antoni; Valderrama, Ferran; Dailey, Lea Ann; Green, Mark A.

    2017-02-01

    Colorectal and prostate cancers are major causes of cancer-related death, with early detection key to increased survival. However, as symptoms occur during advanced stages and current diagnostic methods have limitations, there is a need for new fluorescent probes that remain bright, are biocompatible and can be targeted. Conjugated polymer nanoparticles have shown great promise in biological imaging due to their unique optical properties. We have synthesised small, bright, photo-stable CN-PPV, nanoparticles encapsulated with poloxamer polymer and a thin silica shell. By incubating the CN-PPV silica shelled cross-linked (SSCL) nanoparticles in mammalian (HeLa) cells; we were able to show that cellular uptake occurred. Uptake was also shown by incubating the nanoparticles in RWPE-1, WPE1-NB26 and WPE1- NA22 prostate cancer cell lines. Finally, HEK cells were used to show the particles had limited cytotoxicity.

  3. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  4. Microfluidic Encapsulation of Prickly Zinc-Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy.

    PubMed

    Zhang, Hongbo; Liu, Dongfei; Wang, Liang; Liu, Zehua; Wu, Runrun; Janoniene, Agne; Ma, Ming; Pan, Guoqing; Baranauskiene, Lina; Zhang, Linlin; Cui, Wenguo; Petrikaite, Vilma; Matulis, Daumantas; Zhao, Hongxia; Pan, Jianming; Santos, Hélder A

    2017-06-01

    Structural features of nanoparticles have recently been explored for different types of applications. To explore specific particles as nanomedicine and physically destroy cancer is interesting, which might avoid many obstacles in cancer treatment, for example, drug resistance. However, one key element and technical challenge of those systems is to selectively target them to cancer cells. As a proof-of-concept, Prickly zinc-doped copper oxide (Zn-CuO) nanoparticles (Prickly NPs) have been synthesized, and subsequently encapsulated in a pH-responsive polymer; and the surface has been modified with a novel synthesized ligand, 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl] benzenesulfonamide (VD1142). The Prickly NPs exhibit very effective cancer cell antiproliferative capability. Moreover, the polymer encapsulation shields the Prickly NPs from unspecific nanopiercing and, most importantly, VD1142 endows the engineered NPs to specifically target to the carbonic anhydrase IX, a transmembrane protein overexpressed in a wide variety of cancer tumors. Intracellularly, the Prickly NPs disintegrate into small pieces that upon endosomal escape cause severe damage to the endoplasmic reticulum and mitochondria of the cells. The engineered Prickly NP is promising in efficient and targeted cancer treatment and it opens new avenue in nanomedication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance.

    PubMed

    Chen, Jingjing; Zheng, Jinkai; McClements, David Julian; Xiao, Hang

    2014-09-01

    The aim of this study was to design a colloidal delivery system to encapsulate poor water-soluble bioactive flavonoid tangeretin so that it could be utilized in various food products as functional ingredient. Tangeretin-loaded protein nanoparticles were produced by mixing an organic phase containing zein and tangeretin with an aqueous phase containing β-lactoglobulin and then converted into powder by freeze-drying. This powder formed a colloidal suspension when dispersed in water that is relatively stable to particle aggregation and sedimentation. The influence of temperature, ionic strength, and pH on the stability of the protein nanoparticles was tested. Extensive particle aggregation occurred at high ionic strength (>100mM) and intermediate pH (4.5-5.5) due to reduced electrostatic repulsion. Extensive aggregation also occurred at temperatures exceeding 60 °C, which was presumably due to increased hydrophobic attraction. Overall, this study shows that protein-based nanoparticles can be used to encapsulate bioactive tangeretin so that it can be readily dispersed in compatible food products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum.

    PubMed

    Yang, Wei; Zhang, Lei; Wang, Shanlin; White, Andrew D; Jiang, Shaoyi

    2009-10-01

    A new surface chemistry presenting an abundance of functional groups for ligand immobilization in an ultra-low fouling background all in one material for nanoparticles was introduced. This surface platform, as demonstrated by zwitterionic poly(carboxybetaine acrylamide) (polyCBAA) coated nanoparticles, is not only ultra stable in undiluted human blood serum, but also can be conjugated to biomolecules conveniently and effectively. Thus, this surface chemistry is ideal to create multi-functional nanoparticles for targeted delivery and diagnostics. In addition, this work clearly shows that 10% blood serum commonly used to evaluate the stability of nanoparticles is insufficient and a new evaluation criterion with undiluted blood serum is recommended.

  7. Stability Analysis of an Encapsulated Microbubble against Gas Diffusion

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik

    2009-01-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522

  8. Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles.

    PubMed

    Pooja, Deep; Babu Bikkina, Dileep J; Kulhari, Hitesh; Nikhila, Nalla; Chinde, Srinivas; Raghavendra, Y M; Sreedhar, B; Tiwari, Ashok K

    2014-08-01

    Silibinin is reported to possess multiple biological activities. However, its hydrophobic nature limits its bioavailability compromising in vivo biological activities. Nanoparticles-based delivery of such molecules has emerged as new technique to resolve these issues. Bio-degradable, compatible and adhesive nature of chitosan has recently attracted its suitability as a carrier for biologically active molecules. This study presents fabrication and characterization of chitosan-tripolyphosphate based encapsulation of silibinin. Various preparations of silibinin encapsulated chitosan-tripolyphosphate nanoparticles were studied for particle size, morphology, zeta-potential, and encapsulation efficiencies. Preparations were also evaluated for cytotoxic activities in vitro. The optimized silibinin loaded chitosan nanoparticles were of 263.7±4.1nm in particle size with zeta potential 37.4±1.57mV. Nanoparticles showed high silibinin encapsulation efficiencies (82.94±1.82%). No chemical interactions between silibinin and chitosan were observed in FTIR analysis. Powder X-ray diffraction analysis revealed transformed physical state of silibinin after encapsulation. Surface morphology and thermal behaviour were determined using TEM and DSC analysis. Encapsulated silibinin displayed increased dissolution and better cytotoxicity against human prostate cancer cells (DU145) than silibinin alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Facile SILAR approach to air-stable naked silver and gold nanoparticles supported by alumina.

    PubMed

    Stamplecoskie, Kevin G; Manser, Joseph S

    2014-10-22

    A synthetically convenient and scalable SILAR (successive ion layer adsorption and reaction) method is used to make air-stable films of silver and gold nanoparticles supported on alumina scaffolds. This solution-based deposition technique yields particles devoid of insulating capping agents or ligands. The optical properties of the nanoparticle films were investigated using femtosecond transient absorption spectroscopy. A linear absorption arising from intraband excitation (775 nm laser pulse) is seen only for Au nanoparticles at low intensity. However, both Au and Ag particles exhibit plasmon resonance responses at high excitation intensity via two photon absorption of the 775 nm pump pulse. The difference in optical response to near-IR laser excitation is rationalized based on the known density of states for each metal. To demonstrate the potential applications of these films, alumina-supported Ag nanoparticles were utilized as substrates for surface enhanced Raman spectroscopy, resulting in a 65-fold enhancement in the Raman signal of the probe molecule rhodamine 6G. The exceptional stability and scalability of these SILAR films opens the door for further optical and photocatalytic studies and applications, particularly with ligand-free Ag nanoparticles that typically oxidize under ambient conditions. Additionally, isolating plasmonic and interband electronic excitations in stable AgNP under visible light irradiation could enable elucidation of the mechanisms that drive noble metal-assisted photocatalytic processes.

  10. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity.

    PubMed

    Mobasseri, Rezvan; Karimi, Mahdi; Tian, Lingling; Naderi-Manesh, Hossein; Ramakrishna, Seeram

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca 2+ , Zn 2+ or Mg 2+ ). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl 2 ) facilitated the formation of bare (100.3±0.80nm) and drug-loaded nanoparticles (134.3±1.3nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was -16.8±0.47mV and its entrapment and loading efficiency were 76.74±1.73% and 47.36±1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines.

    PubMed

    Nayak, Debasis; Minz, Aliva Prity; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Chopra, Pankaj; Nayak, Bismita

    2016-05-15

    Chitosan (Cs) is a biocompatible, biodegradable cationic polymer having the ability of targeted drug delivery. Vitamin E and C are not synthesized in our body thus, when encapsulated within a carrier system these vitamins in combination with/alone can be utilized for their anti-cancer potentials. The present investigation was conducted to develop a stable nanoparticle based formulation encapsulating antioxidants (Vitamin E, catechol) and silver nanoparticles synthesized from Hibiscus rosa-sinensis (HRS) petal extracts within a chitosan matrix. The prepared nanoformulations were characterized using Field emission scanning electron microscopy (Fe-SEM), X-ray diffraction (XRD) and Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). They were further tested for their antioxidant potentials using DPPH assay, hydrogen peroxide scavenging assay, nitric oxide scavenging assay and ferrous antioxidant reducing potential assay. The nanoformulations were found to be highly hemocompatible and showed high encapsulation efficiency up to 76%. They also showed higher antioxidant activity than their base materials. Further, their anti-cancer efficacy was observed against MCF-7 breast cancer cells having IC50 values of 53.36±0.36μg/mL (chitosan-ascorbic acid-glucose), 55.28±0.85μg/mL (chitosan-Vitamin E), 63.72±0.27μg/mL (Chitosan-catechol) and 58.53±0.55μg/mL (chitosan-silver nanoparticles). Thus, the prepared formulations can be therapeutically applied for effective and targeted delivery in breast cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Thermally stable nanoparticles on supports

    DOEpatents

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  13. Skin Dendritic Cell Targeting via Microneedle Arrays Laden with Antigen-Encapsulated Poly-d,l-lactide-co-Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses

    PubMed Central

    2013-01-01

    The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8+ T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage. PMID:23373658

  14. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    PubMed

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  15. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules

    NASA Astrophysics Data System (ADS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal

    2013-07-01

    Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable

  16. Encapsulation of superparamagnetic Fe 3 O 4 @SiO 2 core/shell nanoparticles in MnO 2 microflowers with high surface areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu-Gang; Truong, Tu T.; Liu, Yu-Zi

    2015-02-01

    Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation. (C) 2014 Yu-Gangmore » Sun.« less

  17. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    PubMed

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Bird's nest-like nanographene shell encapsulated Si nanoparticles - Their structural and Li anode properties

    NASA Astrophysics Data System (ADS)

    Li, Beibei; Jiang, Yizhe; Jiang, Fan; Cao, Daxian; Wang, Hongkang; Niu, Chunming

    2017-02-01

    Bird's nest-like nanographene shell (NGS) encapsulated Si@SiO2 nanoparticles have been prepared by a simple chemical vapor deposition (CVD) method. The shell is comprised of a conformed coating with 4-10 layers of the nanographene, and nanographene spikes with the same thickness grown on the coating surface. The high crystallinity of the shell is demonstrated by XRD, HRTEM and Raman characterization. After SiO2 has been removed, distinctive void space is created between Si core and nested NGS. Statistical estimation from TEM images of 50 Si@void@NGS particles shows that the volume of void space is about 2.82 times of that of Si nanoparticle, sufficient to accommodate volume change from Si to Li15Si4. Evaluation of Si@void@NGS for Li ion anode reveals a specific capacity of 2634 mAh g-1 at a current density of 0.2 A g-1, and an excellent rate and cycling performance. The capacity decreases by 5.2%-2497 mAh g-1 after cycling at current densities of 0.5, 1, 2, 5 10, 20 A g-1. The excellent performance can be attributed to high conductivity and high stability of the shell, which remains intact after repeated cycling.

  19. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin.

    PubMed

    Mathew, Thomas V; Kuriakose, Sunny

    2013-01-01

    Colloidal silver nanoparticles were synthesised using sol-gel method and these nanoparticles were stabilised by encapsulated into the scaffolds of bovine serum albumin. Silver nanoparticles and encapsulated products were characterised by FTIR, NMR, XRD, TG, SEM and TEM analyses. Silver nanoparticle encapsulated bovine serum albumin showed highly potent antibacterial activity towards the bacterial strains such as Staphylococcus aureus, Serratia marcescens, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  1. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    PubMed

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  2. The dual effect of curcumin nanoparticles encapsulated by 1-3/1-6 β-glucan from medicinal mushrooms Hericium erinaceus and Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Huong Le, Mai; Doan Do, Hai; Tran Thi, Hong Ha; Dung, Le Vu; Nguyen, Hoai Nam; Nhu Tran Thi, Hang; Dinh Nguyen, Luyen; Hoang, Chi Kim; Le, Huu Cuong; Huong Le Thi, Thu; Trinh, Hoang Trung; Thu Ha, Phuong

    2016-12-01

    Curcumin is a polyphenol from turmeric Curcuma longa L that has been proved to possess numerous biological and pharmaceutical activities, including anti-cancer properties. However, curcumin has only limited clinical applications due to the aqueous insolubility characteristic that reduces its biological availability. On the other hand, using nanoparticles as drug delivery system has potential as it increases solubility of hydrophobic substances such as curcumin. Furthermore, nanoparticles can protect and control release of drug. Therefore, the objective of this project is to prepare nanoparticles by polymeric encapsulating curcumin by 1-3/1-6 β-glucan extracted from Vietnamese mushrooms to increase drug delivery efficiency and biological effect. Method of the preparation is nano-precipitation. The produced curcumin-β-glucan-nanoparticles (NanoGluCur) takes spherical shape with 60-70 nm in diameter. As expected, water solubility of curcumin increases about 180 times, from 0.6 μg ml-1 to 0.11 mg ml-1. Loading capacity of NanoGluCur is 18.16%. In vitro cytotoxicity and anti-tumor promoting effects of NanoGluCur were also investigated. Results revealed that NanoGluCur is able to inhibit the growth of two human cancer cell lines Hep-G2 and LU-1 with IC50 values of 6.82 and 15.53 mg ml-1, respectively, while free curcumin expresses the activity with IC50 values of 7.41 and 18.82 mg ml-1. At the concentration of 40 mg ml-1, NanoGluCur showed anti-tumor promoting effects in reducing tumor size by 59.93% and tumor density by 40.52%, while the percentages caused by pristine curcumin were 41.36% and 29.14%, respectively. These results demonstrated dual effect of 1-3/1-6 β-glucan encapsulated curcumin nanoparticles: higher water solubility and better in vitro anti-cancer effects compared to free curcumin and 1-3/1-6 β-glucan, expectedly. This observation can potentially open a new approach in research and manufacture of functional foods from medicinal mushrooms.

  3. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.

    PubMed

    Lee, Gwan-Hyoung; Cui, Xu; Kim, Young Duck; Arefe, Ghidewon; Zhang, Xian; Lee, Chul-Ho; Ye, Fan; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip; Hone, James

    2015-07-28

    Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.

  4. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method

    PubMed Central

    2012-01-01

    The antimicrobial properties of dextrose-encapsulated gold nanoparticles (dGNPs) with average diameters of 25, 60, and 120 nm (± 5) and synthesized by green chemistry principles were investigated against both Gram-negative and Gram-positive bacteria. Studies were performed involving the effect of dGNPs on the growth, morphology, and ultrastructural properties of bacteria. dGNPs were found to have significant dose-dependent antibacterial activity which was also proportional to their size. Experiments revealed the dGNPs to be bacteriostatic as well as bactericidal. The dGNPs exhibited their bactericidal action by disrupting the bacterial cell membrane which leads to the leakage of cytoplasmic content. The overall outcome of this study suggests that green-synthesized dGNPs hold promise as a potent antibacterial agent against a wide range of disease-causing bacteria by preventing and controlling possible infections or diseases. PMID:23146145

  5. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic reduction of NO by hydrogen

    NASA Astrophysics Data System (ADS)

    Hong, Zhe; Wang, Zhong; Chen, Dan; Sun, Qiang; Li, Xuebing

    2018-05-01

    Pt nanoparticles were successfully encapsulated in hollow ZSM-5 single crystals by tetrapropylammonium hydroxide (TPAOH) hydrothermal treatment with an "dissolution-recrystallization" process. The prepared Pt/hollow ZSM-5 (Pt/h-ZSM-5re) sample exhibited the best activity and a maximum NO conversion of 84% can be achieved at 90 °C with N2 selectivity of 92% (GHSV = 50,000 h-1). Meanwhile, Pt/h-ZSM-5re catalyst exhibited excellent SO2, H2O resistance and durability, which was related to the stabilization of Pt active sites by hollow structure during H2-SCR. It was found that the increase of NO2 concentration in the feed gas mixture led to an activity decline. In addition, the H2-SCR reaction routes over Pt/hollow ZSM-5 catalyst at different temperature were investigated.

  6. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    PubMed

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Min; Zhao, Lixia; Guo, Chenyu; Cao, Fengliang; Chen, Huanlei; Zhao, Liyan; Tan, Qi; Zhu, Xiuqing; Zhu, Fanping; Ding, Tingting; Zhai, Yingjie; Zhai, Guangxi

    2012-02-01

    A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40-400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

  8. Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers

    PubMed Central

    Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H.; Katti, Kalpana S.; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2013-01-01

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. PMID:23394107

  9. Nanoparticles as a novel delivery vehicle for therapeutics targeting erectile dysfunction.

    PubMed

    Han, George; Tar, Moses; Kuppam, Dwaraka S R; Friedman, Adam; Melman, Arnold; Friedman, Joel; Davies, Kelvin P

    2010-01-01

    Nanoparticles represent a potential novel mechanism for transdermal delivery of erectogenic agents directly to the penis. To determine if nanoparticles encapsulating known erectogenic agents (tadalafil, sialorphin, and nitric oxide [NO]) can improve erectile function in a rat model of erectile dysfunction (ED) as a result of aging (the Sprague-Dawley retired breeder rat). Nanoparticles encapsulating the erectogenic agents were applied as a gel to the glans and penile shaft of anesthetized Sprague-Dawley rats and the intracorporal pressure/blood pressure (ICP/BP) monitored for up to 2 hours with or without stimulation of the cavernous nerve. Control nanoparticles were made without encapsulating erectogenic agents and applied in a similar manner in separate experiments. Nanoparticles encapsulating NO caused spontaneous visible erections in the rat, with an average time of onset of 4.5 minutes, duration of 1.42 minutes, and ICP/BP of 0.67 +/- 0.14. The sialorphin nanoparticles also caused visible spontaneous erections after an average of 4.5 minutes, with a duration of 8 minutes and ICP/BP ratio of 0.72 +/- 0.13. The difference in the erectile response between groups of animals treated with NO or sialorphin nanoparticles was significantly different from the control group treated with empty nanoparticles (P < 0.05) Tadalafil nanoparticles showed a significant increase in the mean ICP/BP (0.737 +/- 0.029) following stimulation of the cavernous nerve (4 mA) 1 hour after application of the nanoparticles with a visibly improved erectile response. Nanoparticles encapsulating three different erectogenic agents resulted in increased erectile function when applied to the penis of a rat model of ED. Nanoparticles represent a potential novel route for topical delivery of erectogenic agents which could improve the safety profile for existing orally administered drugs by avoiding effects of absorption and first-pass metabolism, and would be less hazardous than injection.

  10. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  11. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.

    PubMed

    Abul Kalam, Mohd; Khan, Abdul Arif; Khan, Shahanavaj; Almalik, Abdulaziz; Alshamsan, Aws

    2016-06-01

    Indomethacin chitosan nanoparticles (NPs) were developed by ionotropic gelation and optimized by concentrations of chitosan and tripolyphosphate (TPP) and stirring time by 3-factor 3-level Box-Behnken experimental design. Optimal concentration of chitosan (A) and TPP (B) were found 0.6mg/mL and 0.4mg/mL with 120min stirring time (C), with applied constraints of minimizing particle size (R1) and maximizing encapsulation efficiency (R2) and drug release (R3). Based on obtained 3D response surface plots, factors A, B and C were found to give synergistic effect on R1, while factor A has a negative impact on R2 and R3. Interaction of AB was negative on R1 and R2 but positive on R3. The factor AC was having synergistic effect on R1 and on R3, while the same combination had a negative effect on R2. The interaction BC was positive on the all responses. NPs were found in the size range of 321-675nm with zeta potentials (+25 to +32mV) after 6 months storage. Encapsulation, drug release, and content were in the range of 56-79%, 48-73% and 98-99%, respectively. In vitro drug release data were fitted in different kinetic models and pattern of drug release followed Higuchi-matrix type. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  13. Biophysical characterization of hydrogel-core, lipid-shell nanoparticles (nanolipogels) for HIV chemoprophylaxis

    NASA Astrophysics Data System (ADS)

    Mahadevan, Reena

    Nanoparticles are emerging as versatile vehicles for drug delivery, providing targeting, protection, and controlled-release capabilities to encapsulated cargo. Polymeric nanoparticles made from poly(lactide-co-glycolide) (PLGA) are biodegradable, exhibit tunable drug release, and have encapsulated a wide variety of biological agents. However, PLGA nanoparticles are relatively inefficient at encapsulating small-molecule hydrophilic drugs. Liposomes encapsulate greater amounts of hydrophilic agents and demonstrate good cellular affinity; however, they lack controlled-release functionality. Hydrogel-core lipid-shell nanoparticles, or nanolipogels, combine the controlled-release capability of polymeric nanocarriers with the hydrophilic and cellular affinity of liposomes into a single drug delivery vehicle. This study establishes a facile, reproducible synthetic protocol for nanolipogels and evaluates hydrogel swelling as a mechanism for release of the small hydrophilic antiretroviral azidothymidine from nanolipogels.

  14. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin.

    PubMed

    Elsayed, Amani; Al-Remawi, Mayyas; Qinna, Nidal; Farouk, Asim; Al-Sou'od, Khaldoun A; Badwan, Adnan A

    2011-09-01

    The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.

  15. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation.

    PubMed

    Silva, A L; Rosalia, R A; Sazak, A; Carstens, M G; Ossendorp, F; Oostendorp, J; Jiskoot, W

    2013-04-01

    Overlapping synthetic long peptides (SLPs) hold great promise for immunotherapy of cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are being developed as delivery systems to improve the potency of peptide-based therapeutic cancer vaccines. Our aim was to optimize PLGA NP for SLP delivery with respect to encapsulation and release, using OVA24, a 24-residue long synthetic antigenic peptide covering a CTL epitope of ovalbumin (SIINFEKL), as a model antigen. Peptide-loaded PLGA NPs were prepared by a double emulsion/solvent evaporation technique. Using standard conditions (acidic inner aqueous phase), we observed that either encapsulation was very low (1-30%), or burst release extremely high (>70%) upon resuspension of NP in physiological buffers. By adjusting formulation and process parameters, we uncovered that the pH of the first emulsion was critical to efficient encapsulation and controlled release. In particular, an alkaline inner aqueous phase resulted in circa 330 nm sized NP with approximately 40% encapsulation efficiency and low (<10%) burst release. These NP showed enhanced MHC class I restricted T cell activation in vitro when compared to high-burst releasing NP and soluble OVA24, proving that efficient entrapment of the antigen is crucial to induce a potent cellular immune response. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.

    PubMed

    Huang, Renliang; Wu, Mengyun; Goldman, Mark J; Li, Zhi

    2015-06-01

    Enzyme encapsulation is a simple, gentle, and general method for immobilizing enzyme, but it often suffers from one or more problems regarding enzyme loading efficiency, enzyme leakage, mechanical stability, and recyclability. Here we report a novel, simple, and efficient method for enzyme encapsulation to overcome these problems by forming stable organic-inorganic hybrid capsules. A new, facile, one-step, and template-free synthesis of organic-inorganic capsules in aqueous phase were developed based on PEI-induced simultaneous interfacial self-assembly of Fmoc-FF and polycondensation of silicate. Addition of an aqueous solution of Fmoc-FF and sodium silicate into an aqueous solution of PEI gave a new class of organic-inorganic hybrid capsules (FPSi) with multi-layered structure in high yield. The capsules are mechanically stable due to the incorporation of inorganic silica. Direct encapsulation of enzyme such as epoxide hydrolase SpEH and BSA along with the formation of the organic-inorganic capsules gave high yield of enzyme-containing capsules (∼1.2 mm in diameter), >90% enzyme loading efficiency, high specific enzyme loading (158 mg protein g(-1) carrier), and low enzyme leakage (<3% after 48 h incubation). FPSi-SpEH capsules catalyzed the hydrolysis of cyclohexene oxide to give (1R, 2R)-cyclohexane-1,2-diol in high yield and concentration, with high specific activity (6.94 U mg(-1) protein) and the same high enantioselectivity as the free enzyme. The immobilized SpEH demonstrated also excellent operational stability and recyclability: retaining 87% productivity after 20 cycles with a total reaction time of 80 h. The new enzyme encapsulation method is efficient, practical, and also better than other reported encapsulation methods. © 2015 Wiley Periodicals, Inc.

  18. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    NASA Astrophysics Data System (ADS)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  19. Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prajongtat, Pongthep; Sriyab, Suwannee; Zentgraf, Thomas; Hannongbua, Supa

    2018-01-01

    Ferrocene-encapsulated carbon nanotubes (Fc@CNTs) became promising nanocomposite materials for a wide range of applications due to their superior catalytic, mechanical and electronic properties. To open up new windows of applications, the highly stable and charge transferable encapsulation complexes are required. In this work, we designed the new encapsulation complexes formed from ferrocene derivatives (FcR, where R = -CHO, -CH2OH, -CON3 and -PCl2) and single-walled carbon nanotubes (SWCNTs). The influence of diameter and chirality of the nanotubes on the stability, charge transferability and electronic properties of such complexes has been investigated using density functional theory. The calculations suggest that the encapsulation stability and charge transferability of the encapsulation complexes depend on the size and chirality of the nanotubes. FcR@SWCNTs are more stable than Fc@SWCNTs at the optimum tube diameter. The greatest charge transfer was observed for FcCH2OH@SWCNTs and Fc@SWCNTs since the Fe d levels of FcCH2OH and Fc are nearly equal and close to the Fermi energy level of the nanotubes. The obtained results pave the way to the design of new encapsulated ferrocene derivatives which can give rise to higher stability and charge transferability of the encapsulation complexes.

  20. Formulation of Stable and Homogeneous Cell-Penetrating Peptide NF55 Nanoparticles for Efficient Gene Delivery In Vivo.

    PubMed

    Freimann, Krista; Arukuusk, Piret; Kurrikoff, Kaido; Pärnaste, Ly; Raid, Raivo; Piirsoo, Andres; Pooga, Margus; Langel, Ülo

    2018-03-02

    Although advances in genomics and experimental gene therapy have opened new possibilities for treating otherwise incurable diseases, the transduction of nucleic acids into the cells and delivery in vivo remain challenging. The high molecular weight and anionic nature of nucleic acids require their packing into nanoparticles for the delivery. The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but their distribution in organisms is mostly governed by the physical properties of nanoparticles, and therefore, generation of stable particles with strictly defined characteristics is highly essential. Using previously designed efficient cell-penetrating peptide NF55, we searched for strategies enabling control over the nanoparticle formation and properties to further improve transfection efficacy. The size of the NF55/pDNA nanoparticles correlates with the concentration of its constituents at the beginning of assembly, but characteristics of nanoparticles measured by DLS do not reliably predict the applicability of particles in in vivo studies. We introduce a new formulation approach called cryo-concentration, where we acquired stable and homogeneous nanoparticles for administration in vivo. The cryo-concentrated NF55/pDNA nanoparticles exhibit several advantages over standard formulation: They have long shelf-life and do not aggregate after reconstitution, have excellent stability against enzymatic degradation, and show significantly higher bioactivity in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthesis and characterization of bioactive conjugated near-infrared fluorescent proteinoid-poly(L-lactic acid) hollow nanoparticles for optical detection of colon cancer

    PubMed Central

    Kolitz-Domb, Michal; Corem-Salkmon, Enav; Grinberg, Igor; Margel, Shlomo

    2014-01-01

    Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with colon cancer. Near-infrared (NIR) fluorescent nanoparticles are promising candidates for use as contrast agents for tumor detection. Using NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum: lower autofluorescence of biological tissues and lower absorbance and, consequently, deeper penetration into biomatrices. The present study describes the preparation of new NIR fluorescent proteinoid-poly(L-lactic acid) (PLLA) nanoparticles. For this purpose, a P(EF-PLLA) random copolymer was prepared by thermal copolymerization of L-glutamic acid (E) with L-phenylalanine (F) and PLLA. Under suitable conditions, this proteinoid-PLLA copolymer can self-assemble to nanosized hollow particles of relatively narrow size distribution. This self-assembly process was used for encapsulation of the NIR dye indocyanine green. The encapsulation process increases significantly the photostability of the dye. These NIR fluorescent nanoparticles were found to be stable and nontoxic. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline containing 4% human serum albumin was not detected. Tumor-targeting ligands such as peanut agglutinin and anticarcinoembryonic antigen antibodies were covalently conjugated to the surface of the NIR fluorescent P(EF-PLLA) nanoparticles, thereby increasing the fluorescent signal of tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent P(EF-PLLA) nanoparticles was demonstrated in a chicken embryo model. In future work, we plan to extend this study to a mouse model, as well as to encapsulate a cancer drug such as doxorubicin within these nanoparticles for therapeutic applications. PMID:25382975

  3. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications.

    PubMed

    Udompornmongkol, Panisa; Chiang, Been-Huang

    2015-11-01

    The purpose of the present study was to fabricate polymeric nanoparticles as drug carriers for encapsulated curcumin with enhanced anti-colorectal cancer applications. Nanoparticles were formulated from chitosan and gum arabic, natural polysaccharides, via an emulsification solvent diffusion method. The formation of curcumin nanoparticles was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimeter. The results show that curcumin was entrapped in carriers with +48 mV, 136 nm size, and high encapsulation efficiency (95%). Based on an in vitro release study, we inferred that curcumin nanoparticles could tolerate hydrolysis due to gastric juice or small intestinal enzymes, and therefore, it should reach the colon largely intact. In addition, curcumin nanoparticles had higher anti-colorectal cancer properties than free curcumin due to greater cellular uptake. Therefore, we concluded that curcumin was successfully encapsulated in chitosan-gum arabic nanoparticles with superior anti-colorectal cancer activity. © The Author(s) 2015.

  4. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells.

    PubMed

    Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu

    2013-10-01

    We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of native and modified banana starch nanoparticles as vehicles for curcumin.

    PubMed

    Acevedo-Guevara, Leonardo; Nieto-Suaza, Leonardo; Sanchez, Leidy T; Pinzon, Magda I; Villa, Cristian C

    2018-05-01

    In recent years, starch nanoparticles have been of great interest for drug delivery due to their relatively easy synthesis, biocompatibility, and vast amount of botanical sources. Native and acetylated starch obtained from green bananas were used for synthesis of curcumin-loaded starch nanoparticles. Mean particle size, encapsulation efficiency, and curcumin release in simulated gastric and intestinal fluids were studied. Both nanosystems showed sizes lower than 250 nm and encapsulation efficiency above 80%, with acetylated banana starch nanoparticles having the capacity to encapsulate more curcumin molecules. Both FTIR and XRD analyses showed that starch acetylation allows stronger hydrogen bond interaction between curcumin and the starch matrix, thus, higher encapsulation efficiency. Finally, curcumin release studies showed that acetylated banana starch nanoparticles allowed more controlled release, probably due to their stronger hydrogen bond interaction with curcumin. Copyright © 2018. Published by Elsevier B.V.

  6. PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy.

    PubMed

    Wang, Fang; Yuan, Jian; Zhang, Qian; Yang, Siqian; Jiang, Shaohua; Huang, Chaobo

    2018-05-17

    Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are an ideal paclitaxel (PTX)-carrying system due to its biocompatibility and biodegradability. But it possessed disadvantage of drug burst release. In this research, a layer-by-layer deposition of chitosan (CS) and sodium alginate (ALG) was applied to modify the PLGA nanoparticles. The surface charges and morphology of the PLGA, PLGA/CS and PLGA/CS/ALG particles was measured by capillary electrophoresis and SEM and TEM, respectively. The drug encapsulation and loading efficiency were confirmed by ultraviolet spectrophotometer. The nanoparticles were stable and exhibited controlled drug release performance, with good cytotoxicity to human lung carcinoma cells (HepG 2). Cumulatively, our research suggests that this kind of three-layer nanoparticle with LbL-coated shield has great properties to act as a novel drug-loaded system.

  7. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release

    PubMed Central

    Ilyinskii, Petr O.; Roy, Christopher J.; O’Neil, Conlin P.; Browning, Erica A.; Pittet, Lynnelle A.; Altreuter, David H.; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A.; Iannacone, Matteo; Radovic-Moreno, Aleksandar F.; Langer, Robert S.; Farokhzad, Omid C.; von Andrian, Ulrich H.; Johnston, Lloyd P.M.; Kishimoto, Takashi Kei

    2014-01-01

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  8. Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: Evaluation of immunostimulatory action in Labeo rohita (rohu).

    PubMed

    Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-05-01

    Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (<500 nm) and could be successfully endocyted in the body. Despite low antigen loading in PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for

  9. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg-1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  10. Nanoparticles obtained by confined impinging jet mixer: poly(lactide-co-glycolide) vs. Poly-ε-caprolactone.

    PubMed

    Turino, Ludmila N; Stella, Barbara; Dosio, Franco; Luna, Julio A; Barresi, Antonello A

    2018-06-01

    This paper is focused on the production and characterization of polymeric nanoparticles obtained by nanoprecipitation. The method consisted of using a confined impinging jet mixer (CIJM), circumventing high-energy equipment. Differences between the use of poly-ε-caprolactone (PCL) and poly(lactide-co-glycolide) (PLGA) as concerns particle mean size, zeta potential, and broad-spectrum antibiotic florfenicol entrapment were investigated. Other analyzed variables were polymer concentration, solvent, and anti-solvent flow rates, and antibiotic initial concentration. To our knowledge, no data were found related to PLGA and PCL nanoparticles comparison using CIJM. Also, florfenicol encapsulation within PCL or PLGA nanoparticles by nanoprecipitation has not been reported yet. The complexity of the nanoprecipitation phenomena has been confirmed, with many relevant variables involved in particles formation. PLGA resulted in smaller and more stable nanoparticles with higher entrapping of florfenicol than PCL.

  11. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.

    PubMed

    Lima, Adriel M; Pizzol, Carine Dal; Monteiro, Fabíola B F; Creczynski-Pasa, Tânia B; Andrade, Gislaine P; Ribeiro, Anderson O; Perussi, Janice R

    2013-08-05

    The hydrophobicity of some photosensitizers can induce aggregation in biological systems, which consequently reduces photodynamic activity. The conjugation of photosensitizers with nanocarrier systems can potentially be used to overcome this problem. The objective of this study was to prepare and characterise hypericin-loaded solid lipid nanoparticles (Hy-SLN) for use in photodynamic therapy (PDT). SLN were prepared using the ultrasonication technique, and their physicochemical properties were characterised. The mean particle size was found to be 153 nm, with a low polydispersity index of 0.28. One of the major advantages of the SLN formulation is its high entrapment efficiency (EE%). Hy-SLN showed greater than 80% EE and a drug loading capacity of 5.22% (w/w). To determine the photodynamic efficiency of Hy before and after encapsulation in SLN, the rate constants for the photodecomposition of two (1)O2 trapping reagents, DPBF and AU, were determined. These rate constants exhibited an increase of 60% and 50% for each method, respectively, which is most likely due to an increase in the lifetime of the triplet state caused by the increase in solubility. Hy-SLN presented a 30% increase in cell uptake and a correlated improvement of 26% in cytotoxicity. Thus, all these advantages suggest that Hy-loaded SLN has potential for use in PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. One-pot, exchange-free, room-temperature synthesis of sub-10 nm aqueous, noninteracting, and stable zwitterated iron oxide nanoparticles.

    PubMed

    Estephan, Zaki G; Hariri, Hanaa H; Schlenoff, Joseph B

    2013-02-26

    Stable aqueous dispersions of superparamagnetic iron oxide nanoparticles were synthesized in one step in the presence of a zwitterionic siloxane as the stabilizing/capping/solubilizing ligand. The hydrodynamic diameter of the particles was tuned by controlling the concentration of zwitterion siloxane, which ultimately yielded monodisperse nanoparticles small enough for renal filtration (<6 nm diameter). The zwitterated nanoparticles were readily dispersed and stable in aqueous media in the pH range 6-9 but exhibited lower magnetization values than nonzwitterated materials due to amorphous content and spin canting, typical for particles of such size. Turbidimetry and light scattering studies revealed no interaction between the particles and proteins, suggesting the materials will circulate well in vivo.

  13. Single-step synthesis of carbon encapsulated magnetic nanoparticles in arc plasma and potential biomedical applications.

    PubMed

    Fang, Xiuqi; Cheng, Xiaoqian; Zhang, Yuerou; Zhang, Lijie Grace; Keidar, Michael

    2018-01-01

    A novel highly controllable process of Carbon Encapsulated Magnetic Nanoparticles (CEMNs) synthesis in arc discharge plasma has been developed. In this work, both the size distribution and the purity of the CEMNs have been made more controllable by adding an external magnetic field. It is shown that with the increase of the external magnetic field, the CEMNs get a better separation from the carbon impurities and the size distribution become narrower. This conclusion is valid for Fe, Ni and Fe+Ni CEMNs synthesis. In order to assess biomedical potential of these CEMNs, the cytotoxicity has also been measured for the human breast adenocarcinoma cell line MDA-MB-231. It was concluded that the CEMNs with the concentration in cell of about 0.0001-0.01ug/ml are not toxic. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nanoparticles as a Novel Delivery Vehicle for Therapeutics Targeting Erectile Dysfunction

    PubMed Central

    Han, George; Tar, Moses; Kuppam, Dwaraka S. R.; Friedman, Adam; Melman, Arnold; Friedman, Joel; Davies, Kelvin P.

    2010-01-01

    Introduction Nanoparticles represent a potential novel mechanism for transdermal delivery of erectogenic agents directly to the penis. Aim To determine if nanoparticles encapsulating known erectogenic agents (tadalafil, sialorphin, and nitric oxide [NO]) can improve erectile function in a rat model of erectile dysfunction (ED) as a result of aging (the Sprague-Dawley retired breeder rat). Methods Nanoparticles encapsulating the erectogenic agents were applied as a gel to the glans and penile shaft of anesthetized Sprague-Dawley rats and the intracorporal pressure/blood pressure (ICP/BP) monitored for up to 2 hours with or without stimulation of the cavernous nerve. Control nanoparticles were made without encapsulating erectogenic agents and applied in a similar manner in separate experiments. Results Nanoparticles encapsulating NO caused spontaneous visible erections in the rat, with an average time of onset of 4.5 minutes, duration of 1.42 minutes, and ICP/BP of 0.67 ± 0.14. The sialorphin nanoparticles also caused visible spontaneous erections after an average of 4.5 minutes, with a duration of 8 minutes and ICP/BP ratio of 0.72 ± 0.13. The difference in the erectile response between groups of animals treated with NO or sialorphin nanoparticles was significantly different from the control group treated with empty nanoparticles (P < 0.05) Tadalafil nanoparticles showed a significant increase in the mean ICP/BP (0.737 ± 0.029) following stimulation of the cavernous nerve (4 mA) 1 hour after application of the nanoparticles with a visibly improved erectile response. Conclusions Nanoparticles encapsulating three different erectogenic agents resulted in increased erectile function when applied to the penis of a rat model of ED. Nanoparticles represent a potential novel route for topical delivery of erectogenic agents which could improve the safety profile for existing orally administered drugs by avoiding effects of absorption and first-pass metabolism, and would

  15. Novel SERS materials for multiplex biomolecular detection via controlled nanoparticle linking and polymer encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, G B; Lee, S J; Laurence, T

    2008-07-21

    Over the past decade the emphasis on single-molecule sensitivity of surface-enhanced Raman spectroscopy (SERS) has brought to prominence the special role played by so-called SERS 'hot spots', oftentimes nanometer-scale junctions between nanostructures. In this report, optimally SERS enhancing silver clusters were synthesized using bifunctional linkers and polymer and/or protein encapsulation. The synthesis, which results in stable clusters even when stored for months or dried and re-dissolved, is scalable to large quantities. Using a sacrificial linker approach we also employ a permeable polymer/protein shell for general small molecule sensing. Finally, we utilize these nanomaterials by tagging specific epitopes on cancer cellsmore » and show that SERS signals from single clusters can be measured routinely.« less

  16. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency

    NASA Astrophysics Data System (ADS)

    Kotoulas, A.; Dendrinou-Samara, C.; Sarafidis, C.; Kehagias, Th.; Arvanitidis, J.; Vourlias, G.; Angelakeris, M.; Kalogirou, Orestis

    2017-12-01

    A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/ fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.

  17. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  18. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability.

    PubMed

    Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu

    2017-06-01

    Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe 3 O 4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p < 0.01); enzyme immobilized by simple sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

  19. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix.

    PubMed

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-15

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  20. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    PubMed Central

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-01-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg–1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications. PMID:27628898

  1. Lipid-Polymer Nanoparticles Encapsulating Curcumin for Modulating the Vascular Deposition of Breast Cancer Cells

    PubMed Central

    Palange, Anna L.; Di Mascolo, Daniele; Carallo, Claudio; Gnasso, Agostino; Decuzzi, Paolo

    2014-01-01

    Vascular adhesion and endothelial transmigration are critical steps in the establishment of distant metastasis by circulating tumor cells (CTCs). Also, vascular inflammation plays a pivotal role in steering CTCs out of the blood stream. Here, long circulating lipid-polymer nanoparticles encapsulating curcumin (NANOCurc) are proposed for modulating the vascular deposition of CTCs. Upon treatment with NANOCurc, the adhesion propensity of highly metastatic breast cancer cells (MDA-MB-231) onto TNF-α stimulated endothelial cells (HUVECs) reduces by ~ 70%, in a capillary flow. Remarkably, the CTC vascular deposition already reduces up to ~ 50% by treating solely the inflamed HUVECs. The CTC arrest is mediated by the interaction between ICAM-1 on HUVECs and MUC-1 on cancer cells, and moderate doses of curcumin down-regulate the expression of both molecules. This suggests that NANOCurc could prevent metastasis and limit the progression of the disease by modulating vascular inflammation and impairing the CTC arrest. PMID:24566270

  2. Encapsulation of new active ingredients.

    PubMed

    Onwulata, C I

    2012-01-01

    The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.

  3. Heterogeneous hydrogenation using stable and reusable calix[4]pyrrole fenced Pt nanoparticles and its mechanistic insight

    NASA Astrophysics Data System (ADS)

    Kongor, Anita; Panchal, Manthan; Athar, Mohd; Mehta, Viren; Bhatt, Keyur; Jha, P. C.; Jain, Vinod

    2018-04-01

    Novel calix[4]pyrrole encapsulated platinum nanoparticles (PtNPs) have been prepared in the aqueous medium using meso-tetra(methoxy) meso-tetra (4-phenoxy acetohydrazide) calix[4]pyrrole (MCPTH) as both reducing as well as the capping agent. The developed MCPTH-PtNPs nano-assembly has been characterized by HRTEM, XRD, XPS, TGA and FTIR methods. Grafting capability of MCPTH on PtNPs was envisaged by molecular dynamics simulations that renders towards the complemented role of ligand in capping the surface via metal-acceptor interactions. These nanoparticles have been exploited for chemoselective hydrogenation of nitroarenes using molecular hydrogen at room temperature. Supplemented computational and experimental apprehension clearly corroborates that hydrazide group remains in close contact with the surface and provides adequate coordination sites for the adsorption of nitrenes; required for hydrogenation. This catalytic approach can be conceived as an important tool for determining the electronic and structural influence on the catalytic activity which may open new vistas pertaining to the use of calix functionalized nanocatalyst.

  4. Antibacterial Activity of Ciprofloxacin-Encapsulated Cockle Shells Calcium Carbonate (Aragonite) Nanoparticles and Its Biocompatability in Macrophage J774A.1

    PubMed Central

    Isa, Tijani; Zakaria, Zuki Abu Bakar; Rukayadi, Yaya; Mohd Hezmee, Mohd Noor; Jaji, Alhaji Zubair; Imam, Mustapha Umar; Hammadi, Nahidah Ibrahim; Mahmood, Saffanah Khuder

    2016-01-01

    The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin–cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2′-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin–nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections. PMID:27213349

  5. Antibacterial Activity of Ciprofloxacin-Encapsulated Cockle Shells Calcium Carbonate (Aragonite) Nanoparticles and Its Biocompatability in Macrophage J774A.1.

    PubMed

    Isa, Tijani; Zakaria, Zuki Abu Bakar; Rukayadi, Yaya; Mohd Hezmee, Mohd Noor; Jaji, Alhaji Zubair; Imam, Mustapha Umar; Hammadi, Nahidah Ibrahim; Mahmood, Saffanah Khuder

    2016-05-19

    The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.

  6. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Astrophysics Data System (ADS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-10-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  7. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  8. The effect of oil-water partition coefficient on the distribution and cellular uptake of liposome-encapsulated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya

    2016-10-01

    The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stable cavitation using acoustic phase-change dodecafluoropentane nanoparticles for coronary micro-circulation thrombolysis.

    PubMed

    Hu, Bo; Jiang, Nan; Zhou, Qing; Cao, Sheng; Gao, Shunji; Zhang, Binghong; Chen, Jinling; Guo, Ruiqiang

    2018-06-11

    The thrombolysis in micro-circulation after acute myocardial infarction has been an unsolved issue, as elimination effect of acute thrombolysis and primary intervention were unsatisfied. Stable cavitation using acoustic phase-change nanoparticles may have potential for thrombolysis. Therefore, we sought to investigate a novel treatment method with dodecafluoropentane (DDFP) nanoparticles for rapid and effective thrombolysis in an in-vitro artificial vascular system, as a mimicking preparation of coronary circulation. To simulate thrombus embolism in coronary circulation, an in-vitro artificial vascular system was established with cavitation effect using DDFP nanoparticles. For PBS blank control (group A), SonoVue microbubbles (group B) and DDFP nanoparticles (group C), the durations for cavitation effect were recorded and the thrombolysis efficiency with low intensity focused ultrasound irradiation in the in-vitro vascular system were analyzed with weight loss and pathological changes of thrombus before and after thrombolysis. The optimal conditions for acoustic cavitation effect were power of 6 W for 20 min by ultrasound irradiation at 37 °C. The weight loss and weight loss rates of thrombus in group C (189.4 ± 30.2 mg and 34.2 ± 5.7%) were higher than those in group A (30.2 ± 16.0 mg and 5.2 ± 2.1%) and group B (84.0 ± 20.4 mg and 14.6 ± 1.5%) (P < 0.01, all). The duration for cavitation effect in group C (32.8 ± 3.9 min) was also longer than those in group A (0.0 ± 0.0 min) and group B (5.3 ± 0.3 min) (P < 0.01, all). By stable and sustaining cavitation in targeted area, DDFP nanoparticles with ultrasound irradiation have significantly increased the thrombolysis efficiency, which has provided a powerful experimental foundation for potential coronary thrombolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Preparation, Optimization and Toxicity Evaluation of (SPION-PLGA) ±PEG Nanoparticles Loaded with Gemcitabine as a Multifunctional Nanoparticle for Therapeutic and Diagnostic Applications.

    PubMed

    Hamzian, Nima; Hashemi, Maryam; Ghorbani, Mahdi; Bahreyni Toosi, Mohammad Hossein; Ramezani, Mohammad

    2017-01-01

    The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA ± PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were simultaneously synthesized and encapsulated with Gemcitabine (Gem) in PLGA ± PEG copolymers via W/O/W double emulsification method. Optimum size and encapsulation efficiency for radiosensitization, hyperthermia and diagnostic applications were considered and the preparation parameters systematically were investigated and physicochemical characteristics of optimized nanoparticle were studied. Then SPION-PLGA and PLGA-Gem nanoparticles were prepared with the same optimized parameters and the toxicity of these nanoparticles was compared with Gemcitabine in human breast cancer cell line (MCF-7). The optimum preparation parameters were obtained with Gem/polymer equal to 0.04, SPION/polymer equal to 0.8 and 1% sucrose per 20 mg of polymer. The hydrodynamic diameters of all nanoparticles were under 200 nm. Encapsulation efficiency was adjusted between 13.2% to 16.1% for Gemcitabine and 48.2% to 50.1% for SPION. In-vitro Gemcitabine release kinetics had controlled behavior. Enhancement ratios for PLGA-Gem and SPION-PLGA-Gem at concentration of nanoparticles equal to IC50 of Gemcitabine were 1.53 and 1.89 respectively. The statistical difference was significant ( p -value = 0.006 for SPION-PLGA-Gem and p -value = 0.015 for PLGA-Gem compared with Gemcitabine). In conclusion, we have successfully developed a Gemcitabine loaded super paramagnetic PLGA-Iron Oxide multifunctional drag delivery system. Future work includes in-vitro and in-vivo investigation of radiosensitization and other application of these nanoparticles.

  11. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-09-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm-2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER.

  12. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang

    2015-02-01

    A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode

  13. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  14. Interaction of light with dye-doped calcium phosphate nanoparticles

    NASA Astrophysics Data System (ADS)

    Russin, Timothy John

    In this work we present work on a novel amorphous calcium phosphate nanoparticle system for use in bioimaging and drug delivery applications. The system, by virtue of its synthesis, can be made to encapsulate and protect any number of molecules that are not suitable for biological applications on their own; for example, medication that is poorly soluble in aqueous solution can be encapsulated for delivery, or fragile optical molecules can be encapsulated to protect them from the local environment. We have encapsulated the near-infrared dye indocyanine green, which has beneficial properties for optical imaging (low biotoxicity, absorption and emission at a minimum of tissue absorption). There are two original works presented in this thesis. The first describes the measurement of the quantum yield of the indocyanine green-doped nanoparticles, as well as the development of a theoretical method to extract the molecular quantum yield of a fluorophore encapsulated in a dielectric sphere from effective quantum yield measurements of nanoparticle dispersions in solution. The second work is an application of diffuse scattering theory to the problem of light propagation in biological tissue; specifically, the limits on penetration depth for photodynamic therapy and bioimaging.

  15. Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal-Organic Framework for Anode Material in Lithium-Ion Batteries.

    PubMed

    Guo, Yuanyuan; Zeng, Xiaoqiao; Zhang, Yu; Dai, Zhengfei; Fan, Haosen; Huang, Ying; Zhang, Weina; Zhang, Hua; Lu, Jun; Huo, Fengwei; Yan, Qingyu

    2017-05-24

    Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g -1 after 200 cycles at a current density of 200 mA g -1 , corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g -1 at 5 A g -1 ). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electron transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. This work opens a new application of metal-organic frameworks in energy storage.

  16. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.

    PubMed

    Zhang, Lianbing; Laug, Linda; Münchgesang, Wolfram; Pippel, Eckhard; Gösele, Ulrich; Brandsch, Matthias; Knez, Mato

    2010-01-01

    The great potential for medical applications of inorganic nanoparticles in living organisms is severely restricted by the concern that nanoparticles can harmfully interact with biological systems, such as lipid membranes or cell proteins. To enable an uptake of such nanoparticles by cells without harming their membranes, platinum nanoparticles were synthesized within cavities of hollow protein nanospheres (apoferritin). In vitro, the protein-platinum nanoparticles show good catalytic efficiency and long-term stability. Subsequently the particles were tested after ferritin-receptor-mediated incorporation in human intestinal Caco-2 cells. Upon externally induced stress, for example, with hydrogen peroxide, the oxygen species in the cells decreased and the viability of the cells increased.

  17. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    PubMed Central

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-01-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg−1, a high reversible specific capacity of 1055.20 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries. PMID:27296103

  18. Plant bio-transformable HMG-CoA reductase gene loaded calcium phosphate nanoparticle: in vitro characterization and stability study.

    PubMed

    Ohadi R, Mehrnaz S; Alvari, Amene; Samim, M; Abdin, Malik Z

    2013-03-01

    Encapsulation of plasmid DNA in nanoparticle is expected to enhance the stability of DNA, reproducibility and frequency of the genetic transformation in plants. Here we report the formulation of HMG Co-A reductase gene loaded calcium phosphate nanoparticles (Cap nanoparticles) and their in-vitro, in-vivo characterization. The developed Cap nanoparticles were characterized by DSC, FT-IR, and XRD. Developed Cap nanoparticles were spherical in shape having the particle size and zeta potential in the range of 10.86±0.09nm to 33.42±0.18nm and -25.5±0.07mV to -31.7±0.07mV (for Cap-I to Cap-IV). DNA releasing in acidic media showed, initially slow release followed by fast release with a maximum release of Cap-I (95.77±1.39%) > Cap-II (87.32±2.07%) > Cap-III (76.54±2.01%) > Cap-IV (72.93±1.75%) over 60min. Cap nanoparticles were quite stable at storage condition of 40±0.5°C/75±5%RH, 25±0.5°C/60±RH, 4±0.5°C/ambient humidity and the integrity of pDNA encapsulated was confirmed by gel electrophoresis. Compared to wild type C. intybus, transformation efficiency and enhanced biosynthesis of esculin with the DNA nanoparticles in C. intybus were about 10% and 71%, respectively. Antioxidant activity capacity of the biotransformed plants was significantly higher than the normal plant due to high accumulation of esculin.

  19. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    PubMed

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles.

    PubMed

    Biswas, Aniket; Nagaraja, Ashvin T; McShane, Michael J

    2014-12-10

    Nanosized luminescent sensors were prepared as reagents for optical sensing and imaging of oxygen using ratiometric emission properties of a two-dye system. Polymeric capsules were fabricated utilizing poly(vinylsulfonic acid) (PVSA)-stabilized vaterite CaCO3 nanoparticles (CCNPs) as sacrificial templates. The buffer and polymeric surfactant requirements of the layer-by-layer (LbL) process were evaluated toward deposition of multilayer coatings and, ultimately, formation of hollow capsules using these interesting materials. CCNPs were found to be more stable in alkaline NaHCO3 buffer after repeated cycles of washing under sonication and resuspension. An intermediate PVSA concentration was required to maximize the loading of oxygen-sensitive porphyrin and oxygen-insensitive fluorescent nanoparticles in the CCNPs while maintaining minimal nanoparticle size. The CCNPs were then coated with polyelectrolyte multilayers and subsequent removal of the CaCO3 core yielded nanocapsules containing dye and fluorescent nanoparticles. The resulting nanocapsules with encapsulated luminophores functioned effectively as oxygen sensors with a quenching response of 89.28 ± 2.59%, and O2 (S = 1/2) = 20.91 μM of dissolved oxygen.

  1. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  2. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system

    PubMed Central

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto

    2018-01-01

    Background The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20–40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. Methods In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. Results The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100–200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. Conclusion The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems. PMID:29430179

  3. Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal

    NASA Astrophysics Data System (ADS)

    Bonaiti, Stefania; Calderon, Blanca; Collina, Elena; Lasagni, Marina; Mezzanotte, Valeria; Aracil, Ignacio; Fullana, Andrés

    2017-05-01

    Nanoparticles of zero-valent iron (nZVI) represent a promising agent for environmental remediation. This is due to their core-shell structure which presents the characteristics of both metallic and oxidised iron, leading to sorption and reductive precipitation of metal ions. Nevertheless, nZVI application presents some limitations regarding their rapid oxidation and aggregation in the media which leads to the delivery of the ions after some hours (the “aging effect”). To address these issues, modifications of nZVI structure and synthesis methods have been developed in the last years. The aging problem was solved by using nZVI encapsulated inside carbon spheres (CE-nZVI), synthetized through Hydrothermal Carbonization (HTC). Results showed high heavy metals removal percentage. Furthermore, CE-nZVI were activated with nitrogen in order to increase the metallic iron content. The aim of this study was to test CE-nZVI post-treated with nitrogen at different temperatures in heavy metals removal, demonstrating that the influence of the temperature was negligible in nanoparticles removal efficiency.

  4. Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles.

    PubMed

    Wernig, Karin; Griesbacher, Martin; Andreae, Fritz; Hajos, Franz; Wagner, Julian; Mosgoeller, Wilhelm; Zimmer, Andreas

    2008-09-10

    Drug delivery of protein and peptide-based drugs, which represent a growing and important therapeutic class, is hampered by these drugs' very short half-lives. High susceptibility towards enzymatic degradation necessitates frequent drug administration followed by poor adherence to therapy. Among these drugs is vasoactive intestinal peptide (VIP), a potent systemic and pulmonary vasodilator, which is a promising drug for the treatment of idiopathic pulmonary arterial hypertension (IPAH). Encapsulation of VIP into the nanoparticle matrix of biodegradable protamine-oligonucleotide nanoparticles (proticles) protects the peptide against rapid enzymatic degradation. Additionally, the nanoparticle matrix will be able to sustain drug release. Proticles consist of 18mer non-sense oligonucleotides and protamine, a polycationic arginine-rich peptide. VIP encapsulation occurs during self-assembly of the components. Within the present study, we evaluate nanoparticle size (hydrodynamic diameter) and zeta potential of VIP-loaded proticles as well as encapsulation efficiency and VIP release. Further, the pharmacological VIP response of "encapsulated VIP" is investigated using an ex vivo lung arterial model system. We found satisfying encapsulation efficiency (up to 80%), VIP release (77-87%), and an appropriate nanoparticle size (177-251 nm). Investigations on rat pulmonary arteries showed a modified VIP response of proticle-associated VIP. We noted differences in the profile of artery relaxation where VIP proticles lead to a 20-30% lower relaxation maximum than aqueous VIP solutions followed by prolonged vasodilatation. Our data indicate that proticles could be a feasible drug delivery system for a pulmonary VIP depot formulation.

  5. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system

    NASA Astrophysics Data System (ADS)

    Chen, Huabing; Xiao, Ling; Du, Danrong; Mou, Dongsheng; Xu, Huibi; Yang, Xiangliang

    2010-01-01

    We report a novel facile method for preparing stable nanoparticles with inner spherical solid spheres and an outer hydrogel matrix using a hot O/W hydrogel-thickened microemulsion with spontaneous stability. The nanoparticles with average diameters of about 30.0 nm and 100.0 nm were constructed by cooling the hot hydrogel-thickened microemulsion at different temperatures, respectively. We explained the application of these nanoparticles by actualizing the cutaneous delivery of drug-loaded nanoparticles. The in vitro skin permeation studies showed that the nanoparticles could significantly reduce the penetration of model drugs through skin and resulted in their dermal uptakes in skin. The sol-gel process of TEOS was furthermore used in the template of HTM to regulate the particle size of nanoparticles. The coating of silica on the surface of nanoparticles could regulate the penetration of drug into skin from dermal delivery to transdermal delivery. This strategy provides a facile method to produce nanoparticles with long-term stability and ease of manufacture, which might have a promising application in drug delivery.

  6. Minocycline encapsulated chitosan nanoparticles for central antinociceptive activity.

    PubMed

    Nagpal, Kalpana; Singh, S K; Mishra, D N

    2015-01-01

    The purpose of the study is to explore the central anti-nociceptive activity of brain targeted nanoparticles (NP) of minocycline hydrochloride (MH). The NP were formulated using the modified ionotropic gelation method (MHNP) and were coated with Tween 80 (T80) to target them to brain (cMHNP). The formulated nanoparticles have already been characterized for particle size, zeta potential, drug entrapment efficiency and in vitro drug release. The nanoparticles were then evaluated for pharmacodynamic activity using thermal methods. The pure drug and the formulation, MHNP were not able to show a statistically significant central analgesic activity. cMHNP on the other hand evidenced a significant central analgesic activity. Animal models evidenced that brain targeted nanoparticles may be utilized for effective delivery of central anti-nociceptive effect of MH. Further clinical studies are required to explore the activity for mankind. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my; Nik Malek, Nik Ahmad Nazim

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W formore » 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.« less

  8. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  9. In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma.

    PubMed

    Ray, Sayantan; Saha, Suman; Sa, Biswanath; Chakraborty, Jui

    2017-04-01

    Considering the existing drawbacks of methotrexate (MTX) with respect to its solubility and toxicity, we incorporated it in a nanoceramic matrix, Mg-Al-layered double hydroxide (LDH) to form LDH-MTX nanoparticles, and the same was in turn encapsulated in a nontoxic and biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), to arrest the initial burst release and dose-dumping-related toxicity, already reported by our group. Our present study was designed to evaluate the pharmacokinetics, tissue distribution, survival rate of the test animals, and antitumor efficacy of the PLGA-LDH-MTX nanoparticles and its counterpart without LDH, PLGA-MTX nanoparticles compared with bare MTX. The median lethal dose (LD 50 ) of the former was higher, compared with bare MTX, using Balb/c nude mice, indicating it to be completely safe for use. Also, a comparative pharmacokinetic and antitumour efficacy study using MTX, PLGA-MTX, and PLGA-LDH-MTX nanoparticles in osteosarcoma-induced Balb/c nude mice in vivo demonstrated superiority of PLGA-LDH-MTX as compared to PLGA-MTX and bare MTX. The results suggest that PLGA-LDH-MTX nanoparticles might exhibit potential advantages over the present-day chemotherapy over bare MTX, for the possibility of treatment of osteosarcoma.

  10. Preparation, characterization and cytotoxic evaluation of bovine serum albumin nanoparticles encapsulating 5-methylmellein: A secondary metabolite isolated from Xylaria psidii.

    PubMed

    Arora, Divya; Kumar, Amit; Gupta, Prasoon; Chashoo, Gousia; Jaglan, Sundeep

    2017-12-01

    In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95 ± 4.44 nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26 ± 4.48% and 7.09 ± 0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Kai; Li, Zhen; Yang, Ye

    Formamidinium (FA)-based lead iodide perovskites have emerged as the most promising light-absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase-instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA-based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA-based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but alsomore » enhances the charge-carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment-theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000-h storage under ambient conditions.« less

  12. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    PubMed

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework for Anode Material in Lithium-Ion Batteries

    DOE PAGES

    Guo, Yuanyuan; Zeng, Xiaoqiao; Zhang, Yu; ...

    2017-05-04

    Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g –1 after 200 cycles at a current density of 200 mA g –1, corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g –1 at 5 A g –1). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electronmore » transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. Lastly, this work opens a new application of metal–organic frameworks in energy storage.« less

  14. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    NASA Astrophysics Data System (ADS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  15. Synthesis of fluorophore encapsulated silica nanoparticles for the evaluation of the biological fate and toxicity of food relevant nanoparticles

    NASA Astrophysics Data System (ADS)

    Zane, Andrew Paul

    fluorophores, rhodamine 6G and rhodamine 800, into silica shells for direct monitoring in intestinal epithelial cells and tissues of exposed mice. We show that, for small nanoparticles, a typical Stober-type ammonia driven synthesis does not yield stable fluorescence. This has been observed in literature and is attributed to incompletely hydrolyzed silica precursor causing partial dissolution of the silica shell. We remedy this by applying an arginine driven silica shell synthesis, which is known to produce a denser and more stable product at smaller particle sizes. We show that all three fluorophores can be coated in a simple generalized procedure, and the resulting particles all show stable fluorescence with no evidence of dye leakage. Using these particles, we demonstrate that silica nanoparticles can be observed internalizing into C2BBe1 intestinal epithelial cells, and in the tissues of mice that were fed the particles by gavage. We find direct evidence that the particles are absorbed into circulation and subsequently localize in organs throughout the body. Future efforts will attempt to better quantify this accumulation, as well as generalize the procedure to other food relevant nanoparticles such as TiO2.

  16. Self-Cleaning Ceramic Tiles Produced via Stable Coating of TiO₂ Nanoparticles.

    PubMed

    Shakeri, Amid; Yip, Darren; Badv, Maryam; Imani, Sara M; Sanjari, Mehdi; Didar, Tohid F

    2018-06-13

    The high photocatalytic power of TiO₂ nanoparticles has drawn great attention in environmental and medical applications. Coating surfaces with these particles enables us to benefit from self-cleaning properties and decomposition of pollutants. In this paper, two strategies have been introduced to coat ceramic tiles with TiO₂ nanoparticles, and the self-cleaning effect of the surfaces on degradation of an organic dye under ultraviolent (UV) exposure is investigated. In the first approach, a simple one-step heat treatment method is introduced for coating, and different parameters of the heat treatment process are examined. In the second method, TiO₂ nanoparticles are first aminosilanized using (3-Aminopropyl)triethoxysilane (APTES) treatment followed by their covalently attachment onto CO₂ plasma treated ceramic tiles via N -(3-Dimethylaminopropyl)- N ′-ethylcarbodiimide hydrochloride (EDC) and N -Hydroxysuccinimide (NHS) chemistry. We monitor TiO₂ nanoparticle sizes throughout the coating process using dynamic light scattering (DLS) and characterize developed surfaces using X-ray photoelectron spectroscopy (XPS). Moreover, hydrophilicity of the coated surfaces is quantified using a contact angle measurement. It is shown that applying a one-step heat treatment process with the optimum temperature of 200 °C for 5 h results in successful coating of nanoparticles and rapid degradation of dye in a short time. In the second strategy, the APTES treatment creates a stable covalent coating, while the photocatalytic capability of the particles is preserved. The results show that coated ceramic tiles are capable of fully degrading the added dyes under UV exposure in less than 24 h.

  17. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    PubMed

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be

  18. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model

    PubMed Central

    Ali, Hazem; Kalashnikova, Irina; White, Mark Andrew; Sherman, Michael; Rytting, Erik

    2013-01-01

    The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140–298 nm, and encapsulation efficiency ranging from 52–89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently-labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia. PMID:23850397

  19. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    PubMed Central

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  20. Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications

    NASA Astrophysics Data System (ADS)

    Lian, Ying; Ding, Long-Jiang; Zhang, Wei; Zhang, Xiao-ai; Zhang, Ying-Lu; Lin, Zhen-zhen; Wang, Xu-dong

    2018-07-01

    Cyanine dyes are widely used in biological labeling and imaging because of their narrow near infrared emission, good brightness and high flexibility in functionalization, which not only enables multiplex analysis and multi-color imaging, but also greatly reduces autofluorescence from biological matter and increases signal-to-noise ratio. Unfortunately, their poor chemical- and photo-stability strongly limits their applications. The incorporation of cyanine dyes in silica nanoparticles provides a solution to the problem. On one hand, the incorporation of cyanine dyes in silica matrix can enhance their chemical- and photo-stability and increase brightness of the nanomaterials. On the other hand, silica matrix provides an optimized condition to host the dye, which helps to maintain their fluorescent properties during application. In addition, the well-established silane technique provides numerous functionalities for diverse applications. However, commercially available cyanine dyes are not very stable at high alkaline conditions, which will gradually lose their fluorescence over time. Our results showed that cyanine dyes are very vulnerable in the reverse micelle system, in which they will lose their fluorescence in less than half an hour. The existence of surfactant could greatly promote degradation of cyanine dyes. Fluorescent silica nanoparticles cannot be obtained at the high alkaline condition with the existence of surfactant. In contrast, the cyanine dyes are relatively stable in Stöber media. Owing to the fast formation of silica particles in Stöber media, the exposure time of cyanine dye in alkaline solution was greatly reduced, and highly fluorescent particles with good morphology and size distribution could be obtained via Stöber approach. However, the increasing water content in the Stöber could reduce the stability of cyanine dyes, which should be avoided. This research here provides a clear guidance on how to successfully synthesize cyanine dye

  1. Biomimetic Solid Lipid Nanoparticles of Sophorolipids Designed for Antileprosy Drugs.

    PubMed

    Kanwar, Rohini; Gradzielski, Michael; Mehta, S K

    2018-06-22

    The objective of the present work was to develop solid lipid nanoparticles (SLNs) as drug-encapsulating structures by the solvent injection method. In this report, for the first time the inherent potential of lactonic sophorolipid (glycolipid) was exploited to formulate SLNs. A range of different Pluronic copolymers were screened by dynamic and static light scattering with the aim of obtaining most stable SLNs. To comprehend the structure of the SLNs, techniques such as transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction were employed. A clear correlation between the type of Pluronic and size and stability of the SLNs could be drawn. The vector properties of the formed SLNs were assessed for both the encapsulated hydrophobic drugs-rifampicin and dapsone. To elucidate the transport mechanism of drug release, kinetic modeling was carried out on the drug release profiles. The promising results of sophorolipid-based SLNs have actually established a new arena beneath the significantly developed field of SLNs.

  2. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique

    NASA Astrophysics Data System (ADS)

    Suryani, Halid, Nur Hatidjah Awaliyah; Akib, Nur Illiyyin; Rahmanpiu, Mutmainnah, Nina

    2017-05-01

    Curcumin, a polyphenolic compound present in curcuma longa has a wide range of activities including anti-inflammatory properties. The potency of curcumin is limited by its poor oral bioavailability because of its poor solubility in aqueous. Various methods have been tried to solve the problem including its encapsulation into nanoparticle. The aim of this study is to develop curcumin nanoparticle by using reinforcement ionic gelation technique and to evaluate the stability of curcumin nanoparticles in gastrointestinal fluid. Curcumin nanoparticles were prepared by using reinforcement ionic gelation technique with different concentrations of chitosan, trypolyphosphate, natrium alginate and calcium chloride. Curcumin nanoparticles were then characterized including particle size and zeta potential by using particle size analyzer and morphology using a transmission electron microscope, entrapment efficiency using UV-Vis Spectrophotometer and chemical structure analysis by Infra Red Spectrophotometer (FTIR). Furthermore, the stability of curcumin nanoparticles were evaluated on artificial gastric fluid and artificial intestinal fluids by measuring the amount of curcumin released in the medium at a time interval. The result revealed that curcumin nanoparticles can be prepared by reinforcement ionic gelation technique, the entrapment efficiency of curcumin nanoparticles were from 86.08 to 91.41%. The average of particle size was 272.9 nm and zeta potential was 12.05 mV. The morphology examination showed that the curcumin nanoparticles have spherical shape. The stability evaluation of curcumin nanoparticles showed that the nanoparticles were stable on artificial gastric fluid and artificial intestinal fluid. This result indicates that curcumin nanoparticles have the potential to be developed for oral delivery.

  3. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.

    PubMed

    Ananta, Jeyarama S; Paulmurugan, Ramasamy; Massoud, Tarik F

    2016-01-01

    Current chemotherapies for brain glioblastoma do not achieve sufficient drug concentrations within tumors. Polymeric nanoparticles have useful physicochemical properties that make them promising as nanoparticle platforms for glioblastoma drug delivery. Poly[lactic-co-glycolic acid] (PLGA) nanoparticles encapsulating temozolomide (TMZ) could improve localized delivery and sustained drug release to glioblastomas. We investigated three different procedures to encapsulate TMZ within PLGA nanoparticles. We studied the biophysical features of optimized nanocarriers, including their size, shape, surface properties, and release characteristics of TMZ. We evaluated the antiproliferative and cytotoxic effects of TMZ-loaded PLGA nanoparticles on U87 MG glioblastoma cells. A single emulsion technique using a TMZ saturated aqueous phase produced nanoparticles ≤200 nm in size allowing a maximal drug loading of 4.4% w/w of polymer. There was a bi-phasic drug release pattern, with 80% of TMZ released within the first 6 h. Nanoparticles accumulated in the cytoplasm after effective endocytosis. There was no significant difference in cytotoxic effect of TMZ encapsulated within PLGA nanoparticles and free TMZ. PLGA nanoparticles are not suitable as carriers of TMZ for glioblastoma drug delivery on account of the overall high IC50 values of glioblastoma cells to TMZ and poor loading and encapsulation efficiencies. Further biotechnological developments aimed at improving the loading of TMZ in PLGA nanoparticles or co-delivery of small molecule sensitizers to improve the response of human glioblastoma cells to TMZ are required for this approach to be considered and optimized for future clinical translation.

  4. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  5. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation.

    PubMed

    Nguyen, Minh Hiep; Yu, Hong; Kiew, Tie Yi; Hadinoto, Kunn

    2015-10-01

    While the wide-ranging therapeutic activities of curcumin have been well established, its successful delivery to realize its true therapeutic potentials faces a major challenge due to its low oral bioavailability. Even though nano-encapsulation has been widely demonstrated to be effective in enhancing the bioavailability of curcumin, it is not without drawbacks (i.e. low payload and costly preparation). Herein we present a cost-effective bioavailability enhancement strategy of curcumin in the form of amorphous curcumin-chitosan nanoparticle complex (or curcumin nanoplex in short) exhibiting a high payload (>80%). The curcumin nanoplex was prepared by a simple yet highly efficient drug-polysaccharide complexation method that required only mixing of the curcumin and chitosan solutions under ambient condition. The effects of (1) pH and (2) charge ratio of chitosan to curcumin on the (i) physical characteristics of the nanoplex (i.e. size, colloidal stability and payload), (ii) complexation efficiency, and (iii) production yield were investigated from which the optimal preparation condition was determined. The nanoplex formation was found to favor low acidic pH and charge ratio below unity. At the optimal condition (i.e. pH 4.4. and charge ratio=0.8), stable curcumin nanoplex (≈260nm) was prepared at >90% complexation efficiency and ≈50% production yield. The amorphous state stability, colloidal stability, and in vitro non-cytotoxicity of the nanoplex were successfully established. The curcumin nanoplex produced prolonged supersaturation (3h) in the presence of hydroxypropyl methylcellulose (HPMC) at five times of the saturation solubility of curcumin. In addition, curcumin released from the nanoplex exhibited improved chemical stability owed to the presence of chitosan. Both results (i.e. high supersaturation and improved chemical stability) bode well for the ability of the curcumin nanoplex to enhance the bioavailability of curcumin clinically. Copyright © 2015

  6. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    PubMed

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  7. Encapsulant selection and durability testing experience

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1985-01-01

    The Flat Plate Solar Array Project (FSA) has established technically challenging cost and service life goals for photovoltaic modules. These goals are a cost of $70 sq m and an expected 30 years of service life in an outdoor weathering environment. out of the cost goal, $14 sq m is allocated for encapsulation materials, which includes the cost of a structural panel. At FSA's inception in 1975, the cumulative cost of encapsulation materials in popular use, such as room temperature vulcanized (RTV) silicones, aluminum panels, etc., greatly exceeded $14/sq m. Accordingly, it became necessary to identify and/or develop new materials and new material technologies to achieve the goals. Many of these new materials are low cost polymers that satisfy module engineering and encapsulation processing requirements but unfortunately are not intrinsically weather stable. This necessitates identifying lifetime and/or weathering deficiencies inherent in these low cost materials and developing specific approaches to enhancing weather stability.

  8. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The

  9. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling.

    PubMed

    Xia, Guanglin; Chen, Xiaowei; Zhao, Yan; Li, Xingguo; Guo, Zaiping; Jensen, Craig M; Gu, Qinfen; Yu, Xuebin

    2017-05-10

    An effective route based on space-confined chemical reaction to synthesize uniform Li 2 Mg(NH) 2 nanoparticles is reported. The hierarchical pores inside the one-dimensional carbon nanofibers (CNFs), induced by the creation of well-dispersed Li 3 N, serve as intelligent nanoreactors for the reaction of Li 3 N with Mg-containing precursors, resulting in the formation of uniformly discrete Li 2 Mg(NH) 2 nanoparticles. The nanostructured Li 2 Mg(NH) 2 particles inside the CNFs are capable of complete hydrogenation and dehydrogenation at a temperature as low as 105 °C with the suppression of ammonia release. Furthermore, by virtue of the nanosize effects and space-confinement by the porous carbon scaffold, no degradation was observed after 50 de/rehydrogenation cycles at a temperature as low as 130 °C for the as-prepared Li 2 Mg(NH) 2 nanoparticles, indicating excellent reversibility. Moreover, the theoretical calculations demonstrate that the reduction in particle size could significantly enhance the H 2 sorption of Li 2 Mg(NH) 2 by decreasing the relative activation energy barrier, which agrees well with our experimental results. This method could represent an effective, general strategy for synthesizing nanoparticles of complex hydrides with stable reversibility and excellent hydrogen storage performance.

  10. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    PubMed Central

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-01-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm−2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER. PMID:27658968

  11. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    NASA Astrophysics Data System (ADS)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  12. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers.

    PubMed

    Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O

    2016-06-24

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  13. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  14. Wax encapsulation of water-soluble compounds for application in foods.

    PubMed

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  15. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    PubMed Central

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  16. Indocyanine green-encapsulating calcium phosphosilicate nanoparticles: Bifunctional theranostic vectors for near infrared diagnostic imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Altinoglu, Erhan I.

    The synthesis, laundering, and properties of calcium phosphosilicate nanoparticles (CPSNPs) that encapsulate the NIR fluorophore indocyanine green (ICG) related to multifunctional fluorescent photosensitization is presented. Imaging with transmission electron microscopy (TEM) revealed the well dispersed state of the nanoparticles, the spherical morphology, and the log normal mean particle diameter of 16 nm. Electron energy loss spectroscopy (EELS) mapping identified a Ca:P:Si ratio of 1:1.72:0.41 and a homogeneous composition without evidence of an element rich or deficient architecture. Zeta potential of the as-synthesized, citrate-functionalized CPSNPs was -29 +/-3 mV. A theoretical solids loading of 1.9 x 1013 CPSNP/mL was calculated for a standard suspension. The mean ICG content per suspension is 2 x 10 -6 M, which equates to approximately 63 fluorophore molecules encapsulated per CPSNP. For imaging and diagnostic considerations, the doped CPSNPs exhibited significantly greater intensity at the maximum emission wavelength relative to the free constituent fluorophore. The quantum efficiency of the fluorescent agent is 200% greater at 0.053+/-0.003 over the free fluorophore in PBS. Also, photostability based on fluorescence half-life of encapsulated ICG in PBS is 500% longer under typical clinical imaging conditions relative to the free dye. These performance enhancements are attributed to the matrix shielding effect of the NP around the internalized fluorophore molecules. The in vivo emission signal stability from ICG-CPSNPs was compared to the free fluorophore by whole animal NIR imaging. The duration of fluorescent signal from the ICG-CPSPNPs was extended to up to four days post-injection, highlighting the potential for long-term imaging and sensitive tracking applications using ICG when encapsulated within the protective matrix of CPSNPs. The surfaces of the ICG-CPSNPs were covalently bound with polyethylene glycol (PEG). The pharmacokinetic behavior of the

  17. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.

    PubMed

    Sedlák, Marián

    2012-03-01

    A new approach to polymer self-assembly was presented recently [M. Sedlák, Č. Koňák, J. Dybal, Macromolecules 2009, 2, 7430-7438 and 7439-7446.] (1, 2) where stable polymeric nanoparticles were formed from poly(ethylacrylic acid) homopolymers without any assembly triggering additives, simply by heating polymer solution under conditions of thermosensitivity to certain temperature. In the current Article, we present successful results on poly(propylacrylic acid), which is a more hydrophobic polymer. We also present results on a less hydrophobic polymer from this series, poly(methacrylic acid), from which nanoparticles cannot be formed. Comparison of results on all three polymers gives a solid physicochemical insight and supports the molecular mechanism of the self-assembly previously suggested: The solvent quality gradually worsens upon heating of a thermosensitive polymer solution, and polymer-polymer contacts are preferred over polymer-solvent contacts, which leads to the formation of polymer assemblies. The presence of a significant amount of charge on chains prevents macroscopic phase separation. Upon subsequent cooling to laboratory temperature, the assemblies (nanoparticles) should eventually dissolve; however, this is not the case due to the fact that polymer chains brought to a close proximity at elevated temperatures become hydrogen-bonded. In addition, hydrogen bonds strengthen upon cooling. Mainly carboxylic-carboxylate hydrogen bonds (COOH····COO(-)) are responsible for the irreversibility of the process and the stability of nanoparticles. Conclusions are supported by results from static and dynamic light scattering, FTIR spectroscopy, and cryo-TEM microscopy. Size of nanoparticles can be monitored during the growth and custom-tailored by tuning critical parameters, especially the degree of ionization, temperature, and time of heating. Nanoparticles are stable over long periods of time. They are stable in a broad range of salt concentrations

  18. Minute synthesis of extremely stable gold nanoparticles.

    PubMed

    Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar

    2009-12-16

    We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.

  19. Synthesis of silica nanoparticles for encapsulation of oncology drugs with low water solubility: effect of processing parameters on structural evolution

    NASA Astrophysics Data System (ADS)

    Bürglová, Kristýna; Hlaváč, Jan; Bartlett, John R.

    2015-12-01

    Silica nanoparticles with tailored properties have been developed for a variety of biomedical applications, with particular emphasis on their use as carriers for the encapsulation and controlled release of bioactive species. Among the various strategies described, silica nanoparticles with uniform mesoporosity (MSN) prepared in aqueous solution at elevated temperatures using cetyltrimethylammonium bromide as a template have a range of desirable properties. However, the processing windows available to control the dimensions and other key properties of such nanoparticles prepared using fluoride salts as catalysts have not been elucidated, with mixed products containing gel fragments and non-uniform products obtained under many conditions. Here, we present a parametric study of the synthesis of MSN under fluoride-catalysed conditions using tetraethylorthosilicate as silica precursor. The processing conditions required to produce uniform nanoparticles with controlled dimensions are elucidated, together with the conditions under which dried powders can be re-dispersed in aqueous solution after long-term storage to regenerate unaggregated nanospheres with dimensions (as measured by dynamic light scattering) comparable to those measured via scanning electron microscopy analysis of the dried material. The ability to dry and store such powders for extended periods of time is an important requirement for the use of such materials in drug delivery applications. Preliminary results demonstrating the use of such MSNs as hosts for oncology drugs [substituted 3-hydroxyquinolinones ( 3-HQ)] with low water solubility (≪1 µg/g H2O) are presented, with loadings of several wt% demonstrated. The ability of the silica host to protect the 3-HQ from oxidative degradation during impregnation and release is discussed.

  20. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Catalano, E.; Di Benedetto, A.

    2017-05-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m-1) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml-1) is fully in agreement with cancer therapy and biomedical applications.

  1. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging

  2. Effect of Maillard Conjugates on the Physical Stability of Zein Nanoparticles Prepared by Liquid Antisolvent Coprecipitation.

    PubMed

    Davidov-Pardo, Gabriel; Joye, Iris J; Espinal-Ruiz, Mauricio; McClements, David Julian

    2015-09-30

    Protein nanoparticles are often not very stable in a complex food matrix because they are primarily stabilized by electrostatic repulsion. In this study, we envisaged the stabilization of zein nanoparticles through Maillard conjugation reactions with polysaccharides of different molecular mass. Zein nanoparticles (0.5% w/v) containing resveratrol (0.025% w/v grape skin extract) were produced by liquid antisolvent precipitation and coated with Maillard conjugates (MC) of sodium caseinate and different molecular mass carbohydrates during particle production. Zein nanoparticles coated with conjugated polysaccharides of 2.8, 37, and 150 kDa had diameters of 198 ± 5, 176 ± 6, and 180 ± 3 nm, respectively. The encapsulation efficiency (∼83%) was not affected by conjugation, but the conjugates significantly improved particle stability against changes in pH (2.0-9.0), CaCl2 addition (up to 100 mM), and heat treatment (30-90 °C, 30 min). Zein nanoparticles coated by MC may therefore be suitable delivery systems for hydrophobic bioactive molecules in a wide range of commercial products.

  3. High hydrostatic pressure encapsulation of doxorubicin in ferritin nanocages with enhanced efficiency.

    PubMed

    Wang, Qi; Zhang, Chun; Liu, Liping; Li, Zenglan; Guo, Fangxia; Li, Xiunan; Luo, Jian; Zhao, Dawei; Liu, Yongdong; Su, Zhiguo

    2017-07-20

    Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nanobiotechnology today: focus on nanoparticles.

    PubMed

    Soloviev, Mikhail

    2007-12-30

    In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas http://www.jnanobiotechnology.com.

  5. Nanobiotechnology today: focus on nanoparticles

    PubMed Central

    Soloviev, Mikhail

    2007-01-01

    In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas . PMID:18163916

  6. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers.

    PubMed

    Zhang, Yaqiong; Niu, Yuge; Luo, Yangchao; Ge, Mei; Yang, Tian; Yu, Liangli Lucy; Wang, Qin

    2014-01-01

    Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy.

    PubMed

    Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole

    2017-09-01

    In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of lecithin and starch on alginate-encapsulated probiotic bacteria.

    PubMed

    Donthidi, A R; Tester, R F; Aidoo, K E

    2010-01-01

    The effect of lecithin and starch on viability of alginate encapsulated probiotics was determined at different temperatures. Probiotic organisms (1% v/v>10Log CFU ml(-1)) were encapsulated using alginate (2% w/v), gelatinized starches (2% w/v) and lecithin (0-4% w/v) and stored in sealed containers at 4, 23 and 37 degrees C (to simulate shelf storage conditions). Incorporation of lecithin improved the entrapment efficiency (p < 0.05) and the viability of encapsulated bacteria (p = 0.02). Encapsulated Lactobacillus, Bifidobacterium species and Lactococcus lactis in lecithin containing freeze-dried beads had good survival stability (above 6Log CFU ml(-1)) at 23 degrees C for 12 weeks. The bacteria in the beads showed 6Log survival by the end of 2 weeks at 37 degrees C. Encapsulated L. casei in the alginate beads containing lecithin were also more stable in the yoghurt than the beads without lecithin. SEM analysis of the beads showed an irregular surface for the beads without lecithin.

  9. Effects of europium polyoxometalate encapsulated in silica nanoparticles (nanocarriers) in soil invertebrates

    NASA Astrophysics Data System (ADS)

    Bicho, Rita C.; Soares, Amadeu M. V. M.; Nogueira, Helena I. S.; Amorim, Mónica J. B.

    2016-12-01

    Polyoxometalates (POMs) are metal oxo clusters that have been investigated for several applications in material sciences, catalysis, and biomedicine; these gained increasing interest in the field of nanotechnology as nanocarriers for drug delivery. Associated to the increasing applications, there is the need for information regarding the effects on the environment of these compounds, which is completely absent in the literature. In the present study, the effects of europium polyoxometalates encapsulated into silica nanoparticles (Eu-POM/SiO2 NPs) were assessed on the soil representative Enchytraeus crypticus. The individual materials were also assessed (Eu-POMs and SiO2 NPs). Toxicity was evaluated in various test media with increasing complexity: water, soil/water extracts, and soil. Toxicity was only observed for Eu-POM/SiO2 NPs and in the presence of soil components. Despite the fact that effects were observed for concentrations higher than current predicted environmental concentration (PEC), attention should be given to the growing use of these compounds. The present study shows the importance of assessing the effects in soil media, also compared to water. Moreover, results of "no effect" are critically needed and often unpublished. The present study can contribute to the improvement of the OECD guidelines for safety of manufactured nanomaterials on environmental toxicity in the soil compartment providing an improved test alternative.

  10. Cobalt nanoparticles encapsulated in nitrogen-rich carbon nanotubes as efficient catalysts for organic pollutants degradation via sulfite activation.

    PubMed

    Wu, Deming; Ye, Peng; Wang, Manye; Wei, Yi; Li, Xiaoxia; Xu, Aihua

    2018-06-15

    The activation of sulfite by heterogeneous catalysts displays a great potential in the development of new sulfate radials based technologies for wastewater treatment. Herein, cobalt nanoparticles embedded in N-doped carbon nanotubes (Co@NC) were prepared by a simple pyrolysis method. Due to the synergistic effects of the cobalt nanoparticles and N-doped carbon nanotubes, the Co@NC catalyst intrinsically shows an outstanding efficiency, excellent reusability and high stability in the catalytic oxidation of methyl orange (MO) in the presence of sulfite and dioxygen. The structure and efficiency of the catalyst was significantly affected by the content of cobalt and pyrolysis temperature. Several quenching experiments and electron paramagnetic resonance were carried out to investigate the catalytic mechanism. It is found that hydroxyl and sulfate radicals worked together to degrade MO in the system. The formation and decomposition of peroxymonosulfate may be an important route of these reactive radicals production. The effect of different anions, bicarbonate concentration, initial solution pH and dye types on the performance of the catalyst was also studied. This study can open a new approach for design and preparation of encapsulated cobalt in carbon materials as effective catalysts for pollutants degradation via sulfite activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A Closed Chondromimetic Environment within Magnetic-Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGF-β3 Microparticles.

    PubMed

    Correia, Clara R; Gil, Sara; Reis, Rui L; Mano, João F

    2016-06-01

    TGF-β3 is enzymatically immobilized by transglutaminase-2 action to poly(l-lactic acid) microparticles coated with collagen II. Microparticles are then encapsulated with stem cells inside liquified spherical compartments enfolded with a permselective shell through layer-by-layer adsorption. Magnetic nanoparticles are electrostatically bound to the multilayered shell, conferring magnetic-response ability. The goal of this study is to engineer a closed environment inside which encapsulated stem cells would undergo a self-regulated chondrogenesis. To test this hypothesis, capsules are cultured in chondrogenic differentiation medium without TGF-β3. Their biological outcome is compared with capsules encapsulating microparticles without TGF-β3 immobilization and cultured in normal chondrogenic differentiation medium containing soluble TGF-β3. Glycosaminoglycans quantification demosntrates that similar chondrogenesis levels are achieved. Moreover, collagen fibrils resembling the native extracellular matrix of cartilage can be observed. Importantly, the genetic evaluation of characteristic cartilage markers confirms the successful chondrogenesis, while hypertrophic markers are downregulated. In summary, the engineered capsules are able to provide a suitable and stable chondrogenesis environment for stem cells without the need of TGF-β3 supplementation. This kind of self-regulated capsules with softness, robustness, and magnetic responsive characteristics is expected to provide injectability and in situ fixation, which is of great advantage for minimal invasive strategies to regenerate cartilage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: formulation aspects and nanoparticle stability to nebulization.

    PubMed

    Beck-Broichsitter, Moritz; Kleimann, Pia; Gessler, Tobias; Seeger, Werner; Kissel, Thomas; Schmehl, Thomas

    2012-01-17

    Polymeric nanoparticles meet the increasing interest for drug delivery applications and hold great promise to improve controlled drug delivery to the lung. Here, we present a series of investigations that were carried out to understand the impact of formulation variables on the nebulization performance of novel biodegradable sildenafil-loaded nanoparticles designed for targeted aerosol therapy of life-threatening pulmonary arterial hypertension. Narrowly distributed poly(D,L-lactide-co-glycolide) nanoparticles (size: ∼200 nm) were prepared by a solvent evaporation technique using poly(vinyl alcohol) (PVA) as stabilizer. The aerodynamic and output characteristics using the Aeroneb Pro nebulizer correlated well with the dynamic viscosity of the employed fluids for nebulization. The nebulization performance was mainly affected by the amount of employed stabilizer, rather than by the applied nanoparticle concentration. Nanoparticles revealed physical stability against forces generated during aerosolization, what is attributed to the adsorbed PVA layer around the nanoparticles. Sildenafil was successfully encapsulated into nanoparticles (encapsulation efficiency: ∼80%). Size, size distribution and sildenafil content of nanoparticles were not affected by nebulization and the in vitro drug release profile demonstrated a sustained sildenafil release over ∼120 min. The current study suggests that the prepared sildenafil-loaded nanoparticles are a promising pharmaceutical for the therapy of pulmonary arterial hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides

    PubMed Central

    Sirsi, Shashank R; Schray, Rebecca C; Wheatley, Margaret A; Lutz, Gordon J

    2009-01-01

    Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD. PMID:19351396

  14. Cryochemistry of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  15. Study of Structural and Magnetic Properties of Silica and Polyethylene Glycol (PEG-4000)-Encapsulated Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Deswardani, F.; Maulia, R.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 has been successfully synthesized by using co-precipitation method. Two series of Mg0.5Ni0.5Fe2O4 silica encapsulated have been prepared by varying the concentration of silica and variation of PEG-4000 concentration. Analysis of X-Ray Diffraction (XRD) pattern showed that nanoparticles contained Mg0.5Ni0.5Fe2O4 spinel phase and γ-Fe2O3 phase with a particle size of 5.1 nm. The various of silica encapsulation give rise to produce a new phase of SiO2 and increase the particle size to 16.1 nm. PEG-4000 encapsulation affected to create a new phase of γ-FeO(OH), and reduce the particle size down to 4.5 nm. Fourier Transform Infra Red (FTIR) for Mg0.5Ni0.5Fe2O4 showed absorption peaks around 300-600 cm-1 which are M-O bond vibration. After silica encapsulation, there was new bond vibration typical of silica such as Si-O-Si (1049.28 cm-1), Si-OH (779.24 cm-1), and Si-O-Fe (570.93 cm-1). The PEG-4000 encapsulation creates a new vibration for typical of PEG-like of C-O (1103.28 cm-1) and C-H (925.83, 1481.33, and 2924.09 cm-1). Both of encapsulations series have M-O bond vibration indicating the presence of Mg0.5Ni0.5Fe2O4. After silica encapsulation, the coercivity of Mg0.5Ni0.5Fe2O4 decreased from 47 Oe to 10 Oe due to the decrease of particle size. Even though, the discrepancy of particle size as the effect of PEG-4000 encapsulation, the coercivity just slightly reduced to 46 Oe. The saturation magnetization of Mg0.5Ni0.5Fe2O4 decreased from 4.7 emu/g to 1 emu/g after silica encapsulation because diamagnetic SiO2. Otherwise, the saturation magnetization increased to 7.7 emu/g after PEG-4000 encapsulation because of domination of Mg0.5Ni0.5Fe2O4 phase ratio.

  16. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chul; Kim, Eunjoo; Jeong, Sang Won; Ha, Tae-Lin; Park, Sang-Im; Lee, Se Guen; Lee, Sung Jun; Lee, Seung Woo

    2015-10-01

    Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia.Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia. Electronic

  17. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery.

    PubMed

    Zou, Peng; Stern, Stephan T; Sun, Duxin

    2014-03-01

    Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.

  18. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery

    PubMed Central

    Zou, Peng; Stern, Stephan T.; Sun, Duxin

    2014-01-01

    Purpose Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly( lactic-coglycolicacid) (PLGA). Methods BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). Results FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 minutes. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 hours. Conclusions The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs. PMID:24065591

  19. Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit.

    PubMed

    Xu, Lingling; Tremblay, Marie-Laurence; Orrell, Kathleen E; Leclerc, Jérémie; Meng, Qing; Liu, Xiang-Qin; Rainey, Jan K

    2013-10-01

    Artificial spider silk proteins may form fibers with exceptional strength and elasticity. Wrapping silk, or aciniform silk, is the toughest of the spider silks, and has a very different protein composition than other spider silks. Here, we present the characterization of an aciniform protein (AcSp1) subunit named W1, consisting of one AcSp1 199 residue repeat unit from Argiope trifasciata. The structural integrity of recombinant W1 is demonstrated in a variety of buffer conditions and time points. Furthermore, we show that W1 has a high thermal stability with reversible denaturation at ∼71°C and forms self-assembled nanoparticle in near-physiological conditions. W1 therefore represents a highly stable and structurally robust module for protein-based nanoparticle formation. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Selective Catalysis in Nanoparticle Metal-Organic Framework Composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Casey Justin

    The design of highly selective catalysts are becoming increasingly important, especially as chemical and pharmaceutical industries seek to improve atom economy and minimize energy intensive separations that are often required to separate side products from the desired product. Enzymes are among the most selective of all catalysts, generally operating through molecular recognition whereby an active site analogous to a lock and the substrate is analogous to a key. The assembly of a porous, crystalline material around a catalytically active metal particle could serve as an artificial enzyme. In this vein, we first synthesized the polyvinylpyrrolidone (PVP) coated nanoparticles of interest and then encapsulated them within zeolitic imidazolate framework 8 or ZIF-8. 2.8 nm Pt-PVP nanoparticles, which were encapsulated within ZIF-8 to form Pt ZIF-8 composite. Pt ZIF-8 was inactive for the hydrogenation of cyclic olefins such as cis-cyclooctene and cis-cyclohexene while the composite proved to be a highly selective catalyst for the hydrogenation of terminal olefins, hydrogenating trans-1,3-hexadiene to 3-hexene in 95% selectivity after 24 hours under 1 bar H2. We extended our encapsulation method to sub-2 nm Au nanoparticles to form Au ZIF-8. Au ZIF-8 served as a highly chemoselective catalyst for the hydrogenation of crotonaldehyde an alpha,beta-unsaturated aldehyde, to crotyl alcohol an alpha,beta-unsaturated alcohol, in 90-95% selectivity. In order to investigate nanoparticle size effects on selectivity, 6-10 nm Au nanoparticles were encapsulated within ZIF-8 to form Au6 ZIF-8. Control catalysts with nanoparticles supported on the surface of ZIF-8 were synthesized as well, Au/ZIF-8 and Au6/ZIF-8. Au6 ZIF-8 hydrogenated crotonaldehyde in 85% selectivity towards the unsaturated alcohol. Catalysts with nanoparticles supported on the exterior of ZIF-8 were far less selective towards the unsaturated alcohol. Post-catalysis transmission electron microscopy analysis of Au ZIF

  1. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  2. Encapsulation of a proteasome inhibitor with gold-polysaccharide nanocarriers

    NASA Astrophysics Data System (ADS)

    Coelho, Sílvia Castro; Rocha, Sandra; Sampaio, Paula; Pereira, Maria Carmo; Coelho, Manuel A. N.

    2014-04-01

    Organic-inorganic hybrid nanoparticles are potential effective systems for drug delivery in cancer therapy and diagnosis. Chitosan-gum arabic with entrapped gold nanoparticles were developed as a carrier for an anticancer drug bortezomib. The nanosystem was designed to enhance the proteasome inhibitor activity in pancreatic cell lines, S2-013 and hTERT-HPNE. The hydrodynamic diameter of chitosan-gum arabic-gold nanoparticles loaded with bortezomib is around 330 nm. Laser scanning confocal microscopy images show the uptake of the gold nanoparticle/bortezomib encapsulated in chitosan-gum arabic matrix and the fast internalization of these nano combinations into pancreatic cells. Cytotoxic assays assessed that positively charged nanosystems reduce the cell growth and cell proliferation of S2-013s, but the same effect was not observed in cytotoxic response in hTERT-HPNE cells. The outcomes of this study demonstrate the capacity of chitosan-gum arabic nanocarriers to deliver gold nanoparticles/anticancer drug and to increase the permeation and retention effect in S2-013 cells and minimize drug side effects in HPNE cells.

  3. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    PubMed

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation

  4. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors.

    PubMed

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-25

    Known as an excellent energy storage material, ZnMn 2 O 4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn 2 O 4 /C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn 2 O 4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (∼5% loss) and high specific capacitance of 1786 F g -1 .

  5. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-01

    Known as an excellent energy storage material, ZnMn2O4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn2O4/C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn2O4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (˜5% loss) and high specific capacitance of 1786 F g-1.

  6. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Yuan, Haoran; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-01-10

    Herein we develop a facile strategy for fabricating nickel particle encapsulated in few-layer nitrogen-doped graphene supported by graphite carbon sheets as a high-performance electromagnetic wave (EMW) absorbing material. The obtained material exhibits sheetlike morphology with a lateral length ranging from a hundred nanometers to 2 μm and a thickness of about 23 nm. Nickel nanoparticles with a diameter of approximately 20 nm were encapsulated in about six layers of nitrogen-doped graphene. As applied for electromagnetic absorbing material, the heteronanostructures exhibit excellent electromagnetic wave absorption property, comparable to most EMW absorbing materials previously reported. Typically, the effective absorption bandwidth (the frequency region falls within the reflection loss below -10 dB) is up to 8.5 GHz at the thicknesses of 3.0 mm for the heteronanostructures with the optimized Ni content. Furthermore, two processes, carbonization at a high temperature and subsequent treatment in hot acid solution, were involved in the preparation of the heteronanostructures, and thus, mass production was achieved easily, facilitating their practical applications.

  7. Air stable organic-inorganic nanoparticles hybrid solar cells

    DOEpatents

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  8. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; Xie, Jin; Li, Yuzhang; Liao, Lei; Jin, Yang; Liu, Kai; Hsu, Po-Chun; Wang, Jiangyan; Cheng, Hui-Ming; Cui, Yi

    2017-10-01

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.

  9. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE PAGES

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; ...

    2017-07-10

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  10. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  11. Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity.

    PubMed

    Lugade, Amit A; Bharali, Dhruba J; Pradhan, Vandana; Elkin, Galina; Mousa, Shaker A; Thanavala, Yasmin

    2013-10-01

    Chitosan nanoparticles were evaluated as a vaccine delivery system for hepatitis B surface antigen (HBsAg) in the absence of adjuvant. Nano-encapsulated HBsAg (HBsAg chitosan-NP) was endocytosed more rapidly and efficiently by dendritic cells compared to soluble HBsAg. FRET analysis demonstrated that intact nanoparticles were taken up by DCs. To determine the immunogenicity of adjuvant-free nano-encapsulated HBsAg, mice were immunized with a single dose of non-encapsulated HBsAg, HBsAg chitosan-NP, or HBsAg alum. Mice immunized with adjuvant-free nanoparticle elicited anti-HBs antibodies at significantly higher titers compared to mice immunized with HBsAg alum. Elevated numbers of BAFF-R(+) B cells and CD138+ plasma cells account for the heightened anti-HBs response in nanoparticle immunized mice. Increases in Tfh cells provide a mechanism for the accumulation of anti-HBs secreting cells. Thus, chitosan nanoparticle vaccines represent a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration. In this study, chitosan nanoparticle vaccines are demonstrated as a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration in a murine model. The authors also demonstrated superior antibody response induction compared with non-encapsulated HBs antigen and HBsAg aluminum. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B.

    PubMed

    Jain, Arvind K; Goyal, Amit K; Mishra, Neeraj; Vaidya, Bhuvaneshwar; Mangal, Sharad; Vyas, Suresh P

    2010-03-15

    PLA/PLGA nanoparticles are well known as efficient vaccine delivery systems, but they have got limitation in oral vaccine delivery because of their sensitivity to harsh gastric environment. The aim of present study was to improve the stability of PLA nanoparticles in such environment by copolymerizing PLA with PEG. Nanoparticles were formulated using different block copolymers AB, ABA and BAB (where 'A' is PLA and 'B' is PEG) encapsulating hepatitis B surface antigen (HBsAg) to evaluate their efficacy as oral vaccine delivery system. The results of in vitro studies engrave the efficiency of copolymeric nanoparticles to retain encapsulated antigen and average particle size even after 2 h incubation in simulated gastric fluid and simulated intestinal fluid. Fluorescence microscopic studies indicated efficient uptake of copolymeric nanoparticles by gut mucosa of immunized mice model as compared to control. Finally copolymeric and PLA nanoparticles, encapsulating HBsAg, were evaluated for their adjuvancity in generating immune response after oral administration. PLA nanoparticles could not generate an effective immune response due to stability issues. On the other hand, oral administration of copolymeric nanoparticles exhibited effective levels of humoral immunity along with the mucosal (sIgA) and cellular immune response (T(H)1). The results of in vitro and in vivo studies demonstrate that BAB nanoparticles depict enhanced mucosal uptake leading to effective immune response as compared to other copolymeric nanoparticles. Present study indicates the efficacy of BAB nanoparticles as a promising carrier for oral immunization. 2009 Elsevier B.V. All rights reserved.

  13. Quantification of intracellular payload release from polymersome nanoparticles

    NASA Astrophysics Data System (ADS)

    Scarpa, Edoardo; Bailey, Joanne L.; Janeczek, Agnieszka A.; Stumpf, Patrick S.; Johnston, Alexander H.; Oreffo, Richard O. C.; Woo, Yin L.; Cheong, Ying C.; Evans, Nicholas D.; Newman, Tracey A.

    2016-07-01

    Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid nanoparticles, there is very little data available on intracellular release of molecules encapsulated in membranous carriers, such as polymersomes. Here, we addressed this by developing a quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM disruption and cytosolic release of fluorescein. By combining absorbance measurements with flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell resolution. We found that 173 ± 38 polymersomes released their payload per cell, with significant heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for quantification of the release of compounds from nanoparticles provides fundamental information on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic nature of population distribution in homogeneous cell populations, a factor that must be taken into account in clinical use of this technology.

  14. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.

    PubMed

    Thote, Amol J; Gupta, Ram B

    2005-03-01

    Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.

  15. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil.

    PubMed

    Xie, Wenlei; Zang, Xuezhen

    2017-07-15

    Hydroxyapatite-encapsulated γ-Fe 2 O 3 nanoparticles were prepared, and lipase from Candida rugosa was then covalently bound onto the magnetic materials via covalent linkages. The magnetic carrier and immobilized lipase were characterized by enzyme activity assays, XRD, FT-IR, TEM, VSM and N 2 adsorption-desorption techniques. Results demonstrated that γ-Fe 2 O 3 nanoparticles were coated with the hydroxyapatite, and the lipase was indeed tethered to the magnetic carriers without damage to their structure. The immobilized lipase showed a strong magnetic responsiveness and displayed high catalytic activities towards the interesterification of soybean oil. The interesterified products were evaluated for their total fatty acid (FA) composition, slip melting point (SMP), iodine value, triacylglycerols (TAGs) profile and FA composition at sn-2 position in TAGs. The FA positional distributions and TAG species significantly changed after the enzymatic interesterification. Besides this, the interesterified products showed an obvious reduction in their SMP in comparison with the physical blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.

    PubMed

    Qiao, Zeng-Ying; Ji, Ran; Huang, Xiao-Nan; Du, Fu-Sheng; Zhang, Rui; Liang, De-Hai; Li, Zi-Chen

    2013-05-13

    A series of well-defined thermoresponsive diblock copolymers (PEO45-b-PtNEAn, n=22, 44, 63, 91, 172) were prepared by the atom transfer radical polymerization of trans-N-(2-ethoxy-1,3-dioxan-5-yl) acrylamide (tNEA) using a poly(ethylene oxide) (PEO45) macroinitiator. All copolymers are water-soluble at low temperature, but upon quickly heating to 37 °C, laser light scattering (LLS) and transmission electron microscopy (TEM) characterizations indicate that these copolymers self-assemble into aggregates with different morphologies depending on the chain length of PtNEA and the polymer concentration; the morphologies gradually evolved from spherical solid nanoparticles to a polymersome as the degree of polymerization ("n") of PtNEA block increased from 22 to 172, with the formation of clusters with rod-like structure at the intermediate PtNEA length. Both the spherical nanoparticle and the polymersome are stable at physiological pH but susceptible to the mildly acidic medium. Acid-triggered hydrolysis behaviors of the aggregates were investigated by LLS, Nile red fluorescence, TEM, and (1)H NMR spectroscopy. The results revealed that the spherical nanoparticles formed from PEO45-b-PtNEA44 dissociated faster than the polymersomes of PEO45-b-PtNEA172, and both aggregates showed an enhanced hydrolysis under acidic conditions. Both the spherical nanoparticle and polymersome are able to efficiently load the hydrophobic doxorubicin (DOX), and water-soluble fluorescein isothiocyanate-lysozyme (FITC-Lys) can be conveniently encapsulated into the polymersome without using any organic solvent. Moreover, FITC-Lys and DOX could be coloaded in the polymersome. The drugs loaded either in the polymersome or in the spherical nanoparticle could be released by acid triggering. Finally, the DOX-loaded assemblies display concentration-dependent cytotoxicity to HepG2 cells, while the copolymers themselves are nontoxic.

  17. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    PubMed

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  18. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels.

    PubMed

    An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen

    2012-02-15

    A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens.

    PubMed

    Banumathi, Balan; Vaseeharan, Baskaralingam; Ishwarya, Ramachandran; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-06-01

    Dengue and chikungunya are arboviral diseases mainly vectored by the mosquito Aedes aegypti. Presently, there is no treatment for these viral diseases and their prevention is still based on vector control measures. Nanopesticides fabricated using herbal extracts as reducing and capping agents currently represent an excellent platform for pest control. In this scenario, the present study assessed the acute toxicity of seven plants employed in ethno-veterinary medicine of southern India, as well as the green synthesis of zinc oxide nanoparticles, on third-instar larvae of A. aegypti. Larvae were exposed to extracts of the seven plants obtained with solvents of different polarity (acetone, ethanol, petroleum ether, and water) for 24 h. Maximum efficacy was observed for Lobelia leschenaultiana leaf extracts prepared using all the four solvent extracts (LC 50  = 22.83, 28.12, 32.61, and 36.85 mg/L, respectively). Therefore, this plant species was used for the synthesis and stabilization of ZnO nanoparticles based on its maximum efficacy against third-instar larvae of A. aegypti. L. leschenaultiana-encapsulated ZnO nanoparticles showed 100% mortality when tested at 10 mg/L, the LC 50 was extremely low,  1.57 mg/L. Zinc acetate achieved only 65.33% when tested at 60 mg/L, with a LC 50 of 51.62 mg/L. Additionally, ZnO nanoparticles inhibited growth of Pseudomonas aeruginosa, Proteus vulgaris, Shigella sonnei, and Vibrio parahaemolyticus and also inhibited biofilm formation on selected microbila pathogens, showing impact on EPS production and hydrophobicity. Overall, our results suggest that L. leschenaultiana-fabricated ZnO nanoparticles have a significant potential to control A. aegypti mosquitoes and Gram-negative bacterial pathogens.

  1. Method for forming thermally stable nanoparticles on supports

    DOEpatents

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2013-08-20

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  2. Sustained release of methotrexate through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2014-09-01

    To make chemotherapy more effective, sustained release of the drug is desirable. By controlling the release rates, constant therapeutic levels can be achieved which can avoid re-administration of drug. This helps to combat tumors more effectively with minimal side effects. The present study reports the control release of methotrexate through liquid-crystalline folate nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate methotrexate molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming methotrexate encapsulated folate nanoparticles as well as the release of methotrexate through these nanoparticles. It has been demonstrated that methotrexate release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on methotrexate release rates was also studied.

  3. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  4. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress.

    PubMed

    Amin, Faiz Ul; Shah, Shahid Ali; Badshah, Haroon; Khan, Mehtab; Kim, Myeong Ok

    2017-02-07

    In order to increase the bioavailability of hydrophilic unstable drugs like anthocyanins, we employed a polymer-based nanoparticles approach due to its unique properties such as high stability, improved bioavailability and high water-soluble drug loading efficiency. Anthocyanins constitute a subfamily of flavonoids that possess anti-oxidative, anti-inflammatory and neuroprotective properties. However, anthocyanins are unstable because their phenolic hydroxyl groups are easily oxidized into quinones, causing a reduced biological activity. To overcome this drawback and improve the free radical scavenging capabilities of anthocyanins, in the current study we for the first time encapsulated the anthocyanins in biodegradable nanoparticle formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-2000. The biological activity and neuroprotective effect of anthocyanin loaded nanoparticles (An-NPs) were investigated in SH-SY5Y cell lines. Morphological examination under transmission electron microscopy (TEM) showed the formation of smooth spherically shaped nanoparticles. The average particle size and zeta potential of An-NPs were in the range of 120-165 nm and -12 mV respectively, with a low polydispersity index (0.4) and displayed a biphasic release profile in vitro. Anthocyanins encapsulation in PLGA@PEG nanoparticles (NPs) did not destroy its inherent properties and exhibit more potent neuroprotective properties. An-NPs were nontoxic to SH-SY5Y cells and increased their cell viability against Aβ 1-42 by its free radical scavenging characteristics and abrogated ROS generation via the p38-MAPK/JNK pathways accompanied by induction of endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Comparative to native bulk anthocyanins, An-NPs effectively attenuated Alzheimer's markers like APP (amyloid precursor protein), BACE-1 (beta-site amyloid precursor protein cleaving enzyme 1

  5. A multifunctional biphasic suspension of mesoporous silica encapsulated with YVO4:Eu3+ and Fe3O4 nanoparticles: synergistic effect towards cancer therapy and imaging.

    PubMed

    Shanta Singh, N; Kulkarni, Hrishikesh; Pradhan, Lina; Bahadur, D

    2013-02-15

    Polyol mediated synthesized luminescent YVO(4):Eu(3+) nanoparticles (NPs) have been encapsulated in mesoporous silica nanoparticles (MSNs) using the sol-gel process. X-ray diffraction and Fourier transform infrared spectroscopy along with transmission electron microscopy confirm the encapsulation of the YVO(4):Eu(3+) NPs in the SiO(2) matrix. N(2) adsorption/desorption analysis confirms the mesoporous nature of the MSNs and YVO(4):Eu(3+)-MSNs. No significant quenching of the YVO(4):Eu(3+) luminescence is observed for YVO(4):Eu(3+)-MSNs. This nanocomposite has been tested as a potential drug carrier. Efficient loading of doxorubicin hydrochloride (DOX), a typical anticancer drug, is observed which reaches up to 93% in 8 mg ml(-1) of YVO(4):Eu(3+)-MSNs. pH sensitive release of DOX is observed, with 54% release for pH 4.3 and 31% in a physiological environment (pH 7.4). Both MSNs and YVO(4):Eu(3+)-MSNs nanocomposites do not show accountable toxicity to two cell lines, i.e. HeLa and MCF-7. However, as desired, toxicity is observed when cells are incubated with DOX loaded YVO(4):Eu(3+)-MSNs. Laser scanning confocal microscopy images confirm the uptake of the nanocomposite in both cell lines. The morphology of the cells (MCF-7) changes after incubation with DOX loaded YVO(4):Eu(3+)-MSNs, indicating an interaction of DOX with the cells. More cytotoxicity to both cell lines with ∼90% killing is observed due to the synergistic effect of magnetic fluid hyperthermia and chemotherapy using a biphasic suspension of superparamagnetic iron oxide magnetic nanoparticles and DOX loaded YVO(4):Eu(3+)-MSNs. In addition, an AC magnetic field triggers an enhanced drug release.

  6. Silica Encapsulated Gold Nanoparticles as SERS Labels for the Detection of Lymphoma B-Cells in Tissue Sections

    NASA Astrophysics Data System (ADS)

    Al-Faouri, Tamara

    The surface of silica encapsulated gold nanoparticles with trans-1,2-bis (4-pyridyl) ethylene Raman active dye were utilized as SERS labels to target CD20 surface protein on lymphoma B-cells in human tissue sections with CLL or FL. SERS labels were functionalized with various antibody linkers including carboxylic, aldehyde, and heterobifunctional PEG chains with an NHS end, to permit them to bind to tissue section samples. NP samples and tissue sections were characterized through UV-Vis spectroscopy, TEM, XPS, Zeta potential measurements, Dark Field microscopy, Raman spectroscopy, NMR, and AFM. The number of SERS labels present on a tissue sample was estimated using dark field images and a particle counting software. It was found that the heterobifunctional PEG chains linker provided the most specific binding of SERS labels with an estimated NP count of 1.33x106 NPs on the whole tissue and produced the highest Raman scatter intensity of approximately 48600 counts.

  7. Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review.

    PubMed

    Saez, V; Souza, I D L; Mansur, C R E

    2018-04-01

    The antioxidative and photoprotective properties of vitamin E have caused it to be included as an active agent in various pharmaceutical and cosmetic products. However, its lipophilicity, chemical instability and poor skin penetration have limited the effectiveness of these formulations. For that reason, many attempts to include it in different drug delivery systems have been made. In recent decades, lipid nanoparticles have received special attention due to their advantages of compatibility with the skin, ability to enhance penetration of drugs in the stratum corneum, protection of the encapsulated substance against degradation induced by the external medium and control of drug release. This work reviews the current status of the encapsulation of vitamin E in lipid nanoparticles. We describe the most important methods for obtaining and characterizing lipid nanoparticles containing vitamin E (LNP-VE), various techniques for the evaluation of vitamin E's properties after encapsulation, the main in vitro and in vivo studies of the potential effectiveness or toxicity of LNP-VE, the formulations and stability studies of this delivery system, the commercial products based on LNP-VE and the regulatory aspects related to lipid nanoparticles. Finally, we discuss the most relevant advantages of encapsulating vitamin E in such particles and critical aspects that still demand attention to enhance the potential of solid lipid nanoparticles to deliver vitamin E. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  9. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid.

    PubMed

    Porru, Manuela; Zappavigna, Silvia; Salzano, Giuseppina; Luce, Amalia; Stoppacciaro, Antonella; Balestrieri, Maria Luisa; Artuso, Simona; Lusa, Sara; De Rosa, Giuseppe; Leonetti, Carlo; Caraglia, Michele

    2014-11-15

    Glioblastomas are highly aggressive adult brain tumors with poor clinical outcome. In the central nervous system (CNS) the blood-brain barrier (BBB) is the most important limiting factor for both development of new drugs and drug delivery. Here, we propose a new strategy to treat glioblastoma based on transferrin (Tf)-targeted self-assembled nanoparticles (NPs) incorporating zoledronic acid (ZOL) (NPs-ZOL-Tf). NPs-ZOL-Tf have been assessed on the glioblastoma cell line U373MG-LUC that showed a refractoriness in vitro to temozolomide (TMZ) and fotemustine (FTM). NPs-ZOL-Tf treatment resulted in higher in vitro cytotoxic activity than free ZOL. However, the potentiation of anti-proliferative activity of NPs-ZOL-Tf was superimposable to that one induced by NPs-ZOL (not armed with Tf). On the other hand, NPs-ZOL-Tf showed a higher antitumor efficacy if compared with that one caused by NPs-ZOL in immunosuppressed mice intramuscularly bearing U373MG-LUC xenografts, inducing a significant tumor weight inhibition (TWI). The experiments performed on mice with intracranial U373MG-LUC xenografts confirmed the efficacy of NPs-ZOL-Tf. These effects were paralleled by a higher intratumour localization of fluorescently-labeled-NPs-Tf both in intramuscular and intracranial xenografts. In conclusion, our results demonstrate that the encapsulation of ZOL increases the antitumor efficacy of this drug in glioblastoma through the acquisition of ability to cross the BBB.

  10. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid

    PubMed Central

    Porru, Manuela; Zappavigna, Silvia; Salzano, Giuseppina; Luce, Amalia; Stoppacciaro, Antonella; Balestrieri, Maria Luisa; Artuso, Simona; Lusa, Sara; De Rosa, Giuseppe; Leonetti, Carlo; Caraglia, Michele

    2014-01-01

    Glioblastomas are highly aggressive adult brain tumors with poor clinical outcome. In the central nervous system (CNS) the blood-brain barrier (BBB) is the most important limiting factor for both development of new drugs and drug delivery. Here, we propose a new strategy to treat glioblastoma based on transferrin (Tf)-targeted self-assembled nanoparticles (NPs) incorporating zoledronic acid (ZOL) (NPs-ZOL-Tf). NPs-ZOL-Tf have been assessed on the glioblastoma cell line U373MG-LUC that showed a refractoriness in vitro to temozolomide (TMZ) and fotemustine (FTM). NPs-ZOL-Tf treatment resulted in higher in vitro cytotoxic activity than free ZOL. However, the potentiation of anti-proliferative activity of NPs-ZOL-Tf was superimposable to that one induced by NPs-ZOL (not armed with Tf). On the other hand, NPs-ZOL-Tf showed a higher antitumor efficacy if compared with that one caused by NPs-ZOL in immunosuppressed mice intramuscularly bearing U373MG-LUC xenografts, inducing a significant tumor weight inhibition (TWI). The experiments performed on mice with intracranial U373MG-LUC xenografts confirmed the efficacy of NPs-ZOL-Tf. These effects were paralleled by a higher intratumour localization of fluorescently-labeled-NPs-Tf both in intramuscular and intracranial xenografts. In conclusion, our results demonstrate that the encapsulation of ZOL increases the antitumor efficacy of this drug in glioblastoma through the acquisition of ability to cross the BBB. PMID:25431953

  11. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier.

    PubMed

    Xu, Yongmei; Du, Yumin; Huang, Ronghua; Gao, Leping

    2003-12-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.

  12. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    PubMed Central

    Allouche, Joachim; Chanéac, Corinne; Brayner, Roberta; Boissière, Michel; Coradin, Thibaud

    2014-01-01

    The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms. PMID:28344239

  14. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids.

    PubMed

    Allouche, Joachim; Chanéac, Corinne; Brayner, Roberta; Boissière, Michel; Coradin, Thibaud

    2014-07-31

    The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  15. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Bo; Campbell, Robert B., E-mail: robert.campbell@mcphs.edu

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carriermore » systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest

  16. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  17. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.

    PubMed

    Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N

    2017-12-13

    Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.

  18. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-08

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  19. Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia.

    PubMed

    Li, Lin; Sheng, Xuan; Zhao, Shanhong; Zou, Lifang; Han, Xinyao; Gong, Yingxin; Yuan, Huilong; Shi, Liran; Guo, Lili; Jia, Tianyu; Liu, Shuangmei; Wu, Bing; Yi, Zhihua; Liu, Hui; Gao, Yun; Li, Guilin; Li, Guodong; Zhang, Chunping; Xu, Hong; Liang, Shangdong

    2017-12-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.

  20. Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.

    PubMed

    Jiao, Xinyan; Hao, Qingli; Xia, Xifeng; Lei, Wu; Ouyang, Yu; Ye, Haitao; Mandler, Daniel

    2018-03-09

    The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g -1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g -1 than the GP electrode (185.7 F g -1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration.

    PubMed

    Pawar, Harish; Wankhade, Shrikant Rameshrao; Yadav, Dharmendra K; Suresh, Sarasija

    2016-09-01

    Technology for development of biodegradable nanoparticles encapsulating combinations for enhanced efficacy. To develop docetaxel (DTX) and curcumin (CRM) co-encapsulated biodegradable nanoparticles for parenteral administration with potential for prolonged release and decreased toxicity. Modified emulsion solvent-evaporation technique was employed in the preparation of the nanoparticles optimized by the face centered-central composite design (FC-CCD). The uptake potential was studied in MCF-7 cells, while the toxicity was evaluated by in vitro hemolysis test. In vivo pharmacokinetic was evaluated in male Wistar rats. Co-encapsulated nanoparticles were developed of 219 nm size, 0.154 PDI, -13.74 mV zeta potential and 67.02% entrapment efficiency. Efficient uptake was observed by the nanoparticles in MCF-7 cells with decreased toxicity in comparison with the commercial DTX intravenous injection, Taxotere®. The nanoparticles exhibited biphasic release with initial burst release followed by sustained release for 5 days. The nanoparticles displayed a 4.3-fold increase in AUC (391.10 ± 32.94 versus 89.77 ± 10.58 μg/ml min) in comparison to Taxotere® with a 6.2-fold increase in MRT (24.78 ± 2.36 versus 3.58 ± 0.21 h). The nanoparticles exhibited increased uptake, prolonged in vitro and in vivo release, with decreased toxicity thus exhibiting potential for enhanced efficacy.

  2. Preparation and in vitro evaluation of heparin-loaded polymeric nanoparticles.

    PubMed

    Jiao, Y Y; Ubrich, N; Marchand-Arvier, M; Vigneron, C; Hoffman, M; Maincent, P

    2001-01-01

    Nanoparticles of a highly soluble macromolecular drug, heparin, were formulated with two biodegradable polymers (poly-E-caprolactone [PCL] and poly (D, L-lactic-co-glycolic-acid) 50/50 [PLAGA]) and two nonbiodegradable positively charged polymers (Eudragit RS and RL) by the double emulsion and solvent evaporation method, using a high-pressure homogenization device. The encapsulation efficiency and heparin release profiles were studied as a function of the type of polymers employed (alone or in combination) and the concentration of heparin. Optimal encapsulation efficiency was observed when 5000 IU of heparin were incorporated in the first emulsion. High drug entrapment efficiency was observed in both Eudragit RS and RL nanoparticles (60% and 98%, respectively), compared with PLAGA and PCL nanoparticles (<14%). The use of the two types of Eudragit in combination with PCL and PLAGA increased the encapsulation efficiency compared with these two biodegradable polymers used alone; however, the in vitro drug release was not modified and remained low. On the other hand, the addition of esterase to the dissolution medium resulted in a significant increase in heparin release. The in vitro biological activity of released heparin, evaluated by measuring the anti-Xa activity by a colorimetric assay, was conserved after the encapsulation process.

  3. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    PubMed

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  4. Thermal stability of supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Turba, Timothy Fredrick

    Nanoparticle gold is of interest for a wide array of applications including catalysis, gas sensing, and light absorption for color filters and optical switches. Many of these applications are dependent upon the particles having sizes <5nm. In this paper, the thermal stability of nanoparticle gold is evaluated. Unsupported gold nanoparticles can grow (and in some cases double their size) even at room temperature. An important approach to stabilizing gold nanoparticles is through an interaction with a suitable substrate support material. Semiconductor substrates such as GaN are important supports for gold nanoparticles for applications such as sensors, but GaN does not provide a significant stabilizing effect at high temperatures. This paper covers a number of different substrate materials and in particular shows that for some substrates, such as SiO2, gold nanoparticles can be stable at temperatures up to 500°C, which is significantly above the Tammann temperature for bulk gold (395°C). In this dissertation, gold nanoparticles are shown to have complete stability on aluminum-supported silica nanosprings at 550°C in air. This stability window is one of the highest reported for nanoparticle gold and potentially enables a number of applications for this highly active catalyst. X-ray photoelectron spectroscopy measurements were performed before and after heating to 550°C to determine the nature of the interaction between gold and SiO2. A 1.2 eV drop in gold 4f binding energy after heating signified a shift to anionic gold particles (i.e., Au delta-) indicative of strong bonds to oxygen vacancies with neighboring Sidelta+ atoms. Heating in hydrogen at 550°C resulted in a binding energy decrease of 0.4 eV due to an increased fraction of particles with decreased coordination numbers (i.e., more atoms at edges and corners). Lastly, heating gold nanoparticles in an atmosphere of 10% relative humidity at 550°C resulted in apparent encapsulation of the gold.

  5. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    PubMed

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  6. Stable and pH-responsive core-shell nanoparticles based on HEC and PMAA networks via template copolymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jin, Q.; Chen, Y.; Zhao, J.

    2011-10-01

    Taking advantage of the specific hydrogen bonding interactions, stable and pH-responsive core-shell nanoparticles based on hydroxyethyl cellulose (HEC) and polymethacrylic acid (PMAA) networks, with a < D h > size ranging from 190 to 250 nm, can be efficiently prepared via facile one-step co-polymerization of methacrylic acid (MAA) and N, N'-methylenebisacrylamide (MBA) on HEC template in water. Using dynamic light scattering, electrophoretic light scattering, fluorescence spectrometry, thermo-gravimetric analysis, TEM, and AFM observations, the influence of crosslinker MBA as well as the reaction parameters were studied. The results show that after the introduction of crosslinker MBA, the nanoparticles became less compact; their size exhibited a smaller pH sensitivity, and their stability against pH value was improved greatly. Furthermore, the size, structure, and pH response of the nanoparticles can be adjusted via varying the reaction parameters: nanoparticles of smaller size, more compact structure, and higher swelling capacity were produced as pH value of the reaction medium increased or the HEC/MAA ratio decreased; while nanoparticles of smaller size, less compact structure and smaller swelling capacity were produced as the total feeding concentration increased.

  7. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid.

    PubMed

    Ghalavand, M; Saadati, M; Ahmadi, A; Abbasi, E; Salimian, J

    2018-01-01

    The present study was aimed at comparing tetanus toxoid (TT)‑loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. TT‑loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p < 0.05). The quality and efficacy of toxoid‑loaded chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).

  8. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V Parvulescu; V Parvulescu; D Ciuparu

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been usedmore » as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.« less

  9. Encapsulation and controlled release of rapamycin from polycaprolactone nanoparticles prepared by membrane micromixing combined with antisolvent precipitation.

    PubMed

    Othman, Rahimah; Vladisavljevic, Goran T; Nagy, Zoltan K; Holdich, Richard Graham

    2016-09-30

    Rapamycin loaded polycaprolactone nanoparticles (RAPA-PCL NPs) with a low polydispersity index of 0.006-0.073 were produced by anti-solvent precipitation using a ringed stainless steel membrane with 10-μm diameter laser-drilled pores. The organic phase composed of 6 g L -1 of PCL and 0.6-3.0 g L -1 of RAPA in acetone was injected through the membrane at 140 L m -2 h -1 into 0.2 wt% aqueous polyvinyl alcohol solution stirred at 1300 rpm, resulting in a Z-average mean of 189-218 nm, a drug encapsulation efficiency of 98.8-98.9 % and a drug loading in the NPs of 9-33 %. The encapsulation of RAPA was confirmed by UV-Vis spectroscopy, XRD, DSC, and ATR-FTIR. The disappearance of sharp characteristic peaks of crystalline RAPA in the XRD pattern of RAPA-PCL NPs revealed that the drug was molecularly dispersed in the polymer matrix or present in individual amorphous domains. The rate of drug release in pure water was negligible due to low aqueous solubility of RAPA. RAPA-PCL NPs released more than 91 % of their drug cargo after 2.5 h in the release medium composed of 0.78-1.5 M of the hydrotropic agent N,N-diethylnicotinamide (DENA), 10 vol% of ethanol, and 2 vol% of Tween 20 in phosphate buffered saline. The release rate of RAPA was faster when the concentra-tion of DENA in the dissolution medium was higher. The dissolution of RAPA was slower when the drug was embedded in the PCL matrix of the NPs than dispersed in the form of pure RAPA nanocrystals.

  10. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites.

    PubMed

    Yin, Hong; Chow, Gan-Moog

    2009-11-01

    Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.

  11. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  12. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice.

    PubMed

    Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A

    2018-05-29

    Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.

  13. Multi-modality nanoparticles having optically responsive shape

    DOEpatents

    Chen, Fanqing; Bouchard, Louis-Serge

    2015-05-19

    In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.

  14. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    NASA Astrophysics Data System (ADS)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

  15. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  16. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology.

    PubMed

    Jain, Anekant; Jain, Sanjay K

    2016-12-01

    Purpose Colon-specific drug delivery systems (CDDS) can improve the bio-availability of drugs through the oral route. A novel formulation for oral administration using ligand coupled chitosan nanoparticles bearing 5-Flurouracil (5FU) encapsulated in enteric coated pellets has been investigated for CDDS. Method The effect of polymer concentration, drug concentration, stirring time and stirring speed on the encapsulation efficiency, and size of nanoparticles were evaluated. The best (or optimum) formulation was obtained by response surface methodology. Using the experimental data, analysis of variance has been carried out to evolve linear empirical models. Using a new methodology, polynomial models have been evolved and the parametric analysis has been carried out. In order to target nanoparticles to the hyaluronic acid (HA) receptors present on colon tumors, HA coupled nanoparticles were tested for their efficacy in vivo. The HA coupled nanoparticles were encapsulated in pellets and were enteric coated to release the drug in the colon. Results Drug release studies under conditions of mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The relatively high local drug concentration with prolonged exposure time provides a potential to enhance anti-tumor efficacy with low systemic toxicity for the treatment of colon cancer. Conclusions Conclusively, HA coupled nanoparticles can be considered as the potential candidate for targeted drug delivery and are anticipated to be promising in the treatment of colorectal cancer.

  17. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.

    PubMed

    Tam, Yu Tong; To, Kenneth Kin Wah; Chow, Albert Hee Lum

    2016-03-01

    Over-expression of ATP-binding cassette transporters is one of the most important mechanisms responsible for multidrug resistance. Here, we aimed to develop a stable polymeric nanoparticle system by flash nanoprecipitation (FNP) for enhanced anticancer drug delivery into drug resistant cancer cells. As an antisolvent precipitation process, FNP works best for highly lipophilic solutes (logP>6). Thus we also aimed to evaluate the applicability of FNP to drugs with relatively low lipophilicity (logP=1-2). To this end, doxorubicin (DOX), an anthracycline anticancer agent and a P-gp substrate with a logP of 1.3, was selected as a model drug for the assessment. DOX was successfully incorporated into the amphiphilic diblock copolymer, polyethylene glycol-b-polylactic acid (PEG-b-PLA), by FNP using a four-stream multi-inlet vortex mixer. Optimization of key processing parameters and co-formulation with the co-stabilizer, polyvinylpyrrolidone, yielded highly stable, roughly spherical DOX-loaded PEG-b-PLA nanoparticles (DOX.NP) with mean particle size below 100nm, drug loading up to 14%, and drug encapsulation efficiency up to 49%. DOX.NP exhibited a pH-dependent drug release profile with higher cumulative release rate at acidic pHs. Surface analysis of DOX.NP by XPS revealed an absence of DOX on the particle surface, indicative of complete drug encapsulation. While there were no significant differences in cytotoxic effect on P-gp over-expressing LCC6/MDR cell line between DOX.NP and free DOX in buffered aqueous media, DOX.NP exhibited a considerably higher cellular uptake and intracellular retention after efflux. The apparent lack of cytotoxicity enhancement with DOX.NP may be attributable to its slow DOX release inside the cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert

    2017-11-01

    Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.

  19. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    PubMed

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of a stable humic-urease complex: application to barley seed encapsulation for improving N uptake.

    PubMed

    Mvila, Beaufray G; Pilar-Izquierdo, María C; Busto, María D; Perez-Mateos, Manuel; Ortega, Natividad

    2016-07-01

    Most N fertilizers added to soil are not efficiently used by plants and are lost to the atmosphere or leached from the soil, causing environmental pollution and increasing cost. Barley seed encapsulation in calcium alginate gels containing free or immobilized urease to enhance plant utilization of soil N was investigated. Urease was immobilized with soil humic acids (HA). A central composite face-centered design was applied to optimize the immobilization process, reaching an immobilization yield of 127%. Soil stability of urease was enhanced after the immobilization. Seed encapsulation with free urease (FU) and humic-urease complex (HUC) resulted in a urease activity retention in the coating layer of 46% and 24%, and in germination rates of 87% and 92%, respectively. Under pot culture conditions, the pots planted with seeds encapsulated with FU and HUC showed higher ammonium N (NH4 (+) -N) (26% and 64%, respectively) than the control soil at 28 days after planting (DAP). Moreover, the seed encapsulation with FU and HUC increased the N uptake 83% and 97%, respectively, at 35 DAP. Seed encapsulation with urease could substantially contribute to enhancing plant N nutrition in the early stages of seedling establishment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Characterization of ergocalciferol loaded solid lipid nanoparticles.

    PubMed

    Patel, Mandar R; San Martin-Gonzalez, M Fernanda

    2012-01-01

    The use of solid lipid nanoparticles (SLNs) is a technique that has been widely used in the pharmaceutical industry for the last 2 decades and has become of increasing interest to food scientists due to its potential for encapsulation and controlled release. Ergocalciferol (vitamin D₂) is a bioactive compound whose deficiency may lead to rickets in children and osteomalacia in adults. In this study, ergocalciferol was encapsulated in tripalmitin SLNs stabilized by polysorbate 20 (Tween 20). SLN dispersions (5% w/w) were prepared by hot homogenization technique using a nozzle-type high-pressure homogenizer. Ergocalciferol at 0%, 5%, 10%, 15%, and 20% (w/w of lipid) was dissolved in the molten lipid at 80 °C, mixed with a 5% (w/w) aqueous solution of polysorbate 20 and homogenized at 138 MPa at 80 °C. Particle size, thermal properties, and microstructure were evaluated by dynamic light scattering (DLS), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) respectively. As the proportion of ergocalciferol in the SLN increased from 0% to 20%, the Z-average values of the particles gradually decreased (P≤ 0.05) from approximately 120 nm to approximately 65 nm. DSC analysis of freeze dried SLN samples showed gradual decrease in enthalpies of fusion and crystallization for stable β-subcell whereas for SLN dispersions, the enthalpy of fusion of unstable α-subcell crystal increased with increased ergocalciferol loading. The TEM images of the ergocalciferol loaded SLN samples showed the presence of spherical as well as rod-shaped nanoparticles. It was also observed that the turbidity of the SLN dispersions reduced noticeably with increased ergocalciferol loading. This finding could be useful in terms of fortification of clear juices with ergocalciferol. Solid lipid nanoparticles (SLNs) were used in this study to encapsulate vitamin D₂, a vitamin important for bone health. It was found that as the concentration of vitamin D₂ increased

  2. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers.

    PubMed

    Kim, Bomi; Seo, Bohyung; Park, Sanghyun; Lee, Changkyu; Kim, Jong Oh; Oh, Kyung Taek; Lee, Eun Seong; Choi, Han-Gon; Youn, Yu Seok

    2017-10-01

    Albumin nanoparticles are well-known as effective drug carriers used to deliver hydrophobic chemotherapeutic agents. Albumin nanoparticles encapsulating curcumin and doxorubicin were fabricated using slightly modified nanoparticle albumin-bound (nab™) technology, and the synergistic effects of these two drugs were examined. Albumin nanoparticles encapsulating curcumin, doxorubicin, and both curcumin and doxorubicin were prepared using a high pressure homogenizer. The sizes of albumin nanoparticles were ∼130nm, which was considered to be suitable for the EPR (enhanced permeability and retention) effect. Albumin nanoparticles gradually released drugs over a period of 24h without burst effect. To confirm the synergistic effect of two drugs, in vitro cytotoxicity assay was performed using B16F10 melanoma cells. The cytotoxic effect on B16F10 melanoma cells was highest when co-treated with both curcumin and doxorubicin compared to single treatment of either curcumin and doxorubicin. The combined index calculated by medium-effect equation was 0.6069, indicating a synergistic effect. Results of confocal laser scanning microscopy and fluorescence-activated cell sorting corresponded to results from an in vitro cytotoxicity assay, indicating synergistic cytotoxicity induced by both drugs. A C57BL/6 mouse model induced by B16F10 lung metastasis was used to study in vivo therapeutic effects. When curcumin and doxorubicin were simultaneously treated, the metastatic melanoma mass in the lungs macroscopically decreased compared to curcumin or doxorubicin alone. Albumin nanoparticles encapsulating two anticancer drugs were shown to have an effective therapeutic result and would be an excellent way to treat resistant lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    PubMed

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  4. Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering.

    PubMed

    Samadi, Akbar; Klingberg, Henrik; Jauffred, Liselotte; Kjær, Andreas; Bendix, Poul Martin; Oddershede, Lene B

    2018-05-17

    Absorption of near infrared (NIR) light by metallic nanoparticles can cause extreme heating and is of interest for instance in cancer treatment since NIR light has a relatively large penetration depth into biological tissue. Here, we quantify the extraordinary thermoplasmonic properties of platinum nanoparticles and demonstrate their efficiency in photothermal cancer therapy. Although platinum nanoparticles are extensively used for catalysis, they are much overlooked in a biological context. Via direct measurements based on a biological matrix we show that individual irradiated platinum nanoparticles with diameters of 50-70 nm can easily reach surface temperatures up to 900 K. In contrast to gold nanoshells, which are often used for photothermal purposes, we demonstrate that the platinum particles remain stable at these extreme temperatures. The experiments are paralleled by finite element modeling confirming the experimental results and establishing a theoretical understanding of the particles' thermoplasmonic properties. At extreme temperatures it is likely that a vapor layer will form around the plasmonic particle, and we show this scenario to be consistent with direct measurements and simulations. Viability studies demonstrate that platinum nanoparticles themselves are non-toxic at therapeutically relevant concentrations, however, upon laser irradiation we show that they efficiently kill human cancer cells. Therefore, platinum nanoparticles are highly promising candidates for thermoplasmonic applications in the life sciences, in nano-medicine, and for bio-medical engineering.

  5. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  6. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Chen, Ziliang; Wu, Renbing; Liu, Yang; Ha, Yuan; Guo, Yanhui; Sun, Dalin; Liu, Miao; Fang, Fang

    2018-06-10

    The rational design of an efficient and inexpensive electrocatalyst based on earth-abundant 3d transition metals (TMs) for the hydrogen evolution reaction still remains a significant challenge in the renewable energy area. Herein, a novel and effective approach is developed for synthesizing ultrafine Co nanoparticles encapsulated in nitrogen-doped carbon nanotubes (N-CNTs) grafted onto both sides of reduced graphene oxide (rGO) (Co@N-CNTs@rGO) by direct annealing of GO-wrapped core-shell bimetallic zeolite imidazolate frameworks. Benefiting from the uniform distribution of Co nanoparticles, the in-situ-formed highly graphitic N-CNTs@rGO, the large surface area, and the abundant porosity, the as-fabricated Co@N-CNTs@rGO composites exhibit excellent electrocatalytic hydrogen evolution reaction (HER) activity. As demonstrated in electrochemical measurements, the composites can achieve 10 mA cm -2 at low overpotential with only 108 and 87 mV in 1 m KOH and 0.5 m H 2 SO 4 , respectively, much better than most of the reported Co-based electrocatalysts over a wide pH range. More importantly, the synthetic strategy is versatile and can be extended to prepare other binary or even ternary TMs@N-CNTs@rGO (e.g., Co-Fe@N-CNTs@rGO and Co-Ni-Cu@N-CNTs@rGO). The strategy developed here may open a new avenue toward the development of nonprecious high-performance HER catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Progesterone lipid nanoparticles: Scaling up and in vivo human study.

    PubMed

    Esposito, Elisabetta; Sguizzato, Maddalena; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Nastruzzi, Claudio; Cortesi, Rita

    2017-10-01

    This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Surface enhaced raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    A biopolymer encapsulated with silver nanoparticles was prepared using polyvinyl alcohol (PVA) solution, silver nitrate, and trisodium citrate. Biopolymer based nanosubstrates were deposited on a mica sheet for SERS. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus a...

  9. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    PubMed Central

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  10. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki

    2016-09-01

    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  11. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    PubMed

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice.

    PubMed

    Fadel, Maha; Kassab, Kawser; Fadeel, Doa Abdel

    2010-03-01

    Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.

  13. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    PubMed Central

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01–100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis. PMID:28128225

  14. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    NASA Astrophysics Data System (ADS)

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.

  15. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    PubMed

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  16. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization

    PubMed Central

    Bumb, Ambika; Sarkar, Susanta K.; Billington, Neil; Brechbiel, Martin W.; Neuman, Keir C.

    2013-01-01

    Fluorescent nanodiamonds (FNDs) emit in the near infrared and do not photo-bleach or photoblink. These properties make FNDs better suited for numerous imaging applications in comparison to commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here, we present a method to encapsulate nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution. PMID:23581827

  17. Design documentation: Krypton encapsulation preconceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs,more » technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.« less

  18. Ultrasmall SnO₂ nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage.

    PubMed

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G

    2014-04-15

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g(-1) at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

  19. Nitride stabilized core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  20. Tris(2-aminoethyl)amine based tripodal urea receptors for oxalate: encapsulation of staggered vs. planar conformers.

    PubMed

    Bose, Purnandhu; Dutta, Ranjan; Ghosh, Pradyut

    2013-07-28

    Simple tris(2-aminoethyl)amine (TREN) based tripodal urea receptors are investigated for the encapsulation of divalent oxalate (C2O4(2-)) in a semi-aqueous medium. A single crystal X-ray diffraction study shows that the receptor with 3-cyanophenyl functionality captures a staggered conformer whereas the 3-fluorophenyl functionalized receptor encapsulates a less stable planar conformer.

  1. A facile synthesis of lipid stabilized gold nanoparticles: a step towards biodegradable biosensors.

    PubMed

    Abraham, Sinoj; Narine, Suresh S

    2011-08-01

    A new class of polylactone was successfully synthesized and utilized for the encapsulation and stabilization of gold nanoparticles. Core/shell nanoparticle architecture, in which a layer of this polymer surrounds the nanoparticle core have been investigated both as a means to improve the stability and surface chemistry and as a way of accessing unique physical properties that are not possible from one nano-material alone. Given the fact that only few systems has so far been developed for the encapsulation of nanoparticles, our success in using a new biodegradable biopolymer with inbuilt functionality reveals the robustness of this work. The biodegradability of this polylactone was evaluated using scanning electron microscopy (SEM). The morphology and stability of these gold-polymer hybrids were evaluated by using the transmission electron microscopy (TEM) and UV-VIS spectroscopy.

  2. Effects of Formulation Variables on the Particle Size and Drug Encapsulation of Imatinib-Loaded Solid Lipid Nanoparticles.

    PubMed

    Gupta, Biki; Poudel, Bijay Kumar; Pathak, Shiva; Tak, Jin Wook; Lee, Hee Hyun; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-06-01

    Imatinib (IMT), an anticancer agent, inhibits receptor tyrosine kinases and is characterized by poor aqueous solubility, extensive first-pass metabolism, and rapid clearance. The aims of the current study are to prepare imatinib-loaded solid lipid nanoparticles (IMT-SLN) and study the effects of associated formulation variables on particle size and drug encapsulation on IMT-SLN using an experimental design. IMT-SLN was optimized by use of a "combo" approach involving Plackett-Burman design (PBD) and Box-Behnken design (BBD). PBD screening resulted in the determination of organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), and amount of Tween® 20 (Tw20) as three significant variables for particle size (S z), drug loading (DL), and encapsulation efficiency (EE) of IMT-SLN, which were used for optimization by BBD, yielding an optimized criteria of O/A = 0.04, D/L = 0.03, and Tw20 = 2.50% w/v. The optimized IMT-SLN exhibited monodispersed particles with a size range of 69.0 ± 0.9 nm, ζ-potential of -24.2 ± 1.2 mV, and DL and EE of 2.9 ± 0.1 and 97.6 ± 0.1% w/w, respectively. Results of in vitro release study showed a sustained release pattern, presumably by diffusion and erosion, with a higher release rate at pH 5.0, compared to pH 7.4. In conclusion, use of the combo experimental design approach enabled clear understanding of the effects of various formulation variables on IMT-SLN and aided in the preparation of a system which exhibited desirable physicochemical and release characteristics.

  3. Facile Large-scale synthesis of stable CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  4. Poly(vinyl benzoate) nanoparticles for molecular delivery: Studies on their preparation and in vitro properties.

    PubMed

    Labruère, Raphaël; Sicard, Renaud; Cormier, Ryan; Turos, Edward; West, Leigh

    2010-12-01

    The preparation and properties of poly(vinyl benzoate) nanoparticle suspensions as molecular carriers are described for the first time. These nanoparticles can be formed by nanoprecipitation of commercial poly(vinyl benzoate) in water using Pluronic F68 as surfactant, to create spherical nanostructures measuring 200-250nm in diameter. These nanoparticles are stable in phosphate buffer and blood serum, and only slowly degrade in the presence of esterases. Pluronic F68 stabilizes the nanoparticle and also protects it from enzymatic degradation. Up to 1.6% by weight of a lipid-soluble molecule such as coumarin-6 can be introduced into the nanoparticle during nanoprecipitation, compared to a water-soluble compound (5(6)-carboxyfluorescein) which gave almost no loading. Kinetics experiments in phosphate buffer indicate that 78% of the coumarin-6 was encapsulated within the polymer matrix of the nanoparticle, and the residual 22% of coumarin-6 was surface-bound and quickly released. The nanoparticles are non-toxic in vitro towards human epithelial cells (IC(50)>1000μg/mL) and primary bovine aortic endothelial cells (IC(50)>500μg/mL), and non-bactericidal against a selection of representative test microbes (MIC >250μg/mL). These properties suggest that the poly(vinyl benzoate) nanoparticles may be suitable carriers for molecular delivery of lipophilic small molecules such as pharmaceutical and imaging agents. Copyright © 2010. Published by Elsevier B.V.

  5. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGES

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; ...

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO 2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO 2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO 2. Among the intermetallic NPs, PtSn@mSiO 2 exhibits the best performance, requiring only one-tenth of the quantity of Pt usedmore » in Pt@mSiO 2 for similar activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  6. Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water.

    PubMed

    Motshekga, Sarah Constance; Sinha Ray, Suprakas; Maity, Arjun

    2018-02-15

    The use of polymer nanocomposites as novel materials for water remediation has emerged as a promising alternative for disinfection of bacteria contaminated water. Sodium alginate, a natural biopolymer has been investigated in this study by encapsulating antimicrobial zinc oxide nanoparticles supported bentonite. The confirmation of the alginate nanocomposites was done by use of TEM, SEM-EDS and XRD. The antimicrobial activity of the alginate nanocomposites was investigated by batch studies using surface water and synthetic bacteria contaminated water containing Staphylococcus aureus. The effect of nanocomposite amount and initial bacteria concentration has been studied. The inactivation results indicated that the nanocomposite effectively inactivated bacteria in both the synthetic and surface water. With an amount of 0.5 g of the nanocomposites, no bacteria was observed in the water after 70 min of contact time with initial bacteria concentration of 200 cfu/ml for synthetic water and within a min, no bacteria was observed in the water for surface water. It is worth noting that 200 cfu/ml is the bacteria concentration range in which environmental water is likely to contain. Therefore, the results of this study have indicated that the alginate nanocomposites can be deemed as a potential antimicrobial agent for water disinfection. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  8. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  9. Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy.

    PubMed

    Liu, Wei; Li, Xinshi; Li, Wentao; Zhang, Qiqi; Bai, Hua; Li, Junfang; Xi, Guangcheng

    2018-05-01

    Photothermal therapy (PTT) is one of promising cancer therapy with high efficiency and minimal invasiveness. Exploiting of perfect PTT agent is vital to improve the therapy. In this study, a new type of bow tie-like molybdenum dioxide (MoO 2 ) nanoparticles was successfully synthesized. These nanobow-ties had strong localized surface plasmon resonance (SPR) effect from visible to near infrared regions, and exhibited ultrahigh chemical stability. They could not only withstand high temperature heating without oxidation, but also resist the corrosion of strong acid and alkali. Meanwhile, the MoO 2 nanoparticles were highly stable in protein-containing biological medium, though they partly degraded in PBS solution. Both in vivo and in vitro experiments indicated that they exhibited inappreciable toxicity. Under illumination of near infrared laser, they showed excellent PTT effect, as revealed by significant inhibition of cancer cell viability in vitro and efficient destruction in tumor tissue growth in vivo. These MoO 2 nanoparticles possessed highly chemical stability and low toxicity with high PTT efficiency, thus promising them high potential as nanoagent in cancer treatment. Copyright © 2018. Published by Elsevier Ltd.

  10. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy

    NASA Astrophysics Data System (ADS)

    You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Gao, Zhiguo; Zhang, Xiangyang; Sun, Baiwang

    2018-01-01

    Polymeric biomaterials that can be smartly disassembled through the cleavage of the covalent bonds in a controllable way upon an environmental stimulus such as pH change, redox, special enzymes, temperature, or ultrasound, as well as light irradiation, but are otherwise stable under normal physiological conditions have attracted great attention in recent decades. The 2-(4-aminophenyl) benzothiazole molecule (CJM-126), as one of the benzothiazole derivatives, has exhibited a synergistic effect with cisplatin (CDDP) and restrains the bioactivities of a series of human breast cancer cell lines. In our study, novel NIR-responsive targeted binary-drug-loaded nanoparticles encapsulating indocyanine green (ICG) dye were prepared as a new co-delivery and combined therapeutic vehicle. The prepared drug-loaded polymeric nanoparticles (TNPs/CDDP-ICG) are stable under normal physiological conditions, while burst drugs release upon NIR laser irradiation in a mild acidic environment. The results further confirmed that the designed co-delivery platform showed higher cytotoxicity than the single free CDDP due to the synergistic treatment of CJM-126 and CDDP in vitro. Taken together, the work might provide a promising approach for effective site-specific antitumor therapy.

  11. Molecular dynamics studies on the interaction and encapsulation processes of the nucleotide and peptide chains inside of a carbon nanotube matrix with inclusion of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kholmurodov, Kholmirzo; Dushanov, Eric; Khusenov, Mirzoaziz; Rahmonov, Khaiyom; Zelenyak, Tatyana; Doroshkevich, Alexander; Majumder, Subrata

    2017-05-01

    Studying of molecular systems as single nucleotides, nucleotide and peptide chains, RNA and DNA interacting with metallic nanoparticles within a carbon nanotube matrix represents a great interest in modern research. In this respect it is worth mentioning the development of the electronics diagnostic apparatus, the biochemical and biotechnological application tools (nanorobotic design, facilities of drug delivery in a living cell), so on. In the present work using molecular dynamics (MD) simulation method the interaction process of small nucleotide chains (NCs) and elongated peptide chains with different sets of metallic nanoparticles (NPs) on a matrix from carbon nanotube (CNT) were simulated to study their mechanisms of encapsulation and folding processes. We have performed a series of the MD calculations with different NC,peptides-NP-CNT models that were aimed on the investigation of the peculiarities of NC,peptide-NP interactions, the formation of bonds and structures in the system, as well as the dynamical behavior in an environment confined by the CNT matrix.

  12. Noninvasive Fluorescence Resonance Energy Transfer Imaging of in vivo Premature Drug Release from Polymeric Nanoparticles

    PubMed Central

    Zou, Peng; Chen, Hongwei; Paholak, Hayley J.; Sun, Duxin

    2013-01-01

    Understanding in vivo drug release kinetics is critical for the development of nanoparticle-based delivery systems. In this study, we developed a fluorescence resonance energy transfer (FRET) imaging approach to noninvasively monitor in vitro and in vivo cargo release from polymeric nanoparticles. The FRET donor dye (DiO or DiD) and acceptor dye (DiI or DiR) were individually encapsulated into poly(ethylene oxide)-b-polystyrene (PEO-PS) nanoparticles. When DiO (donor) nanoparticles and DiI (acceptor) nanoparticles were co-incubated with cancer cells for 2 h, increased FRET signals were observed from cell membranes, suggesting rapid release of DiO and DiI to cell membranes. Similarly, increased FRET ratios were detected in nude mice after intravenous co-administration of DiD (donor) nanoparticles and DiR (acceptor) nanoparticles. In contrast, another group of nude mice i.v. administrated with DiD/DiR co-loaded nanoparticles showed decreased FRET ratios. Based on the difference in FRET ratios between the two groups, in vivo DiD/DiR release half-life from PEO-PS nanoparticles was determined to be 9.2 min. In addition, it was observed that the presence of cell membranes facilitated burst release of lipophilic cargos while incorporation of oleic acid-coated iron oxide into PEO-PS nanoparticles slowed the release of DiD/DiR to cell membranes. The developed in vitro and in vivo FRET imaging techniques can be used to screening stable nano-formulations for lipophilic drug delivery. PMID:24033270

  13. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713

  14. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin.

    PubMed

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.

  15. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    PubMed

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Encapsulation of bioactive compound from extracted jasmine flower using β-Cyclodextrin via electrospray

    NASA Astrophysics Data System (ADS)

    Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.

    2016-06-01

    The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.

  17. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identicalmore » module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.« less

  18. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  19. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    PubMed Central

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-01-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs. PMID:24732294

  20. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles

    PubMed Central

    Pham, TH Nguyen; Lengkeek, Nigel A; Greguric, Ivan; Kim, Byung J; Pellegrini, Paul A; Bickley, Stephanie A; Tanudji, Marcel R; Jones, Stephen K; Hawkett, Brian S; Pham, Binh TT

    2017-01-01

    Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT)-magnetic resonance imaging (MRI) were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3) nanoparticles (SPIONs). The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG) or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS). All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe. PMID:28184160

  1. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  2. Modification of Encapsulation Pressure of Reverse Micelles in Liquid Ethane

    PubMed Central

    Peterson, Ronald W.; Nucci, Nathaniel V.; Wand, A. Joshua

    2011-01-01

    Encapsulation of within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5,000 p.s.i. to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. PMID:21764613

  3. Modification of encapsulation pressure of reverse micelles in liquid ethane.

    PubMed

    Peterson, Ronald W; Nucci, Nathaniel V; Wand, A Joshua

    2011-09-01

    Encapsulation within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5000 psi to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    PubMed Central

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  5. Sorting process of nanoparticles and applications of same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less

  6. Biofriendly bonding processes for nanoporous implantable SU-8 microcapsules for encapsulated cell therapy.

    PubMed

    Nemani, Krishnamurthy; Kwon, Joonbum; Trivedi, Krutarth; Hu, Walter; Lee, Jeong-Bong; Gimi, Barjor

    2011-01-01

    Mechanically robust, cell encapsulating microdevices fabricated using photolithographic methods can lead to more efficient immunoisolation in comparison to cell encapsulating hydrogels. There is a need to develop adhesive bonding methods which can seal such microdevices under physiologically friendly conditions. We report the bonding of SU-8 based substrates through (i) magnetic self assembly, (ii) using medical grade photocured adhesive and (iii) moisture and photochemical cured polymerization. Magnetic self-assembly, carried out in biofriendly aqueous buffers, provides weak bonding not suitable for long term applications. Moisture cured bonding of covalently modified SU-8 substrates, based on silanol condensation, resulted in weak and inconsistent bonding. Photocured bonding using a medical grade adhesive and of acrylate modified substrates provided stable bonding. Of the methods evaluated, photocured adhesion provided the strongest and most stable adhesion.

  7. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  8. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature

  9. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  10. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or

  11. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors.

    PubMed

    Wu, Mingfang; Lian, Bolin; Deng, Yiping; Feng, Ziqi; Zhong, Chen; Wu, Weiwei; Huang, Yannian; Wang, Lingling; Zu, Chang; Zhao, Xiuhua

    2017-08-01

    In this study, glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were prepared to establish a tumor targeting nano-sized drug delivery system. Glycyrrhizic acid was coupled to human serum albumin, and resveratrol was encapsulated in glycyrrhizic acid-conjugated human serum albumin by high-pressure homogenization emulsification. The average particle size of sample nanoparticles prepared under the optimal conditions was 108.1 ± 5.3 nm with a polydispersity index (PDI) of 0.001, and the amount of glycyrrhizic acid coupled with human serum albumin was 112.56 µg/mg. The drug encapsulation efficiency and drug loading efficiency were 83.6 and 11.5%, respectively. The glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were characterized through laser light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analyses, and gas chromatography. The characterization results showed that resveratrol in glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles existed in amorphous state and the residual amounts of chloroform and methanol in nanoparticles were separately less than the international conference on harmonization (ICH) limit. The in vitro drug-release study showed that the nanoparticles released the drug slowly and continuously. The inhibitory rate of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide method. The IC50 values of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles and resveratrol were 62.5 and 95.5 µg/ml, respectively. The target ability of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles

  12. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Chunnian; Zhao Naiqin; Shi Chunsheng

    2008-08-04

    Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores ofmore » hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (H{sub c} = 138.4 O{sub e}) and good ferromagnetism (M{sub r}/M{sub s} = 0.325)« less

  13. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-12-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  14. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.

    PubMed

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V

    2016-12-09

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q  < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  15. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    PubMed Central

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-01-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916

  16. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  17. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation.

    PubMed

    Scioli Montoto, S; Sbaraglini, M L; Talevi, A; Couyoupetrou, M; Di Ianni, M; Pesce, G O; Alvarez, V A; Bruno-Blanch, L E; Castro, G R; Ruiz, M E; Islan, G A

    2018-07-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) represent promising alternatives for drug delivery to the central nervous system. In the present work, four different nanoformulations of the antiepileptic drug Carbamazepine (CBZ) were designed and prepared by the homogenization/ultrasonication method, with encapsulation efficiencies ranging from 82.8 to 93.8%. The formulations remained stable at 4 °C for at least 3 months. Physicochemical and microscopic characterization were performed by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), atomic force microscopy (AFM); thermal properties by differential scanning calorimetry (DSC), thermogravimetry (TGA) and X-ray diffraction analysis (XRD). The results indicated the presence of spherical shape nanoparticles with a mean particle diameter around 160 nm in a narrow size distribution; the entrapped CBZ displayed an amorphous state. The in vitro release profile of CBZ fitted into a Baker-Lonsdale model for spherical matrices and almost the 100% of the encapsulated drug was released in a controlled manner during the first 24 h. The apparent permeability of CBZ-loaded nanoparticles through a cell monolayer model was similar to that of the free drug. In vivo experiments in a mice model of seizure suggested protection by CBZ-NLC against seizures for at least 2 h after intraperitoneal administration. The developed CBZ-loaded lipid nanocarriers displayed optimal characteristics of size, shape and drug release and possibly represent a promising tool to improve the treatment of refractory epilepsy linked to efflux transporters upregulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  19. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS

  20. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

    PubMed

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-02-13

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  1. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    PubMed

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The stable and water-soluble neodymium-doped lanthanide fluoride nanoparticles for near infrared probing of copper ion.

    PubMed

    Xue, Fang-Min; Wang, He-Fang

    2012-09-15

    Neodymium (Nd(3+)) doped nanomaterials exhibited the unique near infrared (NIR) luminescence properties. However, the application of Nd-doped nanomaterials to chemosensors was rarely explored. Herein, the water-soluble 2-aminoethyl dihydrogen phosphate stabilized Nd-doped LaF(3) (ADP-Nd-LaF(3)) nanoparticles were explored as the NIR probe for chemosensors. The NIR emission intensity at 1061 nm of ADP-Nd-LaF(3) nanoparticles kept stable in the aqueous solution of various pH and coexisting of most common metal ions except copper ion, consequently, the ADP-Nd-LaF(3) nanoparticles were developed as a high selective NIR probe for Cu(II). The NIR emission of ADP-Nd-LaF(3) exhibits a linear quenching response to Cu(II) in the range 5-100 μM, with a detection limit of 0.8 μM. The precision of eleven replicate detections of 5 μM Cu(II) was 0.5% (RSD). The recovery of spiked Cu(II) in human urine and waste water samples ranged from 102 to 109%. The possible mechanism of Cu(II)-induced fluorescence quenching of ADP-Nd-LaF(3) nanoparticles was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.

    PubMed

    Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye

    2014-08-01

    The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanoparticle/Polymer assembled microcapsules with pH sensing property.

    PubMed

    Zhang, Pan; Song, Xiaoxue; Tong, Weijun; Gao, Changyou

    2014-10-01

    The dual-labeled microcapsules via nanoparticle/polymer assembly based on polyamine-salt aggregates can be fabricated for the ratiometric intracellular pH sensing. After deposition of SiO2 nanoparticles on the poly(allylamine hydrochloride)/multivalent anionic salt aggregates followed by silicic acid treatment, the generated microcapsules are stable in a wide pH range (3.0 ∼ 8.0). pH sensitive dye and pH insensitive dye are simultaneously labeled on the capsules, which enable the ratiometric pH sensing. Due to the rough and positively charged surface, the microcapsules can be internalized by several kinds of cells naturally. Real-time measurement of intracellular pH in several living cells shows that the capsules are all located in acidic organelles after being taken up. Furthermore, the negatively charged DNA and dyes can be easily encapsulated into the capsules via charge interaction. The microcapsules with combination of localized pH sensing and drug loading abilities have many advantages, such as following the real-time transportation and processing of the carriers in cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering.

    PubMed

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-28

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.

  6. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer.

    PubMed

    Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan

    2013-11-01

    The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.

  7. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer.

    PubMed

    Cohen, Sarit; Margel, Shlomo

    2012-08-14

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon

  8. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer

    PubMed Central

    2012-01-01

    Background The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. Methods The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Results and discussion Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. Conclusions These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to

  9. Treatment of Francisella infections via PLGA- and lipid-based nanoparticle delivery of antibiotics in a zebrafish model.

    PubMed

    Ulanova, Lilia S; Pinheiro, Marina; Vibe, Carina; Nunes, Claudia; Misaghian, Dorna; Wilson, Steven; Zhu, Kaizheng; Fenaroli, Federico; Winther-Larsen, Hanne C; Reis, Salette; Griffiths, Gareth

    2017-06-19

    We tested the efficiency of 2 different antibiotics, rifampicin and oxolinic acid, against an established infection caused by fish pathogen Francisella noatunensis ssp. orientalis (F.n.o.) in zebrafish. The drugs were tested in the free form as well as encapsulated into biodegradable nanoparticles, either polylactic-co-glycolic acid (PLGA) nanoparticles or nanostructured lipid carriers. The most promising therapies were PLGA-rifampicin nanoparticles and free oxolinic acid; the PLGA nanoparticles significantly delayed embryo mortality while free oxolinic acid prevented it. Encapsulation of rifampicin in both PLGA and nanostructured lipid carriers enhanced its efficiency against F.n.o. infection relative to the free drug. We propose that the zebrafish model is a robust, rapid system for initial testing of different treatments of bacterial diseases important for aquaculture.

  10. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles.

    PubMed

    Dhar, Shanta; Gu, Frank X; Langer, Robert; Farokhzad, Omid C; Lippard, Stephen J

    2008-11-11

    Cisplatin is used to treat a variety of tumors, but dose limiting toxicities or intrinsic and acquired resistance limit its application in many types of cancer including prostate. We report a unique strategy to deliver cisplatin to prostate cancer cells by constructing Pt(IV)-encapsulated prostate-specific membrane antigen (PSMA) targeted nanoparticles (NPs) of poly(D,L-lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-functionalized controlled release polymers. By using PLGA-b-PEG nanoparticles with PSMA targeting aptamers (Apt) on the surface as a vehicle for the platinum(IV) compound c,t,c-[Pt(NH(3))(2)(O(2)CCH(2)CH(2)CH(2)CH(2)CH(3))(2)Cl(2)] (1), a lethal dose of cisplatin was delivered specifically to prostate cancer cells. PSMA aptamer targeted delivery of Pt(IV) cargos to PSMA(+) LNCaP prostate cancer cells by endocytosis of the nanoparticle vehicles was demonstrated using fluorescence microscopy by colocalization of green fluorescent labeled cholesterol-encapsulated NPs and early endosome marker EEA-1. The choice of linear hexyl chains in 1 was the result of a systematic study to optimize encapsulation and controlled release from the polymer without compromising either feature. Release of cisplatin from the polymeric nanoparticles after reduction of 1 and formation of cisplatin 1,2-intrastrand d(GpG) cross-links on nuclear DNA was confirmed by using a monoclonal antibody for the adduct. A comparison between the cytotoxic activities of Pt(IV)-encapsulated PLGA-b-PEG NPs with the PSMA aptamer on the surface (Pt-NP-Apt), cisplatin, and the nontargeted Pt(IV)-encapsulated NPs (Pt-NP) against human prostate PSMA-overexpressing LNCaP and PSMA(-) PC3 cancer cells revealed significant differences. The effectiveness of PSMA targeted Pt-NP-Apt nanoparticles against the PSMA(+) LNCaP cells is approximately an order of magnitude greater than that of free cisplatin.

  11. Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics.

    PubMed

    Wei, Yinghui; Luo, Xiaoting; Guan, Jiani; Ma, Jianping; Zhong, Yicong; Luo, Jingwen; Li, Fanzhu

    2017-11-01

    The aim of this work is to develop biodegradable nanoparticles for improved kidney bioavailability of rhein (RH). RH-loaded nanoparticles were prepared using an emulsification solvent evaporation method and fully characterized by several techniques. Kidney pharmacokinetics was assessed by implanting a microdialysis probe in rat's kidney cortex. Blood samples were simultaneously collected (via femoral artery) for assessing plasma pharmacokinetics. Optimized nanoparticles were small, with a mean particle size of 132.6 ± 5.95 nm, and homogeneously dispersed. The charge on the particles was nearly zero, the encapsulation efficiency was 62.71 ± 3.02%, and the drug loading was 1.56 ± 0.15%. In vitro release of RH from the nanoparticles showed an initial burst release followed by a sustained release. Plasma and kidney pharmacokinetics showed that encapsulation of RH into nanoparticles significantly increased its kidney bioavailability (AUC kidney /AUC plasma  = 0.586 ± 0.072), clearly indicating that nanoparticles are a promising strategy for kidney drug delivery.

  12. Characterization of nanoparticle uptake by endothelial cells.

    PubMed

    Davda, Jasmine; Labhasetwar, Vinod

    2002-02-21

    Endothelium is an important target for drug or gene therapy because of its important role in the biological system. In this paper, we have characterized nanoparticle uptake by endothelial cells in cell culture. Nanoparticles were formulated using poly DL-lactide-co-glycolide polymer containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker. It was observed that the cellular uptake of nanoparticles depends on the time of incubation and the concentration of nanoparticles in the medium. The uptake of nanoparticles was rapid with confocal microscopy demonstrating their localization mostly in the cytoplasm. The mitogenic study demonstrated biocompatability of nanoparticles with the cells. The study thus demonstrates that nanoparticles could be used for localizing therapeutic agents or gene into endothelial cells. Nanoparticles localized in the endothelium could provide prolonged drug effects because of their sustained release characterics, and also could protect the encapsulated agent from enzymatic degradation.

  13. Stable ligand-free stellated polyhedral gold nanoparticles for sensitive plasmonic detection.

    PubMed

    Keunen, Rachel; Macoretta, Danielle; Cathcart, Nicole; Kitaev, Vladimir

    2016-02-07

    Ligand-free stellated gold nanoparticles (AuStNPs) with well-defined octahedral (O(h)) and icosahedral (I(h)) core symmetries were prepared using hydrogen peroxide as a reducing agent. Only three reagents: gold precursor (HAuCl4), H2O2 and NaOH were required to form colloidally and chemically stable AuStNPs with a zeta-potential between -55 and -40 mV indicative of excellent charge stabilization. The size and degree of stellation of AuStNPs can be controlled by several synthetic parameters so that the localized surface plasmon resonance (LSPR) can be varied from ca. 850 nm in near-infrared (NIR) to ca. 530 nm. In particular, AuStNP size and LSPR tuning can be conveniently accomplished by iodide variation. The size distribution of AuStNPs was improved by nucleation with ascorbic acid, and the AuStNP size and degree of branching could be readily modified using arginine. AuStNPs are advantageous for SPR sensing, as it was demonstrated in the sensitive detection of not only thiols, such as ampicillin, but also iodide with the detection limit of 3.2 pM (0.4 ng L(-1)). The reported ligand-free stable AuStNPs thus should be very useful for biodiagnostics based on SPR sensing and potentially for SERS and hyperthermia therapy.

  14. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB.

    PubMed

    Parajó, Yolanda; D'Angelo, Ivana; Welle, Alexander; Garcia-Fuentes, Marcos; Alonso, María José

    2010-11-01

    The development of a vascular network in tissue-engineered constructs is a fundamental bottleneck of bioregenerative medicine, particularly when the size of the implant exceeds a certain limit given by diffusion lengths and/or if the host tissue shows a very active metabolism. One of the approaches to achieve the vascularization of tissue constructs is generating a sustained release of proangiogenic factors from the ischemic site. This work describes the formation and characterization of hyaluronic acid-chitosan (HA/CS) nanoparticles for the delivery of two pro-angiogenic growth factors: vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF-BB). These nanoparticles were prepared by an ionic gelification technique, and different formulations were developed by encapsulating the growth factors in association with two stabilizing agents: bovine serum albumin or heparin sodium salt. These carriers were characterized with regard to their physicochemical properties, their stability in biological media, and their cytotoxicity in the C3a hepatoma cell line. The results show that nanoparticles around 200 nm can be prepared by this method. HA/CS nanoparticles were stable when incubated in EMEM cell culture medium or in water at 37°C for 24 h. Cell culture tests confirmed that HA/CS nanoparticles are not cytotoxic within the concentration range used for growth factor delivery. Moreover, HA/CS nanoparticles were able to entrap efficiently both growth factors, reaching association values of 94% and 54% for VEGF and PDGF, respectively. In vitro release studies confirm that PDGF-BB is released from HA/CS nanoparticles in a sustained manner over approximately 1 week. On the other hand, VEGF is completely released within the first 24 h.

  15. Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines

    PubMed Central

    2017-01-01

    Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance. PMID:28474008

  16. Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines.

    PubMed

    Wang, Jianxin; Morales-Collazo, Oscar; Wei, Alexander

    2017-04-30

    Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance.

  17. Geopolymer encapsulation of a chloride salt phase change material for high temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Jacob, Rhys; Trout, Neil; Raud, Ralf; Clarke, Stephen; Steinberg, Theodore A.; Saman, Wasim; Bruno, Frank

    2016-05-01

    In an effort to reduce the cost and increase the material compatibility of encapsulated phase change materials (EPCMs) a new encapsulated system has been proposed. In the current study a molten salt eutectic of barium chloride (53% wt.), potassium chloride (28% wt.) and sodium chloride (19% wt.) has been identified as a promising candidate for low cost EPCM storage systems. The latent heat, melting point and thermal stability of the phase change material (PCM) was determined by DSC and was found to be in good agreement with results published in the literature. To cope with the corrosive nature of the PCM, it was decided that a fly-ash based geopolymer met the thermal and economic constraints for encapsulation. The thermal stability of the geopolymer shell was also tested with several formulations proving to form a stable shell for the chosen PCM at 200°C and/or 600°C. Lastly several capsules of the geopolymer shell with a chloride PCM were fabricated using a variety of methods with several samples remaining stable after exposure to 600°C testing.

  18. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  19. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  20. PLGA Biodegradable Nanoparticles Containing Perphenazine or Chlorpromazine Hydrochloride: Effect of Formulation and Release

    PubMed Central

    Halayqa, Mohammed; Domańska, Urszula

    2014-01-01

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles. PMID:25535080