Sample records for nanoparticles incorporating kaempferol

  1. Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins.

    PubMed

    Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina

    2017-01-01

    Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    PubMed

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  3. Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent.

    PubMed

    Ilk, Sedef; Saglam, Necdet; Özgen, Mustafa

    2017-08-01

    Flavonoid compounds are strong antioxidant and antifungal agents but their applications are limited due to their poor dissolution and bioavailability. The use of nanotechnology in agriculture has received increasing attention, with the development of new formulations containing active compounds. In this study, kaempferol (KAE) was loaded into lecithin/chitosan nanoparticles (LC NPs) to determine antifungal activity compared to pure KAE against the phytopathogenic fungus Fusarium oxysporium to resolve the bioavailability problem. The influence of formulation parameters on the physicochemical properties of KAE loaded lecithin chitosan nanoparticles (KAE-LC NPs) were studied by using the electrostatic self-assembly technique. KAE-LC NPs were characterized in terms of physicochemical properties. KAE has been successfully encapsulated in LC NPs with an efficiency of 93.8 ± 4.28% and KAE-LC NPs showed good physicochemical stability. Moreover, in vitro evaluation of the KAE-LC NP system was made by the release kinetics, antioxidant and antifungal activity in a time-dependent manner against free KAE. Encapsulated KAE exhibited a significantly inhibition efficacy (67%) against Fusarium oxysporium at the end of the 60 day storage period. The results indicated that KAE-LC NP formulation could solve the problems related to the solubility and loss of KAE during use and storage. The new nanoparticle system enables the use of smaller quantities of fungicide and therefore, offers a more environmentally friendly method of controlling fungal pathogens in agriculture.

  4. Incorporation of metal nanoparticles into wood substrate and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, Kirk D; Lucas, Marcel

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation processmore » at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.« less

  5. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    PubMed

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Incorporation of nanoparticles into polymersomes: size and concentration effects.

    PubMed

    Jaskiewicz, Karmena; Larsen, Antje; Schaeffel, David; Koynov, Kaloian; Lieberwirth, Ingo; Fytas, George; Landfester, Katharina; Kroeger, Anja

    2012-08-28

    Because of the rapidly growing field of nanoparticles in therapeutic applications, understanding and controlling the interaction between nanoparticles and membranes is of great importance. While a membrane is exposed to nanoparticles its behavior is mediated by both their biological and physical properties. Constant interplay of these biological and physicochemical factors makes selective studies of nanoparticles uptake demanding. Artificial model membranes can serve as a platform to investigate physical parameters of the process in the absence of any biofunctional molecules and/or supplementary energy. Here we report on photon- and fluorescence-correlation spectroscopic studies of the uptake of nanosized SiO(2) nanoparticles by poly(dimethylsiloxane)-block-poly(2-methyloxazoline) vesicles allowing species selectivity. Analogous to the cell membrane, polymeric membrane incorporates particles using membrane fission and particles wrapping as suggested by cryo-TEM imaging. It is revealed that the incorporation process can be controlled to a significant extent by changing nanoparticles size and concentration. Conditions for nanoparticle uptake and controlled filling of polymersomes are presented.

  7. Kaempferol stimulates bone sialoprotein gene transcription and new bone formation.

    PubMed

    Yang, Li; Takai, Hideki; Utsunomiya, Tadahiko; Li, Xinyue; Li, Zhengyang; Wang, Zhitao; Wang, Shuang; Sasaki, Yoko; Yamamoto, Hirotsugu; Ogata, Yorimasa

    2010-08-15

    Kaempferol is a typical flavonol-type flavonoid that is present in a variety of vegetables and fruits, and has a protective effect on postmenopausal bone loss. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone and could be crucial for osteoblast differentiation, bone matrix mineralization and tumor metastasis. In the present study we investigated the regulation of BSP transcription by kaempferol in rat osteoblast-like UMR106 cells, and the effect of kaempferol on new bone formation. Kaempferol (5 microM) increased BSP and Osterix mRNA levels at 12 h and up-regulated Runx2 mRNA expression at 6 h. Kaempferol increased luciferase activity of the construct pLUC3, which including the promoter sequence between nucleotides -116 to +60. Transcriptional stimulation by kaempferol abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, and FRE elements. Gel shift analyses showed that kaempferol increased nuclear protein binding to CRE and FRE elements, whereas the CCAAT-protein complex did not change after kaempferol stimulation. Twelve daily injections of 5 microM kaempferol directly into the periosteum of parietal bones of newborn rats increased new bone formation. These data suggest that kaempferol increased BSP gene transcription mediated through inverted CCAAT, CRE, and FRE elements in the rat BSP gene promoter, and could induce osteoblast activities in the early stage of bone formation. (c) 2010 Wiley-Liss, Inc.

  8. Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide- co-glycolide) block copolymer

    NASA Astrophysics Data System (ADS)

    Kim, Do Hyung; Kim, Min-Dae; Choi, Cheol-Woong; Chung, Chung-Wook; Ha, Seung Hee; Kim, Cy Hyun; Shim, Yong-Ho; Jeong, Young-Il; Kang, Dae Hwan

    2012-01-01

    Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly( DL-lactide- co-glycolide) [Dex bLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated Dex bLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated Dex bLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated Dex bLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated Dex bLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated Dex bLG nanoparticles are promising candidates as vehicles for antitumor drug targeting.

  9. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng

    2014-10-01

    Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.

  10. Inhibition of Photophosphorylation by Kaempferol 1

    PubMed Central

    Arntzen, Charles J.; Falkenthal, Scott V.; Bobick, Sandra

    1974-01-01

    Kaempferol, a naturally occurring flavonol, inhibited coupled electron transport and both cyclic and noncyclic photophosphorylation in isolated pea (Pisum sativum) chloroplasts. Over a concentration range which gave marked inhibition of ATP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids. It is suggested that kaempferol acts as an energy transfer inhibitor. PMID:16658695

  11. Antibacterial effect of composite resin foundation material incorporating quaternary ammonium polyethyleneimine nanoparticles.

    PubMed

    Pietrokovski, Yoav; Nisimov, Ilana; Kesler-Shvero, Dana; Zaltsman, Natan; Beyth, Nurit

    2016-10-01

    As caries is the most frequent cause of the failure of composite resin-based restorations, composite resins with antibacterial properties are desirable. However, whether quaternary ammonium polyethyleneimine nanoparticles can be effectively incorporated is unknown. The purpose of this in vitro study was to evaluate the antibacterial activity against Streptococcus mutans and Actinomyces viscosus of a foundation material incorporating quaternary ammonium polyethyleneimine (QPEI) nanoparticles. QPEI antimicrobial nanoparticles were incorporated in a commercially available foundation material (Q Core; BJM Laboratories Ltd) at 1% wt/wt. Antibacterial efficacy against S mutans (10 6 colony-forming units [CFU]/mL) and A viscosus (10 6 CFU/mL) was examined by the direct contact test (DCT), and the agar diffusion test (ADT) with and without surface polishing. Bacterial outgrowth was recorded with a spectrophotometer. Growth of S mutans and A viscosus was inhibited, showing a decrease by 6 orders of magnitude in bacterial viability in specimens incorporating the nanoparticles, even after polishing the foundation material (P<.05). Growth inhibition was not observed in specimens without nanoparticles. Antibacterial properties can be achieved in a commercially available foundation material by incorporating polycationic antibacterial nanoparticles. This antibacterial effect did not diminish after surface polishing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    PubMed

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles.

    PubMed

    Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee

    2015-10-08

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  14. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    PubMed Central

    Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee

    2015-01-01

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599

  15. Indocyanine green-incorporating nanoparticles for cancer theranostics

    PubMed Central

    Wang, Haolu; Li, Xinxing; Tse, Brian Wan-Chi; Yang, Haotian; Thorling, Camilla A.; Liu, Yuxin; Touraud, Margaux; Chouane, Jean Batiste; Liu, Xin; Roberts, Michael S.; Liang, Xiaowen

    2018-01-01

    Indocyanine green (ICG) is a near-infrared dye that has been used in the clinic for retinal angiography, and defining cardiovascular and liver function for over 50 years. Recently, there has been an increasing interest in the incorporation of ICG into nanoparticles (NPs) for cancer theranostic applications. Various types of ICG-incorporated NPs have been developed and strategically functionalised to embrace multiple imaging and therapeutic techniques for cancer diagnosis and treatment. This review systematically summaries the biodistribution of various types of ICG-incorporated NPs for the first time, and discusses the principles, opportunities, limitations, and application of ICG-incorporated NPs for cancer theranostics. We believe that ICG-incorporated NPs would be a promising multifunctional theranostic platform in oncology and facilitate significant advancements in this research-active area. PMID:29507616

  16. Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice.

    PubMed

    Xiao, Hong-Bo; Sui, Guo-Guang; Lu, Xiang-Yang; Sun, Zhi-Liang

    2018-06-01

    Mastitis is inflammation of a breast (or udder). Angiopoietin-like protein 2 (ANGPTL2) has been found as a key inflammatory mediator in mastitis. Purpose of this research was to investigate the mechanisms about repressing effect of kaempferol on mastitis. Forty mice were randomly divided into 4 groups (n=10): C57BL/6J control mice, untreated murine mastitis, 10mg/kg kaempferol treated murine mastitis (ip), and 30mg/kg kaempferol treated murine mastitis (ip). Primary cultured mouse mammary epithelial cells (MMEC) were indiscriminately divided into seven groups including control group, 10mmol/L vehicle of kaempferol group, 10μmol/L kaempferol treated group, 20μg/mL LPS treated group, 1μmol/L kaempferol plus LPS treated group, 3μmol/L kaempferol plus LPS treated group, and 10μmol/L kaempferol plus LPS treated group. In murine mastitis, kaempferol (10 or 30mg/kg) treatment prevented mastitis development, decreased myeloperoxidase (MPO) production, interleukin (IL)-6 level, tumour necrosis factor-α (TNF-α) concentration, and ANGPTL2 expression. In MMEC, kaempferol (1, 3 or 10μM) reduced MPO production, TNF-α concentration, IL-6 level, and ANGPTL2 expression. The results in present study show that kaempferol modulates the expression of ANGPTL2 to lessen the mastitis in mice. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties

    USDA-ARS?s Scientific Manuscript database

    Tea polyphenols (TP) were incorporated into edible gelatin films either alone or incorporated into nanoparticles in order to determine the physico-chemical properties of the film and the antioxidant properties of TP in a solid gelatin matrix. The TP containing nanoparticles were prepared by cross-li...

  18. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com; Lu, Xiang-Yang; Sun, Zhi-Liang

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effectivemore » concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.« less

  19. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Choi, Ki-Choon

    2011-01-01

    p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. The authors suggest that these microparticles are ideal candidates for a vehicle for

  20. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats.

    PubMed

    Zabela, Volha; Sampath, Chethan; Oufir, Mouhssin; Moradi-Afrapoli, Fahimeh; Butterweck, Veronika; Hamburger, Matthias

    2016-12-01

    Kaempferol is a major flavonoid in the human diet and in medicinal plants. The compound exerts anxiolytic activity when administered orally in mice, while no behavioural changes were observed upon intraperitoneal administration, or upon oral administration in gut sterilized animals. 4-Hydroxyphenylacetic acid (4-HPAA), which possesses anxiolytic effects when administered intraperitoneally, is a major intestinal metabolite of kaempferol. Pharmacokinetic properties of the compounds are currently not clear. UHPLC-MS/MS methods were validated to support pharmacokinetic studies of kaempferol and 4-HPAA in rats. Non-compartmental and compartmental analyses were performed. After intravenous administration, kaempferol followed a one-compartment model, with a rapid clearance (4.40-6.44l/h/kg) and an extremely short half-life of 2.93-3.79min. After oral gavage it was not possible to obtain full plasma concentration-time profiles of kaempferol. Pharmacokinetics of 4-HPAA was characterized by a two-compartment model, consisting of a quick distribution phase (half-life 3.04-6.20min) followed by a fast elimination phase (half-life 19.3-21.1min). Plasma exposure of kaempferol is limited by poor oral bioavailability and extensive metabolism. Both compounds are rapidly eliminated, so that effective concentrations at the site of action do not appear to be reached. At present, it is not clear how the anxiolytic-like effects reported for the compounds can be explained. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Incorporation of nanoparticles within mammalian spermatozoa using in vitro capacitation

    USDA-ARS?s Scientific Manuscript database

    There is still much unknown about the journey of spermatozoa within the female genital tract. Recent studies have investigated mammalian spermatozoa labeling with fluorescent quantum dot nanoparticles (QD) for non-invasive imaging. Furthermore, the incorporation of these QD within the spermatozoa ma...

  2. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  3. Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles.

    PubMed

    Lucas, Marcel; Macdonald, Brian A; Wagner, Gregory L; Joyce, Stephen A; Rector, Kirk D

    2010-08-01

    Lignocellulosic biomass offers economic and environmental advantages over corn starch for biofuels production. However, its fractionation currently requires energy-intensive pretreatments, due to the lignin chemical resistance and complex cell wall structure. Recently, ionic liquids have been used to dissolve biomass at high temperatures. In this study, thin sections of poplar wood were swollen by ionic liquid (1-ethyl-3-methylimidazolium acetate) pretreatment at room temperature. The samples contract when rinsed with deionized water. The controlled expansion and contraction of the wood structure can be used to incorporate enzymes and catalysts deep into the wood structure for improved pretreatments and accelerated cellulose hydrolysis. As a proof of concept, silver and gold nanoparticles of diameters ranging from 20 to 100 nm were incorporated at depths up to 4 mum. Confocal surface-enhanced Raman images at different depths show that a significant number of nanoparticles were incorporated into the pretreated sample, and they remained on the samples after rinsing. Quantitative X-ray fluorescence microanalyses indicate that the majority of nanoparticle incorporation occurs after an ionic liquid pretreatment of less than 1 h. In addition to improved pretreatments, the incorporation of materials and chemicals into wood and paper products enables isotope tracing, development of new sensing, and imaging capabilities.

  4. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    PubMed

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Determination of quercetin and kaempferol in Dysosma plants by RP-HPLC].

    PubMed

    Luo, Jun; Zhang, Liyan; Wan, Mingxiang; He, Shunzhi; Yang, Yuqin

    2010-11-01

    To determine quercetin and kaempferol in the plant of genus Dysosma that come from different species, different plant parts or different growing areas, which provide the basis of rational utilization of Dysosma plants. The analysis was performed on a Diamonsil C18 column (4.6 mm x 150 mm, 5 microm) eluted with the mobile phase of methanol-water containing 0.1% phosphoric acid (60:40). The flow rate was 1 mL x min(-1), the detection wavelength was 360 nm; and the column temperature was set at 25 degrees C. The linear ranges of quercetin and kaempferol are 0.22-1.1 microg and 0.42-2.1 microg. The average recoveries of quercetin and kaempferol are 97.1% (RSD 1.4%) and 99.6% (RSD 2.4%); respectively. The contents of flavones in different species of Dysosma are significantly different.

  6. Preparation and Characterization of Selenium Incorporated Guar Gum Nanoparticle and Its Interaction with H9c2 Cells

    PubMed Central

    Soumya, Rema Sreenivasan; Vineetha, Vadavanath Prabhakaran; Reshma, Premachandran Latha; Raghu, Kozhiparambil Gopalan

    2013-01-01

    This study deals with the preparation and characterization of selenium incorporated guar gum nanoparticle (SGG), and its effect on H9c2 cardiomyoblast. Herein, nanoprecipitation techniques had been employed for the preparation of SGG nanoparticle. The prepared nanoparticle had been subjected to various types of analytical techniques like transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size analysis to confirm the characteristics of nanoparticle as well as for selenium incorporation. Physical characterization of nanoparticle showed that the size of nanoparticles increase upto ∼69–173 nm upon selenium incorporation from ∼41–132 nm. Then the prepared nanoparticles were evaluated for its effect on H9c2 cells. In this regard, the effect of nanoparticle on various vital parameters of H9c2 cells was studied. Parameters like cell viability, uptake of selenium incorporated guar gum nanoparticle by the cells, effect of SGG on DNA integrity, apoptosis, reactive oxygen species generation, alteration in transmembrane potential of mitochondria and cytoskeletal integrity had been investigated. Viability results showed that up to 25 nM of SGG was safe (10.31%) but beyond that it induces cytotoxicity. Cellular uptake of selenium showed that cell permeability for SGG is significantly high compared to normal selenium (7.2 nM of selenium for 25 nM SGG compared with 5.2 nM selenium for 25 nM sodium selenite). There was no apoptosis with SGG and also it protects DNA from hydroxyl radical induced breakage. Likewise no adverse effect on mitochondria and cytoskeleton was observed for 25 nM of SGG. Overall results reveal that SGG is highly suitable for biomedical research application. PMID:24098647

  7. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    PubMed

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation.

    PubMed

    Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam

    2014-08-30

    Biodegradable kefiran-whey protein isolate (WPI) nanocomposites were produced using montmorillonite (MMT) and nano-TiO2 as nanoparticles in the percentage of 1, 3, and 5% (w/w) by a casting and solvent-evaporation method. Physical, mechanical, and water-vapor permeability (WVP) properties were determined as a function of nanoparticle concentration. The results revealed that the effect of these nanoparticles was different according to their nature and percentage. The films incorporated with 5% (w/w) MMT showed the highest tensile strength, Young's modulus, puncture strength, and the lowest WVP compared with the control and TiO2 added films. In contrast to MMT, addition of TiO2 nanoparticles due to the plasticizing effect led to a significant change in color and transparency of nanocomposite. Scanning electron microscopy (SEM) observations demonstrated the films' properties in relation to their microstructures. The surface topography results also showed a considerable increase in roughness parameters by incorporating the nanoparticles in kefiran-WPI matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz; Innovation

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly relatedmore » to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.« less

  10. General rules for incorporating noble metal nanoparticles in organic solar cells

    NASA Astrophysics Data System (ADS)

    Ciesielski, A.; Switlik, D.; Szoplik, T.

    2017-05-01

    Over the recent years, the influence of the addition of noble metal nanoparticles (Au, Ag, Al, Cu) into the bulk heterojunction (BHJ) solar cells on their efficiency of visible sunlight absorption has been excessively studied. However, several detailed studies were focused on compounds with similar chemical structure, and thus similar optical and electric properties. Such approach provides little help when it comes to admixing metallic nanoparticles into new compound families with different properties. Moreover, theoretical approaches frequently tend to neglect the fact, that nanoparticles have different dispersion relation than bulk material, which may lead to false conclusions. In this work, we consider additional dispersion modes in the metal permittivity due to finite size of the nanoparticles. We use Maxwell-Garnet effective medium approach (EMA), combined with the transfer matrix method, as well as finite-difference time-domain (FDTD) simulations, to create a set of general rules for incorporating noble metal nanoparticles into the active layer. These principles, based on assumed basic properties of the active layer (e.g. real and imaginary part of refractive index, thickness) provide optimal material, size spectrum and fill factor of nanoparticle inclusions in order to ensure the best absorption enhancement. Our results show, that the optimal concentrations for silver nanoparticles are about 50% greater than those determined without taking into account additional components in the permittivity of the metal.

  11. Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    S, Abdul Khalil H. P.; Masri, M.; Saurabh, Chaturbhuj K.; Fazita, M. R. N.; Azniwati, A. A.; Sri Aprilia, N. A.; Rosamah, E.; Dungani, Rudi

    2017-03-01

    In the present study, a successful attempt has been made on enhancing the properties of hybrid kenaf/coconut fibers reinforced vinyl ester composites by incorporating nanofillers obtained from coconut shell. Coconut shells were grinded followed by 30 h of high energy ball milling for the production of nanoparticles. Particle size analyzer demonstrated that the size of 90% of obtained nanoparticles ranged between 15-140 nm. Furthermore, it was observed that the incorporation of coconut shell nanofillers into hybrid composite increased water absorption capacity. Moreover, tensile, flexural, and impact strength increased with the filler loading up to 3 wt.% and thereafter decrease was observed at higher filler concentration. However, elongation at break decreased and thermal stability increased in nanoparticles concentration dependent manner. Morphological analysis of composite with 3% of filler loading showed minimum voids and fiber pull outs and this indicated that the stress was successfully absorbed by the fiber.

  12. Sorption, Solubility, Bond Strength and Hardness of Denture Soft Lining Incorporated with Silver Nanoparticles

    PubMed Central

    Chladek, Grzegorz; Kasperski, Jacek; Barszczewska-Rybarek, Izabela; Żmudzki, Jarosław

    2013-01-01

    The colonization of denture soft lining material by oral fungi can result in infections and stomatitis of oral tissues. In this study, 0 ppm to 200 ppm of silver nanoparticles was incorporated as an antimicrobial agent into composites to reduce the microbial colonization of lining materials. The effect of silver nanoparticle incorporation into a soft lining material on the sorption, solubility, hardness (on the Shore A scale) and tensile bond strength of the composites was investigated. The data were statistically analyzed using two-way ANOVA and Newman-Keuls post hoc tests or the chi-square Pearson test at the p < 0.05 level. An increase in the nanosilver concentration resulted in a decrease in hardness, an increase in sorption and solubility, a decrease in bond strength and a change in the failure type of the samples. The best combination of bond strength, sorption, solubility and hardness with antifungal efficacy was achieved for silver nanoparticle concentrations ranging from 20 ppm to 40 ppm. These composites did not show properties worse than those of the material without silver nanoparticles and exhibited enhanced in vitro antifungal efficiency. PMID:23271371

  13. Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties

    DOE PAGES

    Liu, Yujing; Zang, Huidong; Wang, Ling; ...

    2016-09-25

    Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less

  14. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages. PMID:22433844

  15. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers includingmore » HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.« less

  16. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    PubMed

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  17. Study of the Photocatalytic Property of Polysulfone Membrane Incorporating TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Xingxing; Zhou, Weiqi; Chen, Zhe; Yao, Lei

    In order to investigate the effect of the incorporated nanoparticles on the photocatalytic property of the hybrid membranes, the uncovered and covered polysulfone/TiO2 hybrid membranes were prepared. Positron annihilation γ-ray spectroscopy coupled with a positron beam was utilized to examine the depth profiles of the two membranes. The photocatalytic activities of the membranes were evaluated by the degradation of Rhodamine B (RhB) aqueous solution under the irradiation of Xe lamp. UV-Vis spectroscopy was applied to study the UV transmission through the polysulfone layer. Electrochemical impedance spectroscopy was used to detect the photo-generated charges by the covered membrane during the irradiation. It can be found that UV light can penetrate through the covered layer (about 230nm), and the incorporated nanoparticles can still generate charges under irradiation, which endows the photocatalytic ability of the covered membrane.

  18. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Sun, Minjie; Ping, Qineng; Ying, Zhi; Liu, Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  19. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    PubMed

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  20. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles

    PubMed Central

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-01-01

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus, Bacillus cereus, Escherichia coli, Bacillus atrophaeus, and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans. Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus. UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles. PMID:29670066

  1. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles.

    PubMed

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-04-18

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus , Bacillus cereus , Escherichia coli , Bacillus atrophaeus , and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans . Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus . UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles.

  2. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    USDA-ARS?s Scientific Manuscript database

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  3. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  4. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice.

    PubMed

    Wang, Yu; Tang, Changyun; Zhang, Hao

    2015-06-01

    Safflower (Carthamus tinctorius L.) is a traditional medicinal and edible herb with a long history of use in China. In this study, a model of hepatotoxicity induced by carbon tetrachloride (CCl 4 ) in mice was used to investigate the hepatoprotective effects of kaempferol 3-O-rutinoside (K-3-R) and kaempferol 3-O-glucoside (K-3-G), two kaempferol glycosides isolated from C. tinctorius L. K-3-R and K-3-G, at doses of 200 mg/kg and 400 mg/kg, were given orally to male mice once/d for 7 days before they received CCl 4 intraperitoneally. Our results showed that K-3-R and K-3-G treatment increased the level of total protein (TP) and prevented the CCl 4 -induced increases in serum aspartate aminotransferase (AST), serum alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) levels. Additionally, mice treated with K-3-R and K-3-G had significantly restored glutathione (GSH) levels and showed normal catalase (CAT) and superoxide dismutase (SOD) activities, compared to CCl 4 -treated mice. K-3-R and K-3-G also mitigated the CCl 4 -induced liver histological alteration, as indicated by histopathological evaluation. These findings demonstrate that K-3-R and K-3-G have protective effects against acute CCl 4 -induced oxidative liver damage. Copyright © 2014. Published by Elsevier B.V.

  6. Kaempferol, a mutagenic flavonol from Helichrysum simillimum.

    PubMed

    Elgorashi, Ee; van Heerden, Fr; van Staden, J

    2008-11-01

    Helichrysum simillimum is native to South Africa. It is used for the treatment of coughs, colds, fever, infections, headache, and menstrual pain. Extracts of this species showed mutagenic effects in the Salmonella/microsome assay. The aim of this study was to isolate and determine the mutagenic constituents of H. simillimum. Bioassay-guided fractionation of 90% aqueous methanol extracts, using Salmonella typhimurium TA98, led to the isolation of the flavonol kaempferol.

  7. Modulation of the cyclooxygenase pathway via inhibition of nitric oxide production contributes to the anti-inflammatory activity of kaempferol.

    PubMed

    Mahat, Mahamad Yunnus A; Kulkarni, Nagaraj M; Vishwakarma, Santosh L; Khan, Farhin R; Thippeswamy, B S; Hebballi, Vijay; Adhyapak, Anjana A; Benade, Vijay S; Ashfaque, Saudagar Mohammad; Tubachi, Suraj; Patil, Basangouda M

    2010-09-10

    Kaempferol has been reported to inhibit nitric oxide synthase and cyclooxygenase enzymes in animal models. The present study was designed to investigate whether kaempferol modulates the cyclooxygenase pathway via inhibition of nitric oxide production, which in turn contributes to its anti-inflammatory activity. Investigations were performed using carrageenan induced rat air pouch model. Inflammation was assessed by measurement of nitrites (nitrite, a breakdown product of nitric oxide), prostaglandin-E(2) levels and cellular infiltration in the pouch fluid exudates. To assess the anti-inflammatory effect of the extract, rat air pouch linings were examined histologically. The levels of nitrite and prostaglandin-E(2) in pouch fluid were measured by using Griess assay and ELISA respectively. Cell counts and differential counts were performed using a Coulter counter and Wright-Giemsa stain respectively. Kaempferol when administered orally at 50 and 100mg/kg dose showed significant inhibition of carrageenan induced production of nitrite (40.12 and 59.74%, respectively) and prostaglandin-E(2) generation (64.23 and 78.55%, respectively). Infiltration of the cells into the rat granuloma air pouch was also significantly inhibited by kaempferol. Modulation of cyclooxygenase pathway via inhibition of nitric oxide synthesis significantly contributes to kaempferol's anti-inflammatory activity. The present study characterizes the effects and mechanisms of naturally occurring phenolic flavonoid kaempferol, on inducible nitric oxide synthase expression and nitric oxide production. These results partially explain the pharmacological efficacy of flavonoids in general and kaempferol in particular as anti-inflammatory compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten

    PubMed Central

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo

    2010-01-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect. PMID:22110339

  9. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten.

    PubMed

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo; Suh, Hong-Won

    2010-06-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.

  10. Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L.

    PubMed

    Xie, Yan; Luo, Huilin; Duan, Jingze; Hong, Chao; Ma, Ping; Li, Guowen; Zhang, Tong; Wu, Tao; Ji, Guang

    2014-03-01

    Total flavones of Hippophae rhamnoides L. (TFH) have a clinical use in the treatment of cardiac disease. The pharmacological effects of TFH are attributed to its major flavonoid components, isorhamnetin, kaempferol, and quercetin. However, poor oral bioavailability of these flavonoids limits the clinical applications of TFH. This study explores phytic acid (IP6) enhancement of the oral absorption in rats of isorhamnetin, kaempferol, and quercetin in TFH. In vitro Caco-2 cell experiments and in vivo pharmacokinetic studies were performed to investigate the effects of IP6. The aqueous solubility and lipophilicity of isorhamnetin, quercetin, and kaempferol were determined with and without IP6, and mucosal epithelial damage resulting from IP6 addition was evaluated by MTT assays and morphology observations. The Papp of isorhamnetin, kaempferol, and quercetin was improved 2.03-, 1.69-, and 2.11-fold in the presence of 333 μg/mL of IP6, respectively. Water solubility was increased 22.75-, 15.15-, and 12.86-fold for isorhamnetin, kaempferol, and quercetin, respectively, in the presence of 20mg/mL IP6. The lipophilicity of the three flavonoids was slightly decreased, but their hydrophilicity was increased after the addition of IP6 in the water phase as the logP values of isorhamnetin, kaempferol, and quercetin decreased from 2.38±0.12 to 1.64±0.02, from 2.57±0.20 to 2.01±0.04, and from 2.39±0.12 to 1.15±0.01, respectively. The absorption enhancement ratios were 3.21 for isorhamnetin, 2.98 for kaempferol, and 1.64 for quercetin with co-administration of IP6 (200 mg/kg) in rats. In addition, IP6 (200 mg/kg, oral) caused neither significant irritation to the rat intestines nor cytotoxicity (400 μg/mL) in Caco-2 cells. The oral bioavailability of isorhamnetin, kaempferol, and quercetin in TFH was enhanced by the co-administration of IP6. The main mechanisms are related to their enhanced aqueous solubility and permeability in the presence of IP6. In summary, IP6 is a

  11. The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava)

    NASA Astrophysics Data System (ADS)

    Batubara, I.; Suparto, I. H.; Wulandari, N. S.

    2017-03-01

    Guava leaves contain various compounds that have biological activity such as kaempferol and quercetin as anticancer. Twelve extraction techniques were performed to obtain the best extraction technique to isolate kaempferol and quercetin from the guava leaves. Toxicity of extracts was tested against Artemia salina larvae. All extracts were toxic (LC50 value less than 1000 ppm) except extract of direct soxhletation on guava leaves, and extract of sonication and soxhletation using n-hexane. The extract with high content of total phenols and total flavonoids, low content of tannins, intense color of spot on thin layer chromatogram was selected for high performance liquid chromatography analysis. Direct sonication of guava leaves was chosen as the best extraction technique with kampferol and quercetin content of 0.02% and 2.15%, respectively. In addition to high content of kaempferol and quercetin, direct sonication was chosen due to the shortest extraction time, lesser impurities and high toxicity.

  12. DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin.

    PubMed

    Kanakis, C D; Tarantilis, P A; Polissiou, M G; Diamantoglou, S; Tajmir-Riahi, H A

    2005-06-01

    Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. However, there has been no information on the interactions of these antioxidants with individual DNA at molecular level. This study was designed to examine the interaction of quercetin (que), kaempferol (kae), and delphinidin (del) with calf-thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.5 mmol) and various drug/DNA(phosphate) ratios of 1/65 to 1. FTIR and UV-Visible difference spectroscopic methods are used to determine the drug binding sites, the binding constants and the effects of drug complexation on the stability and conformation of DNA duplex. Structural analysis showed quercetin, kaempferol, and delphinidin bind weakly to adenine, guanine (major groove), and thymine (minor groove) bases, as well as to the backbone phosphate group with overall binding constants K(que) = 7.25 x 10(4)M(-1), K(kae) = 3.60 x 10(4)M(-1), and K(del) = 1.66 x 10(4)M(-1). The stability of adduct formation is in the order of que>kae>del. Delphinidin with a positive charge induces more stabilizing effect on DNA duplex than quercetin and kaempferol. A partial B to A-DNA transition occurs at high drug concentrations.

  13. Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.

    2018-06-01

    Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.

  14. Quercetin, kaempferol, myricetin, and fatty acid content among several Hibiscus sabdariffa accession calyces based on maturity in a greenhouse

    USDA-ARS?s Scientific Manuscript database

    Flavonols including quercetin, kaempferol, myricetin, and fatty acids in plants have many useful health attributes including antioxidants, cholesterol lowering, and cancer prevention. Six accessions of roselle, Hibiscus sabdariffa calyces were evaluated for quercetin, kaempferol, and myricetin conte...

  15. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jameel, Zainab N., E-mail: zeinb76-alrekbe@yahoo.com; Haider, Adawiya J., E-mail: adawiyahaider@yahoo.com; Taha, Samar Y., E-mail: samarjam2002@yahoo.com

    A coating with self-cleaning characteristics has been developed using a TiO{sub 2}/SiO{sub 2} hybrid sol-gel, TiO{sub 2} nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO{sub 2} nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO{sub 2} nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO{sub 2} phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). Themore » nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO{sub 2} NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.« less

  16. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    NASA Astrophysics Data System (ADS)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  17. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Yanagida, Takayuki; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-01-01

    We synthesized plastic scintillators incorporated with HfO2 nanoparticles as detectors for X-ray synchrotron radiation. Nanoparticles with sizes of less than 10 nm were synthesized with the subcritical hydrothermal method. The detection efficiency of high-energy X-ray photons improved by up to 3.3 times because of the addition of the nanoparticles. Nanosecond time resolution was successfully achieved for all the scintillators. These results indicate that this method is applicable for the preparation of plastic scintillators to detect X-ray synchrotron radiation.

  18. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    PubMed

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-12-01

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  19. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.

    PubMed

    Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao

    2017-01-01

    Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

  20. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements.

    PubMed

    Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed

    2018-01-01

    The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P < 0.05). Flexural strength of glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P < 0.05). However, the surface hardness of glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.

  1. Quercetin, kaempferol and isorhamnetin in Elaeagnus pungens Thunb. leaf: pharmacological activities and quantitative determination studies.

    PubMed

    Zhu, Ji-Xiao; Wen, Le; Zhong, Wei-Jin; Xiong, Li; Liang, Jian; Wang, Hong-Ling

    2018-05-26

    Elaeagnus pungens (E. pungens) leaf was documented to be very effective to treat asthma and chronic bronchitis both as traditional Chinese medicine and minority traditional medicine; yet the actual effective components still remain unknown. This work is to investigate the anti-inflammatory, antalgic and antitussive activities of E. pungens leaf, quercetin and kaempferol, and their contents in E. pungens leaf. Pharmacological experiments showed they could considerably reduce ear-swelling of mouse and relieve writhing reaction of mouse; they could also prevent mouse from coughing, significantly. These findings suggested quercetin and kaempferol are major effective components treating asthma and chronic bronchitis. Quantitative analysis results indicated the levels of quercetin, kaempferol and isorhamnetin varied greatly in different species of Elaeagnus and in different plant parts: E. pungens leaf is more similar to Elaeagnus umbellate leaf chemically; quercetin level is exceptionally high in Elaeagnus oldhami leaf; E. pungens leaf is a better medical part for treating asthma and chronic bronchitis in comparison with other parts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    PubMed

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M.; Deng, Wei

    2018-02-01

    We developed light-triggered liposomes incorporating gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized by adjusting the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of HSPC: PE-NH2: gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of these liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox loaded liposomes were applied to human colorectal cancer cells, HCT116, and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity, compared to the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may have improved therapeutic efficacy in photodynamic therapy and chemotherapy.

  4. [Determination of rutin, quercetin and kaempferol in Althaea rosea (L) Gavan for Uyghur medicine by high performance liquid chromatography].

    PubMed

    Muhetaer, Tu'erhong; Resalat, Yimin; Chu, Ganghui; Yin, Xuebo; Munira, Abudukeremu

    2015-12-01

    Uyghur medicine is one important part of the national medicine system. Uyghur medicine modernization, namely the study of effective components with modern technologies, is the only way for the scientification, standardization, and industrialization of Uyghur medicine. Here we developed a selective extraction method for rutin, quercetin and kaempferol in Althaea rosea (L) Gavan. The three active species were determined by high performance liquid chromatography (HPLC) with HC-C18 column (250 mm x 4.6 mm, 5 μm) and the mobile phase of CH3OH-0.4% H3PO4 (50 :50, v/v). Rutin, quercetin and kaempferol were baseline separated with each other and the interference species with flow rate of 1.0 mL/min and column temperature of 30 degrees C. Under the optimal conditions, linear correlation were obtained in the mass concentration range of 12.5-150 μg/mL (r = 0.999 8) for rutin, 12.5-125 μg/mL (r = 0.999 9) for quercetin, and 12.5-125 μg/mL (r = 0.998 8) for kaempferol. The recoveries (n = 5) of rutin, quercetin and kaempferol were 100.25% ( RSD = 1.1%), 97.60% ( RSD = 0.47%) and 97.75% (RSD = 0.71%), respectively. The method can be used to determine the contents of rutin, quercetin and kaempferol in Althaea rosea (L) Gavan and provide the guidance for the analysis of the flavonoids in other Uyghur medicines.

  5. Kaempferol Identified by Zebrafish Assay and Fine Fractionations Strategy from Dysosma versipellis Inhibits Angiogenesis through VEGF and FGF Pathways.

    PubMed

    Liang, Fang; Han, Yuxiang; Gao, Hao; Xin, Shengchang; Chen, Shaodan; Wang, Nan; Qin, Wei; Zhong, Hanbing; Lin, Shuo; Yao, Xinsheng; Li, Song

    2015-10-08

    Natural products are a rich resource for the discovery of therapeutic substances. By directly using 504 fine fractions from isolated traditional Chinese medicine plants, we performed a transgenic zebrafish based screen for anti-angiogenesis substances. One fraction, DYVE-D3, was found to inhibit the growth of intersegmental vessels in the zebrafish vasculature. Bioassay-guided isolation of DYVE-D3 indicates that the flavonoid kaempferol was the active substance. Kaempferol also inhibited the proliferation and migration of HUVECs in vitro. Furthermore, we found that kaempferol suppressed angiogenesis through inhibiting VEGFR2 expression, which can be enhanced by FGF inhibition. In summary, this study shows that the construction of fine fraction libraries allows efficient identification of active substances from natural products.

  6. Kaempferol Identified by Zebrafish Assay and Fine Fractionations Strategy from Dysosma versipellis Inhibits Angiogenesis through VEGF and FGF Pathways

    PubMed Central

    Liang, Fang; Han, Yuxiang; Gao, Hao; Xin, Shengchang; Chen, Shaodan; Wang, Nan; Qin, Wei; Zhong, Hanbing; Lin, Shuo; Yao, Xinsheng; Li, Song

    2015-01-01

    Natural products are a rich resource for the discovery of therapeutic substances. By directly using 504 fine fractions from isolated traditional Chinese medicine plants, we performed a transgenic zebrafish based screen for anti-angiogenesis substances. One fraction, DYVE-D3, was found to inhibit the growth of intersegmental vessels in the zebrafish vasculature. Bioassay-guided isolation of DYVE-D3 indicates that the flavonoid kaempferol was the active substance. Kaempferol also inhibited the proliferation and migration of HUVECs in vitro. Furthermore, we found that kaempferol suppressed angiogenesis through inhibiting VEGFR2 expression, which can be enhanced by FGF inhibition. In summary, this study shows that the construction of fine fraction libraries allows efficient identification of active substances from natural products. PMID:26446489

  7. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human breast cancer cells, by high-performance liquid chromatography.

    PubMed

    Wang, Yi; Cao, Jiang; Weng, Jian-Hua; Zeng, Su

    2005-09-01

    Quercetin, kaempferol and isorhamnetin are the most important constituents in ginkgo flavonoids. A simple, rapid and sensitive high-performance liquid chromatography method was developed to simultaneously determine quercetin, kaempferol and isorhamnetin absorped by human breast cancer cells. Cells were treated with ginkgo flavonols and then lysed with Triton-X 100. The flavonols in the samples were measured by RP-HPLC with a C18 column after a simple extraction with a mixture of ether and acetone. The mobile phase contained phosphate buffer (pH 2.0; 10 mM) tetrahydrofuran, methanol and isopropanol (65:15:10:20, v/v/v/v). The ultraviolet detector was operated at 380 nm. The calibration curve was linear from 0.1 to 1.0 microM (r > 0.999) for each flavonol. The mean extraction efficiency was about 70%. The recovery of the assay was between 98.9 and 100.6%. The limit of detection was 0.01 microM for quercetin and kaempferol and 0.05 microM for isorhamnetin. The limit of quantitation was 0.1 microM (R.S.D.<10%) for each flavonol. The intra- and inter-day coefficients of variation were less than 10% (R.S.D.). The validated method was applied to quantify quercetin, kaempferol and isorhamnetin in human breast cancer Bcap37 and Bcap37/MDR1 cells.

  8. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu

    2017-01-01

    Fungal infected denture, which is typically composed of polymethylmethacrylate (PMMA), is a common problem for a denture wearer, especially an elderly patient with limited manual dexterity. Therefore, increasing the antifungal effect of denture by incorporating surface modification nanoparticles into the PMMA, while retaining its mechanical properties, is of interest. This study aimed to evaluate antifungal, optical, and mechanical properties of heat-cured PMMA incorporated with different amounts of zinc oxide nanoparticles (ZnOnps) with or without methacryloxypropyltrimethoxysilane modification. Specimens made from heat-cured PMMA containing 1.25, 2.5, and 5% (w/w) nonsilanized (Nosi) or silanized (Si) ZnOnps were evaluated. Specimens without filler served as control. The fungal assay was performed placing a Candida albicans suspension on the PMMA surface for 2 h, then Sabouraud Dextrose Broth was added, and growth after 24 h was determined by counting colony forming units on agar plates. A spectrophotometer was used to measure the color in L* (brightness), a* (red-green), b* (yellow-blue) and opacity of the experimental groups. Flexural strength and flexural modulus were determined using a three-point bending test on universal testing machine after 37°C water storage for 48 h and 1 month. The antifungal, optical, and mechanical properties of the PMMA incorporated with ZnOnps changed depending on the amount. With the same amount of ZnOnps, the silanized groups demonstrated a greater reduction in C. albicans compared with the Nosi groups. The color difference (ΔE) and opacity of the Nosi groups were greater compared with the Si groups. The flexural strength of the Si groups, except for the 1.25% group, was significantly greater compared with the Nosi groups. PMMA incorporated with Si ZnOnps, particularly with 2.5% Si ZnOnps, had a greater antifungal effect, less color differences, and opacity compared with Nosi ZnOnps, while retaining its mechanical properties.

  9. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity.

    PubMed

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M; Deng, Wei

    2017-01-01

    We developed light-triggered liposomes incorporating 3-5 nm hydrophobic gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized for varying the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of hydrogenated soy l-α-phosphatidylcholine:1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(hexanoylamine):gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of gold-loaded liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox-loaded liposomes were applied to human colorectal cancer cells (HCT116) and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity compared with the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may serve as improved agents in photodynamic therapy and chemotherapy.

  10. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    PubMed Central

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M; Deng, Wei

    2017-01-01

    We developed light-triggered liposomes incorporating 3–5 nm hydrophobic gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized for varying the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of hydrogenated soy l-α-phosphatidylcholine:1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(hexanoylamine):gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of gold-loaded liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox-loaded liposomes were applied to human colorectal cancer cells (HCT116) and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity compared with the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may serve as improved agents in photodynamic therapy and chemotherapy. PMID:28203076

  11. A kaempferol triglycoside from Tephrosia preussii Taub. (Fabaceae).

    PubMed

    Mba Nguekeu, Yves Martial; Awouafack, Maurice Ducret; Tane, Pierre; Nguedia Lando, Marius Roch; Kodama, Takeshi; Morita, Hiroyuki

    2017-11-01

    A phytochemical investigation of the MeOH extract of twigs and leaves of Tephrosia preussi was carried out to give a new kaempferol triglycoside, named tephrokaempferoside (1), together with five known compounds: tephrosin (2), betulinic acid (3), lupeol (4), β-sitosterol (5) and 3-O-β-d-glucopyranoside of β-sitosterol (6). The structure of the new compound was characterised by analyses of NMR (1D and 2D) and MS data, and chemical conversion. Tephrokaempferoside (1) had weak antibacterial activity against Klebsiella pneumoniae with an MIC value of 150 μg/mL.

  12. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging.

    PubMed

    Kwon, Sung-Pil; Jeon, Sangmin; Lee, Sung-Hoon; Yoon, Hong Yeol; Ryu, Ju Hee; Choi, Dayil; Kim, Jeong-Yeon; Kim, Jiwon; Park, Jae Hyung; Kim, Dong-Eog; Kwon, Ick Chan; Kim, Kwangmeyung; Ahn, Cheol-Hee

    2018-01-01

    Thrombosis is an important pathophysiologic phenomenon in various cardiovascular diseases, which can lead to oxygen deprivation and infarction of tissues by generation of a thrombus. Thus, direct thrombus imaging can provide beneficial in diagnosis and therapy of thrombosis. Herein, we developed thrombin-activatable fluorescent peptide (TAP) incorporated silica-coated gold nanoparticles (TAP-SiO 2 @AuNPs) for direct imaging of thrombus by dual near-infrared fluorescence (NIRF) and micro-computed tomography (micro-CT) imaging, wherein TAP molecules were used as targeted thrombin-activatable peptide probes for thrombin-specific NIRF imaging. The freshly prepared TAP-SiO 2 @AuNPs had an average diameter of 39.8 ± 2.55 nm and they showed the quenched NIRF signal in aqueous condition, due to the excellent quenching effect of TAP molecules on the silica-gold nanoparticle surface. However, 30.31-fold higher NIRF intensity was rapidly recovered in the presence of thrombin in vitro, due to the thrombin-specific cleavage of quenched TAP molecules on the gold particle surface. Furthermore, TAP-SiO 2 @AuNPs were successfully accumulated in thrombus by their particle size-dependent capturing property, and they presented a potential X-ray absorption property in a dose-dependent manner. Finally, thrombotic lesion was clearly distinguished from peripheral tissues by dual NIRF/micro-CT imaging after intravenous injection of TAP-SiO 2 @AuNPs in the in situ thrombotic mouse model, simultaneously. This study showed that thrombin-activatable fluorescent peptide incorporated silica-coated gold nanoparticles can be potentially used as a dual imaging probe for direct thrombus imaging and therapy in clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    PubMed

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Curcumin-incorporated albumin nanoparticles and its tumor image

    NASA Astrophysics Data System (ADS)

    Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying

    2015-01-01

    Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.

  15. Curcumin-incorporated albumin nanoparticles and its tumor image.

    PubMed

    Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying

    2015-01-30

    Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.

  16. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    PubMed Central

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  17. Kidney tubular-cell secretion of osteoblast growth factor is increased by kaempferol: a scientific basis for "the kidney controlling the bone" theory of Chinese medicine.

    PubMed

    Long, Mian; Li, Shun-xiang; Xiao, Jiang-feng; Wang, Jian; Lozanoff, Scott; Zhang, Zhi-guang; Luft, Benjamin J; Johnson, Francis

    2014-09-01

    To study, at the cytological level, the basic concept of Chinese medicine that "the Kidney (Shen) controls the bone". Kaempferol was isolated form Rhizoma Drynariae (Gu Sui Bu, GSB) and at several concentrations was incubated with opossum kidney (OK) cells, osteoblasts (MC3T3 E1) and human fibroblasts (HF) at cell concentrations of 2×10(4)/mL. Opossum kidney cell-conditioned culture media with kaempferol at 70 nmol/L (70kaeOKM) and without kaempferol (0OKM) were used to stimulate MC3T3 E1 and HF proliferation. The bone morphological protein receptors I and II (BMPR I and II) in OK cells were identified by immune-fluorescence staining and Western blot analysis. Kaempferol was found to increase OK cell growth (P<0.05), but alone did not promote MC3T3 E1 or HF cell proliferation. However, although OKM by itself increased MC3T3 E1 growth by 198% (P<0.01), the 70kaeOKM further increased the growth of these cells by an additional 127% (P<0.01). It indicates that the kidney cell generates a previously unknown osteoblast growth factor (OGF) and kaempferol increases kidney cell secretion of OGF. Neither of these media had any significant effect on HF growth. Kaempferol also was found to increase the level of the BMPR II in OK cells. This lends strong support to the original idea that the Kidney has a significant influence over bone-formation, as suggested by some long-standing Chinese medical beliefs, kaempferol may also serve to stimulate kidney repair and indirectly stimulate bone formation.

  18. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    PubMed

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model.

    PubMed

    Hu, Ying; Cheng, Zhiqiang; Heller, Larry I; Krasnoff, Stuart B; Glahn, Raymond P; Welch, Ross M

    2006-11-29

    Four different colored beans (white, red, pinto, and black beans) were investigated for factors affecting iron bioavailability using an in vitro digestion/human Caco-2 cell model. Iron bioavailability from whole beans, dehulled beans, and their hulls was determined. The results show that white beans contained higher levels of bioavailable iron compared to red, pinto, and black beans. These differences in bioavailable iron were not due to bean-iron and bean-phytate concentrations. Flavonoids in the colored bean hulls were found to be contributing to the low bioavailability of iron in the non-white colored beans. White bean hulls contained no detectable flavonoids but did contain an unknown factor that may promote iron bioavailability. The flavonoids, kaempferol and astragalin (kaempferol-3-O-glucoside), were identified in red and pinto bean hulls via HPLC and MS. Some unidentified anthocyanins were also detected in the black bean hulls but not in the other colored bean hulls. Kaempferol, but not astragalin, was shown to inhibit iron bioavailability. Treating in vitro bean digests with 40, 100, 200, 300, 400, 500, and 1000 microM kaempferol significantly inhibited iron bioavailability (e.g., 15.5% at 40 microM and 62.8% at 1000 microM) in a concentration-dependent fashion. Thus, seed coat kaempferol was identified as a potent inhibitory factor affecting iron bioavailability in the red and pinto beans studied. Results comparing the inhibitory effects of kaempferol, quercitrin, and astragalin on iron bioavailability suggest that the 3',4'-dihydroxy group on the B-ring in flavonoids contributes to the lower iron bioavailability.

  20. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  1. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    PubMed

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, D.S.; Moloto, M.J., E-mail: makwenam@vut.ac.za; Moloto, N.

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphinemore » (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to

  3. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  4. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    PubMed Central

    Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin

    2016-01-01

    Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104

  5. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    PubMed

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    NASA Astrophysics Data System (ADS)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  8. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    PubMed

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  9. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes.

    PubMed

    Shao, Jinlong; Yu, Na; Kolwijck, Eva; Wang, Bing; Tan, Ke Wei; Jansen, John A; Walboomers, X Frank; Yang, Fang

    2017-11-01

    To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.

  10. [Ru(bipy)3]2+ nanoparticle-incorporate dental light cure resin to promote photobiomodulation therapy for enhanced vital pulp tissue repair

    NASA Astrophysics Data System (ADS)

    Mosca, Rodrigo C.; Young, Nicholas; Zeituni, Carlos A.; Arany, Praveen R.

    2018-02-01

    The use of nanoparticle on dental light cure resin is not new, currently several compounds (nanoadditives) are used to promote better communication between the restorative material and biological tissues. The interest for this application is growing up to enhance mechanical proprieties to dental tissue cells regeneration. Bioactive nanoparticles and complex compounds with multiple functions are the major target for optimizing the restorative materials. In this work, we incorporate [Ru(bipy)3]2+ nanoparticles, that absorbs energy at 450 nm (blue-light) and emits strongly at 620 nm (red-light), in PLGA Microspheres and insert it in Dental Light Cure Resin to promote the Photobiomodulation Therapy (PBM) effects to accelerate dental pulp repair by in vitro using cytotoxicity and proliferation assay.

  11. Gram scale synthesis of Fe/Fe xO y core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

    DOE PAGES

    Watt, John Daniel; Bleier, Grant C.; Romero, Zachary William; ...

    2018-05-15

    In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of themore » resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.« less

  12. Gram scale synthesis of Fe/Fe xO y core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, John Daniel; Bleier, Grant C.; Romero, Zachary William

    In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of themore » resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.« less

  13. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages.

    PubMed

    Palacz-Wrobel, Marta; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Suchanek-Raif, Renata; Kowalski, Jan

    2017-09-01

    Polyphenols such as apigenin, kaempferol or resveratrol are typically found in plants, including fruits, vegetables, herbs and spices, which have a wide range of biological functions such as antioxidative, anti-inflammatory, vasodilative, anticoagulative and proapoptotic. Discovering such multifunctional compounds in widely consumed plant-based products - ones that both inhibit the release of TNF-α from tissue macrophages and at the same time enhance the secretion of IL-10 - would be an important signpost in the quest for effective pharmacological treatment of numerous diseases that have an inflammatory etiology. The aim of the study is to investigate the impact of biologically active polyphenols such as apigenin, resveratrol and kaempferol on gene expression and protein secretion of IL-10 and TNF-α in line RAW-264.7. Cells were cultured under standard conditions. IL-10 and TNF-α genes expression were examined using QRT-PCR and to assess cytokines concentration ELISA have been used. Apigenin, kaempferol and resveratrol at a dose 30μM significantly decrease the TNF-α expression and secretion. Apigenin decrease the IL-10 expression and secretion. Furthermore, increase in IL-10 secretion after administration of kaempferol and resveratrol were observed. In the process of administration of tested compounds before LPS, which activate macrophages, decrease of TNF-α secretion after apigenin and kaempferol and increase of IL-10 secretion after resveratrol were observed. The results of present work indicate that 1) apigenin, resveratrol and kaempferol may reduce the intensity of inflammatory processes by inhibiting the secretion of proinflammatory cytokine TNF-α, and resveratrol and kaempferol additionally by increasing the secretion of anti-inflammatory cytokine IL-10 2) the studies indicate the potentially beneficial - anti-inflammatory - impact of diet rich in products including apigenin, resveratrol and kaempferol. Copyright © 2017 Elsevier Masson SAS. All rights

  14. Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. maxima challenge infection

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to determine if incorporating a recombinant Eimeria maxima protein, namely rEmaxIMP1, into gold nanoparticles (NP) could improve the level of protective immunity against E. maxima challenge infection. Recombinant EmaxIMP1 was expressed in Escherchia coli as a poly-His f...

  15. Incorporation of heterostructured Sn/SnO nanoparticles in crumpled nitrogen-doped graphene nanosheets for application as anodes in lithium-ion batteries.

    PubMed

    Du, Fei-Hu; Liu, Yu-Si; Long, Jie; Zhu, Qian-Cheng; Wang, Kai-Xue; Wei, Xiao; Chen, Jie-Sheng

    2014-09-07

    Sn/SnO nanoparticles are incorporated in crumpled nitrogen-doped graphene nanosheets by a simple melting diffusion method. The resulting composite exhibits large specific capacity, excellent cycling stability and high rate capability as an anode for lithium-ion batteries.

  16. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE PAGES

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.; ...

    2017-03-30

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  18. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  19. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L.

    PubMed

    Zhao, Guoying; Duan, Jingze; Xie, Yan; Lin, Guobei; Luo, Huilin; Li, Guowen; Yuan, Xiurong

    2013-07-01

    The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.

  20. Estimating the concentration of gold nanoparticles incorporated on natural rubber membranes using multi-level starlet optimal segmentation

    NASA Astrophysics Data System (ADS)

    de Siqueira, A. F.; Cabrera, F. C.; Pagamisse, A.; Job, A. E.

    2014-12-01

    This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.

  1. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  2. Bacteriostatic and anti-collagenolytic dental materials through the incorporation of polyacrylic acid modified CuI nanoparticles

    DOEpatents

    Renne, Walter George; Mennito, Anthony Samuel; Schmidt, Michael Gerard; Vuthiganon, Jompobe; Chumanov, George

    2015-05-19

    Provided are antibacterial and antimicrobial surface coatings and dental materials by utilizing the antimicrobial properties of copper chalcogenide and/or copper halide (CuQ, where Q=chalcogens including oxygen, or halogens, or nothing). An antimicrobial barrier is created by incorporation of CuQ nanoparticles of an appropriate size and at a concentration necessary and sufficient to create a unique bioelectrical environment. The unique bioelectrical environment results in biocidal effectiveness through a multi-factorial mechanism comprising a combination of the intrinsic quantum flux of copper (Cu.sup.0, Cu.sup.1+, Cu.sup.2+) ions and the high surface-to-volume electron sink facilitated by the nanoparticle. The result is the constant quantum flux of copper which manifests and establishes the antimicrobial environment preventing or inhibiting the growth of bacteria. The presence of CuQ results in inhibiting or delaying bacterial destruction and endogenous enzymatic breakdown of the zone of resin inter-diffusion, the integrity of which is essential for dental restoration longevity.

  3. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro.

    PubMed

    Kitamura, Hiroshi; Saito, Natsuko; Fujimoto, Junpei; Nakashima, Ken-Ichi; Fujikura, Daisuke

    2018-05-02

    Brazilian green propolis is produced by mixing secretions from Africanized honey bees with exudate, mainly from Baccharis dracunculifolia. Brazilian propolis is especially rich in flavonoids and cinammic acid derivatives, and it has been widely used in folk medicine owing to its anti-inflammatory, anti-viral, tumoricidal, and analgesic effects. Moreover, it is applied to prevent metabolic disorders, such as type 2 diabetes and arteriosclerosis. Previously, we demonstrated that propolis ethanol extract ameliorated type 2 diabetes in a mouse model through the resolution of adipose tissue inflammation. The aims of this study were to identify the immunosuppressive cells directly elicited by propolis extract and to evaluate the flavonoids that induce such cells. Ethanol extract of Brazilian propolis (PEE; 100 mg/kg i.p., twice a week) was injected into lean or high fat-fed obese C57BL/6 mice or C57BL/6 ob/ob mice for one month. Subsequently, immune cells in visceral adipose tissue and the peritoneal cavity were monitored using FACS analysis. Isolated macrophages and the macrophage-like cell line J774.1 were treated with PEE and its constituent components, and the expression of immune suppressive myeloid markers were evaluated. Finally, we injected one of the identified compounds, kaempferol, into C57BL/6 mice and performed FACS analysis on the adipose tissue. Intraperitoneal treatment of PEE induces CD11b + , Gr-1 + myeloid-derived suppressor cells (MDSCs) in visceral adipose tissue and the peritoneal cavity of lean and obese mice. PEE directly stimulates cultured M1 macrophages to transdifferentiate into MDSCs. Among twelve compounds isolated from PEE, kaempferol has an exclusive effect on MDSCs induction in vitro. Accordingly, intraperitoneal injection of kaempferol causes accumulation of MDSCs in the visceral adipose tissue of mice. Brazilian PEE and its compound kaempferol strongly induce MDSCs in visceral adipose tissue at a relatively early phase of inflammation

  4. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive

    PubMed Central

    Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana

    2016-01-01

    Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887

  5. Volume-labeled nanoparticles and methods of preparation

    DOEpatents

    Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J

    2015-04-21

    Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.

  6. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis.

    PubMed

    Zhang, Wei; Naidu, Boddu S; Ou, Jian Zhen; O'Mullane, Anthony P; Chrimes, Adam F; Carey, Benjamin J; Wang, Yichao; Tang, Shi-Yang; Sivan, Vijay; Mitchell, Arnan; Bhargava, Suresh K; Kalantar-Zadeh, Kourosh

    2015-01-28

    Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activity due to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt % incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.

  7. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Surender, E-mail: surender40@gmail.com; Sahare, P.D.

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} dopedmore » ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.« less

  8. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

    PubMed Central

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto CP

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. PMID:26445537

  9. Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods.

    PubMed

    Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W

    2013-06-28

    This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.

  10. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  11. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Clusters of α-LiFeO2 nanoparticles incorporated into multi-walled carbon nanotubes: a lithium-ion battery cathode with enhanced lithium storage properties.

    PubMed

    Rahman, Md Mokhlesur; Glushenkov, Alexey M; Chen, Zhiqiang; Dai, Xiujuan J; Ramireddy, Thrinathreddy; Chen, Ying

    2013-12-14

    We report the preparation of a novel nanocomposite architecture of α-LiFeO2-MWCNT based on clusters of α-LiFeO2 nanoparticles incorporated into multiwalled carbon nanotubes (MWCNTs). The composite represents a promising cathode material for lithium-ion batteries. The preparation of the nanocomposite is achieved by combining a molten salt precipitation process and a radio frequency oxygen plasma for the first time. We demonstrate that clusters of α-LiFeO2 nanoparticles incorporated into MWCNTs are capable of delivering a stable and high reversible capacity of 147 mA h g(-1) at 1 C after 100 cycles with the first cycle Coulombic efficiency of ~95%. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 101 mA h g(-1) at a high current rate of 10 C. Both rate capability and cycling stability are not simply a result of introduction of functionalized MWCNTs but most likely originate from the unique composite structure of clusters of α-LiFeO2 nanoparticles integrated into a network of MWCNTs. The excellent electrochemical performance of this new nanocomposite opens up new opportunities in the development of high-performance electrode materials for energy storage application using the radio frequency oxygen plasma technique.

  13. Durable Self-Cleaning Coatings for Architectural Surfaces by Incorporation of TiO2 Nano-Particles into Hydroxyapatite Films

    PubMed Central

    Sassoni, Enrico; D’Amen, Eros; Roveri, Norberto

    2018-01-01

    To prevent soiling of marble exposed outdoors, the use of TiO2 nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO2 photoactivity. Here, we investigated the combination of nano-TiO2 and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO2 combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO2 (“H+T”); (ii) simultaneous application by introducing nano-TiO2 into the phosphate solution used to form HAP (“HT”). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. “H+T” and “HT” coatings exhibited much better resistance to nano-TiO2 leaching by rain, compared to TiO2 alone. In “H+T” samples, TiO2 nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In “HT” samples, thanks to chemical bonds between nano-TiO2 and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them. PMID:29360789

  14. Hybrid Nanoparticles for Detection and Treatment of Cancer

    PubMed Central

    Sailor, Michael J.; Park, Ji-Ho

    2012-01-01

    There is currently considerable effort to incorporate both diagnostic and therapeutic functions into a single nanoscale system for the more effective treatment of cancer. Nanoparticles have great potential to achieve such dual functions, particularly if more than one type of nanostructure can be incorporated in a nanoassembly—referred to in this review as a hybrid nanoparticle. Here we review recent developments in the synthesis and evaluation of such hybrid nanoparticles based on two design strategies (barge vs. tanker), in which liposomal, micellar, porous silica, polymeric, viral, noble metal, and nanotube systems are incorporated either within (barge) or at the surface of (tanker) a nanoparticle. We highlight the design factors that should be considered to obtain effective nanodevices for cancer detection and treatment. PMID:22610698

  15. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Filip, Jan; Marušák, Zdeněk; Sharma, Virender K; Zbořil, Radek

    2013-04-02

    We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.

  16. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple.

    PubMed

    Li, Wenhui; Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan; Qin, Yuyue

    2017-07-31

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

  17. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple

    PubMed Central

    Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan

    2017-01-01

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce. PMID:28758980

  18. Electrospun strontium titanata nanofibers incorporated with nickel oxide nanoparticles for improved photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Alharbi, Abdulaziz; Alarifi, Ibrahim M.; Khan, Waseem S.; Asmatulu, Ramazan

    2015-03-01

    The inexpensive sources of fossil fuels in the world are limited, and will deplete soon because of the huge demand on the energy and growing economies worldwide. Thus, many research activities have been focused on the non-fossil fuel based energy sources, and this will continue next few decades. Water splitting using photocatalysts is one of the major alternative energy technologies to produce hydrogen directly from water using photon energy of the sun. Numerous solid photocatalysts have been used by researchers for water splitting. In the present study, nickel oxide and strontium titanata were chosen as photocatalysts for water splitting. Poly (vinyl pyrrolidone) (PVP) was incorporated with nickel oxide [Ni2O3] (co-catalyst), while poly (vinyl acetate) (PVAc) was mixed with titanium (IV) isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2]. Then, two solutions were electrospun using coaxial electrospinning technique to generate nanoscale fibers incorporated with NiOx nanoparticles. The fibers were then heat treated at elevated temperatures for 2hr in order to transform the strontium titanata and nickel oxide into crystalline form for a better photocatalytic efficiency. The morphology of fibers was characterized via scanning electron microscopy (SEM), while the surface hydrophobicity was determined using water contact angle goniometer. The UV-vis spectrophotometer was also used to determine the band gap energy values of the nanofibers. This study may open up new possibilities to convert water into fuel directly using the novel photocatalysts.

  19. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    PubMed

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  1. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats

    PubMed Central

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases. PMID:24250417

  2. Stabilization of the nitric oxide (NO) prodrugs and anticancer leads, PABA/NO and Double JS-K, through incorporation into PEG-protected nanoparticles.

    PubMed

    Kumar, Varun; Hong, Sam Y; Maciag, Anna E; Saavedra, Joseph E; Adamson, Douglas H; Prud'homme, Robert K; Keefer, Larry K; Chakrapani, Harinath

    2010-02-01

    We report the stabilization of the nitric oxide (NO) prodrugs and anticancer lead compounds, PABA/NO (O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and "Double JS-K" 1,5-bis-{1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato}-2,4-dinitrobenzene, through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO are protected from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit.

  3. Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies.

    PubMed

    Yashchenok, Alexey M; Gorin, Dmitry A; Badylevich, Mikhail; Serdobintsev, Alexey A; Bedard, Matthieu; Fedorenko, Yanina G; Khomutov, Gennady B; Grigoriev, Dmitri O; Möhwald, Helmuth

    2010-09-21

    Optical and electrical properties of polyelectrolyte/iron oxide nanocomposite planar films on silicon substrates were investigated for different amount of iron oxide nanoparticles incorporated in the films. The nanocomposite assemblies prepared by the layer-by-layer assembly technique were characterized by ellipsometry, atomic force microscopy, and secondary ion mass-spectrometry. Absorption spectra of the films reveal a shift of the optical absorption edge to higher energy when the number of deposited layers decreases. Capacitance-voltage and current-voltage measurements were applied to study the electrical properties of metal-oxide-semiconductor structures prepared by thermal evaporation of gold electrodes on nanocomposite films. The capacitance-voltage measurements show that the dielectric constant of the film increases with the number of deposited layers and the fixed charge and the trapped charge densities have a negative sign.

  4. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    NASA Astrophysics Data System (ADS)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  5. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed; Marco, Carlos; Ellis, Gary

    2012-07-12

    The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity η, storage modulus G', and loss modulus G″ increased with SWCNT content. In the low-frequency region, G' and G″ became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in η and G' due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.

  6. Effect of incorporation of silver nanoparticles in PEDOT:PSS layer on performance of organic solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Nirwal, Varun Singh; Bhatnagar, P. K.; Peta, Koteswara Rao

    2018-05-01

    Solution processable organic solar cells have attracted significant interest in scientific community due to their easy processability, flexibility and eco friendly fabrication. In these organic solar cells structure, PEDOT:PSS layer has major importance as it used as hole transporting layer. In the present work, we have analyzed the effect of incorporation of silver nanoparticles (AgNPs) in PEDOT:PSS layer for P3HT:PCBM based organic solar cells. The presence of Ag nanoparticles in PEDOT:PSS film is confirmed by atomic force microscopy (AFM) images. It has been observed that PEDOT:PSS layer with AgNPs has ˜5.4% more transmittance than PEDOT:PSS layer in most of the visible region, which helps in reaching more light on active layer. Finally, solar cell with structure ITO/PEDOT:PSS:AgNPs/Al is fabricated and J-V characteristics are plotted under illumination. It is observed that there is a significant (˜10%) enhancement in short circuit current and slight increment in open circuit voltage with addition of AgNPs in PEDOT:PSS layer. The calculated value of power conversion efficiency (PCE) of fabricated device without AgNPs in PEDOT:PSS was 1.67%, which increased to 2.02% after addition of AgNPs in PEDOT:PSS layer.

  7. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide.

    PubMed

    Rajaram, Rajendran; Mathiyarasu, Jayaraman

    2018-05-30

    In this work, we report a methodology for the quantification of Homocysteine (HcySH) at neutral pH (pH-7.0) using Au nanoparticles incorporated reduced graphene oxide (AuNP/rGO/GCE) modified glassy carbon electrode. The modified electrode was characterized using SEM and XRD techniques. The electrode exhibited a typical behavior against the standard redox probe [Fe(CN) 6 ] 3-/4- and resulted in 0.06 V peak to peak potential value. The modified electrode exhibited electrocatalytic activity towards electrochemical biosensing of HcySH, which is established using voltammetric studies. HcySH oxidation peak potential is observed at 0.12 V on AuNP/rGO/GCE which is 0.7 V cathodic than bare glassy carbon electrode (0.82 V). The large peak potential shift observed is reasoned as the interaction of SH group of HcySH with the gold nanoparticles and the electrocatalytic property of reduced graphene oxide that enhances the electrochemical detection at reduced overpotential. Further, successive addition of HcySH showed a linear increment in the sensitivity within the concentration range of 2-14 mM. From an amperometric protocol, the limit of detection is found as 6.9 μM with a sensitivity of 14.8 nA/μM. From a set of cyclic voltammetric measurements, it is observed that the electrode produces a linear signal on the concentration of HcySH in the presence of hydrogen peroxide. Thus it can be concluded that the matrix can detect HcySH even in the presence of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Incorporation of copper nanoparticles into paper for point-of-use water purification

    PubMed Central

    Smith, James A.

    2014-01-01

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 minutes and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). PMID:25014431

  9. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro.

    PubMed

    Leena, R S; Vairamani, M; Selvamurugan, N

    2017-10-01

    Silibinin is a plant derived flavonolignan known for its multiple biological properties, but its role in the promotion of bone formation has not yet been well studied. Moreover, the delivery of Silibinin is hindered by its complex hydrophobic nature, which limits its bioavailability. Hence, in this study, we fabricated a drug delivery system using chitosan nanoparticles loaded with Silibinin at different concentrations (20μM, 50μM, and 100μM). They were then incorporated into scaffolds containing Alginate and Gelatin (Alg/Gel) for the sustained and prolonged release of Silibinin. The Silibinin-loaded chitosan nanoparticles (SCN) were prepared using the ionic gelation technique, and the scaffolds (Alg/Gel-SCN) were synthesized by the conventional method of freeze drying. The scaffolds were subjected to physicochemical and material characterization studies. The addition of SCN did not affect the porosity of the scaffolds, yet increased the protein adsorption, degradation rates, and bio-mineralization. These scaffolds were biocompatible with mouse mesenchymal stem cells. The scaffolds loaded with 50μM Silibinin promoted osteoblast differentiation, which was determined at cellular and molecular levels. Recent studies indicated the role of microRNAs (miRNAs) in osteogenesis and we found that the Silibinin released from scaffolds regulated miRNAs that control the bone morphogenetic protein pathway. Hence, our results suggest the potential for sustained and prolonged release of Silibinin to promote bone formation and, thus, these Alg/Gel-SCN scaffolds may be candidates for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid.

    PubMed

    Ulubay, Sükriye; Dursun, Zekerya

    2010-01-15

    Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1x10(-9) to 1x10(-5)M for UA and 1x10(-9) to 1x10(-7)M for DA using DPVs method. The detection limits were determined as 8x10(-10)M (s/n=3) for UA and 8.5x10(-10)M (s/n=3) for DA at a signal-to-noise ratio of 3.

  11. Stabilization of the Nitric Oxide (NO) Prodrugs and Anti-Cancer Leads, PABA/NO and Double JS-K through Incorporation into PEG-Protected Nanoparticles

    PubMed Central

    Kumar, Varun; Hong, Sam Y.; Maciag, Anna E.; Saavedra, Joseph E.; Adamson, Douglas H.; Prud'homme, Robert K.; Keefer, Larry K.; Chakrapani, Harinath

    2009-01-01

    Here we report the stabilization of the nitric oxide (NO) prodrugs and anti-cancer lead compounds, PABA/NO (O2-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and “Double JS-K” (1,5-bis{[1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato]-2,4-dinitrobenzene), through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit. PMID:20000791

  12. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications.

    PubMed

    Sherin, Sainulabdeen; Sheeja, Sathyabhama; Sudha Devi, Rukhmini; Balachandran, Sreedharan; Soumya, Rema Sreenivasan; Abraham, Annie

    2017-09-25

    The present study deals with the preparation of stable Curcumin incorporated Titaniumdioxide Nanoparticles (CTNPs) by coprecipitation method for improving the bioavailability of curcumin and site specific drug delivery. The prepared nanoparticles were characterized by UV visible spectroscopy, FTIR, XRD, DLS, SEM and EDX. The characterization studies showed the interaction of curcumin to titanium dioxide nanoparticles. The average size of the prepared CTNPs was found to be ∼29 nm with zetapotential of-53.790 mV. In vivo and in vitro toxicological evaluations were carried out to determine the biological effect of CTNPs. In vitro parameters like cell viability, Lactate dehydrogenase (LDH) Assay, Neutral red uptake (NRU) assay and uptake of curcumin from CTNPs by the cells had been investigated. In vitro toxicity studies in THP1 and H9c2 cell lines showed that CTNPs are safe even at a dose of 200 ng. The in vivo part of the study was carried out with different doses of Curcumin (1 mg-20 mg/kg body weight), Titaniumdioxide Nanoparticles (TNPs) (1 mg-5 mg/kg Body weight) and CTNPs (5 mg-10 mg/kg Body weight) in Sprague dawley rat models to determine the pharmacokinetics and genotoxicity of the nanoparticle. This was done by analysing the parameters like SGPT, SGOT, LDH, hematological parameters and biodistribution of the nanomaterial at different organ sites. Genotoxicity of samples were done by comet assay on blood cells. No significant toxicity was observed in the parameters in samples treated group compared to controls. The overall results indicated that the CTNPs are nontoxic and is highly stable with improved site specific application compared to native curcumin and are suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Soy Leaf Extract Containing Kaempferol Glycosides and Pheophorbides Improves Glucose Homeostasis by Enhancing Pancreatic β-Cell Function and Suppressing Hepatic Lipid Accumulation in db/db Mice.

    PubMed

    Li, Hua; Ji, Hyeon-Seon; Kang, Ji-Hyun; Shin, Dong-Ha; Park, Ho-Yong; Choi, Myung-Sook; Lee, Chul-Ho; Lee, In-Kyung; Yun, Bong-Sik; Jeong, Tae-Sook

    2015-08-19

    This study investigated the molecular mechanisms underlying the antidiabetic effect of an ethanol extract of soy leaves (ESL) in db/db mice. Control groups (db/+ and db/db) were fed a normal diet (ND), whereas the db/db-ESL group was fed ND with 1% ESL for 8 weeks. Dietary ESL improved glucose tolerance and lowered plasma glucose, glycated hemoglobin, HOMA-IR, and triglyceride levels. The pancreatic insulin content of the db/db-ESL group was significantly greater than that of the db/db group. ESL supplementation altered pancreatic IRS1, IRS2, Pdx1, Ngn3, Pax4, Ins1, Ins2, and FoxO1 expression. Furthermore, ESL suppressed lipid accumulation and increased glucokinase activity in the liver. ESL primarily contained kaempferol glycosides and pheophorbides. Kaempferol, an aglycone of kaempferol glycosides, improved β-cell proliferation through IRS2-related FoxO1 signaling, whereas pheophorbide a, a product of chlorophyll breakdown, improved insulin secretion and β-cell proliferation through IRS1-related signaling with protein kinase A in MIN6 cells. ESL effectively regulates glucose homeostasis by enhancing IRS-mediated β-cell insulin signaling and suppressing SREBP-1-mediated hepatic lipid accumulation in db/db mice.

  14. Incorporation of copper nanoparticles into paper for point-of-use water purification.

    PubMed

    Dankovich, Theresa A; Smith, James A

    2014-10-15

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells.

    PubMed

    Zhou, Xiaojun; Feng, Wei; Qiu, Kexin; Chen, Liang; Wang, Weizhong; Nie, Wei; Mo, Xiumei; He, Chuanglong

    2015-07-29

    Bone morphogenetic protein-2 (BMP-2), a growth factor that induces osteoblast differentiation and promotes bone regeneration, has been extensively investigated in bone tissue engineering. The peptides of bioactive domains, corresponding to residues 73-92 of BMP-2 become an alternative to reduce adverse side effects caused by the use of high doses of BMP-2 protein. In this study, BMP-2 peptide functionalized mesoporous silica nanoparticles (MSNs-pep) were synthesized by covalently grafting BMP-2 peptide on the surface of nanoparticles via an aminosilane linker, and dexamethasone (DEX) was then loaded into the channel of MSNs to construct nanoparticulate osteogenic delivery systems (DEX@MSNs-pep). The in vitro cell viability of MSNs-pep was tested with bone mesenchymal stem cells (BMSCs) exposure to different particle concentrations, revealing that the functionalized MSNs had better cytocompatibility than their bare counterparts, and the cellular uptake efficiency of MSNs-pep was remarkably larger than that of bare MSNs. The in vitro results also show that the MSNs-pep promoted osteogenic differentiation of BMSCs in terms of the levels of alkaline phosphatase (ALP) activity, calcium deposition, and expression of bone-related protein. Moreover, the osteogenic differentiation of BMSCs can be further enhanced by incorporating of DEX into MSNs-pep. After intramuscular implantation in rats for 3 weeks, the computed tomography (CT) images and histological examination indicate that this nanoparticulate osteogenic delivery system induces effective osteoblast differentiation and bone regeneration in vivo. Collectively, the BMP-2 peptide and DEX incorporated MSNs can act synergistically to enhance osteogenic differentiation of BMSCs, which have potential applications in bone tissue engineering.

  16. Nanoparticles for Imaging: Top or Flop?

    PubMed Central

    Mertens, Marianne E.; Grimm, Jan; Lammers, Twan

    2014-01-01

    Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential. PMID:25247562

  17. Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery.

    PubMed

    Nogueira, Daniele R; Scheeren, Laís E; Pilar Vinardell, M; Mitjans, Montserrat; Rosa Infante, M; Rolim, Clarice M B

    2015-12-01

    The pH-responsive delivery systems have brought new advances in the field of functional nanodevices and might allow more accurate and controllable delivery of specific cargoes, which is expected to result in promising applications in different clinical therapies. Here we describe a family of chitosan-TPP (tripolyphosphate) nanoparticles (NPs) for intracellular drug delivery, which were designed using two pH-sensitive amino acid-based surfactants from the family N(α),N(ε)-dioctanoyl lysine as bioactive compounds. Low and medium molecular weight chitosan (LMW-CS and MMW-CS, respectively) were used for NP preparation, and it was observed that the size distribution for NPs with LMW-CS were smaller (~168 nm) than that for NPs prepared with MMW-CS (~310 nm). Hemolysis assay demonstrated the pH-dependent biomembrane disruptional capability of the constructed NPs. The nanostructures incorporating the surfactants cause negligible membrane permeabilization at pH7.4. However, at acidic pH, prevailing in endosomes, membrane-destabilizing activity in an erythrocyte lysis assay became evident. When pH decreased to 6.6 and 5.4, hemolytic capability of chitosan NPs increased along with the raise of concentration. Furthermore, studies with cell culture showed that these pH-responsive NPs displayed low cytotoxic effects against 3T3 fibroblasts. The influence of chitosan molecular weight, chitosan to TPP weight ratio, nanoparticle size and nature of the surfactant counterion on the membrane-disruptive properties of nanoparticles was discussed in detail. Altogether, the results achieved here showed that by inserting the lysine-based amphiphiles into chitosan NPs, pH-sensitive membranolytic and potentially endosomolytic nanocarriers were developed, which, therefore, demonstrated ideal feasibility for intracellular drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  19. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  20. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  1. Intrinsic stress modulation in diamond like carbon films with incorporation of gold nanoparticles by PLA

    NASA Astrophysics Data System (ADS)

    Panda, Madhusmita; Krishnan, R.; Krishna, Nanda Gopala; Madapu, Kishore K.; Kamruddin, M.

    2018-04-01

    Intrinsic stress modulation in the diamond-like carbon (DLC) coatings with incorporation of gold nanoparticles was studied qualitatively from Raman shift. The films were deposited on Si (1 0 0) substrates by using Pulsed laser ablation (PLA) of pure pyrolytic graphite target and with a gold foil on it. Films compositional and chemical behavior was studied by X-ray photoelectron spectroscopy (XPS) and Visible Raman spectroscopy, respectively. The sp3 content obtained from XPS shows dramatic variation in DLC, DLC-Au(100), DLC-Au(200) and DLC-Au(300) as 39%, 41%, 47% and 66% with various gold contentsas 0%, 12%, 7.3% and 4.7%, respectively. The Raman spectra of DLC/Au films showed G-peak shift towards lower wavenumber indicating the reduction of intrinsic stress (internal compressive stress). The sp2, sp3 fraction in the films are also determined from FWHM (G-Peak).

  2. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics

    PubMed Central

    Fu, Lei; Ke, Heng-Te

    2016-01-01

    Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics. PMID:27807499

  3. Photoacoustic molecular imaging of angiogenesis using theranostic ανβ3-targeted copper nanoparticles incorporating a sn-2 lipase-labile fumagillin prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Cai, Xin; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Pan, Dipanjan; Lanza, Gregory M.; Wang, Lihong V.

    2014-03-01

    Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. ανβ3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, ανβ3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features.

  4. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  5. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-01

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.

  6. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants.

    PubMed

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-05

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    NASA Astrophysics Data System (ADS)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  8. Binary metal oxide nanoparticle incorporated composite multilayer thin films for sono-photocatalytic degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Gokul, Paramasivam; Vinoth, Ramalingam; Neppolian, Bernaurdshaw; Anandhakumar, Sundaramurthy

    2017-10-01

    We report reduced graphene oxide (rGO) supported binary metal oxide (CuO-TiO2/rGO) nanoparticle (NP) incorporated multilayer thin films based on Layer-by-Layer (LbL) assembly for enhanced sono-photocatalytic degradation of methyl orange under exposure to UV radiation. Multilayer thin films were fabricated on glass and quartz slides, and investigated using scanning electron microscopy and UV-vis spectroscopy. The loading of catalyst NPs on the film resulted in the change of morphology of the film from smooth to rough with uniformly distributed NPs on the surface. The growth of the control and NP incorporated films followed a linear regime as a function of number of layers. The%degradation of methyl orange as a function of time was investigated by UV-vis spectroscopy and total organic carbon (TOC) measurements. Complete degradation of methyl orange was achieved within 13 h. The amount of NP loading in the film significantly influenced the%degradation of methyl orange. Catalyst reusability studies revealed that the catalyst thin films could be repeatedly used for up to five times without any change in photocatalytic activity of the films. The findings of the present study support that the binary metal oxide catalyst films reported here are very useful for continuous systems, and thus, making it an option for scale up.

  9. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials.

    PubMed

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M; Roberts, Jeffrey T

    2015-07-15

    The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Composite nanoparticles for gene delivery.

    PubMed

    Wang, Yuhua; Huang, Leaf

    2014-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.

  11. Biocompatibility of crystalline opal nanoparticles.

    PubMed

    Hernández-Ortiz, Marlen; Acosta-Torres, Laura S; Hernández-Padrón, Genoveva; Mendieta, Alicia I; Bernal, Rodolfo; Cruz-Vázquez, Catalina; Castaño, Victor M

    2012-10-22

    Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  12. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  13. Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena, Sharma, Annu

    2018-05-01

    This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.

  14. A study of long-term stability and antimicrobial activity of chlorhexidine, polyhexamethylene biguanide, and silver nanoparticle incorporated in sericin-based wound dressing.

    PubMed

    Ampawong, Sumate; Aramwit, Pornanong

    2017-09-01

    In this study, three kinds of antiseptics which were 0.05% chlorhexidine, 0.2% polyhexamethylene biguanide (PHMB), or 200 ppm silver nanoparticle was introduced to incorporate in the sericin-based scaffold to produce the antimicrobial dressing for the treatment of infected chronic wound. The effects of antiseptic incorporation on the stability, release of sericin, and short-term and long-term (6 months) antimicrobial activity of the sericin dressing against gram-negative and gram-positive bacteria were investigated. We showed that the incorporation of each antiseptic did not have significant effect on the internal morphology (pore size ~ 73-105 μm), elasticity (Young's modulus ~ 200-500 kPa), and the sericin release behavior of the sericin-based dressing. The release of sericin from the dressing was prolonged over 120 h and thereafter. Comparing among three antiseptics, 0.05% chlorhexidine incorporated in the sericin dressing showed the highest immediate and long-term (6 months) antimicrobial effect (largest inhibition zone) against most bacteria either gram-positive or gram-negative bacteria. The in vivo safety test following ISO10993 standard (Biological evaluation of medical devices - Part 6: Tests for local effects after implantation) confirmed that the sericin dressing incorporating 0.05% chlorhexidine did not irritate to tissue, comparing with the commercial material used generally in clinic (Allevyn®, Smith & Nephew). We suggested the sericin dressing incorporating 0.05% chlorhexidine for the treatment of infected chronic wound. Chlorhexidine would reduce the risk of infection while the sericin may promote wound healing.

  15. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice

    PubMed Central

    2011-01-01

    Background Short half-life and low levels of growth factors in the niche of injured microenvironment necessitates the exogenous and sustainable delivery of growth factors along with stem cells to augment the regeneration of injured tissues. Methods Here, recombinant human hepatocyte growth factor (HGF) was incorporated into chitosan nanoparticles (CNP) by ionic gelation method and studied for its morphological and physiological characteristics. Cirrhotic mice received either hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. Biochemical, histological, immunostaining and gene expression assays were carried out using serum and liver tissue samples. One way analysis of variance was used for statics application Results Serum levels of selected liver protein and enzymes were significantly increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. Immunopositive staining for albumin (Alb) and cytokeratin 18 (CK18), and reverse transcription-polymerase chain reaction (RT-PCR) for Alb, alpha fetoprotein (AFP), CK18, cytokeratin 19 (CK19) ascertained that MSC-HGF-CNP treatment could be an effective combination to repopulate liver parenchymal cells in the liver cirrhosis. Zymogram and western blotting for matrix metalloproteinases 2 and 9 (MMP2 and MMP9) revealed that MMP2 actively involved in the fibrolysis of cirrhotic tissue. Immunostaining for alpha smooth muscle actin (αSMA) and type I collagen showed decreased expression in the MSC+HGF-CNP treatment. These results indicated that HGF-CNP enhanced the differentiation of stem cells into hepatocytes and supported the reversal of fibrolysis of extracellular matrix (ECM). Conclusion Bone marrow stem cells were isolated, characterized and transplanted in mice model. Biodegradable biopolymeric nanoparticles were prepared with the pleotrophic protein molecule and it worked well for the differentiation of stem

  16. Interaction of flavonols with human serum albumin: a biophysical study showing structure-activity relationship and enhancement when coated on silver nanoparticles.

    PubMed

    Das, Pratyusa; Chaudhari, Sunil Kumar; Das, Asmita; Kundu, Somashree; Saha, Chabita

    2018-04-24

    Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure-activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 10 7  M -1 and 4.2 × 10 6  M -1 , respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA-quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA-quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.

  17. Screening of Korean Natural Products for Anti-Adipogenesis Properties and Isolation of Kaempferol-3-O-rutinoside as a Potent Anti-Adipogenetic Compound from Solidago virgaurea.

    PubMed

    Jang, Young Soo; Wang, Zhiqiang; Lee, Jeong-Min; Lee, Jae-Young; Lim, Soon Sung

    2016-02-17

    In this study, the anti-adipogenetic activity of 300 plant extracts was investigated using an Oil Red O staining assay in a 3T3-L1 cell line. Our results indicate that three plants, including the stem and leaf of Physalis angulata, the whole grass of Solidago virgaurea, and the root of Dioscorea nipponica, produced over 90% inhibition of adipogenesis. Kaempferol-3-O-rutinoside, which demonstrated a 48.2% inhibitory effect on adipogenesis without cytotoxicity, was isolated from the butanol layer of a water extract of S. virgaurea guided by the anti-adipogenesis assay in 3T3-L1. PPAR-γ and C/EBPα expression levels were determined using western blot, and our results indicate that kaempferol-3-O-rutinoside has a strong anti-adipogenic effect in 3T3-L1 cells through the suppression of increases in PPAR-γ and C/EBPα expression.

  18. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  19. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Wang, Wenzhong (Inventor); Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  20. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng [Newton, MA; Chen, Gang [Carlisle, MA; Poudel, Bed [West Newton, MA; Kumar, Shankar [Newton, MA; Wang, Wenzhong [Beijing, CN; Dresselhaus, Mildred [Arlington, MA

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  1. A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles.

    PubMed

    Harmia, T; Speiser, P; Kreuter, J

    1986-01-01

    The present study was undertaken in order to encapsulate pilocarpin into nanoparticles. Two principally different methods for manufacturing these particles were investigated. Firstly, pilocarpin was dissolved in an aqueous medium in which the polymerization was carried out, and secondly, the polymerizing monomer was kept saturated with the drug solution under acidic conditions resulting in an incorporation into the nanoparticles in an aqueous environment. The amount of pilocarpin that could be incorporated into the nanoparticles was found to be largely influenced by the temperature at which the nanoparticles were produced and by the stabilizers used. At low temperatures, up to 60 per cent of pilocarpin nitrate could be encapsulated into butylcyanoacrylate nanoparticles using emulsion polymerization techniques. Larger amounts of pilocarpin could not be incorporated because of the hydrophilicity of the salts of this drug. The physico-chemical characteristics of the nanoparticles are reported: the particle size and morphology were determined by scanning and transmission electron microscopy and photon correlation spectrometry. The average particle size was about 100 nm. The results obtained in this study show that photon correlation spectrometry is a suitable method for the sizing of nanoparticles.

  2. Biocompatibility of crystalline opal nanoparticles

    PubMed Central

    2012-01-01

    Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559

  3. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  5. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  6. 3D Nanostructured materials: TiO2 nanoparticles incorporated gellan gum scaffold for photocatalyst and biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hasmizam Razali, Mohd; Arifah Ismail, Nur; Zulkafli, Mohd Farhan Azly Mohd; Anuar Mat Amin, Khairul

    2018-03-01

    A unique three-dimensional (3D) nanostructured gellan gum (GG) is fabricated by incorporating TiO2 nanoparticles (GG + TiO2NPs) scaffold by freeze-drying. The fabricated GG + TiO2NPs were characterized using Fourier transform infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) to study their physiochemical properties. FTIR was used to investigate the intermolecular interactions in the scaffolds. The crystal structure was determined by bulk analysis using XRD and SEM for microstructure observation of scaffold surfaces. The performance of synthesized GG + TiO2NPs scaffold 3D nanostructured materials was evaluated as a photocatalyst for methyl orange (MO) degradation and for biomedical applications. The results showed that the scaffold possessed good photocatalytic activity for removal of methyl orange with 88.24% degradation after 3 h of UV irradiation. The scaffold also induces the cell growth, thus offering a good candidate for biomedical applications.

  7. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    PubMed

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  8. Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells

    PubMed Central

    2012-01-01

    Background Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata. Results Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells. Conclusions PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations. PMID:22686683

  9. Green synthesis of silver nanoparticles aimed at improving theranostics

    NASA Astrophysics Data System (ADS)

    Vedelago, José; Gomez, Cesar G.; Valente, Mauro; Mattea, Facundo

    2018-05-01

    Nowadays, the combination of diagnosis and therapy, known as theranostics, is one of the keys for an optimal treatment for cancer diseases. Theranostics can be significantly improved by incorporating metallic nanoparticles that are specifically delivered and accumulated in cancerous tissue. In this context, precise knowledge about dosimetric effects in nanoparticle-infused tissues as well as the detection and processing of emerging radiation are extremely important issues. In the last years the first studies on theranostic nanomaterials in gel dosimetry have been presented but there is still a broad field of study to explore. Most of gel dosimetric materials are extremely sensible to modifications in their composition, the addition of enhancers, metallic or inorganic charges can alter their stability and dosimetric properties; therefore, thorough studies must be made before the incorporation of any type of modifier. In this work, the synthesis of metallic nanoparticles suitable for gel dosimetry for x-ray applications is presented. A green synthesis process of silver nanoparticles coated with porcine skin gelatin by thermal reduction of silver nitrate is presented. Nanoparticles were obtained and purified for their application in gel dosimetry. Also, nanoparticles size distribution, reaction yield and the preliminar application as theranostic agents were tested in Fricke gel dosimetry in the keV range. The obtained nanoparticles were successfully used in theranostic applications acting as fluorescent agents and dose enhancers in X-ray beam irradiation simultaneously.

  10. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.

    PubMed

    Durán, Nelson; Durán, Marcela; de Jesus, Marcelo Bispo; Seabra, Amedea B; Fávaro, Wagner J; Nakazato, Gerson

    2016-04-01

    Silver nanoparticles are well known potent antimicrobial agents. Although significant progresses have been achieved on the elucidation of antimicrobial mechanism of silver nanoparticles, the exact mechanism of action is still not completely known. This overview incorporates a retrospective of previous reviews published and recent original contributions on the progress of research on antimicrobial mechanisms of silver nanoparticles. The main topics discussed include release of silver nanoparticles and silver ions, cell membrane damage, DNA interaction, free radical generation, bacterial resistance and the relationship of resistance to silver ions versus resistance to silver nanoparticles. The focus of the overview is to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles. The possibility that pathogenic microbes may develop resistance to silver nanoparticles is also discussed. Antibacterial effect of nanoscopic silver generated a lot of interest both in research projects and in practical applications. However, the exact mechanism is still will have to be elucidated. This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize our current knowledge in the field of antibacterial activity of silver nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Electronically cloaked nanoparticles

    NASA Astrophysics Data System (ADS)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  12. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Anti-HSV-1 and HSV-2 Flavonoids and a New Kaempferol Triglycoside from the Medicinal Plant Kalanchoe daigremontiana.

    PubMed

    Ürményi, Fernanda Gouvêa Gomes; Saraiva, Georgia do Nascimento; Casanova, Livia Marques; Matos, Amanda Dos Santos; de Magalhães Camargo, Luiza Maria; Romanos, Maria Teresa Villela; Costa, Sônia Soares

    2016-12-01

    Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from K. daigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (1), was isolated from the AcOEt fraction (Kd-AC). The BuOH-soluble fraction afforded quercetin 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (2) and the new kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside-7-O-β-d-glucopyranoside (3), named daigremontrioside. The crude extract, Kd-AC fraction, flavonoids 1 and 2 were evaluated using acyclovir-sensitive strains of HSV-1 and HSV-2. Kd-AC was highly active against HSV-1 (EC 50  = 0.97 μg/ml, SI > 206.1) and HSV-2 (EC 50  = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti-HSV-1 (EC 50  = 7.4 μg/ml; SI > 27 and EC 50  = 5.8 μg/ml; SI > 8.6, respectively) and anti-HSV-2 (EC 50  = 9.0 μg/ml; SI > 22.2 and EC 50  = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  14. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries

    NASA Astrophysics Data System (ADS)

    Fenton, Julie L.; Steimle, Benjamin C.; Schaak, Raymond E.

    2018-05-01

    Complex heterostructured nanoparticles with precisely defined materials and interfaces are important for many applications. However, rationally incorporating such features into nanoparticles with rigorous morphology control remains a synthetic bottleneck. We define a modular divergent synthesis strategy that progressively transforms simple nanoparticle synthons into increasingly sophisticated products. We introduce a series of tunable interfaces into zero-, one-, and two-dimensional copper sulfide nanoparticles using cation exchange reactions. Subsequent manipulation of these intraparticle frameworks yielded a library of 47 distinct heterostructured metal sulfide derivatives, including particles that contain asymmetric, patchy, porous, and sculpted nanoarchitectures. This generalizable mix-and-match strategy provides predictable retrosynthetic pathways to complex nanoparticle features that are otherwise inaccessible.

  15. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.

    PubMed

    Zhang, Lianbing; Laug, Linda; Münchgesang, Wolfram; Pippel, Eckhard; Gösele, Ulrich; Brandsch, Matthias; Knez, Mato

    2010-01-01

    The great potential for medical applications of inorganic nanoparticles in living organisms is severely restricted by the concern that nanoparticles can harmfully interact with biological systems, such as lipid membranes or cell proteins. To enable an uptake of such nanoparticles by cells without harming their membranes, platinum nanoparticles were synthesized within cavities of hollow protein nanospheres (apoferritin). In vitro, the protein-platinum nanoparticles show good catalytic efficiency and long-term stability. Subsequently the particles were tested after ferritin-receptor-mediated incorporation in human intestinal Caco-2 cells. Upon externally induced stress, for example, with hydrogen peroxide, the oxygen species in the cells decreased and the viability of the cells increased.

  16. Hydrogel nanoparticle based immunoassay

    DOEpatents

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  17. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less

  18. Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification

    PubMed Central

    Dankovich, Theresa A.

    2014-01-01

    This work reports an environmentally benign method for the in situ preparation of silver nanoparticles (AgNPs) in paper using microwave irradiation. Through thermal evaporation, microwave heating with an excess of glucose relative to the silver ion precursor yields nanoparticles on the surface of cellulose fibers within three minutes. Paper sheets were characterized by electron microscopy, UV-Visible reflectance spectroscopy, and atomic absorption spectroscopy. Antibacterial activity and silver release from the AgNP sheets were assessed for model Escherichia coli and Enterococci faecalis bacteria in deionized water and in suspensions that also contained with various influent solution chemistries, i.e. with natural organic matter, salts, and proteins. The paper sheets containing silver nanoparticles were effective in inactivating the test bacteria as they passed through the paper. PMID:25400935

  19. Nanoparticle-mediated gene delivery.

    PubMed

    Jin, Sha; Leach, John C; Ye, Kaiming

    2009-01-01

    Nonviral gene delivery has been gaining considerable attention recently. Although the efficacy of DNA transfection, which is a major concern, is low in nonviral vector-mediated gene transfer compared with viral ones, nonviral vectors are relatively easy to prepare, less immunogenic and oncogenic, and have no potential of virus recombination and no limitation on the size of a transferred gene. The ability to incorporate genetic materials such as plasmid DNA, RNA, and siRNA into functionalized nanoparticles with little toxicity demonstrates a new era in pharmacotherapy for delivering genes selectively to tissues and cells. In this chapter, we highlight the basic concepts and applications of nonviral gene delivery using super paramagnetic iron oxide nanoparticles and functionalized silica nanoparticles. The experimental protocols related to these topics are described in the chapter.

  20. Development of Poly(lactide-co-glicolide) Nanoparticles Incorporating Morphine Hydrochloride to Prolong its Circulation in Blood.

    PubMed

    Gomez-Murcia, Victoria; Montalban, Mercedes Garcia; Gomez-Fernandez, Juan C; Almela, Pilar

    2017-01-01

    Formulations incorporating nanoparticles (NPs) are widely used to prolong drug release. In this regard, poly(lactide-co-glicolide) (PLGA) is often used in their preparation due to its high degree of biocompatibility and biodegradability. In the present study, morphine HCl is incorporated in PLGA-NPs and different preparation alternatives are evaluated for their effects on the properties, stability and capacity of encapsulation. NPs were prepared by a double emulsion solvent diffusion-ammonium loading (DESD-AL) or double emulsion solvent diffusion-traditional (DESD-T) technique. NP morphology, size, zeta potential and encapsulation efficiency were investigated. In vitro studies were performed in phosphate buffer pH 7.4 at 37 ºC and deionized water at 4ºC. Adult male Swiss mice were used to study the pharmacokinetic behavior in vivo. Our results show that DESD-AL provides a higher level of morphine entrapment and that increasing the sonication time reduces the size but does not appreciably reduce the entrapment percentage. It was also observed that NP stability was greater when Pluronic F68 was used rather than PVA, and that in vitro assays provided better results with low concentrations of both stabilizers. Lyophilized NPs, after rehydration showed properties that were only slightly different from those of the untreated ones, with no sign of precipitation or aggregation. Finally, the obtained NPs enhanced morphine bioavailability. In conclusion, a useful method for encapsulating morphine in order to obtain an extended delivery period is described and its effects are compared with those of the free drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Design and Preparation of Nanoparticle Dimers for SERS Detection

    DTIC Science & Technology

    2012-09-10

    sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were synthesized that incorporate SERS reporters...and antigens, based on the remarkable sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were...Potma, V. A._Apkarian. High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers, The Journal of

  2. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  3. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.

    PubMed

    Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young

    2013-05-08

    We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.

  4. Enhancing regenerative approaches with nanoparticles

    PubMed Central

    Habibovic, Pamela

    2017-01-01

    In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs. PMID:28404870

  5. Enhancing regenerative approaches with nanoparticles.

    PubMed

    van Rijt, Sabine; Habibovic, Pamela

    2017-04-01

    In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs. © 2017 The Author(s).

  6. Electrochemical behavior of gold nanoparticles modified nitrogen incorporated tetrahedral amorphous carbon and its application in glucose sensing.

    PubMed

    Liu, Aiping; Wu, Huaping; Qiu, Xu; Tang, Weihua

    2011-12-01

    Gold nanoparticles (NPs) with 10-50 nm in diameter were synthesized on nitrogen incorporated tetrahedral amorphous carbon (ta-C:N) thin film electrode by electrodeposition. The deposition and nucleation processes of Au on ta-C:N surface were investigated by cyclic voltammetry and chronoamperometry. The morphology of Au NPs was characterized by scanned electron microscopy. The electrochemical properties of Au NPs modified ta-C:N (ta-C:N/Au) electrode and its ability to sense glucose were investigated by voltammetric and amperometric measurements. The potentiostatic current-time transients showed a progressive nucleation process and diffusion growth of Au on the surface of ta-C:N film according to the Scharifker-Hills model. The Au NPs acted as microelectrodes improved the electron transfer and electrocatalytic oxidation of glucose on ta-C:N electrode. The ta-C:N/Au electrode exhibited fast current response, a linear detection range of glucose from 0.5 to 25 mM and a detection limit of 120 microM, which hinted its potential application as a glucose biosensor.

  7. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang

    2017-06-01

    Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV-vis and Raman spectroscopy. FE-SEM and UV-vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 107 and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.

  8. Thermal analysis in the rat glioma model during directly multipoint injection hyperthermia incorporating magnetic nanoparticles.

    PubMed

    Liu, Lianke; Ni, Fang; Zhang, Jianchao; Wang, Chunyu; Lu, Xiang; Guo, Zhirui; Yao, Shaowei; Shu, Yongqian; Xu, Ruizhi

    2011-12-01

    Hyperthermia incorporating magnetic nanoparticles (MNPs) is a hopeful therapy to cancers and steps into clinical tests at present. However, the clinical plan of MNPs deposition in tumors, especially applied for directly multipoint injection hyperthermia (DMIH), and the information of temperature rise in tumors by DMIH is lack of studied. In this paper, we mainly discussed thermal distributions induced by MNPs in the rat brain tumors during DMIH. Due to limited experimental measurement for detecting thermal dose of tumors, and in order to acquire optimized results of temperature distributions clinically needed, we designed the thermal model in which three types of MNPs injection for hyperthermia treatments were simulated. The simulated results showed that MNPs injection plan played an important role in determining thermal distribution, as well as the overall dose of MNPs injected. We found that as injected points enhanced, the difference of temperature in the whole tumor volume decreased. Moreover, from temperature detecting data by Fiber Optic Temperature Sensors (FOTSs) in glioma bearing rats during MNPs hyperthermia, we found the temperature errors by FOTSs reduced as the number of points injected enhanced. Finally, the results showed that the simulations are preferable and the optimized plans of the numbers and spatial positions of MNPs points injected are essential during direct injection hyperthermia.

  9. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    PubMed

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells.

    PubMed

    Lee, Jung Seung; Yang, Kisuk; Cho, Ann-Na; Cho, Seung-Woo

    2018-01-01

    Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

  11. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  12. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.

    PubMed

    Yan, Fei; Zhang, Chao; Zheng, Yi; Mei, Lin; Tang, Lina; Song, Cunxian; Sun, Hongfan; Huang, Laiqiang

    2010-02-01

    The aim of this work was to investigate the effect of triblock copolymer poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Docetaxel-loaded nanoparticles were prepared by oil-in-water emulsion/solvent evaporation technique using biodegradable poly(lactic-co-glycolic acid) (PLGA) with or without addition of poloxamer 188, respectively. The resulting nanoparticles were found to be spherical with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in the docetaxel-resistant MCF-7 TAX30 human breast cancer cell line could be found in comparison with that of PLGA nanoparticles. In addition, the docetaxel-loaded PLGA/poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than that of docetaxel-loaded PLGA nanoparticles and Taxotere (P < .05). In conclusion, the results showed advantages of docetaxel-loaded PLGA nanoparticles incorporated with poloxamer 188 compared with the nanoparticles without incorporation of poloxamer 188 in terms of sustainable release and efficacy in breast cancer chemotherapy. The effects of poloxamer 188, a triblock copolymer were studied on nanoparticle morphology, size, cancer cell uptake and cytotoxicity. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in resistant human breast cancer cell line was demonstrated, resulting in a significantly higher level of cytotoxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

    PubMed Central

    Sathish Kumar, Kannaiyan; Jaikumar, Vasudevan

    2011-01-01

    The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. The drug-entrapped nanocapsules were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) studies indicated the absence of chemical interactions between the drug, polymer and metal nanoparticles. The drug loaded nanoparticles are spherical in shape and had average diameter in the range of 100-300 nm. Drug release study showed that the acidic media provided a faster release than the phosphate buffer media. These findings were also compared statistically through calculating mean, standard deviation and coefficient of variation for various polymer nanocapsules. However, the drug release for gold nanoparticles/anticancer drug (Au-cis) incorporated ethylcellulose nanocapsules was controlled and slow compared to iron oxide nanoparticles-cisplatin incorporated ethylcellulose nanocapsules. Hence, gold nanoparticles act as good trapping agents which slow down the rate of drug release from nanocapsules. PMID:24250373

  14. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.

    PubMed

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-09-26

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

  15. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles

    PubMed Central

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-01-01

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560

  16. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms

    PubMed Central

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections. PMID:28362873

  17. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms.

    PubMed

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby; Davamani, Fabian

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.

  18. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine.

    PubMed

    Alizadeh, Taher; Azizi, Sorour

    2016-07-15

    Molecularly imprinted polymer (MIP) nanoparticles including highly selective recognition sites for fluoxetine were synthesized, utilizing precipitation polymerization. Methacrylic acid and vinyl benzene were used as functional monomers. Ethylene glycol dimethacrylate was used as cross-linker agent. The obtained polymeric nanoparticles were incorporated with carbon paste electrode (CPE) in order to construct a fluoxetine selective sensor. The response of the MIP-CP electrode to fluoxetine was remarkably higher than the electrode, modified with the non-imprinted polymer, indicating the excellent efficiency of the MIP sites for target molecule recognition. It was found that the addition of a little amount of graphene, synthesized via modified hummer's method, to the MIP-CP resulted in considerable enhancement in the sensitivity of the electrode to fluoxetine. Also, the style of electrode components mixing, before carbon paste preparation, was demonstrated to be influential factor in the electrode response. Some parameters, affecting sensor response, were optimized and then a calibration curve was plotted. A dynamic linear range of 6×10(-9)-1.0×10(-7)molL(-1) was obtained. The detection limit of the sensor was calculated equal to 2.8×10(-9)molL(-1) (3Sb/m). This sensor was used successfully for fluoxetine determination in the spiked plasma samples as well as fluoxetine capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Supra-Nanoparticle Functional Assemblies through Programmable Stacking.

    PubMed

    Tian, Cheng; Cordeiro, Marco Aurelio L; Lhermitte, Julien; Xin, Huolin L; Shani, Lior; Liu, Mingzhao; Ma, Chunli; Yeshurun, Yosef; DiMarzio, Donald; Gang, Oleg

    2017-07-25

    The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. Here, we report a general method of assembling nanoparticles in a linear "pillar" morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization. By controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.

  20. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.

    PubMed

    Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2013-07-16

    Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.

  1. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.

    PubMed

    Wu, Youshen; Liu, Jiajun; Ma, Jingwen; Liu, Yongchun; Wang, Ya; Wu, Daocheng

    2016-06-15

    A series of fluorescent nanothermometers (FTs) was prepared with Rhodamine dye-incorporated Pluronic F-127-melamine-formaldehyde composite polymer nanoparticles (R-F127-MF NPs). The highly soluble Rhodamine dye molecules were bound with Pluronic F127 micelles and subsequently incorporated in the cross-linked MF resin NPs during high-temperature cross-link treatment. The morphology and chemical structure of R-F127-MF NPs were characterized with dynamic light scattering, electron microscopy, and Fourier-transform infrared (FTIR) spectra. Fluorescence properties and thermoresponsivities were analyzed using fluorescence spectra. R-F127-MF NPs are found to be monodispersed, presenting a size range of 88-105 nm, and have bright fluorescence and high stability in severe treatments such as autoclave sterilization and lyophilization. By simultaneously incorporating Rhodamine B and Rhodamine 110 (as reference) dyes at a doping ratio of 1:400 in the NPs, ratiometric FTs with a high sensibility of 7.6%·°C(-1) and a wide temperature sensing range from -20 to 110 °C were obtained. The FTs exhibit good stability in solutions with varied pH, ionic strengths, and viscosities and have similar working curves in both intracellular and extracellular environments. Cellular temperature variations in Hela cells during microwave exposure were successfully monitored using the FTs, indicating their considerable potential applications in the biomedical field.

  2. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    PubMed

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hemoglobin–Albumin Cluster Incorporating a Pt Nanoparticle: Artificial O2 Carrier with Antioxidant Activities

    PubMed Central

    Hosaka, Hitomi; Haruki, Risa; Yamada, Kana; Böttcher, Christoph; Komatsu, Teruyuki

    2014-01-01

    A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins (HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution. We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.1×107 M−1, generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of superoxide radical anions (O2 •–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-HSA3 captured PtNP into the external albumin unit (K = 1.1×107 M−1), yielding an Hb-HSA3(PtNP) cluster. The association of PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution. PMID:25310133

  4. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    PubMed

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  5. Development of molecular indicators to track the effects of nanoparticle toxicity in Arabidopsis thaliana

    EPA Science Inventory

    The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. Pre...

  6. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  7. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters.

    PubMed

    Borana, Mohanish S; Mishra, Pushpa; Pissurlenkar, Raghuvir R S; Hosur, Ramakrishna V; Ahmad, Basir

    2014-03-01

    Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Supra-Nanoparticle Functional Assemblies through Programmable Stacking

    DOE PAGES

    Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien; ...

    2017-05-25

    The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less

  9. Supra-Nanoparticle Functional Assemblies through Programmable Stacking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien

    The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less

  10. Factors Influencing the Stability of Au-Incorporated Metal-Oxide Supported Thin Films for Optical Gas Sensing

    DOE PAGES

    Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.; ...

    2017-02-24

    There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less

  11. Factors Influencing the Stability of Au-Incorporated Metal-Oxide Supported Thin Films for Optical Gas Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.

    There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less

  12. Photodynamic characterization and optimization using multifunctional nanoparticles for brain cancer treatment

    NASA Astrophysics Data System (ADS)

    Herrmann, Kristen; Lee Koo, Yong-Eun; Orringer, Daniel A.; Sagher, Oren; Philbert, Martin; Kopelman, Raoul

    2013-03-01

    Photosensitizer-conjugated polyacrylamide nanoparticles were prepared for in vivo characterization of the minimally invasive and localized treatment of photodynamic therapy (PDT) on brain tumors. By incorporating a variety of nanoparticle matrixes, choosing methylene blue as a photosensitizer, and targeting the nanoparticle by the use of F3 peptide we have made nanoparticle-based PDT improvements to current PDT efficiency. Quantitative growth patterns were determined through visual observation of the tumorigenic response to various treatments by the use of an animal cranial window model. PDT treatments with methylene blue-polyacrylamide (MB-PAA) nanoparticles produced significant adjournment of tumor growth over control groups, clearly demonstrating the advantages of nanoparticle-based PDT agents for the eradication of local tumors, leading to the potential palliation of the advancing disease.

  13. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases

    PubMed Central

    Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M; ArRejaie, Aws S

    2016-01-01

    Background Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists. Aim of the study This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2) on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA) denture bases. Materials and methods One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test) and divided into three main groups: one control group (intact specimens) and two groups divided according to surface design (45° bevels and butt joints), in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant. Results Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05). The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano-ZrO2. The impact strength values of all repaired groups were significantly lower than those of the control group (P<0.05). Among repaired groups, the higher impact strength value was seen in the butt group reinforced with 2.5% nano-ZrO2. The bevel joint demonstrated mainly cohesive failure, whereas the butt joint demonstrated mainly adhesive failure. Conclusion Incorporation of nano-ZrO2 into the repair resin improved the flexural strength

  14. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    NASA Astrophysics Data System (ADS)

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-01

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide.

  15. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    NASA Astrophysics Data System (ADS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Szewczyk, Sebastian; Paterczyk, Bohdan; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Stępień, Piotr; Elbaum, Danek

    2013-06-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.

  16. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    PubMed

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  18. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.

    PubMed

    Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin

    2015-11-18

    Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a

  19. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  20. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A.

    PubMed

    Sarti, Federica; Perera, Glen; Hintzen, Fabian; Kotti, Katerina; Karageorgiou, Vassilis; Kammona, Olga; Kiparissides, Costas; Bernkop-Schnürch, Andreas

    2011-06-01

    Although oral vaccination has numerous advantages over the commonly used parenteral route, degradation of vaccine and its low uptake in the lymphoid tissue of the gastrointestinal (GI) tract still impede their development. In this study, the model antigen ovalbumin (OVA) and the immunostimulant monophosphoryl lipid A (MPLA) were incorporated in polymeric nanoparticles based on poly(D,L-lactide-co-glycolide) (PLGA). These polymeric carriers were orally administered to BALB/c mice (Bagg albino, inbred strain of mouse) and the resulting time-dependent systemic and mucosal immune responses towards OVA were assessed by measuring the OVA-specific IgG and IgA titers using an enzyme-linked immunosorbent assay (ELISA). PLGA nanoparticles were spherical in shape, around 320 nm in size, negatively charged (around -20 mV) and had an OVA and MPLA payload of 9.6% and 0.86%, respectively. A single immunization with formulation containing (OVA + MPLA) incorporated in PLGA nanoparticles induced a stronger IgG immune response than that induced by OVA in PBS solution or OVA incorporated into PLGA nanoparticles. Moreover, significantly higher IgA titers were generated by administration of (OVA + MPLA)/PLGA nanoparticles compared to IgA stimulated by control formulations, proving the capability of inducing a mucosal immunity. These findings demonstrate that co-delivery of OVA and MPLA in PLGA nanoparticles promotes both systemic and mucosal immune responses and represents therefore a suitable strategy for oral vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Silica Nanoparticles for Intracellular Protein Delivery: a Novel Synthesis Approach Using Green Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette

    2017-09-01

    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.

  2. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites

    PubMed Central

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  3. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-05-15

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K {sub i} values of 2 {+-} 0.3, 5 {+-} 0.5, 16 {+-} 1.4, and 39 {+-} 1.2 {mu}g/ml (mean {+-} SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C,more » and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K {sub i} = 3 {+-} 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K {sub i} 418 {+-} 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1.« less

  4. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin

    2015-11-01

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO3)2 into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO3)2, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO3)2 content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N2, CO2, and O2 of 37.5, 19.8, and 55.5 m3 cm/m2 h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO3)2 can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.

  5. Principles of nanoparticle design for overcoming biological barriers to drug delivery

    PubMed Central

    Blanco, Elvin; Shen, Haifa; Ferrari, Mauro

    2016-01-01

    Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery. PMID:26348965

  6. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    PubMed

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  7. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  8. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  9. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography.

    PubMed

    He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan

    2014-01-10

    A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less

  11. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    PubMed

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  12. Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices

    DOE PAGES

    Ross, Michael B.; Ku, Jessie C.; Blaber, Martin G.; ...

    2015-08-03

    Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. In this paper, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (~5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter)more » each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. Finally, these data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.« less

  13. Optical and Magnetic Properties of ZnO Nanoparticles Doped with Co, Ni and Mn and Synthesized at Low Temperature.

    PubMed

    Hancock, Jared M; Rankin, William M; Hammad, Talaat M; Salem, Jamil S; Chesnel, Karine; Harrison, Roger G

    2015-05-01

    Zinc oxide nanomaterials were synthesized with small amounts of magnetic ions to create dilute magnetic semiconductors (DMS), by using a low temperature sol-gel method. Conditions were controlled such that a range of amounts of Co, Ni and Mn were incorporated. The incorporation could be tracked by color changes in the powders to blue for Co, green for Ni and yellow for Mn. XRD measurements showed the ZnO has the wurtzite structure with crystallites 8-12 nm in diameter. Nanoparticles were observed by SEM and TEM and TEM showed that the lattice fringes of different nanoparticles align. Nanoparticle alignment was disrupted when high concentrations of metal dopants were incorporated. Magnetic measurements showed a change in behavior from diamagnetic to paramagnetic with increasing concentration of metal dopants.

  14. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating

    NASA Astrophysics Data System (ADS)

    Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred

    2011-03-01

    We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.

  16. Cocrystals of kaempferol, quercetin and myricetin with 4,4‧-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Nan; Yin, He-Mei; Zhang, Yu; Zhang, Da-Jun; Su, Xin; Kuang, Hai-Xue

    2017-02-01

    With an aim to explore the interactions of Osbnd H⋯N between hydroxyl moiety of the flavonoids and the pyridyl ring of N-containing aromatic amines, three flavonols with varying B-ring-hydroxyl groups (kaempferol, quercetin, and myricetin) were selected to combine with 4,4‧-bipyridine. As a result, three new cocrystals of flavonols were obtained with a solution evaporation approach. These three cocrystals were characterized by single crystal X-ray diffraction, XPRD, IR and NMR methods. The resulting cocrystals were kaempferol: 4,4‧-bipyridine (2:1) (KAE·BPY·2H2O), quercetin: 4,4‧-bipyridine (1:1.5) (QUE·BPY), and myricetin: 4,4‧-bipyridine (1:2) (MYR·BPY·H2O). Structural analyses show that an array of hydrogen bonds and π-π stacking interactions interconnect the molecules to form a two-dimensional (2D) supramolecular layer in KAE·BPY·2H2O, QUE·BPY, and MYR·BPY·H2O. In the three cocrystals, they present as three different synthons-ⅠR88(58), Ⅳ R44(42) and, Ⅶ R66(29) with 4,4‧-bipyridine, respectively-which may yield a strategy for constructing the supramolecule. Cocrystals of flavonols combined with N-containing aromatic amines, 7-OH, B-ring-hydroxyl number and/or the location of the flavonols to play a significant part in extending the dimensionality of the cocrystals. The resulting motif formation and crystal packing in these flavonols cocrystals has combined with N-containing aromatic amines. Additionally, the antibacterial properties of the three cocrystals against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been investigated.

  17. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    PubMed Central

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  18. One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper

    NASA Astrophysics Data System (ADS)

    Brobbey, Kofi J.; Haapanen, Janne; Gunell, Marianne; Mäkelä, Jyrki M.; Eerola, Erkki; Toivakka, Martti; Saarinen, Jarkko J.

    2017-10-01

    Nanoparticles are used in several applications due to the unique properties they possess compared to bulk materials. Production techniques have continuously evolved over the years. Recently, there has been emphasis on environmentally friendly manufacturing processes. Substrate properties often limit the possible production techniques and, for example; until recently, it has been difficult to incorporate nanoparticles into paper. Chemical reduction of a precursor in the presence of paper changes the bulk properties of paper, which may limit intended end-use. In this study, we present a novel technique for incorporating silver nanoparticles into paper surface using a flame pyrolysis procedure known as Liquid Flame Spray. Papers precoated with mineral pigments and plastic are used as substrates. Silver nanoparticles were analyzed using SEM and XPS measurements. Results show a homogeneous monolayer of silver nanoparticles on the surface of paper, which demonstrated antibacterial properties against E. coli. Paper precoated with plastic showed more nanoparticles on the surface compared to pigment coated paper samples except for polyethylene-precoated paper. The results demonstrate a dry synthesis approach for depositing silver nanoparticles directly onto paper surface in a process which produces no effluents. The production technique used herein is up scalable for industrial production of antibacterial paper.

  19. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  20. Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile.

    PubMed

    Morita-Imura, Clara; Imura, Yoshiro; Kawai, Takeshi; Shindo, Hitoshi

    2014-11-04

    The pH-responsive self-assembly of zwitterionic amphiphile C16CA was expanded to the recovery of gold (Au) nanoparticles for environmentally friendly chemistry applications. Multilayered lamellae at pH ∼ 4 were successfully incorporated into nanoparticles by dispersion. Redispersion of nanoparticles was achieved under basic conditions by the transition of self-assembly.

  1. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics

    PubMed Central

    Sodagar, Ahmad; Akhoundi, Mohamad Sadegh Ahmad; Bahador, Abbas; Jalali, Yasamin Farajzadeh; Behzadi, Zahra; Elhaminejad, Farideh; Mirhashemi, Amir Hossein

    2017-01-01

    ABSTRACT Introduction: Plaque accumulation and bond failure are drawbacks of orthodontic treatment, which requires composite for bonding of brackets. As the antimicrobial properties of TiO2 nanoparticles (NPs) have been proven, the aim of this study was to evaluate the antimicrobial and mechanical properties of composite resins modified by the addition of TiO2 NPs. Methods: Orthodontics composite containing 0%, 1%, 5% and 10% NPs were prepared. 180 composite disks were prepared for elution test, disk agar diffusion test and biofilm inhibition test to collect the counts of microorganisms on three days, measure the inhibition diameter and quantify the viable counts of colonies consequently. For shear bond strength (SBS) test, 48 intact bovine incisors were divided into four groups. Composites containing 0%, 1%, 5% and 10% NPs were used for bonding of bracket. The bracket/tooth SBS was measured by using an universal testing machine. Results: All concentration of TiO2 NPs had a significant effect on creation and extension of inhibition zone. For S. mutans and S. sanguinis, all concentration of TiO2 NPs caused reduction of the colony counts. Composite containing 10% TiO2 NPs had significant effect on reduction of colony counts for S. mutans and S. sanguinis in all three days. The highest mean shear bond strength belonged to the control group, while the lowest value was seen in 10% NPs composite. Conclusions: Incorporating TiO2 nanoparticles into composite resins confer antibacterial properties to adhesives, while the mean shear bond of composite containing 1% and 5% NPs still in an acceptable range. PMID:29160346

  2. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  3. Enhancement of antibacterial activity in nanofillers incorporated PSF/PVP membranes

    NASA Astrophysics Data System (ADS)

    Pramila, P.; Gopalakrishnan, N.

    2018-04-01

    An attempt has been made to investigate the nanofillers incorporated polysulfone (PSF) and polyvinylpyrrolidone (PVP) polymer membranes prepared by phase inversion method. Initially, the nanofillers, viz, Zinc Oxide (ZnO) nanoparticle, Graphene Oxide-Zinc Oxide (GO-ZnO) nanocomposite were synthesized and then directly incorporated into PSF/PVP blend during the preparation of membranes. The prepared membranes have been subjected to FE-SEM, AFM, BET, contact angle, tensile test and anti-bacterial studies. Significant membrane morphologies and nanoporous properties have been observed by FE-SEM and BET, respectively. It has been observed that hydrophilicity, mechanical strength and water permeability of the ZnO and GO-ZnO incorporated membranes were enhanced than bare membrane. Antibacterial activity was assessed by measuring the inhibition zones formed around the membrane by disc-diffusion method using Escherichia coli (gram-negative) as a model bacterium. Again, it has been observed that nanofillers incorporated membrane exhibits high antibacterial performance compared to bare membrane.

  4. Incorporation of photosenzitizer hypericin into synthetic lipid-based nano-particles for drug delivery and large unilamellar vesicles with different content of cholesterol

    NASA Astrophysics Data System (ADS)

    Joniova, Jaroslava; Blascakova, Ludmila; Jancura, Daniel; Nadova, Zuzana; Sureau, Franck; Miskovsky, Pavol

    2014-08-01

    Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are attractive natural occurring vehicles for drug delivery and targeting to cancer tissues. The capacity of both types of the lipoproteins to bind hydrophobic drugs and their functionality as drug carriers have been examined in several studies and it has been also shown that mixing of anticancer drugs with LDL or HDL before administration led to an increase of cytotoxic effects of the drugs in the comparison when the drugs were administered alone. However, a difficult isolation of the lipoproteins in large quantity from a biological organism as well as a variability of the composition and size of these molecules makes practical application of LDL and HDL as drug delivery systems quite complicated. Synthetic LDL and HDL and large unilamellar vesicles (LUV) are potentially suitable candidates to substitute the native lipoproteins for targeted and effective drug delivery. In this work, we have studied process of an association of potent photosensitizer hypericin (Hyp) with synthetic lipid-based nano-particles (sLNP) and large unilamellar vesicles (LUV) containing various amount of cholesterol. Cholesterol is one of the main components of both LDL and HDL particles and its presence in biological membranes is known to be a determining factor for membrane properties. It was found that the behavior of Hyp incorporation into sLNP particles with diameter ca ~ 90 nm is qualitatively very similar to that of Hyp incorporation into LDL (diameter ca. 22 nm) and these particles are able to enter U-87 MG cells by endocytosis. The presence of cholesterol in LUV influences the capacity of these vesicles to incorporate Hyp into their structure.

  5. Development of Multifunctional Nanoparticles for Cancer Therapy Applications

    NASA Astrophysics Data System (ADS)

    Huth, Christopher

    The focus of this thesis is the functionalization and tailoring of nanoparticle surfaces to perform specific objectives in a biological environment. The nanoparticles examined include carbon nanotubes (CNTs), superparamagnetic iron oxide nanoparticles and superparamagnetic iron oxide nanocomposites. The unique nanomaterials have been developed to address continued issues in cancer therapy, including cancer diagnosis and efficient drug delivery. CNT surfaces were modified by plasma polymerization, providing functional groups for conjugation. Luminescent amine labeled quantum dots were fixed to the surface of the CNTs to aid in cancer diagnosis by in vivo imaging. Mice, injected with the quantum dot functionalized carbon nanotubes, were imaged displaying the in vivo imaging capability. In addition, the drug loading and drug release capabilities were examined by incorporating the drug paclitaxel into PLGA-coated CNTs, which showed much higher cytotoxicity to PC-3MM2 human prostate carcinoma cells compared to CNTs without paclitaxel. Paclitaxel was loaded at 112.5 microg/mg of PLGA-coated CNTs. Iron oxide nanocomposites were functionalized with quantum dots for diagnosis applications. Because the nanocomposites contain iron oxide, the nanoparticle provides the opportunity for magnetic hyperthermia, creating a unique material for diagnosis and therapy. Mice, injected with the quantum dot functionalized iron oxide nanocomposites, were imaged displaying the in vivo imaging capability. The magnetic hyperthermic property of the quantum dot functionalized nanocomposites was observed with the attainment of temperatures above 50°C during exposure to an alternating magnetic field. Thermoresponsive nanoparticles were prepared by immobilizing a 2 - 3 nm thick phospholipid layer on the surface of superparamagnetic Fe3O 4 nanoparticles via high affinity avidin/biotin interactions. Morphological and physicochemical surface properties were assessed using TEM, confocal laser scanning

  6. Investigations of nano-particle toxicity and uptake of Cerium oxide and Titanium dioxide in Arabidopsis thaliana (L.)

    EPA Science Inventory

    The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. In ...

  7. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties

    PubMed Central

    Jiao, Yucong; Han, Dandan; Ding, Yi; Zhang, Xianfeng; Guo, Guannan; Hu, Jianhua; Yang, Dong; Dong, Angang

    2015-01-01

    Three-dimensional superlattices consisting of nanoparticles represent a new class of condensed materials with collective properties arising from coupling interactions between close-packed nanoparticles. Despite recent advances in self-assembly of nanoparticle superlattices, the constituent materials have been limited to those that are attainable as monodisperse nanoparticles. In addition, self-assembled nanoparticle superlattices are generally weakly coupled due to the surface-coating ligands. Here we report the fabrication of three-dimensionally interconnected nanoparticle superlattices with face-centered cubic symmetry without the presynthesis of the constituent nanoparticles. We show that mesoporous carbon frameworks derived from self-assembled supercrystals can be used as a robust matrix for the growth of nanoparticle superlattices with diverse compositions. The resulting interconnected nanoparticle superlattices embedded in a carbon matrix are particularly suitable for energy storage applications. We demonstrate this by incorporating tin oxide nanoparticle superlattices as anode materials for lithium-ion batteries, and the resulting electrochemical performance is attributable to their unique architectures. PMID:25739732

  8. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  9. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

    PubMed

    Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay

    2018-03-01

    Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

  10. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.

    PubMed

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  11. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    NASA Astrophysics Data System (ADS)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  12. Synthesis of zinc sulfide nanoparticles and their incorporation into poly(hydroxybutyrate) matrix in the formation of a novel nanocomposite

    NASA Astrophysics Data System (ADS)

    Riaz, Shahina; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan; Jan, Tariq

    2018-05-01

    In the present study, zinc sulfide (ZnS) nanoparticles (NPs) were successfully synthesized through a modified chemical precipitation protocol and then mediated into poly(hydroxybutyrate) (PHB) matrix to get ZnS/PHB nanocomposite. Mean diameter and zeta potential of ZnS NPs, as determined using dynamic light scattering technique (DLS), were observed to be 53 nm and ‑89 mV, respectively. The structural investigations performed using x-ray diffraction (XRD) technique depicted the phase purity of ZnS NPs exhibiting cubic crystal structure. Fourier transform infrared (FTIR) spectroscopic analysis was conducted to identify the presence or absence of bonding vibrational modes on the surface of synthesized single phase ZnS NPs. The FTIR analysis confirmed the metal to sulphur bond formation by showing the characteristic band at 1123 cm‑1. The UV–vis absorption spectra of ZnS NPs confirmed the synthesis of particles in nanoscale regime showing a λ max of 302 nm. These NPs were then successfully incorporated into PHB matrix to synthesize ZnS/PHB nanocomposite. The synthesis of nanocomposite was confirmed by EDX analysis. The chemical bonding and structural properties of ZnS/PHB nanocomposite were determined by FTIR and XRD analysis, respectively. The FTIR analysis confirmed the synthesis of ZnS/PHB nanocomposite. Moreover, XRD analysis showed that structure of nanocomposite was completely controlled by ZnS NPs as pure PHB exhibited orthorhombic crystal structure while the nanocomposite demonstrated cubic crystal structure of ZnS. Thermal properties of nanocomposite were studied through thermogravimetric analysis revealing that the incorporation of ZnS NPs into PHB matrix lead to enhance heat resistance properties of PHB.

  13. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhardt, Fabien; Muller, Dominique; Slaoui, Abdelilah, E-mail: abdelilah.slaoui@unistra.fr

    2016-05-07

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size ofmore » the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.« less

  14. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into themore » outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.« less

  15. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Enhancement in light harvesting ability of photoactive layer P3HT: PCBM using CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Pukhrambam; Chandel, Tarun

    2018-05-01

    In this paper, we have synthesized CuO nanoparticles via precipitation method and incorporated CuO nanoparticles in the P3HT-poly (3-hexyl) thiophene: PCBM-[6, 6]-phenyl-C61-butyric acid methyl ester heterogeneous blend. The ratio of P3HT to CuO in the blend was varied, while maintaining the fixed ratio of PCBM. The UV-visible absorption spectra of P3HT: PCBM photoactive layer containing different weight percentages of CuO nanoparticles showed a clear enhancement in the photo absorption of the active layer. The absorption band starts from 310 nm to 750 nm for P3HT: CuO (NPs):PCBM (0.5:0.5:1). This shows that incorporation of CuO nanoparticles leads to larger absorption band. In addition, the X-ray diffraction (XRD) shows improvement in P3HT crystallinity and the better formation of CuO nanostructures.

  17. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  18. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    PubMed

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Design of biodegradable nanoparticles: a novel approach to encapsulating poorly soluble phytochemical ellagic acid

    NASA Astrophysics Data System (ADS)

    Bala, I.; Bhardwaj, V.; Hariharan, S.; Sitterberg, J.; Bakowsky, U.; Kumar, M. N. V. Ravi

    2005-12-01

    Nanosizing of poorly water soluble drugs or incorporating them into nanoparticles to increase their solubility and thereby the bioavailability has become a favoured approach today. This work describes a novel method for encapsulating poorly water soluble phytochemical ellagic acid that is also sparingly soluble/insoluble in routine solvents used to prepare nanoparticles.

  20. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis.

    PubMed

    Pandey, Prem C; Pandey, Govind; Narayan, Roger J

    2017-03-27

    Mesoporous silica nanoparticles (MSNPs) have been used as an efficient and safe carrier for drug delivery and biocatalysis. The surface modification of MSNPs using suitable reagents may provide a robust framework in which two or more components can be incorporated to give multifunctional capabilities (e.g., synthesis of noble metal nanoparticles within mesoporous architecture along with loading of a bioactive molecule). In this study, the authors reported on a new synthetic route for the synthesis of gold nanoparticles (AuNPs) within (1) unmodified MSNPs and (2) 3-trihydroxysilylpropyl methylphosphonate-modified MSNPs. A cationic polymer, polyethylenimine (PEI), and formaldehyde were used to mediate synthetic incorporation of AuNPs within MSNPs. The AuNPs incorporated within the mesoporous matrix were characterized by transmission electron microscopy, energy dispersive x-ray analysis, and high-resolution scanning electron microscopy. PEI in the presence of formaldehyde enabled synthetic incorporation of AuNPs in both unmodified and modified MSNPs. The use of unmodified MSNPs was associated with an increase in the polycrystalline structure of the AuNPs within the MSNPs. The AuNPs within modified MSNPs showed better catalytic activity than those within unmodified MSNPs. MSNPs with an average size of 200 nm and with a pore size of 4-6 nm were used for synthetic insertion of AuNPs. It was found that the PEI coating enabled AuNPs synthesis within the mesopores in the presence of formaldehyde or tetrahydrofuran hydroperoxide at a temperature between 10 and 25 °C or at 60 °C in the absence of organic reducing agents. The as-made AuNP-inserted MSNPs exhibited enhanced catalytic activity. For example, these materials enabled rapid catalytic oxidation of the o-dianisidine substrate to produce a colored solution in proportion to the amount of H 2 O 2 generated as a function of glucose oxidase-catalyzed oxidation of glucose; a linear concentration range from 80 to

  1. Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.

    PubMed

    Gu, Da Hwi; Jo, Seungki; Jeong, Hyewon; Ban, Hyeong Woo; Park, Sung Hoon; Heo, Seung Hwae; Kim, Fredrick; Jang, Jeong In; Lee, Ji Eun; Son, Jae Sung

    2017-06-07

    Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.

  2. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    PubMed

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  3. The magnetic and adsorption properties of ZnO1-xSx nanoparticles.

    PubMed

    Zhang, Huiyun; Liu, Guixian; Cao, Yanqiang; Chen, Jing; Shen, Kai; Kumar, Ashwini; Xu, Mingxiang; Li, Qi; Xu, Qingyu

    2017-10-11

    Sulfur is easy to be incorporated into ZnO nanoparticles by the solution-combustion method. Herein, the magnetic and adsorption properties of a series of ZnO 1-x S x (x = 0, 0.05, 0.1, 0.15, and 0.2) nanoparticles were systematically investigated. The X-ray diffraction patterns show that the as-prepared ZnO 1-x S x nanoparticles have the hexagonal wurtzite structure of ZnO with a low sulfur content that gradually transforms into the zinc blende structure of ZnS when the x value is greater than 0.1. PL spectra show several bands due to different transitions, which have been explained by the recombination of free excitons or defect-induced transitions. The introduction of sulfur not only modifies the bandgap of ZnO, but also impacts the concentration of Zn vacancies. The as-prepared ZnO shows weak room-temperature ferromagnetism, and the incorporation of sulfur improves the ferromagnetism owing to the increased concentration of Zn vacancies, which may be stabilized by the doped sulfur ions. The adsorption capability of ZnO 1-x S x nanoparticles has been significantly improved, and the process can be well described by the pseudo-first-order kinetic model and the Freundlich isotherm model. The mechanism has been confirmed to be due to the active sulfate groups existing in zinc oxysulfide nanoparticles.

  4. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  5. Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics.

    PubMed

    Nguyen, Kim Truc; Zhao, Yanli

    2015-12-15

    Together with the simultaneous development of nanomaterials and molecular biology, the bionano interface brings about various applications of hybrid nanoparticles in nanomedicine. The hybrid nanoparticles not only present properties of the individual components but also show synergistic effects for specialized applications. Thus, the development of advanced hybrid nanoparticles for targeted and on-demand diagnostics and therapeutics of diseases has rapidly become a hot research topic in nanomedicine. The research focus is to fabricate novel classes of programmable hybrid nanoparticles that are precisely engineered to maximize drug concentrations in diseased cells, leading to enhanced efficacy and reduced side effects of chemotherapy for the disease treatment. In particular, the hybrid nanoparticle platforms can simultaneously target diseased cells, enable the location to be imaged by optical methods, and release therapeutic drugs to the diseased cells by command. This Account specially discusses the rational fabrication of integrated hybrid nanoparticles and their applications in diagnostics and therapeutics. For diagnostics applications, hybrid nanoparticles can be utilized as imaging agents that enable detailed visualization at the molecular level. By the use of suitable targeting ligands incorporated on the nanoparticles, targeted optical imaging may be feasible with improved performance. Novel imaging techniques such as multiphoton excitation and photoacoustic imaging using near-infrared light have been developed using the intrinsic properties of particular nanoparticles. The use of longer-wavelength excitation sources allows deeper penetration into the human body for disease diagnostics and at the same time reduces the adverse effects on normal tissues. Furthermore, multimodal imaging techniques have been achieved by combining several types of components in nanoparticles, offering higher accuracy and better spatial views, with the aim of detecting life

  6. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material.

    PubMed

    Iamareerat, Butsadee; Singh, Manisha; Sadiq, Muhammad Bilal; Anal, Anil Kumar

    2018-05-01

    Biodegradable packaging in food materials is a green technology based novel approach to replace the synthetic and conventional packaging systems. This study is aimed to formulate the biodegradable cassava starch based films incorporated with cinnamon essential oil and sodium bentonite clay nanoparticles. The films were characterized for their application as a packaging material for meatballs. The cassava starch films incorporated with sodium bentonite and cinnamon oil showed significant antibacterial potential against all test bacteria; Escherichia coli , Salmonella typhimurium and Staphylococcus aureus. Antibacterial effect of films increased significantly when the concentration of cinnamon oil was increased. The cassava starch film incorporated with 0.75% (w/w) sodium bentonite, 2% (w/w) glycerol and 2.5% (w/w) cinnamon oil was selected based on physical, mechanical and antibacterial potential to evaluate shelf life of meatballs. The meatballs stored at ambient temperature in cassava starch film incorporated with cinnamon oil and nanoclay, significantly inhibited the microbial growth till 96 h below the FDA limits (10 6  CFU/g) in foods compared to control films that exceeded above the limit within 48 h. Hence cassava starch based film incorporated with essential oils and clay nanoparticles can be an alternate approach as a packaging material for food industries to prolong the shelf life of products.

  7. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.

    PubMed

    Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W

    2008-01-01

    We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

  8. Functional Nanoparticles for Magnetic Resonance Imaging

    PubMed Central

    Mao, Xinpei; Xu, Jiadi; Cui, Honggang

    2016-01-01

    Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T2* superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T1-based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned “on” and “off” by radiofrequency (RF) saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructure. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. PMID:27040463

  9. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    PubMed

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  10. Supercooled smectic nanoparticles: a potential novel carrier system for poorly water soluble drugs.

    PubMed

    Kuntsche, J; Westesen, K; Drechsler, M; Koch, M H J; Bunjes, H

    2004-10-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester. Nanoparticles were prepared by high-pressure melt homogenization or solvent evaporation using phospholipids, phospholipid/ bile salt, or polyvinyl alcohol as emulsifiers. The physicochemical state and phase behavior of the particles was characterized by particle size measurements (photon correlation spectroscopy, laser diffraction with polarization intensity differential scattering), differential scanning calorimetry, X-ray diffraction, and electron and polarizing light microscopy. The viscosity of the isotropic and liquid crystalline phases of CM in the bulk was investigated in dependence on temperature and shear rate by rotational viscometry. CM nanoparticies can be obtained in the smectic phase and retained in this state for at least 12 months when stored at 230C in optimized systems. The recrystallization tendency of CM in the dispersions strongly depends on the stabilizer system and the particle size. Stable drug-loaded smectic nanoparticles were obtained after incorporation of 10% (related to CM) ibuprofen, miconazole, etomidate, and 1% progesterone. Due to their liquid crystalline state, colloidal smectic nanoparticles offer interesting possibilities as carrier system for lipophilic drugs. CM nanoparticles are suitable model systems for studying the crystallization behavior and investigating the influence of various parameters for the development of smectic nanoparticles resistant against recrystallization upon storage.

  11. Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rezaei-Zarchi, Saeed; Imani, Saber; mohammad Zand, Ali; Saadati, Mojtaba; Zaghari, Zahra

    2012-09-01

    Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (fructose and sucrose) as the reducing and stabilizing agents. In comparison with other metals, platinum oxide has less environmental pollution. Therefore, Pt is considered an appropriate candidate to deal with environmental pathogens. The crystallite size of these nanoparticles was evaluated from X-ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) and was found to be 10 nm, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM. The nanoparticles were administered to the Pseudomonas stutzeri and Lactobacillus cultures, and the incubation was done at 37°C for 24 h. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. stutzeri and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates. The results of this paper showed that carbohydrates can serve as a carrier for platinum oxide nanoparticles, and nanocomposites can have potential biological applications.

  12. In vitro digestion of curcuminoid-loaded lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Noack, Andreas; Oidtmann, Johannes; Kutza, Johannes; Mäder, Karsten

    2012-09-01

    Curcuminoid-loaded lipid nanoparticles were produced by melt homogenization. The used lipid matrices were medium chain triglycerides, trimyristin (TM), and tristearin. The mean particle size of the preparations was between 130 and 180 nm. The incorporated curcuminoids revealed a good stability over a period of 12 months. The curcuminoid-loaded lipid nanoparticles were intended for the oral delivery of curcuminoids. Therefore, the fate of the triglyceride matrix in simulated gastric and simulated intestinal media under the influence of pepsin and pancreatin, respectively, was assessed. The degradation of the triglycerides was monitored by the pH-stat method and with high performance thin layer chromatography in connection with spectrodensitometry to quantify the different lipid fractions. The TM nanoparticles were not degraded in simulated gastric fluid (SGF), but the decomposition of the triglyceride matrix was rapid in the intestinal media. The digestion process was faster in the simulated fed state medium compared to the simulated fasted state medium. Additionally, the stability of the incorporated drug was tested in the respective physiological media. The curcuminoids showed an overall good stability in the different test media. The release of the curcuminoids from the lipid nanoparticles was determined by fluorescence imaging techniques. A slow release of the drug was found in phosphate buffer. In contrast, a more distinct release of the curcuminoids was verifiable in SGF and in simulated intestinal fluids. Overall, it was considered that the transfer of the drug into the outer media was mainly triggered by the lipid degradation and not by drug release.

  13. Ultrasmall lanthanide-doped nanoparticles as multimodal platforms

    NASA Astrophysics Data System (ADS)

    Yust, Brian G.; Pedraza, Francisco J.; Sardar, Dhiraj K.

    2014-03-01

    Recently, there has been a great amount of interest in nanoparticles which are able to provide a platform with high contrast for multiple imaging modalities in order to advance the tools available to biomedical researchers and physicians. However, many nanoparticles do not have ideal properties to provide high contrast in different imaging modes. In order to address this, ultrasmall lanthanide doped oxide and fluoride nanoparticles with strong NIR to NIR upconversion fluorescence and a strong magnetic response for magnetic resonance imaging (MRI) have been developed. Specifically, these nanoparticles incorporate gadolinium, dysprosium, or a combination of both into the nano-crystalline host to achieve the magnetic properties. Thulium, erbium, and neodymium codopants provide the strong NIR absorption and emission lines that allow for deeper tissue imaging since near infrared light is not strongly absorbed or scattered by most tissues within this region. This also leads to better image quality and lower necessary excitation intensities. As a part of the one pot synthesis, these nanoparticles are coated with peg, pmao, or d-glucuronic acid to make them water soluble, biocompatible, and bioconjugable due to the available carboxyl or amine groups. Here, the synthesis, morphological characterization, magnetic response, NIR emission, and the quantum yield will be discussed. Cytotoxicity tested through cell viability at varying concentrations of nanoparticles in growth media will also be discussed.

  14. SERS study of riboflavin on green-synthesized silver nanoparticles prepared by reduction using different flavonoids: What is the role of flavonoid used?

    NASA Astrophysics Data System (ADS)

    Švecová, Marie; Ulbrich, Pavel; Dendisová, Marcela; Matějka, Pavel

    2018-04-01

    Spectroscopy of surface-enhanced Raman scattering (SERS) is nowadays widely used in the field of bio-science and medicine. These applications require new enhancing substrates with special properties. They should be non-toxic, environmentally friendly and (bio-) compatible with examined samples. Flavonoids are natural antioxidants with many positive effects on human health. Simultaneously, they can be used as reducing agent in preparation procedure of plasmonic enhancing substrate for SERS spectroscopy. The best amplifiers of Raman vibrational spectroscopic signal are generally silver nanoparticles (AgNPs). In this study, several flavonoids (forming a logical set) were used as reducing agent in AgNPs preparation procedures. Reactivity of 10 structurally arranged flavonoids (namely flavone, chrysin, apigenin, luteolin, tricetin, 3-hydroxyflavone, galangin, kaempferol, quercetin and myricetin) was compared and SERS-activity of prepared AgNPs was tested using model analyte riboflavin. Riboflavin was detected down to concentration 10-9 mol/l.

  15. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  16. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.

    PubMed

    Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin

    2018-06-25

    Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  17. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  18. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs

    PubMed Central

    Shu, Yi; Haque, Farzin; Shu, Dan; Li, Wei; Zhu, Zhenqi; Kotb, Malak; Lyubchenko, Yuri; Guo, Peixuan

    2013-01-01

    Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed “toolkits” utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field. PMID:23604636

  19. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  20. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  1. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

    NASA Astrophysics Data System (ADS)

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-01

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  2. Highly crystalline zinc incorporated hydroxyapatite nanorods' synthesis, characterization, thermal, biocompatibility, and antibacterial study

    NASA Astrophysics Data System (ADS)

    Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi

    2017-10-01

    Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.

  3. Creating surfactant nanoparticles for block copolymer composites through surface chemistry.

    PubMed

    Kim, Bumjoon J; Bang, Joona; Hawker, Craig J; Chiu, Julia J; Pine, David J; Jang, Se Gyu; Yang, Seung-Man; Kramer, Edward J

    2007-12-04

    A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles

  4. Triblock copolymers encapsulated poly (aryl benzyl ether) dendrimer zinc(II) phthalocyanine nanoparticles for enhancement in vitro photodynamic efficacy.

    PubMed

    Huang, Yide; Yu, Huizhen; Lv, Huafei; Zhang, Hong; Ma, Dongdong; Yang, Hongqin; Xie, Shusen; Peng, Yiru

    2016-12-01

    A novel series of nanoparticles formed via an electrostatic interaction between the periphery of negatively charged 1-2 generation aryl benzyl ether dendrimer zinc (II) phthalocyanines and positively charged poly(L-lysin) segment of triblock copolymer, poly(L-lysin)-block-poly(ethylene glycol)-block-poly(L-lysin), was developed for the use as an effective photosensitizers in photodynamic therapy. The dynamic light scattering, atomic force microscopy showed that two nanoparticles has a relevant size of 80-150nm. The photophysical properties and singlet oxygen quantum yields of free dendrimer phthalocyanines and nanoparticles exhibited generation dependence. The intracellular uptake of dendrimer phthalocyanines in Hela cells was significantly elevated as they were incorporated into the micelles, but was inversely correlated with the generation of dendrimer phthalocyanines. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles induced efficient cell death. Using a mitochondrial-sepcific dye rhodamine 123 (Rh123), our fluorescence microscopic result indicated that nanoparticles localized to the mitochondria. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology.

    PubMed

    Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J

    2015-02-01

    Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method.

    PubMed

    Ueno, Shintaro; Nakashima, Kouichi; Sakamoto, Yasunao; Wada, Satoshi

    2015-03-24

    Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr 2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.

  7. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  8. A modular microfluidic platform for the synthesis of biopolymeric nanoparticles entrapping organic actives

    NASA Astrophysics Data System (ADS)

    Chronopoulou, Laura; Sparago, Carolina; Palocci, Cleofe

    2014-11-01

    Using a novel and versatile capillary microfluidic flow-focusing device we fabricated monodisperse drug-loaded nanoparticles from biodegradable polymers. A model amphiphilic drug (dexamethasone) was incorporated within the biodegradable matrix of the particles. The influence of flow rate ratio, polymer concentration, and microreactor-focusing channel dimensions on nanoparticles' size and drug loading has been investigated. The microfluidic approach resulted in the production of colloidal polymeric nanoparticles with a narrow size distribution (diameters ranging between 35 and 350 nm) and useful morphological characteristics. This technique allows the fast, low cost, easy, and automated synthesis of polymeric nanoparticles, therefore it may become a useful approach in the progression from laboratory scale to pilot-line scale processes.

  9. In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications.

    PubMed

    Tran, Phong A; Hocking, Dianna M; O'Connor, Andrea J

    2015-02-01

    Bacterial infection associated with medical devices remains a challenge to modern medicine as more patients are being implanted with medical devices that provide surfaces and environment for bacteria colonization. In particular, bacteria are commonly found to adhere more preferably to hydrophobic materials and many of which are used to make medical devices. Bacteria are also becoming increasingly resistant to common antibiotic treatments as a result of misuse and abuse of antibiotics. There is an urgent need to find alternatives to antibiotics in the prevention and treatment of device-associated infections world-wide. Silver nanoparticles have emerged as a promising non-drug antimicrobial agent which has shown effectiveness against a wide range of both Gram-negative and Gram-positive pathogen. However, for silver nanoparticles to be clinically useful, they must be properly incorporated into medical device materials whose wetting properties could be detrimental to not only the incorporation of the hydrophilic Ag nanoparticles but also the release of active Ag ions. This study aimed at impregnating the hydrophobic polycaprolactone (PCL) polymer, which is a FDA-approved polymeric medical device material, with hydrophilic silver nanoparticles. Furthermore, a novel approach was employed to uniformly, incorporate silver nanoparticles into the PCL matrix in situ and to improve the release of Ag ions from the matrix so as to enhance antimicrobial efficacy. Copyright © 2014. Published by Elsevier B.V.

  10. Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures

    DOE PAGES

    Watt, John; Collins, Aaron M.; Vreeland, Erika C.; ...

    2018-01-17

    A magnetically active Fe 3O 4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe 3O 4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.

  11. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    NASA Astrophysics Data System (ADS)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  12. Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper.

    PubMed

    Wei, Dafu; Chen, Yan; Zhang, Youwei

    2016-01-20

    Taking advantage of the self-assembly between the components, novel stable antibacterial nanoparticles were efficiently fabricated via a facile one-step co-polymerization of acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA) on a mixed aqueous solution of poly(hexamethylene guanidine hydrochloride) (PHMG) and hydroxyethylcellulose (HEC). The z-average hydrodynamic diameters of the nanoparticles ranged from 220 nm to 450 nm. The inner layer of the nanoparticles is composed of water-insoluble interpolymer complexes of PHMG and PAA networks, while the outer layer is composed of PHMG and HEC. The nanoparticles are stabilized by electrostatic interactions, hydrogen bonding interactions, and the chemical bonds. The nanoparticle solution remained stable in a wide pH range of 2.0-12.0 and at salt concentrations below 0.25 mol/L. The nanoparticles were incorporated into handsheets using a dipping treatment. The resulted handsheets exhibited excellent antimicrobial activities even after multiple water washing treatments. The nanoparticles are promising in fabricating paper, water-based coatings and textiles with permanent antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The significance of nanoparticles on bond strength of polymer concrete to steel

    DOE PAGES

    Douba, A.; Genedy, M.; Matteo, E. N.; ...

    2017-01-03

    Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less

  14. The significance of nanoparticles on bond strength of polymer concrete to steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douba, A.; Genedy, M.; Matteo, E. N.

    Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less

  15. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Hewei; Shi, Junli; Hu, Guosheng; He, Ying; Xia, Yonggao; Yin, Shanshan; Liu, Zhaoping

    2018-07-01

    One of the crucial challenge for developing high safety and high voltage lithium ion batteries is to find a reliable electrolyte system. In this work, we report a kind of hybrid electrolytes, which are used for high-voltage lithium ion batteries and are expected to be able to effectively enhance the battery safety. The hybrid electrolytes are obtained by incorporating silane-Al2O3 (Al2O3-ST) into liquid electrolyte, which combines the merits of both solid electrolyte and liquid electrolyte. The Al2O3-ST nanoparticles help to increase lithium-ion transference number and to enhance battery safety, while liquid electrolyte contributes to high ionic conductivity. The cycling stability and rate capacity of LiNi0.5Mn1.5O4/Li batteries are improved by using the hybrid electrolytes. Nail-penetration tests indicate that LiNi0.6Mn0.2Co0.2O2/graphite battery with hybrid electrolyte owns obviously enhanced safety than that using traditional liquid electrolyte. This work provides new insight on electrolyte design for high-safety high-voltage lithium ion batteries.

  16. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.

    PubMed

    Lv, Fukou; Liu, Baolin; Li, Weijie; Jaganathan, Ganesh K

    2014-02-01

    Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60%w/w) and PEG-600 (50%w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5%(w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Titanium carbide nanoparticles reinforcing nickel matrix for improving nanohardness and fretting wear properties in wet conditions

    NASA Astrophysics Data System (ADS)

    Dănăilă, Eliza; Benea, Lidia; Caron, Nadège; Raquet, Olivier

    2016-09-01

    In this study Ni/nano-TiC functional composite coatings were produced by electro-codeposition of TiC nanoparticles (50 nm mean diameter) with nickel on 304L stainless steel support. Coatings were obtained from a Watts classical solution in which TiC nanoparticles were added. The surface morphology, chemical composition, structure, roughness and thickness, were evaluated in relation to the effect of TiC nanoparticles incorporation into Ni matrix. It was found that incorporation of TiC nanoparticles into the nickel matrix produces morphological changes in the deposit and increases the roughness. The fretting wear behavior in wet conditions of the obtained coatings was evaluated on a ball-on-plate configuration. To evaluate the wet fretting wear (tribocorrosion) behavior the open circuit potential was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors. The results show that Ni/nano-TiC composite coatings exhibited a low friction coefficient, high nanohardness and fretting wear resistance in wet conditions compared with pure Ni coatings.

  19. Spectral engineering of optical fiber through active nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Lindstrom-James, Tiffany

    The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the

  20. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    NASA Astrophysics Data System (ADS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-02-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  1. Gold-nanoparticle-based theranostic agents for radiotherapy of malignant solid tumors

    NASA Astrophysics Data System (ADS)

    Moeendarbari, Sina

    Radiation therapy is one of the three major methods of cancer treatment. The fundamental goal of radiotherapy is to deliver high radiation doses to targets while simultaneously minimizing doses to critical structures and healthy normal tissues. The aim of this study is to develop a general, practical, and facile method to prepare nanoscale theranostic agents for more efficacious radiation therapy with less adverse side effects. First, a novel type of gold nanoparticle, hollow Au nanoparticles (HAuNPs) which was synthesized using the unique bubble template synthesis method developed in our lab, are studied in vitro and in vivo to investigate their effect as radiosensitizing agents to enhance the radiation dose during external radiotherapy. The results showed the promising potential of using HAuNPs as radiosensitization agents for efficacious treatment of breast cancer. Second, a novel radiolabeling method is developed to incorporate medical radioisotopes to gold nanoparticles. We incorporate palladium-103 (103Pd), a radioisotope currently in clinical brachytherapy, into a hollow gold nanoparticle. The resulting 103Pd Au nanoparticles in the form of a colloidal suspension can be administered by direct injection into tumors, serving as internal radiation sources (nanoseeds) for radiation therapy. The size of the nanoseed, 150nm in diameter, is large enough to prevent nanoseeds from diffusing into other areas while still small enough to allow them to homogeneously distribute inside the tumor. The therapeutic efficacy of 103Pd Au nanoseeds have been tested when intratumorally injected into a prostate cancer xenograft model. The findings showed that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors. Finally, to make real clinical application more plausible, multi-functional magnetic nanoseeds nanoparticles for imaging-guided radiotherapy are synthesized and characterized.

  2. Liquid-Crystalline Elastomers with Gold Nanoparticle Cross-Linkers.

    PubMed

    Wójcik, Michał M; Wróbel, Jarosław; Jańczuk, Zuzanna Z; Mieczkowski, Józef; Górecka, Ewa; Choi, Joonmyung; Cho, Maenghyo; Pociecha, Damian

    2017-07-03

    Embedding nanoparticles in a responsive polymer matrix is a formidable way to fabricate hybrid materials with predesigned properties and prospective applications in actuators, mechanically tunable optical elements, and electroclinic films. However, achieving chemical compatibility between nanoparticles and organic matter is not trivial and often results in disordered structures. Herein, it is shown that using nanoparticles as exclusive cross-linkers in the preparation of liquid-crystalline polymers can yield long-range-ordered liquid-crystalline elastomers with high loadings of well-dispersed nanoparticles, as confirmed by small-angle XRD measurements. Moreover, the strategy of incorporating NPs as cross-linking units does not result in disruption of mechanical properties of the polymer, and this phenomenon was explained by the means of all-atom molecular dynamics simulations. Such materials can exhibit switchable behavior under thermal stimulus with stability spanning over multiple heating/cooling cycles. The presented strategy has proven to be a promising approach for the preparation of new types of hybrid liquid-crystalline elastomers that can be of value for future photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide.

    PubMed

    Castro, Pedro M; Baptista, Patrícia; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2018-05-22

    Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  5. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

    PubMed

    Lackington, William A; Raftery, Rosanne M; O'Brien, Fergal J

    2018-06-07

    Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60±13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate

  6. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  7. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  8. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    PubMed

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hydrogels Containing Prussian Blue Nanoparticles Toward Removal of Radioactive Cesium Ions.

    PubMed

    Kamachi, Yuichiro; Zakaria, Mohamed B; Torad, Nagy L; Nakato, Teruyuki; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Yamauchil, Yusuke

    2016-04-01

    Recent reports have demonstrated the practical application of Prussian blue (PB) nanoparticles toward environmental clean-up of radionuclide 173Cs. Herein, we prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles show a high surface area (440 m2. g-1) and consequently an excellent uptake ability of Cs ions from aqueous solutions. The uptake ability of Cs ions into poly(N-isopropylacrylamide (PNIPA) hydrogel is drastically increased up to 156.7 m2. g-1 after incorporating our PB nanoparticles, compared to 30.2 m2 . g-1 after using commercially available PB. Thus, our PB-containing PNIPA hydrogel can be considered as an excellent candidate for the removal of Cs ions from aqueous solutions, which will be useful for the remediation of the nuclear waste.

  10. Bare laser-synthesized Si nanoparticles as functional elements for chitosan nanofiber-based tissue engineering platforms

    NASA Astrophysics Data System (ADS)

    Popov, Anton A.; Al-Kattan, Ahmed; Nirwan, Viraj P.; Munnier, Emilie; Tselikov, Gleb I.; Ryabchikov, Yury V.; Chourpa, Igor; Fahmi, Amir; Kabashin, A. V.

    2018-02-01

    Methods of femtosecond laser ablation were used to fabricate bare (ligand-free) silicon (Si) nanoparticles in deionized water. The nanoparticles were round in shape, crystalline, free of any impurities, and water-dissolvable, while the dissolution rate depended on the concentration of oxygen defects in their composition. The nanoparticles were then eletrospun with chitosan to form nanoparticle decorated nanofibrous matrices. We found that the functionalization of nanofibers by the nanoparticles can affect the morphology and physico-chemical characteristics of resulting nanostructures. In particular, the presence of Si nanoparticles led to the reduction of fibers thickness, suggesting a potential improvement of fiber's surface reactivity. We also observed the improvement of thermal stability of hybrid nanofibers. We believe that the incorporated Si nanoparticles can serve as functional elements to improve characteristics of chitosan-based matrices for cellular growth, as well as to enable novel imaging or therapeutic functionalities for tissue engineering applications.

  11. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    PubMed

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  12. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and amore » polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.« less

  13. Nanoparticles Engineered from Lecithin-in-Water Emulsions As A Potential Delivery System for Docetaxel

    PubMed Central

    Yanasarn, Nijaporn; Sloat, Brian R.; Cui, Zhengrong

    2009-01-01

    Docetaxel is a potent anti-cancer drug. However, there continues to be a need for alternative docetaxel delivery systems to improve its efficacy. We reported the engineering of a novel spherical nanoparticle formulation (~270 nm) from lecithin-in-water emulsions. Docetaxel can be incorporated into the nanoparticles, and the resultant docetaxel-nanoparticles were stable when stored as an aqueous suspension. The release of the docetaxel from the nanoparticles was likely caused by a combination of diffusion and Case II transport. The docetaxel-in-nanoparticles were more effective in killing tumor cells in culture than free docetaxel. Moreover, the docetaxel-nanoparticles did not cause any significant red blood cell lysis or platelet aggregation in vitro, nor did they induce detectable acute liver damage when injected intravenously into mice. Finally, compared to free docetaxel, the intravenously injected docetaxel-nanoparticles increased the accumulation of the docetaxel in a model tumor in mice by 4.5-fold. These lecithin-based nanoparticles have the potential to be a novel biocompatible and efficacious delivery system for docetaxel. PMID:19524029

  14. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing.

    PubMed

    Kheradvar, Shadi Alsadat; Nourmohammadi, Jhamak; Tabesh, Hadi; Bagheri, Behnam

    2018-06-01

    Core-sheath nanofibrous mat as a new vitamin E (VE) delivery system based on silk fibroin (SF)/poly(vinyl alcohol) (PVA)/aloe vera (AV) was successfully prepared by the electrospinning method. Initially, VE-loaded starch nanoparticles were produced and then incorporated into the best beadless SF-PVA-AV nanofibers. The successful loading of VE in starch nanoparticles was proved by Fourier-transform infrared spectroscopy. The scanning electron microscopy and transmission electron microscopy indicated that spherical nanoparticles were successfully embedded within the nanofibers. In vitro release studies demonstrated that the release of VE was controlled by Fickian diffusion and was faster in samples containing more nanoparticles. Fibroblast attachment, proliferation, and collagen secretion were enhanced after adding AV and VE to the SF-PVA nanomatrix. Moreover, the incorporation of VE into the nanocomposite dressing enhanced antioxidant activity, which can have a positive effect on wound healing process by protecting the cells from toxic oxidation products. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman

    2018-02-01

    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  16. Lattice-patterned LC-polymer composites containing various nanoparticles as additives

    PubMed Central

    2012-01-01

    In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011

  17. Advanced imaging approaches for characterizing nanoparticle delivery and dispersion in skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prow, Tarl W.; Yamada, Miko; Dang, Nhung; Evans, Conor L.

    2017-02-01

    The purpose of this research was to develop advanced imaging approaches to characterise the combination of elongated silica microparticles (EMP) and nanoparticles to control topical delivery of drugs and peptides. The microparticles penetrate through the epidermis and stop at the dermal-epidermal junction (DEJ). In this study we incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into the nanoparticle for visualization with microscopy. In another nanoparticle-based approach we utilized a chemically functionalized melanin nanoparticle for peptide delivery. These nanoparticles were imaged by coherent anti-Stoke Raman scattering (CARS) microscopy to characterize the delivery of these nanoparticles into freshly excised human skin. We compared four different coating approaches to combine EMP and nanoparticles. These data showed that a freeze-dried formulation with cross-linked alginate resulted in 100% of the detectable nanoparticle retained on the EMP. When this dry form of EMP-nanoparticle was applied to excised, living human abdominal skin, the EMP penetrated to the DEJ followed by controlled release of the nanoparticles. This formulation resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. These data show that advanced imaging techniques can give unique, label free data that shows promise for clinical investigations.

  18. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2

  19. Silica incorporated membrane for wastewater based filtration

    NASA Astrophysics Data System (ADS)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  20. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents.

    PubMed

    Turos, Edward; Shim, Jeung-Yeop; Wang, Yang; Greenhalgh, Kerriann; Reddy, G Suresh Kumar; Dickey, Sonja; Lim, Daniel V

    2007-01-01

    This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated beta-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium dodecyl sulfate as a surfactant and potassium persulfate as a radical initiator. Dynamic light scattering analysis and electron microscopy images of these emulsions show that the nanoparticles are approximately 40 nm in diameter. The emulsions have potent in vitro antibacterial properties against methicillin-resistant Staphylococcus aureus and have improved bioactivity relative to the non-polymerized form of the antibiotic. A unique feature of this methodology is the ability to incorporate water-insoluble drugs directly into the nanoparticle framework without the need for post-synthetic modification. Additionally, the antibiotic properties of the nanoparticles can be modulated by changing the length or location of the acrylate linker on the drug monomer.

  1. Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats.

    PubMed

    Shirasu, Takuro; Koyama, Hiroyuki; Miura, Yutaka; Hoshina, Katsuyuki; Kataoka, Kazunori; Watanabe, Toshiaki

    2016-01-01

    Several drugs targeting the pathogenesis of aortic aneurysm have shown efficacy in model systems but not in clinical trials, potentially owing to the lack of targeted drug delivery. Here, we designed a novel drug delivery system using nanoparticles to target the disrupted aortic aneurysm micro-structure. We generated poly(ethylene glycol)-shelled nanoparticles incorporating rapamycin that exhibited uniform diameter and long-term stability. When injected intravenously into a rat model in which abdominal aortic aneurysm (AAA) had been induced by infusing elastase, labeled rapamycin nanoparticles specifically accumulated in the AAA. Microscopic analysis revealed that rapamycin nanoparticles were mainly distributed in the media and adventitia where the wall structures were damaged. Co-localization of rapamycin nanoparticles with macrophages was also noted. Rapamycin nanoparticles injected during the process of AAA formation evinced significant suppression of AAA formation and mural inflammation at 7 days after elastase infusion, as compared with rapamycin treatment alone. Correspondingly, the activities of matrix metalloproteinases and the expression of inflammatory cytokines were significantly suppressed by rapamycin nanoparticle treatment. Our findings suggest that the nanoparticle-based delivery system achieves specific delivery of rapamycin to the rat AAA and might contribute to establishing a drug therapy approach targeting aortic aneurysm.

  2. Multiscale study of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  3. Characterization of Silicon Nanoparticles Formed from a Fluidized Bed Reactor and Their Incorporation onto Metal-Coated Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Zbib, Mohamad B.; Sahaym, Uttara; Bahr, David F.

    2014-01-01

    Enhancing the light trapping using nonwoven arrays of fibers has the potential to improve the photocurrent of silicon solar cells. In this work, amorphous and crystalline Si nanopowders (30-300 nm) were embedded in carbon fibers and fixed in place with electrodeposited nickel. Scanning and transmission electron microscopy techniques have been used to study the morphology of the Si particles and their interactions with the coatings. Two types of nanoparticles are identified, homogeneous nucleated particles (amorphous particles with some crystalline regions) and attrition particles (mostly crystalline products formed from fracture of particles as they grow in a fluidized bed reactor). Using the Brunauer-Emmett-Teller (BET) technique, the surface area and the pore diameter of these agglomerated Si nanoparticles were calculated to be 6.4 m2/g and 9.8 nm, respectively. After embedding the Si particles into the carbon matrix with the metal coatings, the electrical resistivity decreases, suggesting it is possible to enhance the light extraction of silicon solar cells using Si nanoparticles.

  4. Synthesis and characterization of Gd-doped magnetite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Iowa State Univ., Ames, IA; Malik, Vikash

    There has been rising interest in the synthesis of magnetite nanoparticles due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. We investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizesmore » under the conditions tested (0–10 at% Gd 3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. These results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3-x)Gd xO 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.« less

  5. Synthesis and characterization of Gd-doped magnetite nanoparticles

    DOE PAGES

    Zhang, Honghu; Iowa State Univ., Ames, IA; Malik, Vikash; ...

    2016-10-04

    There has been rising interest in the synthesis of magnetite nanoparticles due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. We investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizesmore » under the conditions tested (0–10 at% Gd 3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. These results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3-x)Gd xO 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.« less

  6. Size effect on thermoelectric properties of Bi2Te3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhary, K. K.; Sharma, Uttam; Lodhi, Pavitra Devi; Kaurav, Netram

    2018-05-01

    Bi2Te3 nanoparticles exhibit size dependent thermoelectric properties which gives an opportunity to tune the size for optimization of the thermoelectric figure of merit (ZT). We have quantitatively analyzed the thermoelectric properties of Bi2Te3 using phonon scattering mechanism by incorporating the scattering of phonons with defects, grain boundaries, electrons and Umklapp phonon scatterings. The maximum value of ZT = 0.92 is obtained at T = 400 K for 30 nm Bi2Te3 nanoparticles in comparison to ZT = 0.45 for 150 nm nanoparticles at the same temperature. With decrease in size of nanoparticles interface volume ratio increases which increase the phonon scatterings with grain boundaries and point defects, results in decrease in thermal conductivity due to reduction in mean free path of phonons. As a result of decrease in thermal conductivity (κ), Seeback coefficient (S) and ZT increases.

  7. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging.

    PubMed

    Mieszawska, Aneta J; Gianella, Anita; Cormode, David P; Zhao, Yiming; Meijerink, Andries; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2012-06-14

    Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.

  8. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2015-10-05

    Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Preparation of polyelectrolyte microcapsules contained gold nanoparticles].

    PubMed

    Sun, Ya-jie; Zhu, Jia-bi; Zheng, Chun-li

    2010-03-01

    In this work, polyelectrolyte microcapsules containing gold nanoparticles were prepared via layer by layer assembly. Gold nanoparticles and poly (allyamine hydrochloride) (PAH) were coated on the CaCO3 microparticles. And then EDTA was used to remove the CaCO3 core. Scanning electron microscopy (SEM) was used to characterize the surface of microcapsules. SEM images indicate that the microcapsules and the polyelectrolyte multilayer were deposited on the surface of CaCO3 microparticles. FITC-bovine serum albumin (FITC-BSA, 2 mg) was incorporated in the CaCO3 microparticles by co-precipitation. Fluorescence microscopy was used to observe the fluorescence intensity of microcapsules. The encapsulation efficiency was (34.31 +/- 2.44) %. The drug loading was (43.75 +/- 3.12) mg g(-1).

  10. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  11. Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles.

    PubMed

    Park, Hyunjin; Kim, Soojin; Kim, Sujin; Song, Yiseul; Seung, Kyungryul; Hong, Donghyun; Khang, Gilson; Lee, Dongwon

    2010-08-09

    p-Hydroxybenzyl alcohol (HBA) is one of phenolic compounds in herbal agents and plays a pivotal role in protection against oxidative damage-related diseases due to anti-inflammatory effects. We have developed a new biodegradable and anti-inflammatory peroxalate copolymer in which HBA is chemically incorporated into its backbone. The HBA-incorporated copolyoxalate (HPOX) was synthesized from a condensation reaction of oxalyl chloride, 1,4-cyclohexamethanol and HBA and was capable of releasing pharmaceutically active HBA during hydrolytic degradation. HPOX could be dispersed into a single emulsion for the formulation of nanoparticles which had a mean size approximately 500 nm in diameter. The nanoparticles released HBA which was able to inhibit the production of nitric oxide (NO) by suppressing the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. HPOX nanoparticles also reduced the production of tumor necrosis factor-alpha (TNF-alpha). The remarkable features of HPOX are that the polymer degrades completely into small molecules and one of degradation products is a pharmaceutically active compound. We anticipate that HPOX is highly potent and versatile for the treatment of inflammatory diseases.

  12. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    template base self assembly. A 1.5 micron silica sphere is bound to poly(4-vinylpyridine) coated glass and used as a template. a mask of silica monoxide is vacuum deposited atop the spheres/glass leaving a ring just below the sphere untouched and able to bind silver nanoparticles. Optical microscopy reveal interesting results under depolarized light conditions, but ultimate structural analysis has proven elusive. Semiconducting p-type cuprous oxide was electrochemically deposited on both silver and indium tin oxide electrodes. Silver nanoparticles were incorporated into the architecture either atop the cuprous oxide or sandwiched between cuprous oxide and n-type material. Increases in photocurrent were observed in both cases and further work must be conducted to optimize a solid state device for photovoltaic applications.

  13. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  14. Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis.

    PubMed

    Peiris, Pubudu M; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P; Lee, Zhenghong; Karathanasis, Efstathios

    2015-08-01

    The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. PLA coated paper containing active inorganic nanoparticles: Material characterization and fate of nanoparticles in the paper recycling process.

    PubMed

    Zhang, Hai; Bussini, Daniele; Hortal, Mercedes; Elegir, Graziano; Mendes, Joana; Jordá Beneyto, Maria

    2016-06-01

    For paper and paperboard packaging, recyclability plays an important role in conserving the resources and reducing the environmental impacts. Therefore, when it comes to the nano-enabled paper packaging material, the recyclability issue should be properly addressed. This study represents our first report on the fate of nanomaterials in paper recycling process. The packaging material of concern is a PLA (Polylactic Acid) coated paper incorporating zinc oxide nanoparticles in the coating layer. The material was characterised and assessed in a lab-scale paper recycling line. The recyclability test was based on a method adapted from ATICELCA MC501-13, which enabled to recover over 99% of the solids material. The mass balance result indicates that 86-91% zinc oxide nanoparticles ended up in the rejected material stream, mostly embedded within the polymer coating; whereas 7-16% nanoparticles ended up in the accepted material stream. Besides, the tensile strength of the recycled handsheets suggests that the nano-enabled coating had no negative impacts on the recovered fibre quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  17. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  18. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  19. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    PubMed

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Towards the Rational Design of Nanoparticle Catalysts

    NASA Astrophysics Data System (ADS)

    Dash, Priyabrat

    stabilization in BMIMPF6 IL is described, and have shown that nanoparticle stability and catalytic activity of nanoparticles is dependent on the overall stability of the nanoparticles towards aggregation (manuscript submitted). The second major project is focused on synthesizing structurally well-defined supported catalysts by incorporating the nanoparticle precursors (both alloy and core shell) into oxide frameworks (TiO2 and Al2O 3), and examining their structure-property relationships and catalytic activity. a full article has been published on this project (Journal of Physical Chemistry C, 2009, 113, 12719) in which a route to rationally design supported catalysts from structured nanoparticle precursors with precise control over size, composition, and internal structure of the nanoparticles has been shown. In a continuation of this methodology for the synthesis of heterogeneous catalysts, efforts were carried out to apply the same methodology in imidazolium-based ILs as a one-pot media for the synthesis of supported-nanoparticle heterogeneous catalysts via the trapping of pre-synthesized nanoparticles into porous inorganic oxide materials. Nanoparticle catalysts in highly porous titania supports were synthesized using this methodology (manuscript to be submitted).

  1. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    NASA Astrophysics Data System (ADS)

    Triplett, Michael D.; Rathman, James F.

    2009-04-01

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, β-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of β-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. β-Carotene entrapment efficiency averaged 40%. β-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  2. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity.

    PubMed

    Fan, Yuting; Yi, Jiang; Zhang, Yuzhu; Yokoyama, Wallace

    2018-01-15

    Bovine serum albumin (BSA)-dextran conjugate was prepared with glycation. Self-assembly nanoparticles were synthesized with a green, and facile approach. The effects of dry-heating time on the fabrication and characteristics of BSA-dextran conjugate nanoparticles were examined. Stable nanoparticles (<200nm) were formed after only 6h dry-heating because enough dextran was grafted onto the BSA to provide significant steric hindrance. Particle size decreased with the increase of dry-heating time and the lowest particle size (51.2nm) was obtained after 24h dry-heating. The nanoparticles were stable in a wide pH range (pH 2.0-7.0). The particle size of nanoparticles increased to 115nm after curcumin incorporation and was stable even after one-month storage. TEM results demonstrated that curcumin-loaded nanoparticles displayed a spherical structure and were homogeneously dispersed. Curcumin in BSA-dextran nanoparticle showed better stability, compared to free curcumin. In addition, BSA-dextran nanoparticles can improve the cellular antioxidant activity of curcumin in Caco-2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A novel lipoprotein nanoparticle system for membrane proteins

    PubMed Central

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  4. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    PubMed

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  5. Incorporation of precious metal nanoparticles into various aerogels by different supercritical deposition methods

    NASA Astrophysics Data System (ADS)

    Saquing, Carl D.

    2005-11-01

    One major hurdle in nanoparticle fabrication is the difficulty in controlling size, distribution and concentration. Conventional methods in nanoparticle formation require high temperatures which lead to particle agglomeration and size broadening, or involve substantial amount of organic solvents. A clean route to supported-nanoparticles fabrication was investigated using various supercritical (SC) based deposition methods. The SC deposition involves the organometallic precursor (OP) (dimethyl(1,5-cyclooctadiene)platinum(II)[CODPtMe 2] or bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium(II)) dissolution in SC fluid and contacting this solution with a substrate. The OP is adsorbed and subsequent reduction of the OP-impregnated substrate produces metal/substrate composites. The various methods were: (1) thermal reduction at atmospheric pressure in an inert atmosphere; (2) thermal reduction in SC carbon dioxide (scCO2); (3) chemical reduction in scCO2 with H2; and (4) chemical reduction at atmospheric pressure with H2. The synthesis of resorcinol-formaldehyde aerogels (RFAs) and carbon aerogels (CAs) was also studied and used as substrates (along with commercial silica aerogels (SAs)) in the SC deposition. The surface area, pore properties, and density of these aerogels were evaluated and the effects of reactant concentration, pyrolysis and SC deposition on these properties were determined. Using a static method, the adsorption isotherms of CODPtMe2 in scCO2 on two CAs with different pore sizes were measured at 28 MPa and 80°C to determine the maximum metal loading and the effect of pore properties on adsorption and to examine the interactions between the three components. The isotherms could be represented by the Langmuir model and the adsorption data indicated a strong CODPtMe2-CA interaction and that almost all the preexistent micropore area was covered with CODPtMe 2 molecules even at adsorption lower than the maximum capacity. The

  6. Radiotherapy Improvements by Using Au Nanoparticles.

    PubMed

    Torrisi, Lorenzo

    2015-01-01

    Au nanoparticles can be prepared inside biological solutions and incorporated in special molecules for their transport through blood, drugs and proteins up to the tumour sites or directly injected in their volume when it is possible. The Au nanoparticles are biocompatible and can be accepted locally in the organism also at relatively high concentrations. The use of Au nanoparticles injected in the tumour site enhances significantly the effective atomic number of the medium, depending on the used concentration, and consequently the proton and electron energy loss and the X-ray absorption coefficient determining an increment of the local absorbed dose during radiotherapy. Traditional radiotherapy using electrons, X-rays and gamma rays, and innovative protontherapy can benefit the increment of the effective atomic number of the tissue in the presence of Au-nanoparticles embedded in the tumour volume with an adaptive up-take procedure. This method decreases the dose released to the healthy tissues permitting a better cantering of the irradiated targets and shielding the healthy tissue placed behind the tumour. The presented theoretical study approach permits to evaluate an enhancement of the radiotherapy dose of the order of 1 % using 60 MeV protons, of the order of 10% using 6 MeV electrons and of the order of 100 % using 100 keV X-ray photons. Here, we also disccused for patents relaed to the topic.

  7. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  8. Tuning of optical properties of CdS nanoparticles synthesized in a glass matrix

    NASA Astrophysics Data System (ADS)

    Popov, Ivan D.; Kuznetsova, Yulia V.; Rempel, Svetlana V.; Rempel, Andrey A.

    2018-03-01

    Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV-Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.

  9. Entrapping of fullerenes, nanotubes, and inorganic nanoparticles by a DNA-chitosan complex: a method for nanomaterials removal.

    PubMed

    Zinchenko, Anatoly A; Maeda, Noriko; Pu, Shengyan; Murata, Shizuaki

    2013-05-07

    We report a protocol for entrapping of various water-dispersed nanomaterials: fullerenes, multiwall carbon nanotubes, quantum dots (semiconductor nanoparticles), and gold nanorods, into a DNA-chitosan complex. In contrast to small-size nanomaterial particles, the bulky DNA-chitosan interpolyelectrolyte complex incorporating the dispersed nanomaterials can be easily separated from aqueous media by centrifugation, filtration, or decantation. While the removal of nanoparticles by centrifugation is equally efficient for every type of nanoparticles and reaches 100%, the higher efficiency of the nanomaterials removal by other two methods is favored by larger size of nanoparticles. The application of this entrapping protocol for removal of nanomaterials from water is discussed.

  10. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  11. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  12. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    PubMed

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Direct and continuous synthesis of VO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Powell, M. J.; Marchand, P.; Denis, C. J.; Bear, J. C.; Darr, J. A.; Parkin, I. P.

    2015-11-01

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  14. Direct and continuous synthesis of VO2 nanoparticles.

    PubMed

    Powell, M J; Marchand, P; Denis, C J; Bear, J C; Darr, J A; Parkin, I P

    2015-11-28

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  15. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Elizabeth, Elmy; Baranwal, Gaurav; Krishnan, Amit G.; Menon, Deepthy; Nair, Manitha

    2014-03-01

    Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.

  16. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer.

    PubMed

    Qiu, Wei; Lin, Jun; Zhu, Yichen; Zhang, Jian; Zeng, Liping; Su, Ming; Tian, Ye

    2017-01-01

    Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae), a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs). However, whether Kae can inhibit DNA methylation remains unclear. Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs) associated with genes (50 hyper-methylated and 53 hypo-methylated). DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX). By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer. © 2017 The Author(s)Published by S. Karger AG, Basel.

  17. Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats

    PubMed Central

    Shirasu, Takuro; Koyama, Hiroyuki; Miura, Yutaka; Hoshina, Katsuyuki; Kataoka, Kazunori; Watanabe, Toshiaki

    2016-01-01

    Several drugs targeting the pathogenesis of aortic aneurysm have shown efficacy in model systems but not in clinical trials, potentially owing to the lack of targeted drug delivery. Here, we designed a novel drug delivery system using nanoparticles to target the disrupted aortic aneurysm micro-structure. We generated poly(ethylene glycol)-shelled nanoparticles incorporating rapamycin that exhibited uniform diameter and long-term stability. When injected intravenously into a rat model in which abdominal aortic aneurysm (AAA) had been induced by infusing elastase, labeled rapamycin nanoparticles specifically accumulated in the AAA. Microscopic analysis revealed that rapamycin nanoparticles were mainly distributed in the media and adventitia where the wall structures were damaged. Co-localization of rapamycin nanoparticles with macrophages was also noted. Rapamycin nanoparticles injected during the process of AAA formation evinced significant suppression of AAA formation and mural inflammation at 7 days after elastase infusion, as compared with rapamycin treatment alone. Correspondingly, the activities of matrix metalloproteinases and the expression of inflammatory cytokines were significantly suppressed by rapamycin nanoparticle treatment. Our findings suggest that the nanoparticle-based delivery system achieves specific delivery of rapamycin to the rat AAA and might contribute to establishing a drug therapy approach targeting aortic aneurysm. PMID:27336852

  18. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  19. Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin.

    PubMed

    Qu, Jing; Liu, Yu; Yu, Yanni; Li, Jing; Luo, Jingwan; Li, Mingzhong

    2014-11-01

    To maintain the anti-tumor activity of cis-dichlorodiamminoplatinum (CDDP) while avoiding its cytotoxicity and negative influence on normal tissue, CDDP-loaded silk fibroin nanoparticles approximately 59 nm in diameter were successfully prepared by electrospray without using organic solvent. CDDP was incorporated into nanoparticles through metal-polymer coordination bond exchange. In vitro release tests showed that the cisplatin in the nanoparticles could be slowly and sustainably released for more than 15 days. In vitro anti-cancer experiments and intracellular Pt content testing indicated that CDDP-loaded silk fibroin nanoparticles were easily internalized by A549 lung cancer cells, transferring CDDP into cancer cells and then triggering their apoptosis. In contrast, the particles were not easily internalized by L929 mouse fibroblast cells and hence showed weaker cell growth inhibition. The CDDP-loaded silk fibroin nanoparticles showed sustained and efficient killing of tumor cells but weaker inhibition of normal cells. In general, this study provides not only a novel method for preparing CDDP-loaded silk fibroin nanoparticles but also a new carrier system for clinical therapeutic drugs against lung cancers and other tumors. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy.

    PubMed

    Ramishetti, Srinivas; Huang, Leaf

    2012-12-01

    Nanotechnology is rapidly evolving and dramatically changing the paradigms of drug delivery. The small sizes, unique chemical properties, large surface areas, structural diversity and multifunctionality of nanoparticles prove to be greatly advantageous for combating notoriously therapeutically evasive diseases such as cancer. Multifunctional nanoparticles have been designed to enhance tumor uptake through either passive or active targeting, while also avoiding reticuloendothelial system uptake through the incorporation of PEG onto the surface. First-generation nanoparticle systems, such as liposomes, are good carriers for drugs and nucleic acid therapeutics, although they have some limitations. These lipid bilayers are now being utilized as excellent carriers for drug-loaded, solid core particles such as iron oxide, mesoporus silica and calcium phosphate. In this article, their design, as well as their multifunctional role in cancer therapy are discussed.

  1. Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy

    PubMed Central

    Ramishetti, Srinivas; Huang, Leaf

    2013-01-01

    Nanotechnology is rapidly evolving and dramatically changing the paradigms of drug delivery. The small sizes, unique chemical properties, large surface areas, structural diversity and multifunctionality of nanoparticles prove to be greatly advantageous for combating notoriously therapeutically evasive diseases such as cancer. Multifunctional nanoparticles have been designed to enhance tumor uptake through either passive or active targeting, while also avoiding reticuloendothelial system uptake through the incorporation of PEG onto the surface. First-generation nanoparticle systems, such as liposomes, are good carriers for drugs and nucleic acid therapeutics, although they have some limitations. These lipid bilayers are now being utilized as excellent carriers for drug-loaded, solid core particles such as iron oxide, mesoporus silica and calcium phosphate. In this article, their design, as well as their multifunctional role in cancer therapy are discussed. PMID:23323560

  2. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview

    PubMed Central

    CHAKRAVARTY, Rubel; GOEL, Shreya; DASH, Ashutosh; CAI, Weibo

    2017-01-01

    Over the last few years, a plethora of radiolabeled inorganic nanoparticles have been developed and evaluated for their potential use as probes in positron emission tomography (PET) imaging of a wide variety of cancers. Inorganic nanoparticles represent an emerging paradigm in molecular imaging probe design, allowing the incorporation of various imaging modalities, targeting ligands, and therapeutic payloads into a single vector. A major challenge in this endeavor is to develop disease-specific nanoparticles with facile and robust radiolabeling strategies. Also, the radiolabeled nanoparticles should demonstrate adequate in vitro and in vivo stability, enhanced sensitivity for detection of disease at an early stage, optimized in vivo pharmacokinetics for reduced non-specific organ uptake, and improved targeting for achieving high efficacy. Owing to these challenges and other technological and regulatory issues, only a single radiolabeled nanoparticle formulation, namely “C-dots” (Cornell dots), has found its way into clinical trials thus far. This review describes the available options for radiolabeling of nanoparticles and summarizes the recent developments in PET imaging of cancer in preclinical and clinical settings using radiolabeled nanoparticles as probes. The key considerations toward clinical translation of these novel PET imaging probes are discussed, which will be beneficial for advancement of the field. PMID:28124549

  3. Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support

    NASA Astrophysics Data System (ADS)

    Manimegalai, G.; Shanthakumar, S.; Sharma, Chandan

    2014-05-01

    Pesticides are deliberately used for controlling the pests in agriculture and public health, due to which, a part of it is present in the drinking water. Due to their widespread use, they are present in both surface and ground water. Most of the pesticides are resistant to biodegradation and are found to be carcinogenic in nature even at trace levels. Conventional methods of pesticide removal are disadvantageous due to their inherent time consumption or expensiveness. Nanoparticles alleviate both of these drawbacks and hence, they can be effectively utilized for the mineralization of pesticides. To prevent the presence of nanoparticles in the purified water after mineralization of pesticides, they need to be incorporated on a support. In earlier studies, researchers employed activated carbon and alumina as support for silver nanoparticles in pesticide mineralization. However, not many studies have been carried out on polymeric membranes as support for silver nanoparticles in the mineralization of pesticides (chlorpyrifos and malathion). With this in view, a detailed study has been carried out to estimate the mineralization potential of silver nanoparticles (synthesized using glucose) supported on cellulose acetate membrane. It is observed that the silver nanoparticles can effectively mineralize the pesticides, and the concentration of nanoparticles enhances the rate of mineralization.

  4. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties.

    PubMed

    Fan, Wei; Li, Yanyun; Sun, Qing; Ma, Tengjiao; Fan, Bing

    2016-10-21

    In infected periapical tissues, Enterococcus faecalis is one of the most common dominant bacteria. Chlorhexidine has been proved to show strong antibacterial ability against E. faecalis but is ineffective in promoting mineralization for tissues around root apex. Mesoporous calcium-silicate nanoparticles are newly synthesized biomaterials with excellent ability to promote mineralization and carry-release bioactive molecules in a controlled manner. In this study, mesoporous calcium-silicate nanoparticles were functionalized with chlorhexidine and their releasing profile, antibacterial ability, effect on cell proliferation and in vitro mineralization property were evaluated. The chlorhexidine was successfully incorporated into mesoporous calcium-silicate nanoparticles by a mixing-coupling method. The new material could release chlorhexidine as well as Ca 2+ and SiO 3 2- in a sustained manner with an alkaline pH value under different conditions. The antimicrobial ability against planktonic E. faecalis was dramatically improved after chlorhexidine incorporation. The nanoparticles with chlorhexidine showed no negative effect on cell proliferation with low concentrations. On dentin slices, the new synthesized material demonstrated a similar inhibitory effect on E. faecalis as the chlorhexidine. After being immersed in SBF for 9 days, numerous apatite crystals could be observed on surfaces of the material tablets. Mesoporous calcium-silicate nanoparticles loaded with chlorhexidine exhibited release of ions and chlorhexidine, low cytotoxicity, excellent antibacterial ability and in vitro mineralization. This material could be developed into a new effective intra-canal medication in dentistry or a new bone defect filling material for infected bone defects.

  5. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    PubMed

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Forced unfolding of single-chain polymeric nanoparticles.

    PubMed

    Hosono, Nobuhiko; Kushner, Aaron M; Chung, Jaeyoon; Palmans, Anja R A; Guan, Zhibin; Meijer, E W

    2015-06-03

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is applied to single-chain polymeric nanoparticles (SCPNs) to acquire information about the internal folding structure of SCPNs and inherent kinetic parameters of supramolecular self-assembling motifs embedded into the SCPNs. The SCPNs used here are polyacrylate-based polymers carrying 2-ureido-4-[1H]-pyrimidinone (UPy) or benzene-1,3,5-tricarboxamide (BTA) pendants that induce an intramolecular chain collapse into nanoparticles consisting of one polymer chain only via internal supramolecular cross-linking. The SCPN is stretched by an AFM cantilever to unfold mechanically, which allows measuring of force-extension profiles of the SCPNs. Consecutive peaks observed in the force profiles are attributed to rupture events of self-assembled UPy/BTA units in the SCPNs. The force profiles have been analyzed statistically for a series of polymers with different UPy/BTA incorporation densities. The results provide insights into the internal conformation of SCPNs, where the folding structure can be changed with the incorporation density of UPy/BTA. In addition, dynamic loading rate analysis allows the determination of kinetic parameters of BTA self-assembly, which has not been accessible by any other method. This study offers a rational tool for understanding the folding structure, kinetics, and pathway of two series of SCPNs.

  7. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  8. The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel

    ERIC Educational Resources Information Center

    Warren, David S.; Sutherland, Sam P. H.; Kao, Jacqueline Y.; Weal, Geoffrey R.; Mackay, Sean M.

    2017-01-01

    Samples of a composite hydrogel incorporating clay (Laponite XLG and S-482) nanoparticles were prepared using N-isopropylacrylamide. The hydrogels were formed via a radical-initiated addition polymerization using potassium persulfate and N,N,N',N'-tetramethylethylenediamine. Students then measured the force required to stretch the gels and…

  9. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  10. Biosynthesized silver nanoparticles to control fungal infections in indoor environments

    NASA Astrophysics Data System (ADS)

    Deyá, Cecilia; Bellotti, Natalia

    2017-06-01

    Fungi grow especially in dark and moist areas, deteriorating the indoor environment and causing infections that particularly affect immunosuppressed individuals. Antimicrobial coatings have as principal objective to prevent biofilm formation and infections by incorporation of bioactive additives. In this sense, metallic nanoparticles, such as silver, have proven to be active against different microorganisms specially bacteria. Biosynthesized method is a promising environmentally friendly option to obtain nanoparticles. The aim of this research was assess the employment of plants extracts of Aloysia triphylla (cedrón), Laurelia sempervirens (laurel) and Ruta chalepensis (ruda) to obtain silver nanoparticles to be used as an antimicrobial additive to a waterborne coating formulation. The products obtained were assessed against fungal isolates from biodeteriorated indoor coatings. The fungi were identified by conventional and molecular techniques as Chaetomium globosum and Alternaria alternate. The results revealed that the coating with silver nanoparticles obtained with L. sempervirens extract at 60 °C with a size of 9.8 nm was the most efficient against fungal biofilm development.

  11. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors

    PubMed Central

    Dumont, Matthieu F; Yadavilli, Sridevi; Sze, Raymond W; Nazarian, Javad; Fernandes, Rohan

    2014-01-01

    Pediatric brain tumors (PBTs) are a leading cause of death in children. For an improved prognosis in patients with PBTs, there is a critical need to develop molecularly-specific imaging agents to monitor disease progression and response to treatment. In this paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular magnetic resonance imaging (MRI) and fluorescence-based imaging of PBTs. Our core-shell nanoparticles consist of a core lattice structure that incorporates and retains paramagnetic Mn2+ ions, and generates MRI contrast (both negative and positive). The biofunctionalized shell is comprised of fluorescent avidin, which serves the dual purpose of enabling fluorescence imaging and functioning as a platform for the attachment of biotinylated ligands that target PBTs. The surfaces of our nanoparticles are modified with biotinylated antibodies targeting neuron-glial antigen 2 or biotinylated transferrin. Both neuron-glial antigen 2 and the transferrin receptor are protein markers overexpressed in PBTs. We describe the synthesis, biofunctionalization, and characterization of these multimodal nanoparticles. Further, we demonstrate the MRI and fluorescence imaging capabilities of manganese-containing Prussian blue nanoparticles in vitro. Finally, we demonstrate the potential of these nanoparticles as PBT imaging agents by measuring their organ and brain biodistribution in an orthotopic mouse model of PBTs using ex vivo fluorescence imaging. PMID:24920896

  12. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ran; Feng, Jinkui; Lv, Dongping

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  13. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.

    PubMed

    Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V

    2008-03-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.

  14. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis

    PubMed Central

    Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.

    2008-01-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters (~40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio β-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370

  15. A review of the efficacy and safety of nanoparticle-based oral insulin delivery systems.

    PubMed

    Card, Jeffrey W; Magnuson, Bernadene A

    2011-12-01

    Nanotechnology is providing new and innovative means to detect, diagnose, and treat disease. In this regard, numerous nanoparticle-based approaches have been taken in an effort to develop an effective oral insulin therapy for the treatment of diabetes. This review summarizes efficacy data from studies that have evaluated oral insulin therapies in experimental models. Also provided here is an overview of the limited safety data that have been reported in these studies. To date, the most promising approaches for nanoparticle-based oral insulin therapy appear to involve the incorporation of insulin into complex multilayered nanoparticles that are mucoadhesive, biodegradable, biocompatible, and acid protected and into nanoparticles that are designed to take advantage of the vitamin B(12) uptake pathway. It is anticipated that the continued investigation and optimization of nanoparticle-based formulations for oral delivery of insulin will lead to a much sought-after noninvasive treatment for diabetes. Such investigations also may provide insight into the use of nanoparticle-based formulations for peptide- and protein-based oral treatment of other diseases and for various food-related purposes.

  16. Bifunctional submicron colloidosomes coassembled from fluorescent and superparamagnetic nanoparticles.

    PubMed

    Bollhorst, Tobias; Shahabi, Shakiba; Wörz, Katharina; Petters, Charlotte; Dringen, Ralf; Maas, Michael; Rezwan, Kurosch

    2015-01-02

    Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self-assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (>1 μm) based on a single kind of particle; however, the intrinsic building-block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor-made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi

    2012-05-14

    We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.

  18. Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven

    2017-03-01

    Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.

  19. Dynamic thermal effects of epidermal melanin and plasmonic nanoparticles during photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Quanzeng; Pfefer, T. Joshua

    2016-03-01

    Photoacoustic Tomography (PAT) employs high-power near-infrared (near-IR) laser pulses to generate structural and functional information on tissue chromophores up to several centimeters below the surface. Such insights may facilitate detection of breast cancer - the most common cancer in women. PAT mammography has been the subject of extensive research, including techniques based on exogenous agents for PAT contrast enhancement and molecular specificity. However, photothermal safety risks of PAT due to strong chromophores such as epidermal melanin and plasmonic nanoparticles have not been rigorously studied. We have used computational and experimental approaches to elucidate highly dynamic optical-thermal processes during PAT. A Monte Carlo model was used to simulate light propagation at 800 and 1064 nm in a multi-layer breast tissue geometry with different epidermal pigmentation levels and a tumorsimulating inclusion incorporating nanoparticles. Energy deposition results were then used in a bioheat transfer model to simulate temperature transients. Experimental measurements involved multi-layer hydrogel phantoms with inclusions incorporating gold nanoparticles. Phantom optical properties were measured using the inverse adding-doubling technique. Thermal imaging was performed as phantoms were irradiated with 5 ns near-IR pulses. Scenarios using 10 Hz laser irradiation of breast tissue containing various nanoparticle concentrations were implemented experimentally and computationally. Laser exposure levels were based on ANSI/IEC limits. Surface temperature measurements were compared to corresponding simulation data. In general, the effect of highly pigmented skin on temperature rise was significant, whereas unexpectedly small levels of temperature rise during nanoparticle irradiation were attributed to rapid photodegradation. Results provide key initial insights into light-tissue interactions impacting the safety and effectiveness of PAT.

  20. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    PubMed Central

    Kumar, Rajiv; Iacobucci, Gary J.; Kuznicki, Michelle L.; Kosterman, Andrew; Bergey, Earl J.; Prasad, Paras N.; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications. PMID:22238611

  1. Effect of Core-shell Ceria/Poly(Vinylpyrrolidone) (PVP) Nanoparticles Incorporated in Polymer Films and Their Optical Properties (2): Increasing the Refractive Index

    PubMed Central

    Itoh, Toshio; Uchida, Toshio; Izu, Noriya; Shin, Woosuck

    2017-01-01

    We investigated the preparation of well-dispersed core-shell ceria-poly(vinylpyrrolidone) (PVP) nanoparticles with an average particle size of around 20 nm which were used to produce a hybrid film with a polymer coating of dipentaerythritol hexaacrylate (DPHA). We obtained good dispersion of the nanoparticles in a mixed solvent of 48% 1-methoxy-2-propanol (MP), 32% 3-methoxy-3-methyl-1-butanol (MMB), and 20% methyl i-butyl ketone (MIBK). An ink of the polymer coating consisting of 68.7 wt% nanoparticles and 31.3 wt% DPHA with a polymerization initiator was prepared using this solvent mixture. The surface of the hybrid film showed low roughness and the nanoparticles formed a densely packed structure in the DPHA matrix. The resulting coating possessed excellent transparency and a high refractive index of 1.69. PMID:28773070

  2. Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants

    USDA-ARS?s Scientific Manuscript database

    Gelatin films having controlled-release properties were developed by incorporation of different free/encapsulated tea polyphenol (TP) ratios through modifying the encapsulation efficiency (EE) of TP-loaded chitosan nanoparticles. Different EEs were obtained by adjusting the chitosan hydrochloride (C...

  3. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  4. Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function

    NASA Astrophysics Data System (ADS)

    Zhao, Aijie; Yao, Peng; Kang, Chunshang; Yuan, Xubo; Chang, Jin; Pu, Peiyu

    2005-08-01

    This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix—O-carboxylmethylated chitosan (O-CMC) as drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-tat as drug carriers, MTX was incorporated as a model drug and MTX-loaded O-MNPs-tat with an average diameter of 45-60 nm were prepared and characterized by TEM, AFM and VSM. The cytotoxicity of MTX-loaded O-MNPs-tat was investigated with U-937 tumor cells. The results showed that the MTX-loaded O-MNPs-tat retained significant antitumor toxicity; additionally, sustained release of MTX from O-CMC nanoparticles was observed in vitro, suggesting that the tat-O-MNPs could be a novel magnetic targeting carrier.

  5. Kaempferol protects ethanol-induced gastric ulcers in mice via pro-inflammatory cytokines and NO.

    PubMed

    Li, Qinchen; Hu, Xinxin; Xuan, Yanhan; Ying, Jianghua; Fei, Yujia; Rong, Jielu; Zhang, Yong; Zhang, Jian; Liu, Chunyan; Liu, Zheng

    2018-03-01

    Gastric ulcers (GUs) are common pathologies that affect many people around the world. Excessive alcohol consumption is one of the main causes of GUs; however, there are still lack of effective drugs for the prevention or therapy of GUs. In this study, we evaluated the protective effects and possible mechanisms of kaempferol (KAE) against acute ethanol-induced lesions to the gastric mucosa in mice. Fasted mice were orally given vehicle (0.9% saline), omeprazole (20 mg/kg), or KAE (40, 80, or 160 mg/kg) for 1 h in different experimental sets prior to the establishment of the GU model by challenge with absolute ethanol (10 ml/kg). Animals were euthanized 1 h after ethanol intake, and their plasma and stomach tissues were subject to further examination. Macroscopic and microscopic lesions, and immunological and biochemical parameters were observed. The effects of inflammation were investigated using the following indicators: tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, myeloperoxidase (MPO), and nitric oxide (NO). Results showed that KAE significantly decreased the ulcer index, increased the preventive index, completely protected the mucosa from lesions, and preserved gastric mucosal glycoprotein. KAE decreased MPO activity and pro-inflammatory cytokine (TNF-α, and IL-1β) levels, and improved NO levels. The gastroprotective activity of KAE might be attributed to the preservation of gastric mucous glycoproteins levels, thus by inhibiting neutrophil accumulation and MPO activity, adjusting the levels of pro-inflammatory cytokines, and improving NO production.

  6. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo

    PubMed Central

    Choi, Nak Won; Verbridge, Scott S.; Williams, Rebecca M.; Chen, Jin; Kim, Ju-Young; Schmehl, Russel; Farnum, Cornelia E.; Zipfel, Warren R.; Fischbach, Claudia; Stroock, Abraham D.

    2012-01-01

    We present the development and characterization of nanoparticles loaded with a custom phosphor; we exploit these nanoparticles to perform quantitative measurements of the concentration of oxygen within three-dimensional (3-D) tissue cultures in vitro and blood vessels in vivo. We synthesized a customized ruthenium (Ru)-phosphor and incorporated it into polymeric nanoparticles via self-assembly. We demonstrate that the encapsulated phosphor is non-toxic with and without illumination. We evaluated two distinct modes of employing the phosphorescent nanoparticles for the measurement of concentrations of oxygen: 1) in vitro, in a 3-D microfluidic tumor model via ratiometric measurements of intensity with an oxygen-insensitive fluorophore as a reference, and 2) in vivo, in mouse vasculature using measurements of phosphorescence lifetime. With both methods, we demonstrated micrometer-scale resolution and absolute calibration to the dissolved oxygen concentration. Based on the ease and customizability of the synthesis of the nanoparticles and the flexibility of their application, these oxygen-sensing polymeric nanoparticles will find a natural home in a range of biological applications, benefiting studies of physiological as well as pathological processes in which oxygen availability and concentration play a critical role. PMID:22240511

  7. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer

    NASA Astrophysics Data System (ADS)

    Hervault, Aziliz; Thanh, Nguyêl; N. Thé, Kim

    2014-09-01

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  8. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.

    PubMed

    Hervault, Aziliz; Thanh, Nguyen Th Kim

    2014-10-21

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  9. Nanoparticles in wound healing; from hope to promise, from promise to routine.

    PubMed

    Naderi, Naghmeh; Karponis, Dimitrios; Mosahebi, Afshin; Seifalian, Alexander M

    2018-01-01

    Chronic non-healing wounds represent a growing problem due to their high morbidity and cost. Despite recent advances in wound healing, several systemic and local factors can disrupt the weighed physiologic healing process. This paper critically reviews and discusses the role of nanotechnology in promoting the wound healing process. Nanotechnology-based materials have physicochemical, optical and biological properties unique from their bulk equivalent. These nanoparticles can be incorporated into scaffolds to create nanocomposite smart materials, which promote wound healing through their antimicrobial, as well as selective anti- and pro-inflammatory, and pro-angiogenic properties. Owed to their high surface area, nanoparticles have also been used for drug delivery as well as gene delivery vectors. In addition, nanoparticles affect wound healing by influencing collagen deposition and realignment and provide approaches for skin regeneration and wound healing.

  10. In vitro fibroblast migration by sustained release of PDGF-BB loaded in chitosan nanoparticles incorporated in electrospun nanofibers for wound dressing applications.

    PubMed

    Piran, Mehrdad; Vakilian, Saeid; Piran, Mehran; Mohammadi-Sangcheshmeh, Abdollah; Hosseinzadeh, Simzar; Ardeshirylajimi, Abdolreza

    2018-01-23

    Migration of fibroblasts into wound area is a critical phenomenon in wound healing process. We used an appropriate system to fabricate an electrospun bioactive scaffold with controlled release of PDGF-BB in order to induce migration of primary skin fibroblast cells. First of all, protein-loaded chitosan nanoparticles based on ionic gelation interaction between chitosan and sodium tripolyphosphate were prepared. Then polycaprolactone electrospun fibers containing chitosan nanoparticles or PDGF-BB-loaded chitosan nanoparticles were prepared. Cellular attachment and morphology of cells seeded on scaffolds with or without PDGF-BB were evaluated by using a fluorescence microscope and scanning electron microscopy. Cells were well-oriented 72 h after seeding on the scaffolds containing PDGF-BB. The mean aspect ratio of populations on scaffold containing PDGF-BB-loaded chitosan nanoparticles was significantly greater than those on the scaffold containing chitosan nanoparticles but no PDGF-BB. Furthermore, the Arp2 gene, which is involved in cell protrusion formation, showed about three times more expression at mRNA level, in cells seeding on PDGF-BB-containing scaffold compared to cells seeding on scaffold containing only chitosan nanoparticles, using Real Time PCR test. Finally, under agarose migration assay results demonstrated that cells' chemotaxic behavior was more toward scaffold containing PDGF-BB compared to the PDGF-BB alone or FBS group. In addition, in terms of distance, the cell mass could grow faster, in response to scaffold containing PDGF-BB compared to FBS or PDGF-BB alone; however, the number of migrating cells might be the same or significantly higher in the latter groups.

  11. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values

    USDA-ARS?s Scientific Manuscript database

    Gelatin film-forming solutions and their films incorporating tea polyphenol (TP) and chitosan nanoparticles (CSNs) were prepared from gelatins with different Bloom values (100, 150 and 225). Blank gelatin film-forming solutions and films were prepared as controls. Gelatins with higher Bloom values h...

  12. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics

    PubMed Central

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-01-01

    A novel particulate delivery matrix based on ionically crosslinked casein (CAS) nanoparticles was developed for controlled release of the poorly soluble anticancer drug flutamide (FLT). Nanoparticles were fabricated via oil-in-water emulsification then stabilized by ionic crosslinking of the positively charged CAS molecules below their isoelectric point, with the polyanionic crosslinker sodium tripolyphosphate. With the optimal preparation conditions, the drug loading and incorporation efficiency achieved were 8.73% and 64.55%, respectively. The nanoparticles exhibited a spherical shape with a size below 100 nm and a positive zeta potential (+7.54 to +17.3 mV). FLT was molecularly dispersed inside the nanoparticle protein matrix, as revealed by thermal analysis. The biodegradability of CAS nanoparticles in trypsin solution could be easily modulated by varying the sodium tripolyphosphate crosslinking density. A sustained release of FLT from CAS nanoparticles for up to 4 days was observed, depending on the crosslinking density. After intravenous administration of FLT-CAS nanoparticles into rats, CAS nanoparticles exhibited a longer circulation time and a markedly delayed blood clearance of FLT, with the half-life of FLT extended from 0.88 hours to 14.64 hours, compared with drug cosolvent. The results offer a promising method for tailoring biodegradable, drug-loaded CAS nanoparticles as controlled, long-circulating drug delivery systems of hydrophobic anticancer drugs in aqueous vehicles. PMID:23658490

  13. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  14. In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles

    PubMed Central

    Sloat, Brian R.; Sandoval, Michael A.; Li, Dong; Chung, Woon-Gye; Lansakara-P., Dharmika S. P.; Proteau, Philip J.; Kiguchi, Kaoru; DiGiovanni, John; Cui, Zhengrong

    2011-01-01

    Gemcitabine (Gemzar®) is the first line treatment for pancreatic cancer and often used in combination therapy for non-small cell lung, ovarian, and metastatic breast cancers. Although extremely toxic to a variety of tumor cells in culture, the clinical outcome of gemcitabine treatment still needs improvement. In the present study, a new gemcitabine nanoparticle formulation was developed by incorporating a previously reported stearic acid amide derivative of gemcitabine into nanoparticles prepared from lecithin/glyceryl monostearate-in-water emulsions. The stearoyl gemcitabine nanoparticles were cytotoxic to tumor cells in culture, although it took a longer time for the gemcitabine in the nanoparticles to kill tumor cells than for free gemcitabine. In mice with pre-established model mouse or human tumors, the stearoyl gemcitabine nanoparticles were significantly more effective than free gemcitabine in controlling the tumor growth. PEGylation of the gemcitabine nanoparticles with polyethylene glycol (2000) prolonged the circulation of the nanoparticles in blood and increased the accumulation of the nanoparticles in tumor tissues (> 6-fold), but the PEGylated and un-PEGylated gemcitabine nanoparticles showed similar anti-tumor activity in mice. Nevertheless, the nanoparticle formulation was critical for the stearoyl gemcitabine to show a strong anti-tumor activity. It is concluded that for the gemcitabine derivate-containing nanoparticles, cytotoxicity data in culture may not be used to predict their in vivo anti-tumor activity, and this novel gemcitabine nanoparticle formulation has the potential to improve the clinical outcome of gemcitabine treatment. PMID:21371545

  15. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    PubMed

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  16. Magnetic Nanoparticles Embedded in a Silicon Matrix

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2011-01-01

    This paper represents a short overview of nanocomposites consisting of magnetic nanoparticles incorporated into the pores of a porous silicon matrix by two different methods. On the one hand, nickel is electrochemically deposited whereas the nanoparticles are precipitated on the pore walls. The size of these particles is between 2 and 6 nm. These particles cover the pore walls and form a tube-like arrangement. On the other hand, rather well monodispersed iron oxide nanoparticles, of 5 and 8 nm respectively, are infiltrated into the pores. From their size the particles would be superparamagnetic if isolated but due to magnetic interactions between them, ordering of magnetic moments occurs below a blocking temperature and thus the composite system displays a ferromagnetic behavior. This transition temperature of the nanocomposite can be varied by changing the filling factor of the particles within the pores. Thus samples with magnetic properties which are variable in a broad range can be achieved, which renders this composite system interesting not only for basic research but also for applications, especially because of the silicon base material which makes it possible for today’s process technology. PMID:28879957

  17. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.

    PubMed

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Griffioen, Arjan W; Nicolay, Klaas

    2006-02-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the relaxivity of the contrast agents, especially for molecular imaging applications, should be very high to deal with the low sensitivity of MRI. Lipid-based nanoparticles, such as liposomes or micelles, have been used extensively in recent decades as drug carrier vehicles. A relatively new and promising application of lipidic nanoparticles is their use as multimodal MR contrast agents. Lipids are amphiphilic molecules with both a hydrophobic and a hydrophilic part, which spontaneously assemble into aggregates in an aqueous environment. In these aggregates, the amphiphiles are arranged such that the hydrophobic parts cluster together and the hydrophilic parts face the water. In the low concentration regime, a wide variety of structures can be formed, ranging from spherical micelles to disks or liposomes. Furthermore, a monolayer of lipids can serve as a shell to enclose a hydrophobic core. Hydrophobic iron oxide particles, quantum dots or perfluorocarbon emulsions can be solubilized using this approach. MR-detectable and fluorescent amphiphilic molecules can easily be incorporated in lipidic nanoparticles. Furthermore, targeting ligands can be conjugated to lipidic particles by incorporating lipids with a functional moiety to allow a specific interaction with molecular markers and to achieve accumulation of the particles at disease sites. In this review, an overview of different lipidic nanoparticles for use in MRI is given, with the main emphasis on Gd-based contrast agents. The mechanisms of particle formation, conjugation strategies and applications in the field of contrast-enhanced, cellular and molecular MRI are discussed. 2006 John Wiley & Sons, Ltd.

  18. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles.

    PubMed

    Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong

    2014-03-01

    Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.

  19. Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels

    PubMed Central

    O’Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth

    2015-01-01

    Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles. PMID:26301505

  20. Thermal transport phenomena in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  1. The effects of Mg incorporation and annealing temperature on the physicochemical properties and antibacterial activity against Listeria monocytogenes of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Shadan, Nima; Ziabari, Ali Abdolahzadeh; Meraat, Rafieh; Jalali, Kamyar Mazloum

    2017-02-01

    In this paper, Mg-doped ZnO nanoparticles were synthesized by the facile sol-gel method. The crystalline structure, characteristic absorption bands and morphology of the obtained Mg-doped ZnO nanoparticles were studied by XRD, FTIR and TEM. The thermal degradation behaviour of the samples was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The effect of Mg concentrations and annealing temperatures on the antibacterial properties of the obtained nanoparticles was investigated in detail. The results indicated that doping Mg ions into ZnO lattice could enhance its antibacterial activity. Antibacterial assay demonstrated that Mg-doped ZnO with 7% Mg content annealed at 400 ∘C had the strongest antibacterial activity against Listeria monocytogenes (98.7%). This study indicated that the inhibition rate of ZnO nanoparticles increased with the formation of granular structure and the decrease of ZnO size due to the doping of Mg ions into the ZnO lattice.

  2. High Efficiency Photovoltaic Devices Fabricated from Self-Assemble Block Insulating-Conducting Copolymer Containing Semiconducting Nanoparticles

    DTIC Science & Technology

    2005-12-14

    71.3° TESDT ɝ° 45.3° 59.5° 67.2° 75.0° The amount of D-A linkers anchored on TiO2 nanoparticles was determined by thermogravimetric analysis ...e.g. lamellae, cylinders and spheres of copolymers were fabricated. Semiconducting nanoparticles of cadmium sulfide ( CdS ) was incorporated into PPP...water contact angle measurement, thermogravimetric analysis , and XPS spectra, we can presume that compact SAMs were formed on the surface of TiO2

  3. The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research.

    PubMed

    DiStasio, Nicholas; Lehoux, Stephanie; Khademhosseini, Ali; Tabrizian, Maryam

    2018-05-08

    Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.

  4. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.

  5. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  6. Understanding the physics of magnetic nanoparticles and their applications in the biomedical field

    NASA Astrophysics Data System (ADS)

    Laha, Suvra Santa

    The study of magnetic nanoparticles is of great interest because of their potential uses in magnetic-recording, medical diagnostic and therapeutic applications. Additionally, they also offer an opportunity to understand the physics underlying the complex behavior exhibited by these materials. Two of the most important relaxation phenomena occurring in magnetic nanoparticles are superparamagnetic blocking and spin-glass-like freezing. In addition to features attributed to superparamagnetism, these nanoparticles can also exhibit magnetic relaxation effects at very low temperatures (≤ 50 K). Our studies suggest that all structural defects, and not just surface spins, are responsible for the low-temperature glass-like relaxation observed in many magnetic nanoparticles. The characteristic dipolar interaction energy existing in an ensemble of magnetic nanoparticles does not apparently depend on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution. Our findings revealed that incorporating a small percentage of boron can stabilize the spinel structure in Mn 3O4 nanoparticles. We have also demonstrated that the dipolar interactions between the magnetic cores can be tuned by introducing non-magnetic nanoparticles. In particular, we studied the magnetic properties of Gd-doped Fe3O4 nanoparticles, a potential applicant for T1--T2 dual-modal MRI contrast agent. We have explored the interactions of BiFeO3 nanoparticles on live cells and the binding of FITC-conjugated Fe3O 4 nanoparticles with artificial lipid membranes to investigate these materials as candidates in medical imaging. Taken together, these studies have advanced our understanding of the fundamental physical principles that governs magnetism in magnetic materials with a focus on developing these nanoparticles for advanced biomedical applications. The materials developed and studied expand the repertoire of tools available for

  7. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel

  8. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-05-15

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization

  10. Importance of the DNA “bond” in programmable nanoparticle crystallization

    PubMed Central

    Macfarlane, Robert J.; Thaner, Ryan V.; Brown, Keith A.; Zhang, Jian; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.

    2014-01-01

    If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling’s rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner. PMID:25298535

  11. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    PubMed

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  12. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  13. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus.

    PubMed

    Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana

    2012-12-14

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.

  14. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus

    NASA Astrophysics Data System (ADS)

    Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A.; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana

    2012-12-01

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.

  15. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma.

    PubMed

    Bernal, Giovanna M; LaRiviere, Michael J; Mansour, Nassir; Pytel, Peter; Cahill, Kirk E; Voce, David J; Kang, Shijun; Spretz, Ruben; Welp, Ulrich; Noriega, Sandra E; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar

    2014-01-01

    A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells was demonstrated. Convection-enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ-bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. GBM remains one of the most notoriously treatment-unresponsive cancer types. In this study, a multifunctional nanoparticle-based temozolomide delivery system was demonstrated to possess enhanced treatment efficacy in a rodent xenograft GBM model, with the added benefit of MRI-based tracking via the incorporation of iron oxide as a T2* contrast material in the nanoparticles. © 2014.

  16. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  17. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.

    PubMed

    Bhopatkar, Deepak; Feng, Tao; Chen, Feng; Zhang, Genyi; Carignano, Marcelo; Park, Sung Hyun; Zhuang, Haining; Campanella, Osvaldo H; Hamaker, Bruce R

    2015-05-06

    A previously reported nanoparticle formed through the self-assembly of common food constituents (amylose, protein, and fatty acids) was shown to have the capacity to carry a sparingly soluble small molecule (1-naphthol) in a dispersed system. Potentiometric titration showed that 1-naphthol locates in the lumen of the amylose helix of the nanoparticle. This finding was further supported by calorimetric measurements, showing higher enthalpies of dissociation and reassociation in the presence of 1-naphthol. Visually, the 1-naphthol-loaded nanoparticle appeared to be well-dispersed in aqueous solution. Molecular dynamics simulation showed that the self-assembly was favorable, and at 500 ns, the 1-naphthol molecule resided in the helix of the amylose lumen in proximity to the hydrophobic tail of the fatty acid. Thus, sparingly soluble small molecules, such as some nutraceuticals or drugs, could be incorporated and delivered by this soft nanoparticle carrier.

  18. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir.

    PubMed

    Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène

    2013-01-01

    Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Influence of Cd2+/S2- molar ratio and of different capping environments in the optical properties of CdS nanoparticles incorporated within a hybrid diureasil matrix

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luis F. F. F.; Silva, Carlos J. R.; Kanodarwala, Fehmida K.; Stride, John A.; Pereira, Mario R.; Gomes, Maria J. M.

    2014-09-01

    The incorporation of CdS nanoparticles (NPs), as prepared through colloidal methods using reverse micelles, within diureasil hybrid organic-inorganic sol-gel matrices was investigated. Several experimental conditions, namely the influence of capping agent 3-mercaptopropyltrimethoxysilane (MPTMS) or the use of tetraethoxysilane (TEOS), were studied in order to assure the preservation of the original optical properties of colloidal CdS NPs after the incorporation of the NPs within the solid diureasil hybrid matrix. The diureasil matrix is based on a siliceous network cross linked through urea bonds to poly(oxyethylene)/poly(oxypropylene) (PEO/PPO) chains. The influence of the Cd2+/S2- molar ratio of the NPs in the stability and dispersion of the NPs within the diureasil matrix was also investigated. The obtained CdS doped hybrid matrix was characterized by absorption, steady-state and time-resolved photoluminescence (PL) spectroscopy and by transmission electron microscopy (TEM). The stability of the CdS NPs within the hybrid matrix showed to be dependent on the Cd2+/S2- molar ratio used in the synthesis of the NPs. The use of MPTMS proved to be crucial in the preservation of the original optical properties of the colloidal CdS NPs after the incorporation of the NPs within the hybrid matrix. The effect of MPTMS was in turn influenced by the Cd2+/S2- molar ratio employed in the synthesis of the CdS NPs. The use of MPTMS was less effective when Cd2+/S2- molar ratio equal to 0.5 was used. In the absence of MPTMS or TEOS larger NPs size distribution and clustering of the CdS NPs were obtained after the transfer of the NPs into the hybrid matrix.

  20. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications.

    PubMed

    Rahmani, Sahar; Villa, Carlos H; Dishman, Acacia F; Grabowski, Marika E; Pan, Daniel C; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J; Muzykantov, Vladimir R; Lahann, Joerg

    2015-01-01

    Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.

  1. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications

    PubMed Central

    Rahmani, Sahar; Villa, Carlos H.; Dishman, Acacia F.; Grabowski, Marika E.; Pan, Daniel C.; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J.; Muzykantov, Vladimir R.; Lahann, Joerg

    2016-01-01

    Background Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Purpose Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. Methods EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I125 radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Results and discussion Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. Conclusion EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site. PMID:26453170

  2. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding

    PubMed Central

    Jiang, Xiue; Weise, Stefan; Hafner, Margit; Röcker, Carlheinz; Zhang, Feng; Parak, Wolfgang J.; Nienhaus, G. Ulrich

    2010-01-01

    Nanoparticles are finding a rapidly expanding range of applications in research and technology, finally entering our daily life in medical, cosmetic or food products. Their ability to invade all regions of an organism including cells and cellular organelles offers new strategies for medical diagnosis and therapy (nanomedicine), but their safe use requires a deep knowledge about their interactions with biological systems at the molecular level. Upon incorporation, nanoparticles are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a ‘protein corona’. These nanoparticle–protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here we have quantitatively analysed the adsorption of human transferrin onto small (radius approx. 5 nm) polymer-coated FePt nanoparticles by using fluorescence correlation spectroscopy. Transferrin binds to the negatively charged nanoparticles with an affinity of approximately 26 µM in a cooperative fashion and forms a monolayer with a thickness of 7 nm. By using confocal fluorescence microscopy, we have observed that the uptake of FePt nanoparticles by HeLa cells is suppressed by the protein corona compared with the bare nanoparticles. PMID:19776149

  3. High velocity collisions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  4. Fluorescent silica nanoparticles with chemically reactive surface: Controlling spatial distribution in one-step synthesis.

    PubMed

    Vera, María L; Cánneva, Antonela; Huck-Iriart, Cristián; Requejo, Felix G; Gonzalez, Mónica C; Dell'Arciprete, María L; Calvo, Alejandra

    2017-06-15

    The encapsulation of fluorescent dyes inside silica nanoparticles is advantageous to improve their quality as probes. Inside the particle, the fluorophore is protected from the external conditions and its main emission parameters remains unchanged even in the presence of quenchers. On the other hand, the amine-functionalized nanoparticle surface enables a wide range of applications, as amino groups could be easily linked with different biomolecules for targeting purposes. This kind of nanoparticle is regularly synthesized by methods that employ templates, additional nanoparticle formation or multiple pathway process. However, a one-step synthesis will be an efficient approach in this sort of bifunctional hybrid nanoparticles. A co-condensation sol-gel synthesis of hybrid fluorescent silica nanoparticle where developed. The chemical and morphological characterization of the particles where investigated by DRIFTS, XPS, SEM and SAXS. The nanoparticle fluorescent properties were also assessed by excitation-emission matrices and time resolved experiments. We have developed a one-pot synthesis method that enables the simultaneous incorporation of functionalities, the fluorescent molecule and the amino group, by controlling co-condensation process. An exhaustive characterization allows the definition of the spatial distribution of the fluorescent probe, fluorescein isothiocyanate, inside the particle and reactive amino groups on the surface of the nanoparticle with diameter about 100nm. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    PubMed Central

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816

  6. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    PubMed

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  7. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  8. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives

    PubMed Central

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-01-01

    Statement of the Problem: Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. Purpose: The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. Materials and Method: CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Results: Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group (p< 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group (p= 0.695). Conclusion: Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength. PMID:29492409

  9. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives.

    PubMed

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-03-01

    Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p < 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.

  10. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.

    PubMed

    Angelakeris, M

    2017-06-01

    Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  12. Effect of Nanoparticles on the Survival and Development of Vitrified Porcine GV Oocytes.

    PubMed

    Li, W J; Zhou, X L; Liu, B L; Dai, J J; Song, P; Teng, Y

    BACKGROUND: Some mammalian oocytes have been successfully cryopreserved by vitrification. However, the survival and developmental rate of vitrified oocytes is still low. The incorporation of nanoparticles into cryoprotectant (CPA) may improve the efficiency of vitrification by changing the properties of solutions. The toxicity of different concentrations of hydroxy apatite (HA), silica dioxide (SO 2 ), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) nanoparticles (20 nm in diameter) to oocytes was tested and the toxicity threshold value of each nanoparticle was determined. Porcine GV oocytes were vitrified in optimized nano-CPA, and effects of diameter and concentration of nanoparticles on the survival rate and developmental rate of porcine GV oocytes were compared. HA nanoparticles have demonstrated the least toxicity among four nanoparticles and the developmental rate of GV-stage porcine oocytes was 100% when its concentration was lower than 0.5%. By adding 0.1% HA into VS, the developmental rate of GV-stage porcine oocytes (22%) was significantly higher than other groups. The effect of vitrification in nano-CPA on oocytes was related to the concentration of HA nanoparticles rather than their size. By adding 0.05% HA nanoparticles (60nm in diameter), the developmental rate increased dramatically from 14.7% to 30.4%. Nano-cryopreservation offers a new way to improve the effect of survival and development of oocytes, but the limitation of this technology shall not be ignored.

  13. The effect of ZnO nanoparticles on liver function in rats

    PubMed Central

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  14. A nanoparticle-based epigenetic modulator for efficient gene modulation

    NASA Astrophysics Data System (ADS)

    Pongkulapa, Thanapat

    Modulation of gene expression through chromatin remodeling involves epigenetic mechanisms, such as histone acetylation. Acetylation is tightly regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Molecules that can regulate these enzymes by altering (activating or inhibiting) their functions have become a valuable tool for understanding cell development and diseases. HAT activators, i.e. N-(4-Chloro-(3-trifluoromethyl)phenyl)-2-ethoxybenzamide (CTB), have shown a therapeutic potential for many diseases, including cancer and neurodegeneration. However, these compounds encounter a solubility and a membrane permeability issue, which restricts their full potential for practical usage, especially for in vivo applications. To address this issue, in this work, we developed a nanoparticle-based HAT activator CTB, named Au-CTB, by incorporating a new CTB analogue onto gold nanoparticles (AuNPs) along with a poly(ethylene glycol) moiety and a nuclear localization signal (NLS) peptide to assist with solubility and membrane permeability. We found that our new CTB analogue and Au-CTB could activate HAT activity. Significantly, an increase in potency to activate HAT activity by Au-CTB proved the effectiveness of using the nanoparticle delivery platform. In addition, the versatility of Au-CTB platform permits the attachment of multiple ligands with tunable ratios on the nanoparticle surface via facile surface functionalization of gold nanoparticles. Due to its high delivery efficiency and versatility, Au-CTB can be a powerful platform for applications in epigenetic regulation of gene expression.

  15. Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles

    PubMed Central

    Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon

    2014-01-01

    A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867

  16. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Role of Nanoparticles in Drug Delivery and Regenerative Therapy for Bone Diseases.

    PubMed

    Gera, Sonia; Sampathi, Sunitha; Dodoala, Sujatha

    2017-01-01

    Osteoporosis is a disease characterized by progressive bone loss due to aging and menopause in women leading to bone fragility with increased susceptibility towards fractures. The silent disease weakens the bone by altering its microstructure and mass. Therapy is based on either promoting strength (via osteoblast action) or preventing disease (via osteoclast action). Current therapy with different drugs belonging to antiresorptive, anabolic and hormonal classification suffers from poor pharmacokinetic and pharmacodynamic profile. Nanoparticles provide breakthrough as an alternative therapeutic carrier and biomedical imaging tool in bone diseases. The current review highlights bone physiology and pathology along with potential applications of nanoparticles in osteoporosis through use of organic and inorganic particles for drug delivery, biomedical imaging as well as bone tissue regeneration therapy. Inorganic nanoparticles of gold, cerium, platinum and silica have effects on osteoblastic and osteoclastic lineage. Labelling and tracking of bone cells by quantum dots and gold nanoparticles are advanced and non-invasive techniques. Incorporation of nanoparticles into the scaffolds is a more recent technique for improving mechanical strength as well as regeneration during bone grafting. Promising results by in vitro and in vivo studies depicts effects of nanoparticles on biochemical markers and biomechanical parameters during osteoporosis suggesting the bright future of nanoparticles in bone applications. Any therapy which improves the drug profile and delivery to bone tissue will be promising approach. Superparamagnetic, gold, mesoporous silica nanoparticles and quantum dots provide golden opportunities for biomedical imaging by replacing the traditional invasive radionuclide techniques. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils

    NASA Astrophysics Data System (ADS)

    Gaspar, André S.; Wagner, Friedrich E.; Amaral, Vítor S.; Costa Lima, Sofia A.; Khomchenko, Vladimir A.; Santos, Judes G.; Costa, Benilde F. O.; Durães, Luísa

    2017-02-01

    Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7 nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57 emu/g at 5 K and 42 emu/g at 300 K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.

  19. Cobalt-Assisted Morphology and Assembly Control of Co-Doped ZnO Nanoparticles

    PubMed Central

    Han, Xianying; Wahl, Sebastian; Russo, Patrícia A.

    2018-01-01

    The morphology of metal oxide nanostructures influences the response of the materials in a given application. In addition to changing the composition, doping can also modify the morphology of a host nanomaterial. Herein, we determine the effect of dopant concentration, reaction temperature, and reaction time on the morphology and assembly of CoxZn1−xO nanoparticles synthesized through non-aqueous sol-gel in benzyl alcohol. With the increase of the atom % of cobalt incorporated from 0 to 15, the shape of the nanoparticles changes from near spherical, to irregular, and finally to triangular. The tendency of the particles to assemble increases in the same direction, with Co0.05Zn0.95O consisting of non-assembled particles, whereas Co0.15Zn0.85O consists of triangular nanoparticles forming spherical structures. The morphology and assembly process are also sensitive to the reaction temperature. The assembly process is found to occur during the nucleation or the early stages of particle growth. The cobalt ions promote the change in the shape during the growth stage of the nanoparticles. PMID:29673179

  20. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi

  1. Design of FLT3 Inhibitor - Gold Nanoparticle Conjugates as Potential Therapeutic Agents for the Treatment of Acute Myeloid Leukemia.

    PubMed

    Simon, Timea; Tomuleasa, Ciprian; Bojan, Anca; Berindan-Neagoe, Ioana; Boca, Sanda; Astilean, Simion

    2015-12-01

    Releasing drug molecules at the targeted location could increase the clinical outcome of a large number of anti-tumor treatments which require low systemic damage and low side effects. Nano-carriers of drugs show great potential for such task due to their capability of accumulating and releasing their payload specifically, at the tumor site. FLT3 inhibitor - gold nanoparticle conjugates were fabricated to serve as vehicles for the delivery of anti-tumor drugs. Lestaurtinib, midostaurin, sorafenib, and quizartinib were selected among the FLT3 inhibitor drugs that are currently used in clinics for the treatment of acute myeloid leukemia. The drugs were loaded onto nanoparticle surface using a conjugation strategy based on hydrophobic-hydrophobic interactions with the Pluronic co-polymer used as nanoparticle surface coating. Optical absorption characterization of the particles in solution showed that FLT3 inhibitor-incorporated gold nanoparticles were uniformly distributed and chemically stable regardless of the drug content. Drug loading study revealed a high drug content in the case of midostaurin drug which also showed increased stability. Drug release test in simulated cancer cell conditions demonstrated more than 56 % release of the entrapped drug, a result that correlates well with the superior cytotoxicity of the nano-conjugates comparatively with the free drug. This is a pioneering study regarding the efficient loading of gold nanoparticles with selected FLT3 inhibitors. In vitro cytotoxicity assessment shows that FLT3-incorporated gold nanoparticles are promising candidates as vehicles for anti-tumor drugs and demonstrate superior therapeutic effect comparatively with the bare drugs.

  2. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  3. Synthesis and controlled self-assembly of UV-responsive gold nanoparticles in block copolymer templates.

    PubMed

    Song, Dong-Po; Wang, Xinyu; Lin, Ying; Watkins, James J

    2014-11-06

    We demonstrate the facile synthesis of gold nanoparticles (GNPs) functionalized by UV-responsive block copolymer ligands, poly(styrene)-b-poly(o-nitrobenzene acrylate)-SH (PS-b-PNBA-SH), followed by their targeted distribution within a lamellae-forming poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The multilayer, micelle-like structure of the GNPs consists of a gold core, an inner PNBA layer, and an outer PS layer. The UV-sensitive PNBA segment can be deprotected into a layer containing poly(acrylic acid) (PAA) when exposed to UV light at 365 nm, which enables the simple and precise tuning of GNP surface properties from hydrophobic to amphiphilic. The GNPs bearing ligands of different chemical compositions were successfully and selectively incorporated into the PS-b-P2VP block copolymer, and UV light showed a profound influence on the spatial distributions of GNPs. Prior to UV exposure, GNPs partition along the interfaces of PS and P2VP domains, while the UV-treated GNPs are incorporated into P2VP domains as a result of hydrogen bond interactions between PAA on the gold surface and P2VP domains. This provides an easy way of controlling the arrangement of nanoparticles in polymer matrices by tailoring the nanoparticle surface using UV light.

  4. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection

    NASA Astrophysics Data System (ADS)

    Li, Hongren; Guo, Xingjia; Liu, Jun; Li, Feng

    2016-10-01

    A pyrolysis method for synthesizing carbon nanoparticles (CNPs) were developed by using malic acid and ammonium oxalate as raw materials. The incorporation of a minor amount of carbon nanoparticles into starch powder imparts remarkable color-tunability. Based on this phenomenon, an environment friendly fluorescent starch powder for detecting latent fingerprints in non-porous surfaces was prepared. The fingerprints on different non-porous surfaces developed with this powder showed very good fluorescent images under ultraviolet excitation. The method using fluorescent starch powder as fluorescent marks is simple, rapid and green. Experimental results illustrated the effectiveness of proposed methods, enabling its practical applications in forensic sciences.

  5. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    PubMed

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Lipid-Mediated Targeting with Membrane Wrapped Nanoparticles in the Presence of Corona Formation

    PubMed Central

    Xu, Fangda; Reiser, Michael; Yu, Xinwei; Gummuluru, Suryaram; Wetzler, Lee; Reinhard, Björn M.

    2016-01-01

    Membrane wrapped nanoparticles represent a versatile platform for utilizing specific lipid-receptor interactions, such as siallyllactose-mediated binding of the ganglioside GM3 to Siglec1 (CD169), for targeting purposes. The membrane wrap around the nanoparticles does not only serve as a matrix to incorporate GM3 as targeting moiety for antigen presenting cells but also offers unique opportunities for constructing a biomimetic surface from lipids with potentially protein repellent properties. We characterize non-specific protein adsorption (corona formation) to membrane wrapped nanoparticles with core diameters of approx. 35 nm and 80 nm and its effect on the GM3-mediated targeting efficacy as function of surface charge through combined in vitro and in vivo studies. The stability and fate of the membrane wrap around the nanoparticles in a simulated biological fluid and after uptake in CD169 expressing antigen presenting cells is experimentally tested. Finally, we demonstrate in hock immunization studies in mice that GM3 decorated membrane wrapped nanoparticles achieve a selective enrichment in the peripheral regions of popliteal lymph nodes that contain high concentrations of CD169 expressing antigen presenting cells. PMID:26720275

  7. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svenmarker, Pontus, E-mail: pontus.svenmarker@physics.umu.se; Department of Physics, Umeå University, SE-901 87 Umeå; Centre for Microbial Research

    2014-02-17

    We report on improved image detectability for fluorescence diffuse optical tomography using upconverting nanoparticles doped with rare-earth elements. Core-shell NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+}@NaYF{sub 4} upconverting nanoparticles were synthesized through a stoichiometric method. The Yb{sup 3+}/Er{sup 3+} sensitizer-activator pair yielded two anti-Stokes shifted fluorescence emission bands at 540 nm and 660 nm, here used to a priori estimate the fluorescence source depth with sub-millimeter precision. A spatially varying regularization incorporated the a priori fluorescence source depth estimation into the tomography reconstruction scheme. Tissue phantom experiments showed both an improved resolution and contrast in the reconstructed images as compared to not using any amore » priori information.« less

  8. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  9. Characterization of silver nanoparticles spray disinfectant products using asymmetrical flow field flow fractionation (FFF2018 Presentation)

    EPA Science Inventory

    Silver nanoparticles (AgNPs) are incorporated in a variety of consumer products including clothing, household items, cosmetic and dietary supplements. Their extended use stems from their antimicrobial properties. In this context we analyzed 22 consumer products which advertised t...

  10. Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pospisilova, Martina; Zapotocky, Vojtech; Nesporova, Kristina; Laznicek, Milan; Laznickova, Alice; Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir

    2017-02-01

    We report on the 59Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange (59Fe-IONPex) and precursor labelling (59Fe-IONPpre). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—59Fe-IONPpre exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of 59Fe-IONPpre coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high 59Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  11. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property.

    PubMed

    Inphonlek, Supharat; Pimpha, Nuttaporn; Sunintaboon, Panya

    2010-06-01

    The core-shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5g), while the amount of PEI was varied from 0.1 to 0.5g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle-bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans

    PubMed Central

    Zanon, Tyler; Kappell, Anthony D.; Petrella, Lisa N.; Andersen, Erik C.; Hristova, Krassimira R.

    2016-01-01

    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits

  13. Targeting hepatocellular carcinoma with aptamer-functionalized PLGA/PLA-PEG nanoparticles

    NASA Astrophysics Data System (ADS)

    Weigum, Shannon E.; Sutton, Melissa; Barnes, Eugenia; Miller, Sarah; Betancourt, Tania

    2014-08-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, particularly in regions where chronic Hepatitis B and C infections are common. Nanoparticle assemblies that incorporate high-affinity aptamers which specifically bind malignant hepatocellular carcinoma cells could be useful for targeted drug delivery or enhancing contrast with existing ablation therapies. The in vitro interactions of a tumor-specific aptamer, TLS11a, were characterized in a hepatoma cell line via live-cell fluorescence imaging, SDS-PAGE and Western Blotting techniques. Cell surface binding of the aptamer-AlexaFluor®546 conjugate was found to occur within 20 minutes of initial exposure, followed by internalization and localization to late endosomes or lysosomes using a pH-sensitive LysoSensor™ Green dye and confocal microscopy. Aptamer-functionalized polymer nanoparticles containing poly(lactic-co-glycolic acid) (PLGA) and poly(lactide)-b-poly(ethylene glycol) (PLA-PEG) were then prepared by nanoprecipitation and passively loaded with the chemotherapeutic agent, doxorubicin, yielding spherical nanoparticles approximately 50 nm in diameter. Targeted drug delivery and cytotoxicity was assessed using live/dead fluorescent dyes and a MTT colorimetric viability assay with elevated levels of cell death found in cultures treated with either the aptamer-coated and uncoated polymer nanoparticles. Identification and characterization of the cell surface protein epitope(s) recognized by the TLS11a aptamer are ongoing along with nanoparticle optimization, but these preliminary studies support continued investigation of this aptamer and functionalized nanoparticle conjugates for targeted labeling and drug delivery within malignant hepatocellular carcinomas.

  14. Numerical simulation of the nanoparticle diameter effect on the thermal performance of a nanofluid in a cooling chamber

    NASA Astrophysics Data System (ADS)

    Ghafouri, A.; Pourmahmoud, N.; Jozaei, A. F.

    2017-03-01

    The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.

  15. Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.

    PubMed

    Li, Shuo; Bandy, Jason A; Hamers, Robert J

    2018-02-14

    Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.

  16. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  17. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  18. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  19. Targeted antitumoral dehydrocrotonin nanoparticles with L-ascorbic acid 6-stearate.

    PubMed

    Frungillo, Lucas; Martins, Dorival; Teixeira, Sérgio; Anazetti, Maristela Conti; Melo, Patrícia da Silva; Durán, Nelson

    2009-12-01

    Tumoral cells are known to have a higher ascorbic acid uptake than normal cells. Therefore, the aim of this study was to obtain polymeric nanoparticles containing the antitumoral compound trans-dehydrocrotonin (DHC) functionalized with L-ascorbic acid 6-stearate (AAS) to specifically target this system tumoral cells. Nanoparticle suspensions (NP-AAS-DHC) were prepared by the nanoprecipitation method. The systems were characterized for AAS presence by thin-layer chromatography and for drug loading (81-88%) by UV-Vis spectroscopy. To further characterize these systems, in vitro release kinetics, size distribution (100-140 nm) and Zeta potential by photon-correlation spectroscopic method were used. In vitro toxicity against HL60 cells was evaluated by tetrazolium reduction and Trypan blue exclusion assays. Cell death by apoptosis was quantified and characterized by flow cytometry and caspase activity. Zeta potential analyses showed that the system has a negatively charged outer surface and also indicate that AAS is incorporated on the external surface of the nanoparticles. In vitro release kinetics assay showed that DHC loaded in nanoparticles had sustained release behavior. In vitro toxicity assays showed that NP-AAS-DHC suspension was more effective as an antitumoral than free DHC or NP-DHC and increased apoptosis induction by receptor-mediated pathway. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    This thesis advances the use of nanoparticles as multifunctional agents for molecularly-targeted cancer imaging and photothermal therapy. Cancer mortality has remained relatively unchanged for several decades, indicating a significant need for improvements in care. Researchers are evaluating strategies incorporating nanoparticles as exogenous energy absorbers to deliver heat capable of inducing cell death selectively to tumors, sparing normal tissue. Molecular targeting of nanoparticles is predicted to improve photothermal therapy by enhancing tumor retention. This hypothesis is evaluated with two types of nanoparticles. The nanoparticles utilized, silica-gold nanoshells and gold-gold sulfide nanoparticles, can convert light energy into heat to damage cancerous cells. For in vivo applications nanoparticles are usually coated with poly(ethylene glycol) (PEG) to increase blood circulation time. Here, heterobifunctional PEG links nanoparticles to targeting agents (antibodies and growth factors) to provide cell-specific binding. This approach is evaluated through a series of experiments. In vitro, antibody-coated nanoparticles can bind breast carcinoma cells expressing the targeted receptor and act as contrast agents for multiphoton microscopy prior to inducing cell death via photoablation. Furthermore, antibody-coated nanoparticles can bind tissue ex vivo at levels corresponding to receptor expression, suggesting they should bind their target even in the complex biological milieu. This is evaluated by comparing the accumulation of antibody-coated and PEG-coated nanoparticles in subcutaneous glioma tumors in mice. Contrary to expectations, antibody targeting did not yield more nanoparticles within tumors. Nevertheless, these studies established the sensitivity of glioma to photothermal therapy; mice treated with PEG-coated nanoshells experienced 57% complete tumor regression versus no regression in control mice. Subsequent experiments employed intracranial tumors to

  1. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?

    PubMed

    Jain, Navin; Bhargava, Arpit; Pareek, Vikram; Sayeed Akhtar, Mohd; Panwar, Jitendra

    2017-03-01

    Rapid utilization of nano-based products will inevitably release nanoparticles into the environment with unidentified consequences. Plants, being an integral part of ecosystem play a vital role in the incorporation of nanoparticles in food chain and thus, need to be critically assessed. The present study assesses the comparative phytotoxicity of nanoparticle, bulk and ionic forms of zinc at different concentrations on selected plant species with varying seed size and surface anatomy. ZnO nanoparticles were chosen in view of their wide spread use in cosmetics and health care products, which allow their direct release in the environment. The impact on germination rate, shoot & root length and vigour index were evaluated. A concentration dependent inhibition of seed germination as well as seedling length was observed in all the tested plants. Due to the presence of thick cuticle on testa and root, pearl millet (xerophytic plant) was found to be relatively less sensitive to ZnO nanoparticles as compared to wheat and tomato (mesophytic plants) with normal cuticle layer. No correlation was observed between nanoparticles toxicity and seed size. The results indicated that variations in surface anatomy of seeds play a crucial role in determining the phytotoxicity of nanoparticles. The present findings significantly contribute to assess potential consequences of nanoparticle release in environment particularly with major emphasis on plant systems. It is the first report which suggests that variations observed in phytotoxicity of nanoparticles is mainly due to the predominant differences in size and surface anatomy of tested plant seeds and root architecture. Effect of various concentrations of nano ZnO, bulk ZnO and zinc sulphate on the growth of pearl millet (A), tomato (B) and wheat (C) seedlings.

  2. Colorimetric Assay for Determination of Lead (II) Based on Its Incorporation into Gold Nanoparticles during Their Synthesis

    PubMed Central

    Ding, Nan; Cao, Qian; Zhao, Hong; Yang, Yimin; Zeng, Lixi; He, Yujian; Xiang, Kaixiang; Wang, Guangwei

    2010-01-01

    In this report, we present a new method for visual detection of Pb2+. Gold nanoparticles (Au-NPs) were synthesized in one step at room temperature, using gallic acid (GA) as reducer and stabilizer. Pb2+ is added during the gold nanoparticle formation. Analysis of Pb2+ is conducted by a dual strategy, namely, colorimetry and spectrometry. During Au-NPs synthesis, addition of Pb2+ would lead to formation of Pb-GA complex, which can induce the aggregation of newly-formed small unstable gold nanoclusters. Consequently, colorimetric detection of trace Pb2+ can be realized. As the Pb2+ concentration increases, the color turns from red-wine to purple, and finally blue. This method offers a sensitive linear correlation between the shift of the absorption band (Δλ) and logarithm of Pb2+ concentration ranging from 5.0 × 10−8 to 1.0 × 10−6 M with a linear fit coefficient of 0.998, and a high selectivity for Pb2+ detection with a low detection limit down to 2.5 × 10−8 M. PMID:22163517

  3. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Noninvasive Fluorescence Resonance Energy Transfer Imaging of in vivo Premature Drug Release from Polymeric Nanoparticles

    PubMed Central

    Zou, Peng; Chen, Hongwei; Paholak, Hayley J.; Sun, Duxin

    2013-01-01

    Understanding in vivo drug release kinetics is critical for the development of nanoparticle-based delivery systems. In this study, we developed a fluorescence resonance energy transfer (FRET) imaging approach to noninvasively monitor in vitro and in vivo cargo release from polymeric nanoparticles. The FRET donor dye (DiO or DiD) and acceptor dye (DiI or DiR) were individually encapsulated into poly(ethylene oxide)-b-polystyrene (PEO-PS) nanoparticles. When DiO (donor) nanoparticles and DiI (acceptor) nanoparticles were co-incubated with cancer cells for 2 h, increased FRET signals were observed from cell membranes, suggesting rapid release of DiO and DiI to cell membranes. Similarly, increased FRET ratios were detected in nude mice after intravenous co-administration of DiD (donor) nanoparticles and DiR (acceptor) nanoparticles. In contrast, another group of nude mice i.v. administrated with DiD/DiR co-loaded nanoparticles showed decreased FRET ratios. Based on the difference in FRET ratios between the two groups, in vivo DiD/DiR release half-life from PEO-PS nanoparticles was determined to be 9.2 min. In addition, it was observed that the presence of cell membranes facilitated burst release of lipophilic cargos while incorporation of oleic acid-coated iron oxide into PEO-PS nanoparticles slowed the release of DiD/DiR to cell membranes. The developed in vitro and in vivo FRET imaging techniques can be used to screening stable nano-formulations for lipophilic drug delivery. PMID:24033270

  5. Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Solla-Gullón, J.; Gómez, Elvira; Vallés, Elisa; Aldaz, Antonio; Feliu, Juan M.

    2010-05-01

    PtCo nanoparticles with homogeneous size (around 3-4 nm) have been synthesized in a water-in-oil microemulsion of water/polyethylenglycol-dodecylether (BRIJ®30)/n-heptane. X-ray diffraction study revealed the formation of a cubic phase with a gradual decrease of the cell parameter with increasing cobalt incorporation in the crystalline lattice of platinum. In relation to their magnetic properties, the PtCo nanoparticles present a superparamagnetic behaviour even after annealing, although higher permeability was induced by the thermal treatment. Finally, the electrocatalytic activity of the particles towards oxalic acid oxidation in H2SO4 was evaluated. The Pt74Co26 nanoparticles showed the highest reactivity for this reaction.

  6. Amphiphilic cyclodextrin nanoparticles.

    PubMed

    Varan, Gamze; Varan, Cem; Erdoğar, Nazlı; Hıncal, A Atilla; Bilensoy, Erem

    2017-10-15

    Cyclodextrins are cyclic oligosaccharides obtained by enzymatic digestion of starch. The α-, β- and γ- cyclodextrins contain respectively 6, 7 and 8 glucopyranose units, with primary and secondary hydroxyl groups located on the narrow and wider rims of a truncated cone shape structure. Such structure is that of a hydrophobic inner cavity with a hydrophilic outer surface allowing to interact with a wide range of molecules like ions, protein and oligonucleotides to form inclusion complexes. Many cyclodextrin applications in the pharmaceutical area have been widely described in the literature due to their low toxicity and low immunogenicity. The most important is to increase the solubility of hydrophobic drugs in water. Chemically modified cyclodextrin derivatives have been synthesized to enhance their properties and more specifically their pharmacological activity. Among these, amphiphilic derivatives were designed to build organized molecular structures, through selfassembling systems or by incorporation in lipid membranes, expected to improve the vectorization in the organism of the drug-containing cyclodextrin cavities. These derivatives can form a variety of supramolecular structures such as micelles, vesicles and nanoparticles. The purpose of this review is to summarize applications of amphiphilic cyclodextrins in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important amphiphilic cyclodextrin applications in the design of novel delivery systems like nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Study of magnetic nanoparticles and overcoatings for biological applications including a sensor device

    NASA Astrophysics Data System (ADS)

    Grancharov, Stephanie G.

    I. A general introduction to the field of nanomaterials is presented, highlighting their special attributes and characteristics. Nanoparticles in general are discussed with respect to their structure, form and properties. Magnetic particles in particular are highlighted, especially the iron oxides. The importance and interest of integrating these materials with biological media is discussed, with emphasis on transferring particles from one medium to another, and subsequent modification of surfaces with different types of materials. II. A general route to making magnetic iron oxide nanoparticles is explained, both as maghemite and magnetite, including properties of the particles and characterization. A novel method of producing magnetite particles without a ligand is then presented, with subsequent characterization and properties described. III. Attempts to coat iron oxide nanoparticles with a view to creating biofunctional magnetic nanoparticles are presented, using a gold overcoating method. Methods of synthesis and characterization are examined, with unique problems to core-shell structures analyzed. IV. Solubility of nanoparticles in both aqueous and organic media is discussed and examined. The subsequent functionalization of the surface of maghemite and magnetite nanoparticles with a variety of biomaterials including block copolypeptides, phospholipids and carboxydextran is then presented. These methods are integral to the use of magnetic nanoparticles in biological applications, and therefore their properties are examined once tailored with these molecules. V. A new type of magnetic nanoparticle sensor-type device is described. This device integrates bio-and DNA-functionalized nanoparticles with conjugate functionalized silicon dioxide surfaces. These techniques to pattern particles to a surface are then incorporated into a device with a magnetic tunnel junction, which measures magnetoresistance in the presence of an external magnetic field. This configuration

  8. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance.

    PubMed

    Strohbehn, Garth; Coman, Daniel; Han, Liang; Ragheb, Ragy R T; Fahmy, Tarek M; Huttner, Anita J; Hyder, Fahmeed; Piepmeier, Joseph M; Saltzman, W Mark; Zhou, Jiangbing

    2015-02-01

    Current therapy for glioblastoma multiforme (GBM) is largely ineffective, with nearly universal tumor recurrence. The failure of current therapy is primarily due to the lack of approaches for the efficient delivery of therapeutics to diffuse tumors in the brain. In our prior study, we developed brain-penetrating nanoparticles that are capable of penetrating brain tissue and distribute over clinically relevant volumes when administered via convection-enhanced delivery (CED). We demonstrated that these particles are capable of efficient delivery of chemotherapeutics to diffuse tumors in the brain, indicating that they may serve as a groundbreaking approach for the treatment of GBM. In the original study, nanoparticles in the brain were imaged using positron emission tomography (PET). However, clinical translation of this delivery platform can be enabled by engineering a non-invasive detection modality using magnetic resonance imaging (MRI). For this purpose, we developed chemistry to incorporate superparamagnetic iron oxide (SPIO) into the brain-penetrating nanoparticles. We demonstrated that SPIO-loaded nanoparticles, which retain the same morphology as nanoparticles without SPIO, have an excellent transverse (T(2)) relaxivity. After CED, the distribution of nanoparticles in the brain (i.e., in the vicinity of injection site) can be detected using MRI and the long-lasting signal attenuation of SPIO-loaded brain-penetrating nanoparticles lasted over a one-month timecourse. Development of these nanoparticles is significant as, in future clinical applications, co-administration of SPIO-loaded nanoparticles will allow for intraoperative monitoring of particle distribution in the brain to ensure drug-loaded nanoparticles reach tumors as well as for monitoring the therapeutic benefit with time and to evaluate tumor relapse patterns.

  9. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE PAGES

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; ...

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm -2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  10. [The inhibitive effect produced by local perfusion of tanshinone IIA nanoparticle on neointimal hyperplasia of rabbit carotid artery following intimal denudation].

    PubMed

    Liang, Ling; Chen, Yucheng; Xiong, Subin; Zeng, Zhi; Sun, Mingliang; Zhang, Haihong

    2007-08-01

    Tanshinone IIA nanoparticles were constructed and perfused in rabbit's right carotid after intimal denudation with ballon. Localization and retention at different time points of the coumarin-labeled drug nanoparticles were evaluated under laser confocal microscope. Nanoparticles were seen in the three layers of the cross-section artery. At 7 days, they were mainly deposited in the medial layer, while the deposition was generally observed in the adventitia and media at 14 days and 28 days. In the Tanshinone IIA nanoparticle study, a significant reduction of the neo-intimal hyperplasia was noted by comparing the intimal area and the intima-media ratio in the three groups. And the PLGA nanoparticles appeared to be fully biocompatible. As a result, the local administration of the nanoparticles with incorporated Tanshinone IIA showed not only the preventive effects, but aslo the high absorption and good biocompatability in the whole arterial wall.

  11. UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khoirunnisa, Assifa Rahma; Joni, I. Made; Panatarani, Camellia; Rochima, Emma; Praseptiangga, Danar

    2018-02-01

    This study aims to develop film for food packaging application with high UV-screening, transparency and water barrier properties. Semi refined iota carrageenan (SRiC) nanocomposite films prepared by addition of zinc oxide (ZnO) nanoparticles as nanofiller using solution casting method. The effect of nanofiller with different concentration (0%, 0.5%, 1.0%, 1.5% w/w carrageenan) on UV-screening, transparency and water barrier properties of films were tested. The water barrier properties of the films were studied by measuring water vapor permeability (WVP) and the optical properties of the films were studied by using UV-Vis spectrophotometer at 280 nm for UV-screening test and at 660 nm for transparency test. WVP value of carrageenan films with addition of ZnO is low compared to a control carrageenan film and the lowest WVP value was found for the film with addition of 1.5% of ZnO. These result indicate that the addition of ZnO had a positive effect on the water barrier properties of the carrageenan matrix. Increase in the concentration of nanofiller leads to an increase in the UV-screening properties. Among all the films, carrageenan film with 1.5% ZnO has the highest UV-screening. The result showed that adding 0.5% and 1.0% of ZnO was insignificantly affect transparency of the films, however the transparency decreased sligthly when 1.5% ZnO was added. In conclusion, incorporating no more than 1.0% of ZnO to the films can obtain films with high UV-screening, transparency and water barrier properties and suitable for food packaging application.

  12. Robust antireflection coatings By UV cross-linking of silica nanoparticles and diazo-resin polycation

    NASA Astrophysics Data System (ADS)

    Ridley, Jason I.; Heflin, James R.; Ritter, Alfred L.

    2007-09-01

    Antireflection coatings have been fabricated by self-assembly using silica nanoparticles. The ionic self-assembled multilayer (ISAM) films are tightly packed and homogeneous. While the geometric properties of a matrix of spherical particles with corresponding void interstices are highly suitable to meet the conditions for minimal reflectivity, it is also a cause for the lack of cohesion within the constituent body, as well as to the substrate surface. This study investigates methods for improving the interconnectivity of the nanoparticle structure. One such method involves UV curing of diazo-resin (DAR)/silica nanoparticle films, thereby converting the ionic interaction into a stronger covalent bond. Factorial analysis and response surface methods are incorporated to determine factors that affect film properties, and to optimize their optical and adhesive capabilities. The second study looks at the adhesive strength of composite multilayer films. Films are fabricated with silica nanoparticles and poly(allylamine hydrochloride) (PAH), and dipped into aqueous solutions of PAH and poly(methacrylic acid, sodium salt) (PMA) to improve cohesion of silica nanoparticles in the matrix, as well as binding strength to the substrate surface. The results of the two studies are discussed.

  13. The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Omri, K.; Bettaibi, A.; Khirouni, K.; El Mir, L.

    2018-05-01

    In the current study, we synthesized a Cu-doped ZnO (CZO) nanoparticles material using a sol-gel method with different doping concentrations of Cu (0, 2, 3 and 4 at.%). The control of the Cu concentration on structural, electrical and optical properties of CZO nanoparticles was investigated in detail. The XRD analysis of the CZO nanoparticles reveals the formation of ZnO hexagonal wurtzite structure for all samples which confirm the incorporation of Cu2+ ions into the ZnO lattice by substitution. Furthermore, CZO nanoparticles showed a small red shift of absorption band with the incorporation of Cu from 0 to 4 at.%; i.e. a decreased band gap value from 3.34 eV to 3.27 eV with increasing of Cu doping content. The frequency dispersion of the electric conductivity were studied using the Jonscher universal power law, according to relation σ(ω) = σDC + A ωs(T). Alternative current conductivity increases with increasing Cu content in spite of the decrease the activation energy with copper loading. It was found that the conductivity reached its maximum value for critical Cu concentration of 3 at.%. The frequency relaxation phenomenon was also investigated and all results were discussed in term of the copper doping concentration.

  14. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel.

    PubMed

    Verma, Jyoti; Kanoujia, Jovita; Parashar, Poonam; Tripathi, Chandra Bhusan; Saraf, Shubhini A

    2017-02-01

    Microbial contamination in wounds leading to severe sepsis can be treated by silver-based antiseptics. However, frequent application of silver-based antiseptics, staining of skin, burning, and irritation at application site resulted to poor patient compliances. Thus, we formulated sericin- and chitosan-capped silver nanoparticle (S/C-SNP)-loaded hydrogel for accelerated wound healing and antimicrobial properties. The wound healing property of sericin, antibacterial nature of chitosan and silver, and mucoadhesive property of carbopol were utilized in development of novel wound dressing hydrogel to investigate the combined effect of these materials for effective treatment of wounds. The chemical reduction method was successfully employed for the synthesis of SNPs using sericin and chitosan as a capping/reducing agent. The SNPs were characterized by ultraviolet-spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optimized SNPs were further used for preparation of carbopol hydrogel (0.5, 0.75, and 1.0 % w/v). The prepared hydrogels were characterized for pH, viscosity, and texture analysis. The antimicrobial activity and wound healing activity of the optimized hydrogel (S/C-SNPs G-1) demonstrated higher bactericidal activity and wound closure, as supported by results of histopathology. Hydrogel containing capped SNPs has application in wound healing treatment.

  15. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.

    PubMed

    Lin, Yu-Hsin; Lin, Jui-Hsiang; Hong, Ya-Shiuan

    2017-01-01

    The hydrophobic polyphenol curcumin has anti-inflammatory, antimicrobial, and wound-healing properties that warrant its pharmacological consideration. We report a curcumin nanoparticle with a tripolymeric composite that can be used as a delivery device for wound healing. The present composite nanoparticles were prepared with three biocompatible polymers of chitosan, poly-γ-glutamic acid, and pluronic using a simple ionic gelation technology. Pluronic was used to enhance the solubility of curcumin in chitosan/poly-γ-glutamic acid nanoparticles, leading to the incorporation of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles into chitosan membranes, and reduced inflammation and bacterial infection during wound regeneration. Nanoparticles were of 193.1 ± 8.9 nm and had a zeta potential of 20.6 ± 2.4 mV. Moreover, in vitro analyses indicated controlled curcumin release in a simulated skin tissue model. Subsequent in vivo studies show that chitosan wound dressing containing chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles promoted neocollagen regeneration and tissue reconstruction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 81-90, 2017. © 2015 Wiley Periodicals, Inc.

  16. Synthesis, structural, optical and electrical properties of metal nanoparticle-rare earth ion dispersed in polymer film

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Singh, P.; Rai, S. B.

    2013-03-01

    Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV-Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15-30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz-1 MHz and in the temperature range 318-338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.

  17. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations.

    PubMed

    Özcan, Ipek; Azizoğlu, Erkan; Senyiğit, Taner; Özyazıcı, Mine; Özer, Özgen

    2013-01-01

    The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders.

  18. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations

    PubMed Central

    Özcan, İpek; Azizoğlu, Erkan; Şenyiğit, Taner; Özyazıcı, Mine; Özer, Özgen

    2013-01-01

    The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders. PMID:23390364

  19. Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

    PubMed Central

    Venugopal, Adith; Muthuchamy, Nallal; Tejani, Harsh; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill; Lee, Heon-Jin

    2017-01-01

    Objective Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial. PMID:28127534

  20. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  1. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  2. Perfluorocarbon Nanoparticles as Delivery Vehicles for Melittin and Its Protease-Activated Derivatives

    NASA Astrophysics Data System (ADS)

    Jallouk, Andrew Philip

    Melittin is a cytolytic peptide derived from honeybee venom which inserts into lipid membranes and oligomerizes to form membrane pores. While this peptide is an attractive candidate for treatment of cancers and infectious processes, its nonspecific cytotoxicity and hemolytic activity have limited its therapeutic applications. The goal of this dissertation was to enhance the specificity of melittin therapy through the use of perfluorocarbon nanoparticles to minimize nonspecific cytotoxicity and the development of melittin prodrugs which only exhibit cytolytic activity following activation by site-specific proteases. Although previous studies have characterized the biological effects of melittin-loaded nanoparticles following intravenous administration, we first investigated their use as topical agents for prevention of HIV infection. We found that incorporation of native melittin onto perfluorocarbon nanoparticles maintained antiviral activity while substantially reducing contact toxicity to sperm and vaginal epithelium. These results demonstrated the potential utility of melittin-loaded nanoparticles as a topical vaginal virucide. To further enhance melittin specificity, we developed melittin derivatives which could be activated by matrix metalloproteinase-9, a protease which is overexpressed in many tumors and which plays a critical role in cancer invasion and metastasis. We then characterized the interactions of these peptides with perfluorocarbon nanoparticles and demonstrated the safety and efficacy of intravenous prodrug-loaded nanoparticle therapy in a mouse model of melanoma. The versatility of this platform could facilitate development of personalized cancer therapies directed towards a patient's individual protease expression profile.

  3. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Lu, Chien-Cheng; Su, Wei-Ming; Weng, Chen-Yuan; Chen, Yi-Cian; Wang, Shing-Chung; Lu, Tien-Chang; Chen, Ching-Pang; Chen, Hsiang

    2018-01-01

    Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

  4. Synthesis of multivalent sialyllactosamine-carrying glyco-nanoparticles with high affinity to the human influenza virus hemagglutinin.

    PubMed

    Ogata, Makoto; Umemura, Seiichiro; Sugiyama, Naohiro; Kuwano, Natsuki; Koizumi, Ami; Sawada, Tadakazu; Yanase, Michiyo; Takaha, Takeshi; Kadokawa, Jun-Ichi; Usui, Taichi

    2016-11-20

    A series of multivalent sialoglyco-conjugated nanoparticles were efficiently synthesized by using highly-branched α-glucuronic acid-linked cyclic dextrins (GlcA-HBCD) as a backbone. The sialoglycoside-moieties, with varying degrees of substitution, could be incorporated onto the preformed nanoparticles. These synthesized particles, which are highly soluble in aqueous solution, were shown to have a spherical nanostructure with a diameter of approximately 15nm. The interactions of the sialoglyco-nanoparticles (Neu5Acα2,6LacNAc-GlcA-HBCDs) with human influenza virus strain A/Beijing/262/95 (H1N1) were investigated using a hemagglutination inhibition assay. The sialoglyco-nanoparticle, in which the number of sialic acid substitution is 30, acted as a powerful inhibitor of virus binding activity. We show that both distance and multiplicity of effective ligand-virus formation play important roles in enhancing viral inhibition. Our results indicate that the GlcA-HBCD backbone can be used as a novel spherical nanocluster material for preparing a variety of glyco-nanoparticles to facilitate molecular recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Assessment of phototoxicity, skin irritation, and sensitization potential of polystyrene and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Yoon-Hee; Jeong, Sang Hoon; Yi, Sang Min; Hyeok Choi, Byeong; Kim, Yu-Ri; Kim, In-Kyoung; Kim, Meyoung-Kon; Son, Sang Wook

    2011-07-01

    The human skin equivalent model (HSEM) is well known as an attractive alternative model for evaluation of dermal toxicity. However, only limited data are available on the usefulness of an HSEM for nanotoxicity testing. This study was designed to investigate cutaneous toxicity of polystyrene and TiO2 nanoparticles using cultured keratinocytes, an HSEM, and an animal model. In addition, we also evaluated the skin sensitization potential of nanoparticles using a local lymph node assay with incorporation of BrdU. Findings from the present study indicate that polystyrene and TiO2 nanoparticles do not induce phototoxicity, acute cutaneous irritation, or skin sensitization. Results from evaluation of the HSEMs correspond well with those from animal models. Our findings suggest that the HSEM might be a useful alternative model for evaluation of dermal nanotoxicity.

  6. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  7. Development of polyphenolic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Huaitzung Andrew

    Polymeric nanoparticles have a wide range of applications, particularly as drug delivery and diagnostic agents, and tannins have been regarded as a promising building block for redox and pH responsive systems. Tannins are a class of naturally occurring polyphenols commonly produced by plants and are found in many of our consumables like teas, spices, fresh fruits, and vegetables. Many of the health benefits associated with these foods are a result of their high tannin contents and the many different types of tannins found in various plants have demonstrated therapeutic potentials for conditions ranging from cardiovascular disease and diabetes to ulcers and cancer. Diets rich in tannins have been associated with lower blood pressure in patients with hypertension. The plurality of phenols in tannins also makes them powerful antioxidants and as a result, there is a lot of interest in taking advantage of their self-assembling abilities to make redox and pH responsive drug delivery systems. However, the benefit of natural tannins is limited by their instability in physiological conditions. Furthermore, there is limited control over molecular weight and reactivity of the phenolic content of plant extracts. Herein we report the novel synthesis of pseudotannins with control over molecular weight and reactivity of phenolic moieties. These pseudotannins have can form nanoscale interpolymer complexes under physiological conditions and have demonstrated antioxidative potential. Furthermore, pseudotannin IPCs have been shown to be responsive to physiologically relevant oxidation as well as the ability to easily incorporate cell targeting peptides, fluorescent tags, and MRI contrast agents. The work presented here describes how pseudotannins would be ideally suited to minimally invasive techniques for diagnosing atherosclerotic plaques and targeting triple negative breast cancer. We demonstrate that pseudotannin can very easily and quickly form nanoscale particles that are small

  8. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles.

    PubMed

    Souza, A C O; Nascimento, A L; de Vasconcelos, N M; Jerônimo, M S; Siqueira, I M; R-Santos, L; Cintra, D O S; Fuscaldi, L L; Pires Júnior, O R; Titze-de-Almeida, R; Borin, M F; Báo, S N; Martins, O P; Cardoso, V N; Fernandes, S O; Mortari, M R; Tedesco, A C; Amaral, A C; Felipe, M S S; Bocca, A L

    2015-05-05

    The development of biocompatible polymeric nanoparticles has become an important strategy for optimizing the therapeutic efficacy of many classical drugs, as it may expand their activities, reduce their toxicity, increase their bioactivity and improve biodistribution. In this study, nanoparticles of Amphotericin B entrapped within poly (lactic-co-glycolic) acid and incorporated with dimercaptosuccinic acid (NANO-D-AMB) as a target molecule were evaluated for their physic-chemical characteristics, pharmacokinetics, biocompatibility and antifungal activity. We found high plasma concentrations of Amphotericin B upon treatment with NANO-D-AMB and a high uptake of nanoparticles in the lungs, liver and spleen. NANO-D-AMB exhibited antifungal efficacy against Paracoccidioides brasiliensis and induced much lower cytotoxicity levels compared to D-AMB formulation in vivo and in vitro. Together, these results confirm that NANO-D-AMB improves Amphotericin B delivery and suggest this delivery system as a potential alternative to the use of Amphotericin B sodium deoxycholate. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Pharmacokinetics and antitumor effects of the drug containing TNF-α in nanoparticles.

    PubMed

    Gamaley, S G; Bateneva, A V; Sysoeva, G M; Danilenko, E D; Lebedev, L R; Masycheva, V I

    2010-09-01

    Antitumor activity of TNF-α incorporated in nanoparticles (VLP-TNF-α) and dynamics of its accumulation and elimination from the blood and tumor tissue were studied in ICR mice. The VLP-TNF-α preparation exhibited higher antitumor activity compared to free TNF-α, presumably due to longer circulation of the cytokine in the blood and its more intensive accumulation by tumor tissue.

  10. Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

    PubMed

    Glover, Amanda L; Bennett, James B; Pritchett, Jeremy S; Nikles, Sarah M; Nikles, David E; Nikles, Jacqueline A; Brazel, Christopher S

    2013-01-01

    The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

  11. Effect of rutile titania dioxide nanoparticles on the mechanical property, thermal stability, weathering resistance and antibacterial property of styrene acrylic polyurethane coating

    NASA Astrophysics Data System (ADS)

    Vuong Nguyen, Thien; Nguyen, Tuan Anh; Dao, Phi Hung; Phuc Mac, Van; Hiep Nguyen, Anh; Thanh Do, Minh; Nguyen, The Huu

    2016-12-01

    This study aims to enhance the mechanical properties, thermal stability, weathering resistance and antibacterial property of a styrene acrylic polyurethane coating by adding rutile titania dioxide (R-TiO2) nanoparticles in coating formulation. The styrene acrylic polyurethane/R-TiO2 nanocomposite had been prepared by using ultrasonication. The effects of nanoparticles on the mechanical properties, thermal stability and weathering resistance of as-prepared coatings were investigated by using the adhesion strength and ball impact tests, the Fourier transform infrared and UV-vis analyses, thermogravimetric analysis (TGA), and UV/condensation weathering chamber equipped with UVA-340 fluorescent lamps, respectively. The disperse quality of nanoparticles in the coating was examined by using the field emission scanning electron microscope (FESEM). The mechanical test results showed that suitable content of R-TiO2 nanoparticles in the nanocomposite coating was 2 wt%. The FESEM images indicated that the nanoparticles were dispersed homogeneously into the entire volume of the coating. For the nanocomposite prepared by 3 h of ultrasonication, the average size of nanoparticles was in range of 40-50 nm. The ball impact and adhesion tests showed that the incorporation of nanoparticles into the coating significantly enhanced the impact strength from 120 to 145 kg cm and increased the adhesion from level 1 to level 0. The TGA test illustrated that in presence of nanoparticles, the decomposition temperature of coating increased from 146.9 °C to 154.21 °C. For the temperature at 50% loss in mass (T 50%), it was found that the T 50% of the neat coating is 351.86 °C. Adding the 2 wt% R-TiO2 nanoparticles into coating increased the T 50% value to 360.06 °C. After UV/condensation accelerated weathering test (30 cycles), the significant improvement in weight loss, impact strength and adhesion of the neat coating was observed with the presence of nanoparticles. The antibacterial test

  12. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

    PubMed

    Mazzarino, Letícia; Borsali, Redouane; Lemos-Senna, Elenara

    2014-11-01

    Mucoadhesive films containing curcumin-loaded nanoparticles were developed, aiming to prolong the residence time of the dosage form in the oral cavity and to increase drug absorption through the buccal mucosa. Films were prepared by the casting method after incorporation of curcumin-loaded chitosan-coated polycaprolactone nanoparticles into plasticized chitosan solutions. Different molar masses of mucoadhesive polysaccharide chitosan and concentrations of plasticizer glycerol were used to optimize the preparation conditions. Films obtained using medium and high molar mass chitosan were found to be homogeneous and flexible. Curcumin-loaded nanoparticles were uniformly distributed on the film surface, as evidenced by atomic force microscopy and high-resolution field-emission gun scanning electron microscopy (FEG-SEM) images. Analyses of film cross sections using FEG-SEM demonstrate the presence of nanoparticles inside the films. In addition, films proved to have a good rate of hydration in simulated saliva solution, displaying a maximum swelling of around 80% and in vitro prolonged-controlled delivery of curcumin. These results indicate that the mucoadhesive films containing nanoparticles offer a promising approach for buccal delivery of curcumin, which may be particularly useful in the treatment of periodontal diseases that require a sustained drug delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  14. Synthesis of Multifunctional Nanoparticles for Cancer Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Fang, Chen

    2011-12-01

    Magnetic nanoparticles (MNPs) have attracted enormous research attention due to their unique magnetic properties that enable the detection by the non-invasive medical imaging modality---magnetic resonance imaging (MRI). By incorporating advanced features, such as specific targeting, multimodality, therapeutic delivery, the detectability and applicability of MNPs have been dramatically expanded. Smart and rational design on structure, composition and surface chemistry is essential to achieving desired properties in MNP systems, such as high sensitivity and colloidal stability, target specificity and/or multimodality. The goal of this research is to develop MNP-based platforms for the detection, diagnosis and treatment of cancer. MNPs with high contrast enhancement were coated with poly(ethylene glycol) (PEG)-based polymers to render aqueous stability and confer therapeutic-loading capability. Tumor-specific MNPs were developed by functionalization of nanoparticles with chlorotoxin (CTX) or arginine-glycine-aspartic acid (RGD) that targets, respectively, MMP-2 receptor or alphavbeta3 integrin overexpressed on a variety of cancer cells. The effects of ligands' molecular targets on the temporal and spatial distribution of MNPs within tumors were also investigated both in vitro and in vivo. All MNPs exhibited excellent long-term stability in cell culture media. CTX-labeled MNP exhibited sustained accumulation, penetration and distribution in the tumor mass. These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. To demonstrate the ability of nanoparticles as drug carrier, anthracyline chemotherapeutic drugs doxorubicin and mitoxantrone were attached to iron oxide nanoparticles. The theragnostic nanoparticles showed sufficient contrast enhancement and comparable anti-neoplastic efficacy in vitro. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to

  15. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  16. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  17. Self-Assembled ROS-Sensitive Polymer-Peptide Therapeutics Incorporating Built-in Reporters for Evaluation of Treatment Efficacy.

    PubMed

    Qiao, Zeng-Ying; Zhao, Wen-Jing; Cong, Yong; Zhang, Di; Hu, Zhiyuan; Duan, Zhong-Yu; Wang, Hao

    2016-05-09

    One of the major challenges in current cancer therapy is to maximize therapeutic effect and evaluate tumor progression under the scheduled treatment protocol. To address these challenges, we synthesized the cytotoxic peptide (KLAKLAK)2 (named KLAK) conjugated amphiphilic poly(β-thioester)s copolymers (H-P-K) composed of reactive oxygen species (ROS) sensitive backbones and hydrophilic polyethylene glycol (PEG) side chains. H-P-K could self-assemble into micelle-like nanoparticles by hydrophobic interaction with copolymer backbones as cores and PEG and KLAK as shells. The assembled polymer-peptide nanoparticles remarkably improved cellular internalization and accumulation of therapeutic KLAK in cells. Compared to free KLAK peptide, the antitumor activity of H-P-K was significantly enhanced up to ∼400 times, suggesting the effectiveness of the nanoscaled polymer-peptide conjugation as biopharmaceuticals. The higher antitumor activity of nanoparticles was attributed to the efficient disruption of mitochondrial membranes and subsequent excessive ROS production in cells. To realize the ROS monitoring and treatment evaluation, we encapsulated squaraine (SQ) dyes as built-in reporters in ROS-sensitive H-P-K micelles. The overgenerated ROS around mitochondria stimulated the swelling of nanoparticles and subsequent release of SQ, which formed H-aggregates and significantly increased the photoacoustic (PA) signal. We believed that this self-assembled polymer-peptide nanotherapeutics incorporating built-in reporters has great potential for high antitumor performance and in situ treatment evaluation.

  18. Novel photonic crystals: incorporation of nano-CdS into the natural photonic crystals within peacock feathers.

    PubMed

    Han, Jie; Su, Huilan; Song, Fang; Gu, Jiajun; Di, Zhang; Jiang, Limin

    2009-03-03

    In this investigation, the natural 2D photonic crystals (PhCs) within peacock feathers are applied to incorporate CdS nanocrystallites. Peacock feathers are activated by ethylenediaminetetraacetic/dimethylformamide suspension to increase the reactive sites on the keratin component, on which CdS nanoparticles (nano-CdS) are in situ formed in succession and serve as the "seeds" to direct further incorporation during the following solvothermal procedure. Thus, homogeneous nano-CdS are loaded both on the feathers' surface layer and inside the 2D PhCs. The obtained nano-CdS/peacock feathers hybrids are novel photonic crystals whose photonic stop bands are markedly different from that of the natural PhCs within original peacock feathers, as observed by the reflection spectra.

  19. Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities

    PubMed Central

    Shrestha, Ritu; Elsabahy, Mahmoud; Florez-Malaver, Stephanie; Samarajeewa, Sandani; Wooley, Karen L.

    2012-01-01

    Cationic shell crosslinked knedel-like nanoparticles (cSCKs) have emerged as a highly efficient transfection agent for nucleic acids delivery. In this study, a new class of cSCKs with tunable buffering capacities has been developed by altering the amounts of histamines and primary amines incorporated into their crosslinked shell regions. The effect of histamine content of these nanoparticles with a hydrodynamic diameter of ca. 20 nm, on the siRNA-binding affinity, cytotoxicity, immunogenicity, and transfection efficiency was investigated. The modification of cSCKs with histamine was found to reduce the siRNA-binding affinity and cellular binding. On the other hand, it significantly reduced the toxicity and immunogenicity of the nanoparticles with subsequent increase in the transfection efficiency. In addition, escape from endosomes was facilitated by having two species of low and high pKas (i.e. histamine and primary amine groups, respectively), as demonstrated by the potentiometric titration experiments and the effect of bafilomycin A1, an inhibitor of the endosomal acidification, on the transfection efficiency of cSCKs. Histamine modification of 15 mol% was a threshold, above which cSCKs with higher histamine content completely lost the ability to bind siRNA and to transfect cells. This study highlights the potential of histamine incorporation to augment the gene silencing activity of cationic nanoparticles, reduce their toxicity, and increase their biocompatibility, which is of particular importance in the design of nucleic acids delivery vectors. PMID:22901966

  20. Direct nucleation of silver nanoparticles on graphene sheet.

    PubMed

    Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J

    2012-08-01

    Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.