Science.gov

Sample records for nanoparticles incorporating kaempferol

  1. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  2. Permanent hair dye-incorporated hyaluronic acid nanoparticles.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Kim, Da-Hye; Choi, Ki-Choon

    2013-01-01

    We prepared p-phenylenediamine (PDA)-incorporated nanoparticles using hyaluronic acid (HA). PDA-incorporated HA nanoparticles have spherical shapes and sizes were less than 300 nm. The results of FT-IR spectra indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation between amine group of PDA and carboxyl group of HA. Furthermore, powder-X-ray diffractogram (XRD) measurement showed that intrinsic crystalline peak of PDA disappeared by formation of nanoparticle with HA at XRD measurement. These results indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation. At drug release study, the higher PDA contents induced faster release rate from nanoparticles. PDA-incorporated nanoparticles showed reduced intrinsic toxicity against HaCaT human keratinocyte cells at MTT assay and apoptosis assay. We suggest that PDA-incorporated HA nanoparticles are promising candidates for novel permanent hair dye. PMID:23088321

  3. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  4. Incorporation of metal nanoparticles into wood substrate and methods

    SciTech Connect

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  5. Incorporation of nanoparticles within mammalian spermatozoa using in vitro capacitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is still much unknown about the journey of spermatozoa within the female genital tract. Recent studies have investigated mammalian spermatozoa labeling with fluorescent quantum dot nanoparticles (QD) for non-invasive imaging. Furthermore, the incorporation of these QD within the spermatozoa ma...

  6. Inorganic-organic materials incorporating alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Vogelson, Cullen Taylor

    Chemically functionalized alumina nanoparticles (carboxylate-alumoxanes) are used as the inorganic component of a new class of inorganic-organic material. Lysine- or para-hydroxybenzoic acid-derivatized alumoxanes are prepared from the reaction of boehmite, [Al(O)(OH)]n, with the appropriate carboxylic acid. The peripheral hydroxides and amines of these alumoxanes react directly with DER 332 epoxide to form a hybrid material, or in the presence of a resin and hardener system, to form a composite material. Solid state NMR spectroscopy demonstrates that the alumoxanes are chemically bound to the resin matrix. The properties and cure times of the alumoxane materials are distinct from both the pure resins and from a physical blend of the resins with traditional fillers. A significant increase in thermal stability and tensile strength is observed for the resin systems. In order to produce molecular coupling layers, epoxides cross-linked with self-assembled monolayers (SAMs) grown on the native oxide of aluminum thin films on silicon substrates have been investigated. Specifically, SAMs have been formed by the attachment of different carboxylic acids. In order to investigate the cross-linking reaction between carboxylate monolayers and an epoxide, grown monolayers were reacted with a mono-epoxy resin. In addition to these surface materials, aluminum oxide surfaces supporting carboxylate monolayers were reacted in pairs with DER 332 to form a structural adhesive. These materials have been characterized variously by SEM, AFM, XPS, EDX, and contact angle measurements. The particle size dependence on pH of a series of alumoxanes was investigated. For each of the alumoxanes, PCS particle size measurements were obtained as a function of pH. In all cases, particle size control was afforded by variations in pH. Finally, crystal structures of several model compounds were determined by X-ray crystallography, and shown to form either sheets of dimers or tetrameric units. Through a

  7. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates.

    PubMed

    Mei, Qinggang; Wang, Chun; Yuan, Weicheng; Zhang, Guolin

    2015-01-01

    A strategy for selective mono-, di- and tri-O-methylation of kaempferol, predominantly on the basis of selective benzylation and controllable deacetylation of kaempferol acetates, was developed. From the selective deacetylation and benzylation of kaempferol tetraacetate (1), 3,4',5,-tri-O-acetylkaempferol (2) and 7-O-benzyl-3,4'5,-tri-O-acetylkaempferol (8) were obtained, respectively. By controllable deacetylation and followed selective or direct methylation of these two intermediates, eight O-methylated kaempferols were prepared with 51-77% total yields from kaempferol. PMID:25815082

  8. Antiatherogenic effects of kaempferol and rhamnocitrin.

    PubMed

    Tu, Yi-Chen; Lian, Tzi-Wei; Yen, Jui-Hung; Chen, Zong-Tsi; Wu, Ming-Jiuan

    2007-11-28

    Atherosclerosis is a chronic inflammatory disease of the arterial wall. Kaempferol and rhamnocitrin (kaempferol 7-O-methyl ether) are two anti-inflammatory flavonoids commonly found in plants. The aim of this study is to investigate the function of kaempferol and rhamnocitrin on prevention of atherosclerosis. Chemical analyses demonstrated that kaempferol and rhamnocitrin were scavengers of DPPH (1,1-diphenyl-2-picrylhydrazyl) with IC50 of 26.10 +/- 1.33 and 28.38 +/- 3.07 microM, respectively. Copper-induced low-density lipoprotein (LDL) oxidation was inhibited by kaempferol and rhamnocitrin, with similar potency, as measured by decreased formation of malondialdehyde and relative electrophoretic mobility (REM) on agarose gel, while rhamnocitrin reduced delayed formation of conjugated dienes better than kaempferol. Cholesterol-laden macrophages are the hallmark of atherogenesis. The class B scavenger receptor, CD36, binds oxidized low-density lipoprotein (oxLDL), is found in atherosclerotic lesions, and is up-regulated by oxLDL. Addition of kaempferol and rhamnocitrin (20 microM) caused significant reductions in cell surface CD36 protein expression in THP-1-derived macrophages (p < 0.05). Reverse transcription quantitative PCR (RT-Q-PCR) showed that kaempferol and rhamnocitrin (20 microM) decreased oxLDL-induced CD36 mRNA expression (p < 0.01 and p < 0.05, respectively). Kaempferol- and rhamnocitrin-treated macrophages also showed reduction in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake. Current evidences indicate that kaempferol and rhamnocitrin not only protect LDL from oxidation but also prevent atherogenesis through suppressing macrophage uptake of oxLDL. PMID:17973448

  9. A review on the dietary flavonoid kaempferol.

    PubMed

    Calderón-Montaño, J M; Burgos-Morón, E; Pérez-Guerrero, C; López-Lázaro, M

    2011-04-01

    Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases. PMID:21428901

  10. Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats

    PubMed Central

    Toh, May Fern; Mendonca, Emma; Eddie, Sharon L.; Endsley, Michael P.; Lantvit, Daniel D.; Petukhov, Pavel A.; Burdette, Joanna E.

    2015-01-01

    Objective Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). Kaempferol is a flavonoid that functions as a non-steroidal selective progesterone receptor modulator (SPRM) in vitro. This study investigated the molecular and physiological effects of kaempferol in the ovariectomized rat uteri. Methods Since genistein is a phytoestrogen that was previously demonstrated to increase uterine weight and proliferation, the ability of kaempferol to block genistein action in the uterus was investigated. Analyses of proliferation, steroid receptor expression, and induction of well-established PR-regulated targets Areg and Hand2 were completed using histological analysis and qPCR gene induction experiments. In addition, kaempferol in silico binding analysis was completed for PR. The activation of estrogen and androgen receptor signalling was determined in vitro. Results Molecular docking analysis confirmed that kaempferol adopts poses that are consistent with occupying the ligand-binding pocket of PRA. Kaempferol induced expression of PR regulated transcriptional targets in the ovariectomized rat uteri, including Hand2 and Areg. Consistent with progesterone-l ke activity, kaempferol attenuated genistein-induced uterine luminal epithelial proliferation without increasing uterine weight. Kaempferol signalled without down regulating PR expression in vitro and in vivo and without activating estrogen and androgen receptors. Conclusion Taken together, these data

  11. Antibacterial nano-structured titania coating incorporated with silver nanoparticles.

    PubMed

    Zhao, Lingzhou; Wang, Hairong; Huo, Kaifu; Cui, Lingyun; Zhang, Wenrui; Ni, Hongwei; Zhang, Yumei; Wu, Zhifen; Chu, Paul K

    2011-08-01

    Titanium (Ti) implants are widely used clinically but post-operation infection remains one of the most common and serious complications. A surface boasting long-term antibacterial ability is highly desirable in order to prevent implant associated infection. In this study, titania nanotubes (TiO(2)-NTs) incorporated with silver (Ag) nanoparticles are fabricated on Ti implants to achieve this purpose. The Ag nanoparticles adhere tightly to the wall of the TiO(2)-NTs prepared by immersion in a silver nitrate solution followed by ultraviolet light radiation. The amount of Ag introduced to the NTs can be varied by changing processing parameters such as the AgNO(3) concentration and immersion time. The TiO(2)-NTs loaded with Ag nanoparticles (NT-Ag) can kill all the planktonic bacteria in the suspension during the first several days, and the ability of the NT-Ag to prevent bacterial adhesion is maintained without obvious decline for 30 days, which are normally long enough to prevent post-operation infection in the early and intermediate stages and perhaps even late infection around the implant. Although the NT-Ag structure shows some cytotoxicity, it can be reduced by controlling the Ag release rate. The NT-Ag materials are also expected to possess satisfactory osteoconductivity in addition to the good biological performance expected of TiO(2)-NTs. This controllable NT-Ag structure which provides relatively long-term antibacterial ability and good tissue integration has promising applications in orthopedics, dentistry, and other biomedical devices. PMID:21565401

  12. Kaempferol and inflammation: From chemistry to medicine.

    PubMed

    Devi, Kasi Pandima; Malar, Dicson Sheeja; Nabavi, Seyed Fazel; Sureda, Antoni; Xiao, Jianbo; Nabavi, Seyed Mohammad; Daglia, Maria

    2015-09-01

    Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol. PMID:25982933

  13. Non-seeded synthesis and characterization of superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles via ultrasound.

    PubMed

    Sodipo, Bashiru Kayode; Abdul Aziz, Azlan

    2015-03-01

    A non-seeded method of incorporating superparamagnetic iron oxide nanoparticles (SPION) into silica nanoparticles is presented. Mixture of both SPION and silica nanoparticles was ultrasonically irradiated. The collapsed bubbles and shockwave generated from the ultrasonic irradiation produce tremendous force that caused inelastic collision and incorporation of SPION into the silica. Physicochemical analyses using transmission electron microscope (TEM), electronic spectroscopic imaging (ESI), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy demonstrated the formation of SPION/silica composite nanoparticles. The prepared composite nanoparticles exhibited superparamagnetic behaviour and nearly 70% of the initial saturation magnetization (Ms) of the SPION was retained. The presence and reactivity of the silica were demonstrated via assembling decanethiol monolayer on the composite nanoparticles. The silanol group of the silica provided the binding site for the alkyl group in the decanethiol molecules. Therefore, the thiol moiety became the terminal and functional group on the magnetic composite nanoparticles. PMID:25315418

  14. Directly patternable SnO{sub 2} thin films incorporating Pt nanoparticles

    SciTech Connect

    Kim, Hyuncheol; Choi, Yong-June; Kang, Kyung-Mun; Park, Hyung-Ho

    2014-04-01

    Highlights: • Direct-patterning of SnO{sub 2} films incorporated with Pt nanoparticles. • Pt incorporated SnO{sub 2} thin films by using photochemical solution deposition. • Reduction catalytic behavior of Pt nanoparticles. • Progress reduction of SnO{sub 2} with increasing amount of Pt nanoparticles. • Enhanced electrical conductivity of SnO{sub 2} films with Pt nanoparticles incorporation. - Abstract: Direct-patterning of SnO{sub 2} films incorporating Pt nanoparticles was performed by using a photochemical solution deposition without a photoresist or dry etching. Incorporating Pt nanoparticles into these films had a slight effect on their crystallinity and almost no effect on their transmittance. The inclusion of Pt nanoparticles enhanced the electrical conductivity of the SnO{sub 2} thin films compared to their pristine forms. The chemical bonding state of the films was analyzed by X-ray photoelectron spectroscopy to investigate the effect of the Pt nanoparticles on the carrier concentration in the film. It was concluded that the reduction of SnO{sub 2} thin films by Pt nanoparticles progressed as a result of the presence of the Pt nanoparticles, causing an oxygen deficiency to develop in SnO{sub 2} and thereby influencing the carrier concentration of the film.

  15. Curcumin-incorporated albumin nanoparticles and its tumor image

    NASA Astrophysics Data System (ADS)

    Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying

    2015-01-01

    Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.

  16. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation.

    PubMed

    Wan, Jiaqi; Meng, Xiangxi; Liu, Enzhong; Chen, Kezheng

    2010-06-11

    Bifunctional nanoprobes with both magnetic and optical contrast have been developed for ultra-sensitive brain tumor imaging at the cellular level. The nanoprobes were synthesized by simultaneously incorporating a magnetite nanoparticle cluster and fluorescence dyes into silica encapsulation by a sol-gel approach under ultrasonic treatment. The nanoprobes maintain superparamagnetic behavior at room temperature and possess enhanced transverse relaxivity and good photostability. As a glioma targeting ligand, chlorotoxin was covalently bonded to the surface of the nanoprobes. In vitro cellular uptake assays demonstrated that the nanoprobes were highly specific, taken up by human U251-MG glioma cells via receptor-mediated endocytosis. The labeled glioma cells were readily detectable by both MR imager and confocal laser scanning microscopy. PMID:20472942

  17. Effect of incorporated PVP/Ag nanoparticles on ZnPc/C60 organic solar cells.

    PubMed

    Heo, Ilsu; Kim, Jinhyun; Yim, Sanggyu

    2013-06-01

    Various sizes of PVP-capped Ag nanoparticles were incorporated in the PEDOT:PSS layer of ZnPc/C60-based small-molecule organic solar cells. The incorporated nanoparticles partially block the incident light, but this was offset by the scattering effect and consequent increase in path lengths through the active organic layers. As a result, the overall power conversion efficiency of the cell increased by approximately 15% when nanoparticles with an average diameter of 24 nm were used. PMID:23862493

  18. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  19. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo

    PubMed Central

    Beyth, Nurit; Yudovin-Farber, Ira; Perez-Davidi, Michael; Domb, Abraham J.; Weiss, Ervin I.

    2010-01-01

    Incorporation of cross-linked quaternary ammonium polyethylenimine (QPEI) nanoparticles in dental resin composite has a long-lasting and wide antimicrobial effect with no measured impact on biocompatibility in vitro. We hypothesized that QPEI nanoparticles incorporated into a resin composite have a potent antibacterial effect in vivo and that this stress condition triggers a suicide module in the bacterial biofilm. Ten volunteers wore a removable acrylic appliance, in which two control resin composite specimens and two resin composite specimens incorporating 1% wt/wt QPEI nanoparticles were inserted to allow the buildup of intraoral biofilms. After 4 h, the specimens were removed and tested for bacterial vitality and biofilm thickness, using confocal laser scanning microscopy. The vitality rate in specimens incorporating QPEI was reduced by > 50% (p < 0.00001), whereas biofilm thickness was increased (p < 0.05). The ability of the biofilm supernatant to restore bacterial death was tested in vitro. The in vitro tests showed a 70% decrease in viable bacteria (p < 0.05). Biofilm morphological differences were also observed in the scanning electron microscope micrographs of the resin composite versus the resin composite incorporating QPEI. These results strongly suggest that QPEI nanoparticles incorporated at a low concentration in resin composite exert a significant in vivo antibiofilm activity and exhibit a potent broad spectrum antibacterial activity against salivary bacteria. PMID:21131569

  20. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles.

    PubMed

    Villanueva, María Emilia; Diez, Ana María Del Rosario; González, Joaquín Antonio; Pérez, Claudio Javier; Orrego, Manuel; Piehl, Lidia; Teves, Sergio; Copello, Guillermo Javier

    2016-06-29

    In order to obtain an antimicrobial gel, a starch-based hydrogel reinforced with silica-coated copper nanoparticles (Cu NPs) was developed. Cu NPs were synthesized by use of a copper salt and hydrazine as a reducing agent. In order to enhance Cu NP stability over time, they were synthesized in a starch medium followed by a silica coating. The starch hydrogel was prepared by use of urea and water as plasticizers and it was treated with different concentrations of silica-coated copper nanoparticles (Si-Cu NPs). The obtained materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, scanning electron microscopy (SEM), and rheometry. FT-IR and EPR spectra were used for characterization of Cu NPs and Si-Cu NPs, confirming that a starch cap was formed around the Cu NP and demonstrating the stability of the copper nanoparticle after the silica coating step. SEM images showed Cu NP, Si-Cu NP, and hydrogel morphology. The particle size was polydisperse and the structure of the gels changed along with particle concentration. Increased NP content led to larger pores in starch structure. These results were in accordance with the rheological behavior, where reinforcement by the Si-Cu NP was seen. Antimicrobial activity was evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial species. The hydrogels were demonstrated to maintain antimicrobial activity for at least four cycles of use. A dermal acute toxicity test showed that the material could be scored as slightly irritant, proving its biocompatibility. With these advantages, it is believed that the designed Si-Cu NP loaded hydrogel may show high potential for applications in various clinical fields, such as wound dressings and fillers. PMID:27295333

  1. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  2. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material.

    PubMed

    Thomas, Roshmi; Soumya, K R; Mathew, Jyothis; Radhakrishnan, E K

    2015-08-01

    Biosynthesized silver nanoparticles (AgNPs) incorporated polycaprolactone (PCL) nanomembrane was prepared by electrospinning as a cost-effective nanocomposite for application as an antimicrobial agent against wound infection. The nanocomposite membrane was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis and Scanning Electron microscopy (SEM). The hydrophilicity analysis of electrospun membranes as evaluated by water contact angle measurement showed the change of hydrophobicity of PCL to hydrophilic upon incorporation of silver nanoparticles. Better mechanical properties were also observed for PCL membrane due to the incorporation of silver nanoparticles and are highly supportive to explore its biomedical applications. Further antibacterial analysis of silver nanoparticle-incorporated PCL membrane against common wound pathogens coagulase-negative Staphylococcus epidermidis and Staphylococcus haemolyticus showed remarkable activity. As biosynthesized AgNPs are least explored for clinical applications, the current study is a promising cost-effective method to explore the development of silver nanoparticle-based electrospun nanocomposite to resist wound-associated infection. PMID:26113218

  3. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    SciTech Connect

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  4. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-01

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  5. Maximizing dye fluorescence via incorporation of metallic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Lei, Guangyin; Booker, Annette C.; Linares, Katherine A.; Fleming, Dara L.; Meehan, Kathleen; Lu, Guo-Quan; Love, Nancy G.; Love, Brian J.

    2004-12-01

    Gram-negative bacteria initiate a stress response in which the cells efflux potassium when electrophilic toxins are introduced into their environment. Hence, measurement of K+ concentration in the surrounding water using a fluorescence-based potassium-selective optode has been proposed for environmental and homeland security applications. Unfortunately, the fluorophore commonly used in such an optode is inefficient. Surface enhanced fluorescence (SEF) can be used to increase its fluorescence efficiency, which will improve the sensor's performance. To understand this phenomenon before applying it to the optode system, Rose Bengal (RB), an inexpensive and well characterized dye, in solution with gold and silver nanoparticles was studied. As expected, fluorescence from RB-gold solutions was low since alignment of gold's surface plasmon resonance (SPR) peak and absorption and fluorescence energies in RB favored energy transfer from RB to the gold nanoparticles. The alignment of the silver's SPR peak and the RB transitions favored transfer from silver to RB. SEF was observed in solutions with large dye-to-silver separation. However, little fluorescence was observed when the solution was pumped at the silver's SPR peak. Fluorescence from the dye decreased as dye-to-silver separation decreased. An explanation for these observations is presented; additional research is needed to develop a complete understanding.

  6. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    NASA Astrophysics Data System (ADS)

    Dispenza, C.; Sabatino, M.-A.; Niconov, A.; Chmielewska, D.; Spadaro, G.

    2012-09-01

    PANI aqueous nanocolloids in their acid-doped, inherently conductive form were synthesised by means of suitable water soluble polymers used as stabilisers. In particular, poly(vinyl alcohol) (PVA) or chitosan (CT) was used to stabilise PANI nanoparticles, thus preventing PANI precipitation during synthesis and upon storage. Subsequently, e-beam irradiation of the PANI dispersions has been performed with a 12 MeV Linac accelerator. PVA-PANI nanocolloid has been transformed into a PVA-PANI hydrogel nanocomposite by radiation induced crosslinking of PVA. CT-PANI nanoparticles dispersion, in turn, was added to PVA to obtain wall-to-wall gels, as chitosan mainly undergoes chain scission under the chosen irradiation conditions. While the obtainment of uniform PANI particle size distribution was preliminarily ascertained with laser light scattering and TEM microscopy, the typical porous structure of PVA-based freeze dried hydrogels was observed with SEM microscopy for the hydrogel nanocomposites. UV-visible absorption spectroscopy demonstrates that the characteristic, pH-dependent and reversible optical absorption properties of PANI are conferred to the otherwise optically transparent PVA hydrogels. Selected formulations have been also subjected to MTT assays to prove the absence of cytotoxicity.

  7. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles.

    PubMed

    Obradovic, Bojana; Stojkovska, Jasmina; Jovanovic, Zeljka; Miskovic-Stankovic, Vesna

    2012-01-01

    Alginate colloid solution containing electrochemically synthesized silver nanoparticles (AgNPs) was investigated regarding the nanoparticle stabilization and possibilities for production of alginate based nanocomposite hydrogels in different forms. AgNPs were shown to continue to grow in alginate solutions for additional 3 days after the synthesis by aggregative mechanism and Ostwald ripening. Thereafter, the colloid solution remains stable for 30 days and could be used alone or in mixtures with aqueous solutions of poly(vinyl alcohol) (PVA) and poly(N-vinyl-2-pyrrolidone) (PVP) while preserving AgNPs as verified by UV-Vis spectroscopy studies. We have optimized techniques for production of Ag/alginate microbeads and Ag/alginate/PVA beads, which were shown to efficiently release AgNPs decreasing the Escherichia coli concentration in suspensions for 99.9% over 24 h. Furthermore, Ag/hydrogel discs based on alginate, PVA and PVP were produced by freezing-thawing technique allowing adjustments of hydrogel composition and mechanical properties as demonstrated in compression studies performed in a biomimetic bioreactor. PMID:22203513

  8. Kaempferol tri- and tetraglycosides from the flowers of Clematis cultivar.

    PubMed

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2012-02-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 2)-[alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside]-7-O-beta-glucopyranoside (2) was isolated from the flowers of Clematis cultivar "Jackmanii Superba", together with a known kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7-O-beta-glucopyranoside (1). The chemical structures of the isolated glycosides were established by UV, LC-MS, characterization of acid hydrolysates, and 1H and 13C NMR spectroscopy. PMID:22474946

  9. Nanocomposite Materials - Ferroelectric Nanoparticles Incorporated into Porous Matrix

    NASA Astrophysics Data System (ADS)

    Rysiakiewicz-Pasek, E.; Poprawski, R.; Ciżman, A.; Sieradzki, A.

    The aim of this work is to develop a technique of introducing selected ferroelectric materials (TGS, NaNO2, NaNO3, KNO3, ADP and KDP) into porous glasses with various average pore dimensions. The major efforts have been focused on the investigations of the influence of the pore size on physical properties and phase transition of nanocrystals embedded into porous matrix with different methods. The ferroelectrics have been introduced into porous glasses from the melt and a water solution. The results of electrical (dielectric, pyroelectric) and thermal (dilatometric and calorimetric) measurements have shown that the observed sequences of phase transitions in ferroelectric materials embedded into the porous glasses are similar to that in bulk crystals. The relationship between phase transition and melt temperatures versus average values of pore dimensions has been determined. The experimentally observed shift of phase transition temperatures is the superposition of the size effect and pressure effect created by the difference of thermal expansion coefficients of ferroelectrics nanoparticles and glass matrix.

  10. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca

    PubMed Central

    Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M.

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  11. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca.

    PubMed

    Behbahani, M; Sayedipour, S; Pourazar, A; Shanehsazzadeh, M

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  12. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2016-03-01

    An open wound is highly prone to bacterial colonization and infection. Bacterial barrier property is an important factor that determines the success of a wound coverage material. Apart from the bacterial barrier property, presence of antibacterial agents can successfully eliminate the invasion and colonization of pathogen in the wound. Silver nanoparticles are well-known antimicrobial agents against a wide range of microorganisms. Biosynthesized silver nanoparticles are more acceptable for medical applications due to superior biocompatibility than chemically synthesized ones. Presence of biomolecules on biosynthesized silver nanoparticles enhances its therapeutic efficiency. Polycaprolactone (PCL) is a well-known material for biomedical applications including wound dressings. Electrospinning is an excellent technique for the fabrication of thin membranes for wound coverage applications with barrier property against microbes. In this paper, we report the fabrication and characterization of electrospun PCL membranes incorporated with biosynthesized silver nanoparticles for wound dressing applications.

  13. Development of Germano-Silicate Optical Fiber Incorporated with Germanium Nanoparticles and Its Optical Characteristics.

    PubMed

    Jeong, Seongmook; Ju, Seongmin; Kim, Youngwoong; Jeong, Hyejeong; Boo, Seongjae; Han, Won-Taek

    2016-06-01

    The germano-silicate optical fiber incorporated with Ge nanoparticles with enhanced optical nonlinearity was developed by using modified chemical vapor deposition and drawing processes. A broad photoluminescence band obtained by pumping with the 404 nm superluminescent diode was found to appear from 540 nm to 1,000 nm. The non-resonant nonlinear refractive index, n2, of the fiber measured by the continuous wave self-phase modulation method was 4.95 x 10(-20) m2/W due to the incorporated Ge nanoparticles in the fiber core. The enhancement of the non-resonant optical non-linearity may be due to the creation of the NBOs and other defects from the incorporated Ge-NPs in the fiber core. PMID:27427722

  14. Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed.

    PubMed

    Marfak, Abdelghafour; Trouillas, Patrick; Allais, Daovy-Paulette; Champavier, Yves; Calliste, Claude-Alain; Duroux, Jean-Luc

    2003-02-26

    Oxidative reaction between hydroxymethyl radical ((*)CH(2)OH) and kaempferol, in methanol and methanol/water mixtures, was studied by gamma-radiolysis using a (60)Co source. Radiolysis was performed with concentrations and doses ranging from 5 x 10(-)(5) M to 5 x 10(-)(3) M and from 0.5 kGy to 14 kGy, respectively. Kaempferol degradation was followed by HPLC. Results showed that (*)CH(2)OH reacts with kaempferol at the 3-OH group and produces two depsides (K1 and K2) and other products including K3. K1, K2, and K3 were identified by NMR, LC-MS, and HRMS. The kaempferol degradation pathway leading to the K1, K2, and K3 formation is proposed. It was observed that the more water concentration in the irradiation medium increases, the more K2 concentration increases. Comprehension of food preservation is not clear because many phenomena occurring during irradiation are not established. Radiolysis of kaempferol in water/methanol mixtures helps to elucidate the phenomenon and it is possible that during the treatment of nutriments by gamma-irradiation, a series of products such as depside K2 could be formed. Antioxidant properties of kaempferol radiolysis products were evaluated according to their capacity to decrease the EPR DPPH (1,1-diphenyl-2-picrylhydrazil) signal and to inhibit superoxide radicals formed by the enzyme reaction "xanthine + xanthine oxidase". PMID:12590467

  15. Temperature regulated-chemical vapor deposition for incorporating NiO nanoparticles into mesoporous media

    NASA Astrophysics Data System (ADS)

    Han, Sang Wook; Kim, Il Hee; Kim, Dae Han; Park, Ki Jung; Park, Eun Ji; Jeong, Myung-Geun; Kim, Young Dok

    2016-11-01

    We have developed a novel strategy for incorporating NiO nanoparticles into mesoporous Al2O3 with a mean pore size of ∼12 nm and particle size of ∼1 mm. Ni-precursor vapor and ambient atmosphere were filled in a closed chamber with mesoporous Al2O3, and the chamber was initially heated at ∼100 °C, at which no chemical reaction between the inorganic precursor, oxygen, water vapor in the atmosphere, and the surface of Al2O3 took place. Next, the temperature of the system was increased to 260 °C for deposition of NiO. We found that NiO nanoparticles were not only deposited on the surface, but were also incorporated in a 50 μm-deep region of the mesoporous Al2O3 gel. We also demonstrated high CO oxidation activity and reusability of the deactivated NiO/Al2O3 catalysts prepared by the aforementioned method. These results suggest that our strategy could be widely applicable to the incorporation of various nanoparticles into mesoporous supports.

  16. Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

    SciTech Connect

    Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

    2008-09-15

    The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

  17. Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles

    SciTech Connect

    Lucas, Marcel; Macdonald, Brian A; Wagner, Gregory L; Joyce, Steven A; Rector, Kirk D

    2010-01-01

    nanoparticles that resulted in the sample contraction and the deposition of nanoparticles onto the surface and embedded into the cell wall. To date, both silver and gold particles ranging in size from 40-100 nm have been incorporated into wood. Penetration of gold nanoparticles of 100 nm diameter in the cell walls was best confirmed by near-infrared confocal Raman microscopy, since the deposition of gold nanoparticles induces a significant enhancement of the Raman signal from the wood in their close proximity, an enhancement attributed to the surface-enhanced Raman effect (SERS). After rinsing with water, scanning electron microscopy (SEM) and Raman images of the same areas show that most nanoparticles remained on the pretreated sample. Raman images at different depths reveal that a significant number of nanoparticles were incorporated into the wood sample, at depths up to 4 {micro}m, or 40 times the diameter of the nanoparticles. Control experiments on an untreated wood sample resulted in the deposition of nanoparticles only at the surface and most nanoparticles were removed upon rinsing. This particle incorporation process enables the development of new pretreatments, since the nanoparticles have a high surface-to-volume ratio and could be chemically functionalized. Other potential applications for the incorporated nanoparticles include isotope tracing, catalysis, imaging agents, drug-delivery systems, energy-storage devices, and chemical sensors.

  18. Impact of magnetite nanoparticle incorporation on the eigenfrequencies of nanocomposite microcapsules

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Grishina, O. A.

    2015-03-01

    Modern researches showed that nanocomposite films with magnetite nanoparticle incorporation have good perspectives for applications in electronics to create antireflective coatings and also for biomedical applications to create coatings with remote control of physical properties using alternative magnetic field or microwave radiation, which is very important for fabrication of new generation substrates in tissue engineering and advanced drug delivery systems. In particular, the unique properties of advanced nanocomposite microcapsules allowed developing of the supramolecular system of targeted drug delivery. A study of the behavior of the nanocomposite shell of microcapsules, which consists of alternate layers of negatively charged iron oxide nanoparticles and cationic polyallylamine hydrochloride molecules, was carried out. The aim of the present study was to investigate the effect of the number of nanoparticle layers on magnetic properties of polyelectrolyte/nanoparticles nanocomposite microcapsules prepared via layer-by-layer technique using iron oxide colloids. In result of numerical simulation using ANSYS Workbench software the behavior of the nanocomposite shell of microcapsules depending on the concentration of magnetite particles in it was investigated. Modal and harmonic analysis of behavior of the microcapsules shell was conducted in water at a temperature of 37°. As a result of numerical experiment the eigenfrequencies and mode shape were first time defined for any modifications of the nanocomposite microcapsules. It has been established that the magnetic permeability value depends on the number of iron oxide nanoparticle layers in a nanocomposite microcapsule.

  19. Preparation of polylactide-co-glycolide nanoparticles incorporating celecoxib and their antitumor activity against brain tumor cells

    PubMed Central

    Kim, Tae-Ho; Jeong, Young-Il; Jin, Shu-Guang; Pei, Jian; Jung, Tae-Young; Moon, Kyung-Sub; Kim, In-Young; Kang, Sam-Suk; Jung, Shin

    2011-01-01

    Background Celecoxib, a cyclo-oxygenase (COX)-2 inhibitor, has been reported to mediate growth inhibitory effects and to induce apoptosis in various cancer cell lines. In this study, we examined the potential effects of celecoxib on glioma cell proliferation, migration, and inhibition of COX-2 expression in vitro. Methods Celecoxib was incorporated into poly DL-lactide-co-glycolide (PLGA) nanoparticles for antitumor drug delivery. Results PLGA nanoparticles incorporating celecoxib had spherical shapes and their particle sizes were in the range of 50–200 nm. Drug-loading efficiency was not significantly changed according to the solvent used, except for acetone. Celecoxib was released from the PLGA nanoparticles for more than 2 days, and the higher the drug content, the longer the duration of drug release. PLGA nanoparticles incorporating celecoxib showed cytotoxicity against U87MG tumor cells similar to that of celecoxib administered alone. Furthermore, celecoxib did not affect the degree of migration of U87MG cells. PLGA nanoparticles incorporating celecoxib showed dose-dependent cytotoxicity similar to that of celecoxib alone in C6 rat glioma cells. Western blot assay of the C6 cells showed that neither celecoxib alone nor PLGA nanoparticles incorporating celecoxib affected COX-2 expression. Conclusion PLGA nanoparticles incorporating celecoxib had antitumor activity similar to that of celecoxib alone, even though these particles did not affect the degree of migration or COX-2 expression in the tumor cells. PMID:22114493

  20. Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material

    PubMed Central

    Mahross, Hamada Zaki; Baroudi, Kusai

    2015-01-01

    Objective: The objective was to investigate the effect of silver nanoparticles (AgNPs) incorporation on viscoelastic properties of acrylic resin denture base material. Materials and Methods: A total of 20 specimens (60 × 10 × 2 mm) of heat cured acrylic resin were constructed and divided into four groups (five for each), according to the concentration of AgNPs (1%, 2%, and 5% vol.) which incorporated into the liquid of acrylic resin material and one group without additives (control group). The dynamic viscoelastic test for the test specimens was performed using the computerized material testing system. The resulting deflection curves were analyzed by material testing software NEXYGEN MT. Results: The 5% nanoparticles of silver (NAg) had significantly highest mean storage modulus E’ and loss tangent Tan δ values followed by 2% NAg (P < 0.05). For 1% nanosilver incorporation (group B), there were no statistically significant differences in storage modulus E’, lost modulus E” or loss tangent Tan δ with other groups (P > 0.05). Conclusion: The AgNPs incorporation within the acrylic denture base material can improve its viscoelastic properties. PMID:26038651

  1. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with "covalently" incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-01

    This study is concerned with the incorporation of surface modified fumed silica nanoparticles (FSNPs) into polymethacrylate based monolithic columns for use in reversed phase chromatography (RPC) of small solutes and proteins. First, FSNPs were modified with 3-(trimethoxysilyl)propylmethacrylate (TMSPM) to yield the "hybrid" methacryloyl fumed silica nanoparticle (MFSNP) monomer. The resulting MFSNP was then mixed with glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in a binary porogenic solvent composed of cyclohexanol and dodecanol, and the in situ copolymerization of MFSNP, GMM and EDMA was performed in a stainless steel column of 4.6 mm i.d. The silanol groups of the hybrid monolith thus obtained were grafted with octadecyl ligands by perfusing the hybrid monolithic column with a solution of 4% w/v of dimethyloctadecylchlorosilane (DODCS) in toluene while the column was maintained at 110°C for 6h (in a heated HPLC oven). One of the originalities of this study was to demonstrate MFSNP as a novel derivatized "hybrid monomer" in making RPC monolithic columns with surface bound octadecyl ligands. In this respect, the RPC behavior of the monolithic column with "covalently" incorporated FNSPs having surface grafted octadecyl ligands was evaluated with alkylbenzenes, aniline derivatives and phenolic compounds. The results showed that the hybrid poly(GMA-EDMA-MFSNP) having surface bound octadecyl ligands exhibited hydrophobic interactions under reversed phase elution conditions. Furthermore, six standard proteins were baseline separated on the column using a 10min linear gradient elution at increasing ACN concentration in the mobile phase at a flow rate of 1.0mL/min using a 10 cm×4.6mm i.d. column. The relative standard deviations (RSDs) for the retention times of the tested solutes were lower than 2.1% and 2.4% under isocratic elution and gradient elution conditions, respectively. PMID:27059396

  2. Kaempferol, a potential cytostatic and cure for inflammatory disorders.

    PubMed

    Rajendran, Peramaiyan; Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Palaniswami, Rajendran; Nishigaki, Yutaka; Nishigaki, Ikuo

    2014-10-30

    Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine (e.g., Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Its anti-oxidant/anti-inflammatory effects have been demonstrated in various disease models, including those for encephalomyelitis, diabetes, asthma, and carcinogenesis. Moreover, kaempferol act as a scavenger of free radicals and superoxide radicals as well as preserve the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase, and glutathione-S-transferase. The anticancer effect of this flavonoid is mediated through different modes of action, including anti-proliferation, apoptosis induction, cell-cycle arrest, generation of reactive oxygen species (ROS), and anti-metastasis/anti-angiogenesis activities. In addition, kaempferol was found to exhibit its anticancer activity through the modulation of multiple molecular targets including p53 and STAT3, through the activation of caspases, and through the generation of ROS. The anti-tumor effects of kaempferol have also been investigated in tumor-bearing mice. The combination of kaempferol and conventional chemotherapeutic drugs produces a greater therapeutic effect than the latter, as well as reduces the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of kaempferol with a focus on its molecular targets and the possible use of this flavonoid for the treatment of inflammatory diseases and cancer. PMID:25147152

  3. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements.

    PubMed

    Gjorgievska, Elizabeta; Van Tendeloo, Gustaaf; Nicholson, John W; Coleman, Nichola J; Slipper, Ian J; Booth, Samantha

    2015-04-01

    Conventional glass-ionomer cements (GICs) are popular restorative materials, but their use is limited by their relatively low mechanical strength. This paper reports an attempt to improve these materials by incorporation of 10 wt% of three different types of nanoparticles, aluminum oxide, zirconium oxide, and titanium dioxide, into two commercial GICs (ChemFil® Rock and EQUIA™ Fil). The results indicate that the nanoparticles readily dispersed into the cement matrix by hand mixing and reduced the porosity of set cements by filling the empty spaces between the glass particles. Both cements showed no significant difference in compressive strength with added alumina, and ChemFil® Rock also showed no significant difference with zirconia. By contrast, ChemFil® Rock showed significantly higher compressive strength with added titania, and EQUIA™ Fil showed significantly higher compressive strength with both zirconia and titania. Fewer air voids were observed in all nanoparticle-containing cements and this, in turn, reduced the development of cracks within the matrix of the cements. These changes in microstructure provide a likely reason for the observed increases in compressive strength, and overall the addition of nanoparticles appears to be a promising strategy for improving the physical properties of GICs. PMID:25691120

  4. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Sun, Minjie; Ping, Qineng; Ying, Zhi; Liu, Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  5. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review.

    PubMed

    Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin

    2016-01-01

    Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO₂, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104

  6. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    NASA Astrophysics Data System (ADS)

    Jameel, Zainab N.; Haider, Adawiya J.; Taha, Samar Y.; Gangopadhyay, Shubhra; Bok, Sangho

    2016-07-01

    A coating with self-cleaning characteristics has been developed using a TiO2/SiO2 hybrid sol-gel, TiO2 nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO2 nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO2 nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO2 phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO2 NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  7. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    SciTech Connect

    More, D.S.; Moloto, M.J.; Moloto, N.; Matabola, K.P.

    2015-05-15

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphine (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to characterize the

  8. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-01

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions. PMID:27059399

  9. Recent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors

    PubMed Central

    Yogeswaran, Umasankar; Thiagarajan, Soundappan; Chen, Shen-Ming

    2008-01-01

    Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantageous than other types of sensors. The active sensing materials used in these types of sensors can be any material that acts as a catalyst for the oxidation or reduction of particular analyte or set of analytes. Among various kinds of sensing materials, deoxyribonucleic acid (DNA), carbon nanotubes (CNTs) and nanoparticles have received considerable attraction in recent years. DNA is one of the classes of natural polymers, which can interact with CNTs and nanoparticles to form new types of composite materials. These composite materials have also been used as sensing materials for sensor applications. They have advantages in characteristics such as extraordinary low weight and multifunctional properties. In this article, advantages of DNA incorporated in CNT and nanoparticle hybrids for electrochemical sensors and biosensors are presented in detail, along with some key results noted from the literature.

  10. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    PubMed

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect. PMID:26249594

  11. A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pirmoradi, Fatemeh Nazly; Cheng, Luna; Chiao, Mu

    2010-01-01

    We report a new magnetic polymer membrane for MEMS application. The polymeric magnetic composite has coated iron oxide nanoparticles incorporated in a polydimethylsiloxane (PDMS) matrix. Existing magnetic polymeric materials have particle agglomeration problems, which result in rough surfaces and uneven mechanical and optical properties. We show that the use of iron oxide nanoparticles (10 nm in diameter) with fatty acid and hydrophobic coatings inhibits aggregation of particles in the PDMS polymer matrix. Agglomerated particle sizes in thin-film PDMS composites incorporated with uncoated and coated particles are 51 ± 24 µm and 1.6 ± 0.25 µm, respectively. The PDMS composites exhibit saturation magnetization of 22.8 to 23.94 emu g-1. Stress-strain curves of the composites are characterized by tensile tests. Free-standing magnetic PDMS membranes are fabricated in different sizes from 4 mm to 7 mm in diameter and with the thickness of 35.5 ± 1.5 µm. The membrane of 7 mm diameter achieves deflection of 625 µm in a 0.417 T magnetic field. The magnetic PDMS membranes may be used in micro-pumps and lab-on-a-chip applications.

  12. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate).

    PubMed

    Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Son, Gyung Mo; Jeong, Young-Il; Kwak, Tae-Won; Kim, Do Hyung; Chung, Chung-Wook; Rhee, Young Ha; Kang, Dae Hwan; Kim, Hyung Wook

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a (1)H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a (1)H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916

  13. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate)

    PubMed Central

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a 1H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a 1H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916

  14. Preparation and Characterization of Selenium Incorporated Guar Gum Nanoparticle and Its Interaction with H9c2 Cells

    PubMed Central

    Soumya, Rema Sreenivasan; Vineetha, Vadavanath Prabhakaran; Reshma, Premachandran Latha; Raghu, Kozhiparambil Gopalan

    2013-01-01

    This study deals with the preparation and characterization of selenium incorporated guar gum nanoparticle (SGG), and its effect on H9c2 cardiomyoblast. Herein, nanoprecipitation techniques had been employed for the preparation of SGG nanoparticle. The prepared nanoparticle had been subjected to various types of analytical techniques like transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size analysis to confirm the characteristics of nanoparticle as well as for selenium incorporation. Physical characterization of nanoparticle showed that the size of nanoparticles increase upto ∼69–173 nm upon selenium incorporation from ∼41–132 nm. Then the prepared nanoparticles were evaluated for its effect on H9c2 cells. In this regard, the effect of nanoparticle on various vital parameters of H9c2 cells was studied. Parameters like cell viability, uptake of selenium incorporated guar gum nanoparticle by the cells, effect of SGG on DNA integrity, apoptosis, reactive oxygen species generation, alteration in transmembrane potential of mitochondria and cytoskeletal integrity had been investigated. Viability results showed that up to 25 nM of SGG was safe (10.31%) but beyond that it induces cytotoxicity. Cellular uptake of selenium showed that cell permeability for SGG is significantly high compared to normal selenium (7.2 nM of selenium for 25 nM SGG compared with 5.2 nM selenium for 25 nM sodium selenite). There was no apoptosis with SGG and also it protects DNA from hydroxyl radical induced breakage. Likewise no adverse effect on mitochondria and cytoskeleton was observed for 25 nM of SGG. Overall results reveal that SGG is highly suitable for biomedical research application. PMID:24098647

  15. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist.

    PubMed

    Wang, Junjian; Fang, Fang; Huang, Zhiyan; Wang, Yanfei; Wong, Chiwai

    2009-02-18

    Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRalpha and ERRgamma). We demonstrated that kaempferol binds to ERRalpha and ERRgamma and blocks their interaction with coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors. PMID:19171140

  16. Antimicrobial Activity of Glass lonomer Cement Incorporated with Chlorhexidine-Loaded Zeolite Nanoparticles.

    PubMed

    Kim, Hyun-Jin; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-02-01

    A functional dental restorative system with antimicrobial properties was developed using zeolite (ZE) nanoparticles (NPs) as a drug delivery carrier. ZE NPs loaded with chlorhexidine (CHX) were prepared using the ionic immobilization method. The resulting CHX-loaded ZE NPs were then incorporated into commercial dental glass ionomer cement (GIC). The average size of the CHX-loaded ZE NPs was about 100 to 200 nm, and the NPs were dispersed homogeneously in the GIC. The in vitro release profile of encapsulated GIC containing CHX showed an early release burst of approximately 30% of the total CHX by day 7, whereas GIC containing CHX-loaded ZE NPs showed a sustained release of CHX without the early release burst in a 4-week immersion study. The agar diffusion test results showed that the GIC incorporated with CHX-loaded ZE NPs showed a larger growth inhibition zone of Streptococcus mutans than GIC alone, indicating that this innovative delivery platform potently imparted antimicrobial activity to the GIC. Moreover, these findings suggest that a range of antimicrobial drugs that inhibit the growth of oral bacteria can be incorporated efficiently into dental GIC using CHX-loaded ZE NPs. PMID:27433603

  17. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    PubMed Central

    Lee, Hye-Young; Jeong, Young-IL; Choi, Ki-Choon

    2011-01-01

    Background p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. Methods PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Results Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. Conclusion The authors suggest that these microparticles are ideal

  18. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation.

    PubMed

    Lin, Fang; Luo, Xuerui; Tsun, Andy; Li, Zhiyuan; Li, Dan; Li, Bin

    2015-10-01

    Kaempferol is a natural flavonoid found in many vegetables and fruits. Epidemiologic studies have described that Kaempferol intake could reduce risk of cancer, especially lung, gastric, pancreatic and ovarian cancers. Recent studies have shown that Kaempferol could also be beneficial to the body to defend against inflammation, and infection by bacteria and viruses; however, the molecular mechanism of its immunoregulatory function remains largely unknown. Through screening a small molecule library of traditional Chinese medicine (TCM), we identified that Kaempferol could enhance the suppressive function of regulatory T cells (Tregs). Kaempferol was found to increase FOXP3 expression level in Treg cells and prevent pathological symptoms of collagen-induced arthritis in a rat animal model. Kaempferol could also reduce PIM1-mediated FOXP3 phosphorylation at S422. Our study reveals a molecular mechanism that underlies the anti-inflammatory action of Kaempferol for the prevention and treatment of inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. PMID:25870037

  19. Nanocomposites Fabricated by a Combination of Green Compact Nanoparticle Incorporation and Ultrasonic Treatment of the Melted Compact

    NASA Astrophysics Data System (ADS)

    Kandemir, Sinan; Atkinson, Helen V.; Weston, David P.; Hainsworth, Sarah V.

    2014-11-01

    Thixoforming is a type of semi-solid processing which is based on forming metals in the semi-solid state rather than fully liquid or solid state. There have been no reports of the thixoforming of nanocomposites in the literature. The incorporation of ceramic nanoparticles into liquid metals is a challenging task for the fabrication of metal matrix nanocomposites due to their large surface-to-volume ratio and poor wettability. Previous research work by a number of workers has highlighted the challenges with the incorporation of nanoparticles into liquid aluminum alloy. In the present study, SiC and TiB2 nanoparticles with an average diameter between 20 and 30 nm were firstly incorporated into green compacts by a powder forming route, and then the compacts were melted and treated ultrasonically. The microstructural studies reveal that the engulfment and relatively effective distribution of the nanoparticles into the melt were achieved. The hardness was considerably improved with only 0.8 wt pct addition of the nanoparticles. The nanocomposites were successfully thixoformed at a solid fraction between 0.65 and 0.70. The microstructures, hardness, and tensile mechanical properties of the thixoformed nanocomposites were investigated and compared with those of the as-received A356 and thixoformed A356 alloys. The tensile properties of the thixoformed nanocomposites were significantly enhanced compared to thixoformed A356 alloy without reinforcement, indicating the strengthening effects of the nanoparticles.

  20. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

    PubMed Central

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto CP

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. PMID:26445537

  1. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera.

    PubMed

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto C P

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. PMID:26445537

  2. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  3. Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles.

    PubMed

    Gao, Huile; Yang, Zhi; Cao, Shijie; Xi, Zhangjie; Zhang, Shuang; Pang, Zhiqing; Jiang, Xinguo

    2012-11-01

    The purpose of the investigation was to prepare a new type of nanoparticle, namely lapatinib-incorporated lipoprotein-like nanoparticles (LTNPs), and to evaluate the behavior and anti-glioma effect of LTNPs. LTNPs were prepared and characterized using the Cyro-transmission electron microscope (Cryo-TEM) and Raman scan methods. Cellular uptake and subcellular localization studies were performed to evaluate the in vitro behavior of LTNPs. An in vivo imaging technique was used for the evaluation of the targeting of LTNPs. To study the anti-glioma effect, glioma xenografts were used. The particle size of LTNPs was 92.6 nm, and the zeta potential was 28.40 mV. LTNPs contained a surface layer that was obviously different from the core, according to the Cryo-TEM analysis. A Raman scan analysis demonstrated the incorporation of lapatinib in LTNPs, and it also revealed a structure different from free lapatinib. The uptake of LTNP by U87 cells occurred in a concentration- and time-dependent manner. According to the subcellular study, the uptake of LTNPs was endosome mediated. LTNPs could distribute and accumulate in the tumor site by an enhanced permeation and retention effect. Both LTNPs (10 mg kg(-1)) and LTNPs (30 mg kg(-1)) could significantly inhibit the growth of U87 xenografts. For a similar antitumor effect, the required cumulative dose of LTNPs was only 5% compared to that of Tykerb (the commercial formulation of lapatinib). This study demonstrated the effective uptake of LTNPs by U87 cells, the passive targeting of LTNPs at tumors and the better antitumor effect of LTNPs. PMID:23060604

  4. Enhanced recovery and dissolution of griseofulvin nanoparticles from surfactant-free nanocomposite microparticles incorporating wet-milled swellable dispersants.

    PubMed

    Bhakay, Anagha; Azad, Mohammad; Vizzotti, Emanuel; Dave, Rajesh N; Bilgili, Ecevit

    2014-11-01

    Nanocomposite microparticles (NCMPs) incorporating drug nanoparticles and wet-milled swellable dispersant particles were investigated as a surfactant-free drug delivery vehicle with the goal of enhancing the nanoparticle recovery and dissolution rate of poorly water-soluble drugs. Superdisintegrants were used as inexpensive, model, swellable dispersant particles by incorporating them into NCMP structure with or without wet-stirred media milling along with the drug. Suspensions of griseofulvin (GF, model drug) along with various dispersants produced by wet-milling were coated onto Pharmatose® to prepare NCMPs in a fluidized bed process. Hydroxypropyl cellulose (HPC, polymer) alone and with sodium dodecyl sulfate (SDS, surfactant) was used as base-line stabilizer/dispersant during milling. Croscarmellose sodium (CCS, superdisintegrant) and Mannitol were used as additional dispersants to prepare surfactant-free NCMPs. Nanoparticle recovery during redispersion and dissolution of the various GF-laden NCMPs were examined. Suspensions prepared by co-milling GF/HPC/CCS or milling GF/HPC/SDS were stable after 30 h of storage. After drying, due to its extensive swelling capacity, incorporation of wet-milled CCS in the NCMPs caused effective breakage of the NCMP structure and bursting of nanoparticle clusters, ultimately leading to fast recovery of the GF nanoparticles. Optimized wet co-milling and incorporation of CCS in NCMP structure led to superior dispersant performance over incorporation of unmilled CCS or physically mixed unmilled CCS with NCMPs. The enhanced redispersion correlated well with the fast GF dissolution from the NCMPs containing either CCS particles or SDS. Overall, swellable dispersant (CCS) particles, preferably in multimodal size distribution, enable a surfactant-free formulation for fast recovery/dissolution of the GF nanoparticles. PMID:23981202

  5. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles.

    PubMed

    Pan, Jiangyong; Chen, Jing; Zhao, Dewei; Huang, Qianqian; Khan, Qasim; Liu, Xiang; Tao, Zhi; Zhang, Zichen; Lei, Wei

    2016-01-25

    Surface plasmon-enhanced electroluminescence (EL) has been demonstrated by incorporating gold (Au) nanoparticles (NPs) in quantum dot light-emitting diode (QLED). Time-resolved photoluminescence (TRPL) spectroscopy reveals that the EL enhancement is ascribed to the near-field enhancement through an effective coupling between excitons of the quantum dot emitters and localized surface plasmons around Au NPs. It is found that the size of Au NPs and the distance between the Au NPs and the emissive layer have significant effects on the performance of QLED. The enhancement can be maximized as the SP resonance wavelength of Au NPs matches well with the PL emission wavelength of the QD film and the distance between Au NPs and the emissive layer maintains 15 nm. The photoluminance (PL) and EL intensity can be enhanced by 4.4 and 1.7 folds with the incorporation of Au NPs. The maximum current efficiency of 4.56 cd/A can be achieved for the resulting QLEDs by incorprating Au NPs with an enhancement factor of 2.0. In addition, the enhancement ratio of 2.2 can be achieved for the lifetime of resulting QLED. PMID:26832585

  6. Core-shell nano-architectures: the incorporation mechanism of hydrophobic nanoparticles into the aqueous core of a microemulsion.

    PubMed

    Scorciapino, Mariano A; Sanna, Roberta; Ardu, Andrea; Orrù, Federica; Casu, Mariano; Musinu, Anna; Cannas, Carla

    2013-10-01

    This work presents an in-depth investigation of the molecular interactions in the incorporation mechanism of colloidal hydrophobic-capped nanoparticles into the hydrophilic core of reverse microemulsions. (1)H Nuclear Magnetic Resonance (NMR) was employed to obtain molecular level details of the interaction between the nanoparticles capping amphiphiles and the microemulsion surfactants. The model system of choice involved oleic acid (OAC) and oleylamine (OAM) as capping molecules, while igepal-CO520 was the surfactant. The former were studied both in their "free" state and "ligated" one, i.e., bound to nanoparticles. The latter was investigated either in cyclohexane (micellar solution) or in water/cyclohexane microemulsions. The approach was extremely useful to gain a deeper understanding of the equilibria involved in this complex system (oleic acid capped-Bi2S3 in igepal/water/cyclohexane microemulsions). In difference to previously proposed mechanisms, the experimental data showed that the high affinity of the capping ligands for the reverse micelle interior was the drivingforce for the incorporation of the nanoparticles. A simple ligand-exchange mechanism could be ruled out. The collected information about the nanoparticle incorporation mechanism is extremely useful to develop new synthetic routes with an improved/tuned coating efficiency, in order to tailor the core-shell structure preparation. PMID:23910706

  7. Beneficial properties of selenium incorporated guar gum nanoparticles against ischemia/reperfusion in cardiomyoblasts (H9c2).

    PubMed

    Soumya, R S; Vineetha, V P; Salin Raj, P; Raghu, K G

    2014-11-01

    Nanotechnology for the treatment and diagnosis has been emerging recently as a potential area of research and development. In the present study, selenium incorporated guar gum nanoparticles have been prepared by nanoprecipitation and characterized by transmission electron microscopy and particle size analysis. The nanoparticles were screened for antioxidant potential (metal chelation, total reducing power and hydroxyl radical scavenging activity) and were evaluated against the cell line based cardiac ischemia/reperfusion model with special emphasis on oxidative stress and mitochondrial parameters. The cell based cardiac ischemia model was employed using H9c2 cell lines. Investigations revealed that there was a significant alteration (P ≤ 0.05) in the innate antioxidant status (glutathione↓, glutathione peroxidase↓, thioredoxin reductase↓, superoxide dismutase↓, catalase↓, lipid peroxidation↑, protein carbonyl↑, xanthine oxidase↑ and caspase 3 activity↑), mitochondrial functions (reactive oxygen species generation, membrane potential, and pore opening) and calcium homeostasis (calcium ATPase and intracellular calcium overload) during both ischemia and reperfusion. For comparative evaluation, selenium, guar gum and selenium incorporated guar gum nanoparticles were evaluated for their protective properties against ischemia/reperfusion. The study reveals that selenium incorporated guar gum nanoparticles were better at protecting the cells from ischemia/reperfusion compared to selenium and guar gum nanoparticles. The potent antioxidant capability shown by the sample in in vitro assays may be the biochemical basis of its better biological activity. Further, the nanodimensions of the particle may be the additional factor responsible for its better effect. PMID:25307064

  8. Effect of titanium oxide nanoparticle incorporation into nm thick coatings deposited using an atmospheric pressure plasma.

    PubMed

    Denis, Dowling P; Barry, Twomey; Gerry, Byrne

    2010-04-01

    This study reports on the use of an atmospheric plasma technique to incorporate metal oxide nanoparticles into nm thick siloxane coatings. Titanium dioxide (TiO2) particles with diameters of 30-80 nm, were mixed with a number of different siloxanes-polydimethylsiloxane, hexamethyldisiloxane and tetraethylorthosilicate (TEOS). The TiO2/TEOS mixture was found to give the most stable suspension, possibly due to the higher surface tension of TEOS compared with the other siloxanes. TiO2/TEOS mixtures with 2 to 10% by weight of the metal oxide were prepared and were then nebulised into a helium/oxygen atmospheric plasma. Polyethylene terepthalate (PET) and silicon wafer substrates were passed through this plasma using a reel-to-reel substrate manipulation system. SEM combined with EDX was used to examine the distribution of the metal oxide particles in the resultant coatings. The TEOS coating thickness without TiO2 addition was 9 nm. The composite coating consisted of a relatively homogeneous distribution of small agglomerates of the TiO2 nanoparticles in TEOS. A linear increase in the titanium surface concentration was observed with increase in the quantity of TiO2 added into the siloxane precursor. The chemical functionality of the siloxane coating was examined using FTIR spectroscopy and no significant spectrum differences was observed with the incorporation of the different concentrations of TiO2 into the polymer. There were also no changes observed in coating surface energy with TiO2 incorporation. Coating morphology was examined using optical profilometry and surface roughness (Ra) values increased from typical values of 0.8 nm for the TEOS coating to 4.1 nm for the TiO2/TEOS coating. The adhesion of the deposited coatings was compared using fragmentation tests. These were carried out through uniaxial tensile loading. The coating cracking pattern after applied strain of 20% was not observed to change significantly with the addition of TiO2 into the siloxane. PMID

  9. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  10. Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation.

    PubMed

    Liu, Wenwen; Golshan, Negar H; Deng, Xuliang; Hickey, Daniel J; Zeimer, Katherine; Li, Hongyi; Webster, Thomas J

    2016-08-25

    Since implants often fail due to infection and uncontrolled inflammatory responses, we designed an in vitro study to investigate the antibacterial and anti-inflammatory properties of titanium dioxide nanotubes (TNTs) incorporated with selenium nanoparticles (SeNPs). Selenium incorporation was achieved by the reaction of sodium selenite (Na2SeO3) with glutathione (GSH) under a vacuum in the presence of TNTs. Two types of bacteria and macrophages were cultured on the samples to determine their respective antibacterial and anti-inflammatory properties. The results showed that the TNT samples incorporating SeNPs (TNT-Se) inhibited the growth of Escherichia coli and Staphylococcus aureus compared to unmodified TNTs, albeit the SeNP concentration still needs to be optimized for maximal effect. At their maximum effect, the TNT-Se samples reduced the density of E. coli by 94.6% and of S. aureus by 89.6% compared to titanium controls. To investigate the underlying mechanism of this effect, the expression of six E. coli genes were tracked using qRT-PCR. Results indicated that SeNPs weakened E. coli membranes (ompA and ompF were down-regulated), decreased the function of adhesion-mediating proteins (csgA and csgG were progressively down-regulated with increasing SeNP content), and induced the production of damaging reactive oxygen species (ahpF was up-regulated). Moreover, TNT-Se samples inhibited the proliferation of macrophages, indicating that they can be used to control the inflammatory response and even prevent chronic inflammation, a condition that often leads to implant failure. In conclusion, we demonstrated that SeNP-TNTs display antibacterial and anti-inflammatory properties that are promising for improving the performance of titanium-based implants for numerous orthopedic and dental applications. PMID:27533297

  11. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems.

    PubMed

    Priano, Lorenzo; Esposti, Daniele; Esposti, Roberto; Castagna, Giovanna; De Medici, Clotilde; Fraschini, Franco; Gasco, Maria Rosa; Mauro, Alessandro

    2007-10-01

    melatonin (MT) is a hormone produced by the pineal gland at night, involved in the regulation of circadian rhythms. For clinical purposes, exogenous MT administration should mimic the typical nocturnal endogenous MT levels, but its pharmacokinetics is not favourable due to short half-life of elimination. Aim of this study is to examine pharmacokinetics of MT incorporated in solid lipid nanoparticles (SLN), administered by oral and transdermal route. SLN peculiarity consists in the possibility of acting as a reservoir, permitting a constant and prolonged release of the drugs included. In 7 healthy subjects SLN incorporating MT 3 mg (MT-SLN-O) were orally administered at 8.30 a.m. MT 3 mg in standard formulation (MT-S) was then administered to the same subjects after one week at 8.30 a.m. as controls. In 10 healthy subjects SLN incorporating MT were administered transdermally (MT-SLN-TD) by the application of a patch at 8.30 a.m. for 24 hours. Compared to MT-S, Tmax after MT-SLN-O administration resulted delayed of about 20 minutes, while mean AUC and mean half life of elimination was significantly higher (respectively 169944.7 +/- 64954.4 pg/ml x hour vs. 85148.4 +/- 50642.6 pg/ml x hour, p = 0.018 and 93.1 +/- 37.1 min vs. 48.2 +/- 8.9 min, p = 0.009). MT absorption and elimination after MT-SLN-TD demonstrated to be slow (mean half life of absorption: 5.3 +/- 1.3 hours; mean half life of elimination: 24.6 +/- 12.0 hours), so MT plasma levels above 50 pg/ml were maintained for at least 24 hours. This study demonstrates a significant absorption of MT incorporated in SLN, with detectable plasma level achieved for several hours in particular after transdermal administration. As dosages and concentrations of drugs included in SLN can be varied, different plasma level profile could be obtained, so disclosing new possibilities for sustained delivery systems. PMID:18330178

  12. Kaempferol 3,7,4'-glycosides from the flowers of Clematis cultivars.

    PubMed

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2013-08-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7,4'-di-O-beta-glucopyranoside (1) was isolated from the flowers of Clematis cultivars "Jackmanii Superba" and "Fujimusume", together with the known compound kaempferol 3,7,4'-tri-O-beta-glucopyranoside (2). The chemical structures of the isolated kaemferol glycosides were established by UV, 1H and 13C NMR spectroscopy, LC-MS, and characterization of acid hydrolysates. PMID:24079175

  13. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention.

    PubMed

    Chen, Allen Y; Chen, Yi Charlie

    2013-06-15

    Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body's antioxidant defence against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a number of key elements in cellular signal transduction pathways linked to apoptosis, angiogenesis, inflammation, and metastasis. Significantly, kaempferol inhibits cancer cell growth and angiogenesis and induces cancer cell apoptosis, but on the other hand, kaempferol appears to preserve normal cell viability, in some cases exerting a protective effect. The aim of this review is to synthesize information concerning the extraction of kaempferol, as well as to provide insights into the molecular basis of its potential chemo-preventative activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the aforementioned processes. Chemoprevention using nanotechnology to improve the bioavailability of kaempferol is also discussed. PMID:23497863

  14. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    PubMed

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. PMID:27080177

  15. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention

    PubMed Central

    Chen, Allen Y.; Chen, Yi Charlie

    2013-01-01

    Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body’s antioxidant defense against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a number of key elements in cellular signal transduction pathways linked to apoptosis, angiogenesis, inflammation, and metastasis. Significantly, kaempferol inhibits cancer cell growth and angiognesis and induces cancer cell apoptosis, but on the other hand, kaempferol appears to preserve normal cell viability, in some cases exerting a protective effect. The aim of this review is to synthesize information concerning the extraction of kaempferol, as well as to provide insights into the molecular basis of its potential chemo-preventative activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the aforementioned processes. Chemoprevention using nanotechnology to improve the bioavailability of kaempferol is also discussed. PMID:23497863

  16. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    PubMed

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities. PMID:23852933

  17. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. PMID:24211705

  18. Hemoglobin–Albumin Cluster Incorporating a Pt Nanoparticle: Artificial O2 Carrier with Antioxidant Activities

    PubMed Central

    Hosaka, Hitomi; Haruki, Risa; Yamada, Kana; Böttcher, Christoph; Komatsu, Teruyuki

    2014-01-01

    A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins (HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution. We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.1×107 M−1, generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of superoxide radical anions (O2•–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-HSA3 captured PtNP into the external albumin unit (K = 1.1×107 M−1), yielding an Hb-HSA3(PtNP) cluster. The association of PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution. PMID:25310133

  19. Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells

    PubMed Central

    2012-01-01

    Background Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata. Results Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells. Conclusions PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations. PMID:22686683

  20. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes.

    PubMed

    Hayat, Akhtar; Haider, Waqar; Raza, Yousuf; Marty, Jean Louis

    2015-10-01

    A sensitive and selective colorimetric method based on the incorporation of zinc oxide nanoparticles (ZnO NPs) on the surface of carbon nanotubes (CNTs) was shown to posses synergistic peroxidase like activity for the detection of cholesterol. The proposed nanocomposite catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide (H2O2) to produce a green colored product which can be monitored at 405 nm. H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase. Therefore, the oxidation of cholesterol can be quantitatively related to the colorimetric response by combining these two reactions. Under the optimal experimental conditions, the colorimetric response was proportional to the concentration of cholesterol in the range of 0.5-500 nmol/L, with a detection limit of 0.2 nmol/L. The applicability of the proposed assays was demonstrated for the determination of cholesterol in milk powder samples with good recovery results. PMID:26078143

  1. Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Han, Pan; Yuan, Tao; Yao, Long; Han, Zhuo; Yang, Junhe; Zheng, Shiyou

    2016-03-01

    Copper-incorporated carbon fibers (Cu/CF) as free-standing anodes for lithium-ion batteries are prepared by electrospinning technique following with calcination at 600, 700, and 800 °C. The structural properties of materials are characterized by X-ray diffraction (XRD), Raman, thermogravimetry (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM), and energy dispersive X-ray spectrometry (EDS). It is found that the Cu/CF composites have smooth, regular, and long fibrous morphologies with Cu nanoparticles uniformly dispersed in the carbon fibers. As free-standing anodes, the unique structural Cu/CF composites show stable and high reversible capacities, together with remarkable rate and cycling capabilities in Li-ion batteries. The Cu/CF calcined at 800 °C (Cu/CF-800) has the highest charge/discharge capacities, long-term stable cycling performance, and excellent rate performance; for instance, the Cu/CF-800 anode shows reversible charge/discharge capacities of around 800 mAh g-1 at a current density of 100 mA g-1 with stable cycling performance for more than 250 cycles; even when the current density increases to 2 A g-1, the Cu/CF-800 anode can still deliver a capacity of 300 mAh g-1. This excellent electrochemical performance is attributed to the special 1D structure of Cu/CF composites, the enhanced electrical conductivity, and more Li+ active positions by Cu nanoinclusion.

  2. Designer nanoparticles: Incorporating size, shape, and triggered release into nanoscale drug carriers

    PubMed Central

    Caldorera-Moore, Mary; Guimard, Nathalie; Shi, Li; Roy, Krishnendu

    2009-01-01

    Importance of the field Although significant progress has been made in delivering therapeutic agents through micro and nanocarriers, precise control over in vivo biodistribution and disease-responsive drug release has been difficult to achieve. This is critical for the success of next generation drug delivery devices, since newer drugs, designed to interfere with cellular functions, must be efficiently and specifically delivered to diseased cells. The major constraint in achieving this has been our limited repertoire of particle synthesis methods, especially at the nanoscale. Recent developments in generating shape-specific nanocarriers and the potential to combine stimuli-responsive release with nanoscale delivery devices show great promise in overcoming these limitations. Areas covered in this review Here we discuss how recent advancements in fabrication technology allow synthesis of highly monodisperse, stimuli-responsive, drug-carrying nanoparticles of precise geometries. We also review how particle properties, specifically shape and stimuli responsiveness, affect biodistribution, cellular uptake, and drug release. What the reader will gain The reader is introduced to recent developments in intelligent drug nanocarriers and new nanofabrication approaches that can be combined with disease-responsive biomaterials. This will provide insight into the importance of controlling particle geometry and incorporating stimuli responsive materials into drug delivery. PMID:20331355

  3. Incorporation of Ln-Doped LaPO4 Nanocrystals as Luminescent Markers in Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    van Hest, Jacobine J. H. A.; Blab, Gerhard A.; Gerritsen, Hans C.; Donega, Celso de Mello; Meijerink, Andries

    2016-05-01

    Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.

  4. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    PubMed

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. PMID:27132884

  5. Fine-tuning in mineral cross-linking of biopolymer nanoparticle for incorporation and release of cargo.

    PubMed

    Fukui, Yuuka; Kabayama, Narumi; Fujimoto, Keiji

    2015-12-01

    We developed a mineral cross-linking strategy to prepare a biopolymer-based nanoparticle using calcium phosphate (CaP) as a cross-linker. Nanoparticles were first formed by mixing deoxyribonucleic acid (DNA) with cationic surfactants, and were cross-linked by CaP precipitation. After removal of the surfactants, we carried out the alternative dialysis of nanoparticles against CaCl2 aqueous solution and phosphate buffered solution for further mineral cross-linking. XRD and FT-IR studies revealed that the resultant nanoparticles were produced by mineral cross-linkages of hydroxyapatite (HAp) and the crystal amount and properties such as morphology and crystallinity could be well-controlled by the reaction conditions. Chemical dyes could be incorporated into nanoparticles via their affinities with crystal faces of HAp and DNA. Their release was tunable by crystal amount and properties of mineral cross-linkages. Also, the release could be triggered by mineral dissolution in response to pH. Such a mineral cross-linking will open up a potential way to provide a nanoparticle with versatile functions such as cleavable cross-linking, binding affinity for cargos, and pH-responsive release. PMID:26387068

  6. Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro.

    PubMed

    Jeong, Young-Il; Jin, Shu-Guang; Kim, In-Young; Pei, Jian; Wen, Min; Jung, Tae-Young; Moon, Kyung-Sub; Jung, Shin

    2010-08-01

    In this study, methoxy poly(ethylene glycol)-grafted carboxymethyl chitosan (CMCPEG) was synthesized to make nanoparticles with doxorubicin (DOX) by ion complex formation. Since DOX has positive amine groups, it can interact with the carboxymethyl group of CMCPEG. The particle size of DOX-incorporated nanoparticles of CMCPEG was < 300 nm and nanoparticles had spherical shapes at morphological observation, indicating that DOX/CMCPEG mixtures can form spherical nanoparticles. In a drug release study, higher drug content induced an extended release of drug. Drug release was significantly changed by the release media pH. DOX release was faster at an acidic pH than a neutral or basic pH. The antitumor activity of DOX-incorporated nanoparticles in vitro was tested with DOX-resistant C6 glioma cells. Nanoparticles showed increased cytotoxicity compared to DOX alone. These results suggest that DOX was unable to penetrate into cells and did not effectively inhibit cell proliferation. In contrast, nanoparticles can penetrate into cells and effectively inhibit cell proliferation. Observation of cells under red fluorescence confirmed these results, i.e., nanoparticle-treated C6 cells, unlike DOX-treated cells, had strong red fluorescence. Since DOX has strong red fluorescence, DOX-incorporated nanoparticles entered into the tumor cells more than DOX alone. As a result, we suggest that DOX-incorporated nanoparticles of CMCPEG are superior candidates for antitumor drug delivery. PMID:20427160

  7. On the incorporation of Rhodamine B and 2‧,7‧-dichlorofluorescein dyes in silica: Synthesis of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Gomes, Elis C. C.; de Carvalho, Idalina M. M.; Diógenes, Izaura C. N.; de Sousa, Eduardo H. S.; Longhinotti, Elisane

    2014-05-01

    The present paper reports the incorporation of 2‧,7‧-dichlorofluorescein (DCF) and Rhodamine B (RhB) dyes in silica nanoparticles by using the Stöber's method with some modifications. Based on infrared and electronic spectroscopies, these dyes were successfully incorporated resulting in fluorescent nanomaterials of an average size of 80 nm. A composite fluorescent nanomaterial containing both dyes was also synthesized and showed the occurrence of Förster resonant energy transfer process (FRET) with the average distance between the donor (DCF) and acceptor (RhB) of 3.6 nm. Furthermore, these fluorescent nanoparticles were modified with folic acid producing nanomaterials whose Zeta potential values were in the range of -2 to -13 mV. These values are consistent with the low dispersivity observed by TEM micrographs. Altogether, these suitable properties can lead to the development of nanomaterials for cancer bioimaging and drug release.

  8. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  9. Mechanisms Underlying Apoptosis-Inducing Effects of Kaempferol in HT-29 Human Colon Cancer Cells

    PubMed Central

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-01-01

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0–60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway. PMID:24549175

  10. Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries.

    PubMed

    Han, Pan; Yuan, Tao; Yao, Long; Han, Zhuo; Yang, Junhe; Zheng, Shiyou

    2016-12-01

    Copper-incorporated carbon fibers (Cu/CF) as free-standing anodes for lithium-ion batteries are prepared by electrospinning technique following with calcination at 600, 700, and 800 °C. The structural properties of materials are characterized by X-ray diffraction (XRD), Raman, thermogravimetry (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM), and energy dispersive X-ray spectrometry (EDS). It is found that the Cu/CF composites have smooth, regular, and long fibrous morphologies with Cu nanoparticles uniformly dispersed in the carbon fibers. As free-standing anodes, the unique structural Cu/CF composites show stable and high reversible capacities, together with remarkable rate and cycling capabilities in Li-ion batteries. The Cu/CF calcined at 800 °C (Cu/CF-800) has the highest charge/discharge capacities, long-term stable cycling performance, and excellent rate performance; for instance, the Cu/CF-800 anode shows reversible charge/discharge capacities of around 800 mAh g(-1) at a current density of 100 mA g(-1) with stable cycling performance for more than 250 cycles; even when the current density increases to 2 A g(-1), the Cu/CF-800 anode can still deliver a capacity of 300 mAh g(-1). This excellent electrochemical performance is attributed to the special 1D structure of Cu/CF composites, the enhanced electrical conductivity, and more Li(+) active positions by Cu nanoinclusion. PMID:27033848

  11. Zinc phthalocyanine and silver/gold nanoparticles incorporated MCM-41 type materials as electrode modifiers.

    PubMed

    Pal, Manas; Ganesan, Vellaichamy

    2009-11-17

    Mercaptopropyl functionalized ordered mesoporous silica spheres were prepared (MPS). Ag or Au nanoparticles (NPs) were anchored onto the MPS materials (Ag-MPS or Au-MPS). Further, zinc phthalocyanine (ZnPc) was adsorbed into the channels and surface (MPS-ZnPc, Ag-MPS-ZnPc, Au-MPS-ZnPc). Diffuse reflectance studies revealed the successful incorporation of Ag or Au NPs inside the silica spheres with and without ZnPc. TEM images showed the uniform distribution of Ag or Au NPs in the silica spheres of different size ranging from 4 to 22 nm or 6 to 31 nm, respectively. XRD pattern showed average crystallite particle size of 18 or 28 nm for Ag or Au NPs respectively which were reduced to 14 or 16 nm on introduction of ZnPc which oxidizes the metal NPs partially. Chemically modified electrodes were prepared by coating the colloidal solutions of the silica materials on the glassy carbon (GC) electrodes. Electrocatalytic reductions of O(2) and CO(2) at the modified electrodes were studied. The presence of Ag or Au NPs was found to increase the electrocatalytic efficiency of ZnPc toward O(2) reduction by 290% or 70% based on the current density measured at -0.35 V and toward CO(2) reduction by 150% or 120% based on the current density measured at -0.60 V respectively. Catalytic rate constants were increased 2-fold for O(2) reduction and 8-fold for CO(2) reduction due to Ag or Au NPs, respectively, which act as nanoelectrode ensembles. The synergic effect of ZnPc and metal NPs on the electrocatalytic reduction of O(2) is presented. PMID:19824690

  12. A Au nanoparticle-incorporated sponge as a versatile transmission surface-enhanced Raman scattering substrate.

    PubMed

    Shin, Kayeong; Chung, Hoeil

    2015-08-01

    We report a sponge-based transmission surface-enhanced Raman scattering (TSERS) substrate that combines the bulk sampling capabilities of a transmission measurement to improve the quantitative representation of sample concentration with several sponge properties useful for analysis such as fast sample uptake, easy sample enrichment, and a stable polymeric structure. Among nine commercially available sponges made of different materials, a melamine sponge was ultimately selected for this study because it provided the fastest sample uptake and a low background Raman signal. Simultaneously, the amino groups and three-nitrogen hybrid rings in its structure could easily hold Au nanoparticles (AuNPs) inside the sponge. AuNP-incorporated sponges (AuNP sponges) were prepared by simply soaking a melamine sponge in a AuNP solution; these sponges were initially used to measure 4-nitrobenzenethiol (4-NBT) samples with different concentrations in order to evaluate their ability as TSERS substrates. The intensities of the 4-NBT peaks clearly varied according to changes in the concentration, and the relative standard deviation (RSD) of the peak intensity estimated by the measurements of five independently prepared AuNP sponges was 10.0%. Sample enrichment was easily completed by repeated suctioning of the sample into the AuNP sponges followed by depletion of the solvent, so three-time enrichment doubled the intensity. Furthermore, paraquat samples were prepared in diverse matrices (de-ionized water, tap water, river water, and orange juice) and measured using the AuNP sponges. The paraquat peaks were clearly observed from these samples and their peak intensities became smaller with the increased compositional complexity of the matrices. Our overall results demonstrate that the TSERS sponge substrates are easy to prepare and practically versatile for SERS analysis of diverse samples. PMID:26079472

  13. Microfiber coupler based biosensor incorporating a layer of gold nanoparticles with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Semenova, Yuliya; Bo, Lin; Wang, Pengfei; Tian, Furong; Byrne, Hugh; Farrell, Gerald

    2014-05-01

    We studied the effect of a star-shaped gold nanoparticles layer coated on the surface of the microfiber coupler (MFC) on the sensitivity of the embedded MFC biosensor. It is shown that deposition of the layer of star-shaped gold nanoparticles on the MFC sensor surface results in a significantly increased spectral shift (on average 3.05 nm shift compared to a 1.08 nm shift per layer of electrolyte for the sample without the nanoparticles layer). In addition, introducing the nanoparticle layer results in the decrease of the transmission power; measurement of the changes in transmission also could be used as a means for the sensor interrogation.

  14. Quercetin, kaempferol, myricetin, and fatty acid content among several Hibiscus sabdariffa accession calyces based on maturity in a greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonols including quercetin, kaempferol, myricetin, and fatty acids in plants have many useful health attributes including antioxidants, cholesterol lowering, and cancer prevention. Six accessions of roselle, Hibiscus sabdariffa calyces were evaluated for quercetin, kaempferol, and myricetin conte...

  15. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  16. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    SciTech Connect

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  17. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products.

    PubMed

    Morsy, Mohamed K; Khalaf, Hassan H; Sharoba, Ashraf M; El-Tanahi, Hassan H; Cutter, Catherine N

    2014-04-01

    The incorporation of essential oils and nanotechnology into edible films has the potential to improve the microbiological safety of foods. The aim of this study was to evaluate the effectiveness of pullulan films containing essential oils and nanoparticles against 4 foodborne pathogens. Initial experiments using plate overlay assays demonstrated that 2% oregano essential oil was active against Staphylococcus aureus and Salmonella Typhimurium, whereas Listeria monocytogenes and Escherichia coli O157:H7 were not inhibited. Two percent rosemary essential oil was active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 1%. Zinc oxide nanoparticles at 110 nm were active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 100 or 130 nm. Conversely, 100 nm silver (Ag) nanoparticles were more active against S. aureus than L. monocytogenes. Using the results from these experiments, the compounds exhibiting the greatest activity were incorporated into pullulan films and found to inhibit all or some of the 4 pathogens in plate overlay assays. In challenge studies, pullulan films containing the compounds effectively inhibited the pathogens associated with vacuum packaged meat and poultry products stored at 4 °C for up to 3 wk, as compared to control films. Additionally, the structure and cross-section of the films were evaluated using electron microscopy. The results from this study demonstrate that edible films made from pullulan and incorporated with essential oils or nanoparticles may improve the safety of refrigerated, fresh or further processed meat and poultry products. PMID:24621108

  18. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells.

    PubMed

    Nakamura, Yasushi; Chang, Chia-Cheng; Mori, Toshio; Sato, Kenji; Ohtsuki, Kozo; Upham, Brad L; Trosko, James E

    2005-03-01

    Kaempferol induces differentiation in partially differentiated colon cancer cells which express low levels of connexin43 protein and connexin43 mRNA (KNC cells). Differentiation was observed as changes in cell morphology and the activity of alkaline phosphatase. Increased differentiation in kaempferol-treated KNC cells correlated with restoration of gap junctional intercellular communication (GJIC), increased levels of connexin43 protein and its phosphorylation status. Phosphorylation (activation) of Stat3 and Erk was also reduced by kaempferol. An inhibitor of Stat3 phosphorylation also induced morphological changes in KNC cells similar to those in kaempferol-treated cells, suggesting that kaempferol-induced differentiation may be mediated by inhibition of Stat3 phosphorylation. These effects were not observed in HCT116 cells, a poorly differentiated colon cancer cell line deficient in expression of connexin43 mRNA and connexin43 protein. In conclusion, kaempferol might function as an anticancer agent by re-establishing GJIC through enhancement of the expression and phosphorylation of connexin43 protein in a tumorigenic colon cancer cell line that already expresses connexin43 mRNA via a Stat3-dependent mechanism. In contrast, kaempferol had no effect in a tumorigenic colon cancer cell line that did not express connexin43 mRNA and was deficient in GJIC. PMID:15618237

  19. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    SciTech Connect

    Kumar, Surender Sahare, P.D.

    2014-03-01

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} doped ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.

  20. A new kaempferol triglycoside from Fagonia taeckholmiana: cytotoxic activity of its extracts.

    PubMed

    Ibrahim, Lamyaa F; Kawashty, Salwa A; El-Hagrassy, Ali M; Nassar, Mahmoud I; Mabry, Tom J

    2008-01-14

    In addition to apigenin, apigenin 7-O-glucoside, kaempferol 3-O-glucoside, kaempferol 3,7-di-O-rhamnoside, quercetin, and quercetin 3-O-glucoside, the methanolic extract of Fagonia taeckholmiana afforded a new compound identified as kaempferol 3-O-beta-l-arabinopyranosyl-(1-->4)-alpha-l-rhamnopyranoside-7-O-alpha-l-rhamnopyranoside. Identification of the isolated compounds was based on chemical and spectroscopic analyses including UV, FABMS, (1)H, (13)C and 2D NMR, and DEPT. The cytotoxic activities of the compounds against several cancer cell lines were determined. PMID:18005952

  1. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria

    PubMed Central

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    Aim: To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Materials and Methods: Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Statistical Analysis: Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Results: Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2–99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P < 0.001) (98% and 99%, respectively) in a time-dependent manner under UVA. The S. mutans and L. acidophilus counts did not significantly decrease in PMMA containing 0.5% nano-TiO2 and PMMA containing 0.5% nano-SiO2 in the dark. No statistically significant reduction (P > 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. Conclusions: PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic

  2. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. PMID:27285731

  3. Incorporation of copper nanoparticles into paper for point-of-use water purification

    PubMed Central

    Smith, James A.

    2014-01-01

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 minutes and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). PMID:25014431

  4. Large sensitivity enhancement in semiconducting organic field effect transistor sensors through incorporation of ultra-fine platinum nanoparticles

    SciTech Connect

    Zheng, Haisheng; Ramalingam, Balavinayagam; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2013-11-04

    We report remarkable improvement in sensitivity of pentacene-based field effect transistor devices towards trace nitro-aromatic explosive vapors through the incorporation of high density, sub-2 nm platinum nanoparticles (NPs) within these structures. Exploiting the unique electronic properties of these NPs, we have demonstrated a detection limit of 56.6 parts per billion of 2,4-dinitrotoluene (DNT) vapor while control samples without any embedded NPs showed no observable sensitivity to DNT vapor. We attribute this remarkable enhancement in sensitivity to the ability of these NPs to function as discrete nodes, participating in the charge transfer with adsorbed nitro-aromatic molecules.

  5. Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification

    PubMed Central

    Dankovich, Theresa A.

    2014-01-01

    This work reports an environmentally benign method for the in situ preparation of silver nanoparticles (AgNPs) in paper using microwave irradiation. Through thermal evaporation, microwave heating with an excess of glucose relative to the silver ion precursor yields nanoparticles on the surface of cellulose fibers within three minutes. Paper sheets were characterized by electron microscopy, UV-Visible reflectance spectroscopy, and atomic absorption spectroscopy. Antibacterial activity and silver release from the AgNP sheets were assessed for model Escherichia coli and Enterococci faecalis bacteria in deionized water and in suspensions that also contained with various influent solution chemistries, i.e. with natural organic matter, salts, and proteins. The paper sheets containing silver nanoparticles were effective in inactivating the test bacteria as they passed through the paper. PMID:25400935

  6. An Approach for Enhancement of Saturation Magnetization in Cobalt Ferrite Nanoparticles by Incorporation of Terbium Cation

    NASA Astrophysics Data System (ADS)

    Sodaee, Tahmineh; Ghasemi, Ali; Paimozd, Ebrahim; Paesano, Andrea; Morisako, Akimitsu

    2013-09-01

    Cobalt ferrite nanoparticles were synthesized by a reverse micelle process. The optimum processing conditions required to fabricate nanocrystalline cobalt ferrite using a reverse micelle technique, especially the effect of water-to-surfactant molar ratios including w = 8, 10, 12, and 14, pH values in the range of 8 to 11, and annealing temperatures in the range of 400°C to 800°C, were evaluated. x-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), vibrating-sample magnetometry, and superconducting quantum interference device analysis were employed to evaluate the structural and magnetic properties of synthesized nanoparticles. XRD analysis confirms that the nanoparticles have a single-phase cubic spinel structure. The average particle size increases with increasing pH value and annealing temperature. Magnetization study reveals that the cobalt ferrite nanoparticles exhibit a superparamagnetic trend. The zero-field-cooled magnetization curves of cobalt ferrite nanoparticles indicated that, with an increase in pH value, the blocking temperature increases. Based on the obtained optimum parameters, terbium-substituted cobalt ferrite nanoparticles with composition CoFe2- x Tb x O4 ( x = 0.1 to 0.5) were prepared by a reverse micelle process. XRD and field-emission scanning electron microscopy evaluation demonstrated that single-phase spinel ferrites with narrow size distribution were obtained. Mössbauer spectroscopy was used to determine the site preference of terbium cation. The results confirm that terbium cations were distributed at tetrahedral and octahedral sites, but with a preference for the former. It was observed that, with an increase in terbium content, the saturation magnetization increases.

  7. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    PubMed Central

    Kasraei, Shahin; Sami, Lida; Hendi, Sareh; AliKhani, Mohammad-Yousef; Rezaei-Soufi, Loghman

    2014-01-01

    Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus. PMID:24790923

  8. Synthesis of icariin from kaempferol through regioselective methylation and para-Claisen-Cope rearrangement.

    PubMed

    Mei, Qinggang; Wang, Chun; Zhao, Zhigang; Yuan, Weicheng; Zhang, Guolin

    2015-01-01

    The hemisynthesis of the naturally occurring bioactive flavonoid glycoside icariin (1) has been accomplished in eleven steps with 7% overall yield from kaempferol. The 4'-OH methylation of kaempferol, the 8-prenylation of 3-O-methoxymethyl-4'-O-methyl-5-O-prenyl-7-O-benzylkaempferol (8) via para-Claisen-Cope rearrangement catalyzed by Eu(fod)3 in the presence of NaHCO3, and the glycosylation of icaritin (3) are the key steps. PMID:26425179

  9. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    PubMed

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. PMID:25917334

  10. Incorporation of Ln-Doped LaPO4 Nanocrystals as Luminescent Markers in Silica Nanoparticles.

    PubMed

    van Hest, Jacobine J H A; Blab, Gerhard A; Gerritsen, Hans C; Donega, Celso de Mello; Meijerink, Andries

    2016-12-01

    Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.In this work, we synthesized LaPO4 nanocrystals (NCs) with sizes ranging from 4 to 8 nm doped with europium or cerium and terbium. After silica growth using an inverse micelle method, monodisperse silica spheres were obtained with a single LaPO4 NC in the center. We demonstrate that the size of the silica spheres can be tuned in the 25-55 nm range by addition of small volumes of methanol during the silica growth reaction. Both the LaPO4 core and silica nanocrystal showed sharp line emission characteristic for europium and terbium providing unique optical labels in silica nanoparticles of variable sizes. PMID:27209405

  11. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing.

    PubMed

    Dong, Junping; Tian, Taolei; Ren, Linxiao; Zhang, Yuan; Xu, Jiaqiang; Cheng, Xiaowei

    2015-01-01

    A hierarchical MFI zeolite, with typical micro/meso bimodal pore structures, was prepared by desilication method. CuO nanoparticles (NPs) were incorporated into the hierarchical MFI zeolite by impregnation method. CuO/hierarchical zeolite composites were characterized by X-ray diffraction, transmission electron microscopy and nitrogen sorption. It is shown that the CuO nanoparticles are mostly dispersed in the mesopores with remaining of the crystallinity and morphology of the host zeolite. CuO nanoparticles located in hierarchical zeolite exhibit the excellent electrocatalytic performances to oxidation of glucose in alkaline media. The electrocatalytic activity enhances with increasing the loading content of CuO from 5% to 15%. The composites were fabricated for nonenzyme glucose sensing. Under the optimal conditions, the sensor shows a wide linear range from 5×10(-7) to 1.84×10(-2) M with a low detection limit of 3.7×10(-7) M. The sensor also exhibits good repeatability, long-term stability as well as high selectivity against interfering species. PMID:25499226

  12. Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Xu, Ling; Zhang, Renqi; Ge, Zhaoyun; Zhang, Wenping; Xu, Jun; Ma, Zhongyuan; Chen, Kunji

    2015-03-01

    Au nanoparticles (Au NPs)/CdTe/CdS QDs nanocomposite films were fabricated by deposition of Au NPs and layer-by-layer self-assembly of colloidal CdTe/CdS QDs. Photoluminescence (PL) spectra showed that Au NPs incorporation resulted in an increase of PL intensity about 16-fold compared with that of the samples without Au NPs. PL enhancement of Au NPs/CdTe/CdS QDs nanocomposite films can be controlled by tuning the thickness of spacer layer between the metal nanoparticles (MNPs) and QDs. Optical absorption spectra exhibited the incorporation of Au NPs boosted the absorption of Au NPs/CdTe/CdS QDs nanocomposite films. The results of finite-difference time-domain (FDTD) simulation indicated that the increased sizes of Au NPs resulted in stronger localization of electric field, which boosted the PL intensity of QDs in the vicinity of Au NPs. We thought that these were mainly attributed to localized SP enhancement effects of the Au NPs. Our experiment results demonstrated that Au NPs/QDs nanocomposite films would be a promising candidate for optoelectronic devices application.

  13. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  14. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Filip, Jan; Marušák, Zdeněk; Sharma, Virender K; Zbořil, Radek

    2013-04-01

    We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet. PMID:23451768

  15. Shape control of nickel nanostructures incorporated in amorphous carbon films: From globular nanoparticles toward aligned nanowires

    NASA Astrophysics Data System (ADS)

    El Mel, A. A.; Bouts, N.; Grigore, E.; Gautron, E.; Granier, A.; Angleraud, B.; Tessier, P. Y.

    2012-06-01

    The growth of nickel/carbon nanocomposite thin films by a hybrid plasma process, which combines magnetron sputtering and plasma enhanced chemical vapor deposition, has been investigated. This study has shown that the films consist of nickel-rich nanostructures embedded in an amorphous carbon matrix. The size, the distribution, the density, and the shape of these nanostructures are directly dependent to the total carbon content within the films. At low carbon content (˜28 at. %), dense nanowire array perpendicularly oriented to the surface of the substrate can be fabricated. For an intermediate carbon concentration (˜35 at. %), the nickel phase was organized into elongated nanoparticles. These nanoparticles became spherical when reaching a higher carbon content (˜54 at. %). The extensive structural study allowed the representation of a structure zone diagram, as well as, the development of a scenario describing the growth mechanisms that take place during the deposition of such nanocomposite material.

  16. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation.

    PubMed

    Liu, Zhen; Zhang, Zhongdong; Xing, Wei; Komarneni, Sridhar; Yan, Zifeng; Gao, Xionghou; Zhou, Xiaoping

    2014-01-01

    Three kinds of HZSM-5 nanoparticles with different acidity were tailored by impregnating MgO or varying Si/Al ratios. Both the textural and acidic properties of the as-prepared nanoparticles were characterized by nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR or Py-FTIR). It was found that the intensity of Lewis acid sites with weak strength was enhanced by impregnating MgO or reducing Al concentration, and such an enhancement could be explained by the formation of Mg(OH)(+) or charge unbalance of the MgO framework on the surface of HZSM-5 support. The effect of HZSM-5 nanoparticles' acidity on methyl bromide dehydrobromination as catalyst was evaluated. As the results, MgHZ-360 catalyst with the highest concentration of Lewis acid sites showed excellent stability, which maintained methyl bromide conversion of up 97% in a period of 400 h on stream. Coke characterization by BET measurements and TGA/DTA and GC/MS analysis revealed that polymethylated naphthalenes species were formed outside the channels of the catalyst with higher acid intensity and higher Brønsted acid concentration during the initial period of reaction, while graphitic carbon formed in the channels of catalyst with lower acid intensity and higher Lewis acid concentration during the stable stage. PMID:25328502

  17. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation

    PubMed Central

    2014-01-01

    Three kinds of HZSM-5 nanoparticles with different acidity were tailored by impregnating MgO or varying Si/Al ratios. Both the textural and acidic properties of the as-prepared nanoparticles were characterized by nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR or Py-FTIR). It was found that the intensity of Lewis acid sites with weak strength was enhanced by impregnating MgO or reducing Al concentration, and such an enhancement could be explained by the formation of Mg(OH)+ or charge unbalance of the MgO framework on the surface of HZSM-5 support. The effect of HZSM-5 nanoparticles' acidity on methyl bromide dehydrobromination as catalyst was evaluated. As the results, MgHZ-360 catalyst with the highest concentration of Lewis acid sites showed excellent stability, which maintained methyl bromide conversion of up 97% in a period of 400 h on stream. Coke characterization by BET measurements and TGA/DTA and GC/MS analysis revealed that polymethylated naphthalenes species were formed outside the channels of the catalyst with higher acid intensity and higher Brønsted acid concentration during the initial period of reaction, while graphitic carbon formed in the channels of catalyst with lower acid intensity and higher Lewis acid concentration during the stable stage. PMID:25328502

  18. Preparation and surface characterization of polymer nanoparticles designed for incorporation into hybrid materials.

    PubMed

    Fonseca, T; Relógio, P; Martinho, J M G; Farinha, J P S

    2007-05-01

    We prepared water dispersions of poly(n-butyl methacrylate-st-butyl acrylate) crosslinked core-shell nanoparticles functionalized with different amounts of trimethoxisilane (TMS) groups in the outer shell. The purpose of the TMS groups is to chemically bind the rubbery particles to a nanostructured silica network, using sol-gel copolymerization. Here, we present nanoparticles containing 13 mol % and 30 mol % of TMS groups in the outer shell and compare their surface morphology with particles that do not contain TMS. The particles are prepared by a two-step seeded emulsion polymerization technique at neutral pH. In the first step, we obtained crosslinked seed particles (44 nm in diameter) by a batch process. In the second step, we used a semi-continuous emulsion polymerization technique under starved feed conditions to obtain monodispersed particles of controlled composition and size (ca. 100 nm in diameter). Fluorescence decay measurements were performed in situ on the dispersions, using a pair of cationic dyes adsorbed onto the surface of the nanoparticles: rhodamine 6G as the energy transfer donor and malachite green carbinol hydrochloride as the acceptor. The kinetics of Förster resonance energy transfer (FRET) between the dyes is sensitive to the donor-acceptor distance, allowing us to obtain the binding distribution of the dyes at the nanoparticle surface. For the unmodified nanoparticles, we found a dye distribution that corresponds to an average interface thickness of delta = (5.2 +/- 0.2) nm. For the samples containing 13 mol % and 30 mol % of TMS groups in the outer shell we obtained broader interfaces, with widths of delta = (6.2 +/- 0.2) nm and delta = (6.5 +/- 0.1) nm respectively. This broadening of the distribution with the surface modification is interpreted in terms of the increase in free volume of the shell caused by the TMS groups. Finally, we studied the effect of temperature on the water-polymer interface fuzziness, in order to evaluate the

  19. Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles.

    PubMed

    Salarbashi, Davoud; Mortazavi, Seyed Ali; Noghabi, Mostafa Shahidi; Fazly Bazzaz, Bibi Sedigheh; Sedaghat, Naser; Ramezani, Mohammad; Shahabi-Ghahfarrokhi, Iman

    2016-04-20

    This study aimed to develop a soluble soybean polysaccharide (SSPS) nanocomposite incorporating ZnO nanoparticles. The nanocomposites were prepared using the solvent-casting method. SEM, AFM, DSC and X-ray diffraction methods were applied to characterize the resulting films. Furthermore, the antibacterial and anti-mold activities of SSPS/ZN films were assessed against the selected microorganisms. The results indicated that incorporating ZNs into the SSPS film affected the tensile strength and elongation at break significantly. In addition, the antibacterial, antifungal and yeasticidal activities of ZnO/SSPS films have been approved. XRD results showed a crystal plane of hexagonal ZN, while SEM showed that there was not a good affinity between ZN and SSPS. Mono-dispersed particles with clearly spherical morphology and with no voids on the surface were observed using AFM. Fluctuation in Tg and Tm resulted from incorporating ZN. In summary, the potential of ZNs as a functional filler in SSPS film has been demonstrated. PMID:26876847

  20. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated SiNW arrays. A double-junction tandem structure was designed to manufacture our hybrid cells. Both short-circuit current and external quantum efficiency measurements show an enhancement in optical absorption of organic layer, especially at lower wavelengths. PMID:23418988

  1. Modification of Polymer Rheological Properties Through the Incorporation of Functionlized Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xavier, Jean Harry; Sokolov, Jonathan; Rafailovich, Miriam; Goldstein, Lauren; Maller, Abigail

    2003-03-01

    Polymer rheology can best be controlled when addressed at the segmental level of the polymer molecule. We show that a critical dimension, Ro, exists between the radius of added nanoparticles and the polymer chain which separates a regime whereby the particles increase the internal free volume or reinforce the chain. We blended Au, Pd, and POSS nanoparticles (3-12nm) with polymers (Mw=100K-4M) and measured the glass transition and viscosity as a function of Ro. Transmission Electron Microscopy (TEM) was used to study filler size and aggregation. The effect of fillers in Tg of PS was studied using Shear Modulation Force Microscopy (SMFM). The dynamics of diffusion of fillers into the PS matrix were studied using Second Ion Mass Spectrometer (SIMS) and Neutron Reflectivity (NR) techniques will be reported. The effect of substrate interactions will be examined by comparing the results in supported and free standing films. References: 1. S.Ge, M.H. Rafailovich, J. Sokolov.Physical Review Letter, Vol. 85, 2340-2343, 9/19/2000. Support from the NSF MRSEC is gratefully acknowledged.

  2. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    PubMed

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. PMID:25988995

  3. Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion?

    PubMed Central

    2016-01-01

    New spherical diblock copolymer nanoparticles were synthesized via RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) at 70 °C and 20% w/w solids using either poly(carboxybetaine methacrylate) or poly(proline methacrylate) as the steric stabilizer block. Both of these stabilizers contain carboxylic acid groups, but poly(proline methacrylate) is anionic above pH 9.2, whereas poly(carboxybetaine methacrylate) has zwitterionic character at this pH. When calcite crystals are grown at an initial pH of 9.5 in the presence of these two types of nanoparticles, it is found that the anionic poly(proline methacrylate)-stabilized particles are occluded uniformly throughout the crystals (up to 6.8% by mass, 14.0% by volume). In contrast, the zwitterionic poly(carboxybetaine methacrylate)-stabilized particles show no signs of occlusion into calcite crystals grown under identical conditions. The presence of carboxylic acid groups alone therefore does not guarantee efficient occlusion: overall anionic character is an additional prerequisite. PMID:27042383

  4. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    PubMed

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting. PMID:26984266

  5. Protective and detrimental effects of kaempferol in rat H4IIE cells: Implication of oxidative stress and apoptosis

    SciTech Connect

    Niering, Petra; Michels, Gudrun; Waetjen, Wim . E-mail: wim.waetjen@uni-duesseldorf.de; Ohler, Sandra; Steffan, Baerbel; Chovolou, Yvonni; Kampkoetter, Andreas; Proksch, Peter; Kahl, Regine

    2005-12-01

    Flavonoids are ubiquitous substances in fruits and vegetables. Among them, the flavonol kaempferol contributes up to 30% of total dietary flavonoid intake. Flavonoids are assumed to exert beneficial effects on human health, e.g., anticancer properties. For this reason, they are used in food supplements at high doses. The aim of this project was to determine the effects of kaempferol on oxidative stress and apoptosis in H4IIE rat hepatoma cells over a broad concentration range. Kaempferol is rapidly taken up and glucuronidated by H4IIE cells. The results demonstrate that kaempferol protects against H{sub 2}O{sub 2}-induced cellular damage at concentrations which lead to cell death and DNA strand breaks in the absence of H{sub 2}O{sub 2}-mediated oxidative stress. Preincubation with 50 {mu}M kaempferol exerts protection against the loss of cell viability induced by 500 {mu}M H{sub 2}O{sub 2} (2 h) while the same concentration of kaempferol reduces cell viability by 50% in the absence of H{sub 2}O{sub 2} (24 h). Preincubation with 50 {mu}M kaempferol ameliorates the strong DNA damage induced by 500 {mu}M H{sub 2}O{sub 2} while 50 {mu}M kaempferol leads to a significant increase of DNA breakage in the absence of H{sub 2}O{sub 2}. Preincubation with 50 {mu}M kaempferol reduces H{sub 2}O{sub 2}-mediated caspase-3 activity by 40% (4 h) while the same concentration of kaempferol leads to the formation of a DNA ladder in the absence of H{sub 2}O{sub 2} (24 h). It is concluded that the intake of high dose kaempferol in food supplements may not be advisable because in our cellular model protective kaempferol concentrations can also induce DNA damage and apoptosis by themselves.

  6. Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery.

    PubMed

    Nogueira, Daniele R; Scheeren, Laís E; Pilar Vinardell, M; Mitjans, Montserrat; Rosa Infante, M; Rolim, Clarice M B

    2015-12-01

    The pH-responsive delivery systems have brought new advances in the field of functional nanodevices and might allow more accurate and controllable delivery of specific cargoes, which is expected to result in promising applications in different clinical therapies. Here we describe a family of chitosan-TPP (tripolyphosphate) nanoparticles (NPs) for intracellular drug delivery, which were designed using two pH-sensitive amino acid-based surfactants from the family N(α),N(ε)-dioctanoyl lysine as bioactive compounds. Low and medium molecular weight chitosan (LMW-CS and MMW-CS, respectively) were used for NP preparation, and it was observed that the size distribution for NPs with LMW-CS were smaller (~168 nm) than that for NPs prepared with MMW-CS (~310 nm). Hemolysis assay demonstrated the pH-dependent biomembrane disruptional capability of the constructed NPs. The nanostructures incorporating the surfactants cause negligible membrane permeabilization at pH7.4. However, at acidic pH, prevailing in endosomes, membrane-destabilizing activity in an erythrocyte lysis assay became evident. When pH decreased to 6.6 and 5.4, hemolytic capability of chitosan NPs increased along with the raise of concentration. Furthermore, studies with cell culture showed that these pH-responsive NPs displayed low cytotoxic effects against 3T3 fibroblasts. The influence of chitosan molecular weight, chitosan to TPP weight ratio, nanoparticle size and nature of the surfactant counterion on the membrane-disruptive properties of nanoparticles was discussed in detail. Altogether, the results achieved here showed that by inserting the lysine-based amphiphiles into chitosan NPs, pH-sensitive membranolytic and potentially endosomolytic nanocarriers were developed, which, therefore, demonstrated ideal feasibility for intracellular drug delivery. PMID:26354244

  7. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening. PMID:27285358

  8. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed; Marco, Carlos; Ellis, Gary

    2012-07-12

    The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity η, storage modulus G', and loss modulus G″ increased with SWCNT content. In the low-frequency region, G' and G″ became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in η and G' due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites. PMID:22697425

  9. Bacteriostatic and anti-collagenolytic dental materials through the incorporation of polyacrylic acid modified CuI nanoparticles

    SciTech Connect

    Renne, Walter George; Mennito, Anthony Samuel; Schmidt, Michael Gerard; Vuthiganon, Jompobe; Chumanov, George

    2015-05-19

    Provided are antibacterial and antimicrobial surface coatings and dental materials by utilizing the antimicrobial properties of copper chalcogenide and/or copper halide (CuQ, where Q=chalcogens including oxygen, or halogens, or nothing). An antimicrobial barrier is created by incorporation of CuQ nanoparticles of an appropriate size and at a concentration necessary and sufficient to create a unique bioelectrical environment. The unique bioelectrical environment results in biocidal effectiveness through a multi-factorial mechanism comprising a combination of the intrinsic quantum flux of copper (Cu.sup.0, Cu.sup.1+, Cu.sup.2+) ions and the high surface-to-volume electron sink facilitated by the nanoparticle. The result is the constant quantum flux of copper which manifests and establishes the antimicrobial environment preventing or inhibiting the growth of bacteria. The presence of CuQ results in inhibiting or delaying bacterial destruction and endogenous enzymatic breakdown of the zone of resin inter-diffusion, the integrity of which is essential for dental restoration longevity.

  10. Incorporation of precious metal nanoparticles into various aerogels by different supercritical deposition methods

    NASA Astrophysics Data System (ADS)

    Saquing, Carl D.

    2005-11-01

    One major hurdle in nanoparticle fabrication is the difficulty in controlling size, distribution and concentration. Conventional methods in nanoparticle formation require high temperatures which lead to particle agglomeration and size broadening, or involve substantial amount of organic solvents. A clean route to supported-nanoparticles fabrication was investigated using various supercritical (SC) based deposition methods. The SC deposition involves the organometallic precursor (OP) (dimethyl(1,5-cyclooctadiene)platinum(II)[CODPtMe 2] or bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium(II)) dissolution in SC fluid and contacting this solution with a substrate. The OP is adsorbed and subsequent reduction of the OP-impregnated substrate produces metal/substrate composites. The various methods were: (1) thermal reduction at atmospheric pressure in an inert atmosphere; (2) thermal reduction in SC carbon dioxide (scCO2); (3) chemical reduction in scCO2 with H2; and (4) chemical reduction at atmospheric pressure with H2. The synthesis of resorcinol-formaldehyde aerogels (RFAs) and carbon aerogels (CAs) was also studied and used as substrates (along with commercial silica aerogels (SAs)) in the SC deposition. The surface area, pore properties, and density of these aerogels were evaluated and the effects of reactant concentration, pyrolysis and SC deposition on these properties were determined. Using a static method, the adsorption isotherms of CODPtMe2 in scCO2 on two CAs with different pore sizes were measured at 28 MPa and 80°C to determine the maximum metal loading and the effect of pore properties on adsorption and to examine the interactions between the three components. The isotherms could be represented by the Langmuir model and the adsorption data indicated a strong CODPtMe2-CA interaction and that almost all the preexistent micropore area was covered with CODPtMe 2 molecules even at adsorption lower than the maximum capacity. The

  11. Fabrication of Pt nanoparticle incorporated polymer nanowires by high energy ion and electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Tsukuda, Satoshi; Takahasi, Ryouta; Seki, Shu; Sugimoto, Masaki; Idesaki, Akira; Yoshikawa, Masahito; Tanaka, Shun-Ichiro

    2016-01-01

    Polyvinylpyrrolidone (PVP)-Pt nanoparticles (NPs) hybrid nanowires were fabricated by high energy ion beam irradiation to PVP thin films including H2PtCl6. Single ion hitting caused crosslinking reactions of PVP and reduction of Pt ions within local cylindrical area along an ion trajectory (ion track); therefore, the PVP nanowires including Pt NPs were formed and isolated on Si substrate after wet-development procedure. The number of Pt NPs was easily controlled by the mixed ratio of PVP and H2PtCl6. However, increasing the amount of H2PtCl6 led to decreasing the radial size and separation of the hybrid nanowires during the wet-development. Additional electron beam irradiation after ion beam improved separation of the nanowires and controlled radial sizes due to an increase in the density of crosslinking points inner the nanowires.

  12. Size selective incorporation of gold nanoparticles in diblock copolymer vesicle wall.

    PubMed

    Xu, Jiangping; Han, Yuanyuan; Cui, Jie; Jiang, Wei

    2013-08-20

    A systematic study is conducted to reveal how far the polymeric vesicle wall can embed gold nanoparticles (AuNPs) with different sizes by combining experiments and self-consistent field simulations. Both the experimental and simulative results indicate that the location of AuNPs in vesicle wall or in spherical micelle is heavily size dependent. Whether the AuNPs enter the vesicle wall or not is determined by a ratio of the diameter of AuNPs (D0) to the thickness of the vesicle wall (d(w0)). The 1-dodecanethiol-coated AuNPs (Au(x)R) with D0/d(w0) < 0.3 will stably disperse in the vesicle walls. For polystyrene-coated AuNPs (Au(x)S), a criterion of D0/d(w0) is proposed based on the phase diagram; i.e., the Au(x)S with D0/d(w0) < 0.5 can be located in the vesicle wall. Otherwise, the Au(x)R and the Au(x)S prefer to locate in spherical micelles. Moreover, the contributions of enthalpy and entropy to the total free energy of the system are respectively calculated to reveal the mechanism of the size selective distribution of AuNPs. The results demonstrate that the escape of AuNPs from vesicle walls and their selective distribution in spherical micelles is an entropy-driven process. Our study provides an important guideline for fabricating nanoparticle/block copolymer hybrid vesicles in dilute solution. PMID:23875535

  13. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles.

    PubMed

    Cao, Lingyan; Werkmeister, Jerome A; Wang, Jing; Glattauer, Veronica; McLean, Keith M; Liu, Changsheng

    2014-03-01

    Although rhBMP-2 has excellent ability to accelerate the repair of normal bone defects, limitations of its application exist in the high cost and potential side effects. This study aimed to develop a composite photopolymerisable hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (PH/rhBMP-2/NPs) as the bone substitute to realize segmental bone defect repair at a low growth factor dose. Firstly rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (rhBMP-2/NPs) were prepared and characterized by DLS and TEM. Composite materials, PH/rhBMP-2/NPs were developed and investigated by SEM-EDS as well as a series of physical characterizations. Using hMSCs as an in vitro cell model, composite photopolymerisable hydrogels incorporating NPs (PH/NPs) showed good cell viability, cell adhesion and time dependent cell ingrowth. In vitro release kinetics of rhBMP-2 showed a significantly lower initial burst release from the composite system compared with the growth factor-loaded particles alone or encapsulated directly within the hydrogel, followed by a slow release over time. The bioactivity of released rhBMP-2 was validated by alkaline phosphatase (ALP) activity as well as a mineralization assay. In in vivo studies, the PH/rhBMP-2/NPs induced ectopic bone formation in the mouse thigh. In addition, we further investigated the in vivo effects of rhBMP-2-loaded scaffolds in a rabbit radius critical defect by three dimensional micro-computed tomographic (μCT) imaging, histological analysis, and biomechanical measurements. Animals implanted with the composite hydrogel containing rhBMP-2-loaded nanoparticles underwent gradual resorption with more pronounced replacement by new bone and induced reunion of the bone marrow cavity at 12 weeks, compared with animals implanted with hydrogel encapsulated growth factors alone. These data provided strong evidence that the composite PH/rhBMP-2/NPs are a promising substitute for bone tissue engineering. PMID:24438908

  14. Ultra-thin film composite mixed matrix membranes incorporating iron(III)-dopamine nanoparticles for CO2 separation.

    PubMed

    Kim, Jinguk; Fu, Qiang; Scofield, Joel M P; Kentish, Sandra E; Qiao, Greg G

    2016-04-21

    Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe(3+) and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe(3+) ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG-based selective layer is confirmed by XPS analysis. The UTFC-MMMs (thickness: ∼45 nm) formed present excellent gas separation performance with a CO2 permeance of ∼1200 GPU (1 GPU = 10(-6) cm(3) (STP) cm(-2) s(-1) cmHg(-1)) and an enhanced CO2/N2 selectivity of over 35, which is the best performance for UTFC membranes in the reported literature. PMID:27035774

  15. A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films

    PubMed Central

    2014-01-01

    In this work, a comparative study about the incorporation of silver nanoparticles (AgNPs) into thin films is presented using two alternative methods, the in situ synthesis process and the layer-by-layer embedding deposition technique. The influence of several parameters such as color of the films, thickness evolution, thermal post-treatment, or distribution of the AgNPs along the coatings has been studied. Thermal post-treatment was used to induce the formation of hydrogel-like AgNPs-loaded thin films. Cross-sectional transmission electron microscopy micrographs, atomic force microscopy images, and UV-vis spectra reveal significant differences in the size and distribution of the AgNPs into the films as well as the maximal absorbance and wavelength position of the localized surface plasmon resonance absorption bands before and after thermal post-treatment. This work contributes for a better understanding of these two approaches for the incorporation of AgNPs into thin films using wet chemistry. PMID:24982607

  16. Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol

    PubMed Central

    2016-01-01

    Purpose The objective of this study was to investigate the effect of a dietary flavonoid, kaempferol, which has been shown to possess antiallergic, anti-inflammatory, anticarcinogenic, and antioxidant activities on the periodontium by histomorphometric analysis and on gingival tissue matrix metalloproteinase-1 (MMP-1), MMP-8, and tissue inhibitor of metalloproteinase-2 (TIMP-2) by biochemical analysis of rats after experimental periodontitis induction. Methods Sixty Wistar rats were randomly divided into six groups of ten rats each, and silk ligatures were placed around the cervical area of the mandibular first molars for 15 days, except in the healthy control rats. In the experimental periodontitis groups, systemic kaempferol (10 mg/kg/2d) and saline were administered by oral gavage at two different periods (with and without the presence of dental biofilm) to all rats except for the ten non-medicated rats. Alveolar bone area, alveolar bone level, and attachment level were determined by histomorphometric analysis, and gingival tissue levels of MMP-1, MMP-8, and TIMP-2 were detected by biochemical analysis. Results Significantly greater bone area and significantly less alveolar bone and attachment loss were observed in the kaempferol application groups compared to the control groups (P<0.05). In addition, gingival tissue MMP-1 and -8 levels were significantly lower in the kaempferol application groups compared to the control groups and the periodontitis group (P<0.001). There were no statistically significant differences in TIMP-2 levels between the kaempferol and saline application groups (P>0.05). Conclusions Kaempferol application may be useful in decreasing alveolar bone resorption, attachment loss, and MMP-1 and -8 production in experimental periodontitis. PMID:27127689

  17. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.

    PubMed

    Seo, Minseok; Matsuura, Naomi

    2014-10-28

    Multifunctional medical agents based on imaging or therapy nanoparticles (NPs) incorporated into perfluorocarbon (PFC) droplets are promising new agents for cancer detection and treatment. For the first time, monodisperse PFC nanodroplets labeled with NPs have been produced. Lipophilic, as-synthesized, hydrocarbon-stabilized NPs are directly miscibilized into lipophobic PFCs using a removable cosolvent, diethyl ether (DEE), which eliminates the need of the typical time-consuming and expertise-specific NP surface modification steps previously required for NP incorporation into PFCs. This NP-DEE/PFC solution is then used to synthesize monodisperse, micrometer-scale, DEE-infused NP-PFC precursor droplets in water using microfluidics. After precursor microdroplet generation, the DEE cosolvent is removed by dissolution and evaporation, resulting in dramatically smaller, monodisperse, NP-labeled nanodroplets, with final droplet sizes far smaller than the minimum droplet size limit of the microfluidic system, and easily controlled by the amount of DEE mixed in the PFC phase prior to precursor droplet synthesis. Using this technique, unmodified lipophilic quantum dot (QD) NPs were integrated into monodisperse and PFC nanodroplets 165 times smaller in volume than the precursor microdroplets, with dimensions down to 470 nm. The final droplet sizes scaled with the PFC concentrations in the precursor microdroplets, and the QDs remain localized within the droplets after DEE is removed from the system. This method is robust and versatile, and it comprises a platform technology for other unmodified lipophilic NPs and molecules to be incorporated into different types of PFC droplets for the production of new NP-PFC hybrid agents for medical imaging and therapy applications. PMID:25188556

  18. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-01

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport. PMID:24015820

  19. An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification.

    PubMed

    Bahrami, Shokoh; Abbasi, Amir Reza; Roushani, Mahmoud; Derikvand, Zohreh; Azadbakht, Azadeh

    2016-10-01

    In this work, immobilization of a dopamine (DA) aptamer was performed at the surface of an amino functionalized silver nanoparticle-carbon nanotube graphene oxide (AgNPs/CNTs/GO) nanocomposite. A 58-mer DA-aptamer was immobilized through the formation of phosphoramidate bonds between the amino group of chitosan and the phosphate group of the aptamer at the 5' end. An AgNPs/CNTs/GO nanocomposite was employed as a highly catalytic label for electrochemical detection of DA based on electrocatalytic activity of the nanocomposite toward hydrogen peroxide (H2O2). Interaction of DA with the aptamer caused conformational changes of the aptamer which, in turn, decreased H2O2 oxidation and reduction peak currents. On the other hand, the presumed folding of the DA-aptamer complexes on the sensing interface inhibited the electrocatalytic activity of AgNPs/CNTs/GO toward H2O2. Sensitive quantitative detection of DA was carried out by monitoring the decrease of differential pulse voltammetric (DPV) responses of AgNPs/CNTs/GO nanocomposite toward H2O2 oxidation. The DPV signal linearly decreased with increased concentration of DA from 3 to 110nmolL(-1) with a detection limit of 700±19.23pmolL(-1). Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. PMID:27474313

  20. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism. PMID:26174858

  1. Bimetal (Ni-Co) nanoparticles-incorporated electrospun carbon nanofibers as an alternative counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rameez, Md.; Saranya, K.; Subramania, A.; Sivasankar, N.; Mallick, S.

    2016-02-01

    Counter electrode (CE) plays an important role in dye-sensitized solar cells (DSSCs). Electron transfer from external circuit to redox couple is mediated and facilitated by it to complete the DSSC circuit. Platinum (Pt) is widely employed as CE in DSSCs. However, due to its high cost and scarcity, efforts are being made to replace Pt. In this study, a bimetal (Ni-Co) nanoparticles-incorporated carbon nanofibers (CNFs) are prepared by electrospinning technique and used as CE material for DSSC applications. The morphology of prepared CNFs is characterized by field emission scanning electron microscope and transmission electron microscope studies. The structural properties are confirmed by X-ray diffraction and Raman spectroscopy studies. The electrochemical characterization of Ni-Co nanoparticles-incorporated CNFs is carried out using cyclic voltammetry, electrochemical impedance and Tafel polarization studies and compared with CNFs and std. Pt. The photo-conversion efficiency (PCE) of DSSC assembled with Ni-Co nanoparticles-incorporated CNFs as CE is very nearer to that of the same assembled with std. Pt as CE. Hence, Ni-Co nanoparticles-incorporated CNFs can be used as a cost-effective alternative CE for DSSCs.

  2. HPLC quantification of kaempferol-3-O-gentiobioside in Cassia alata.

    PubMed

    Moriyama, Hiroyoshi; Iizuka, Toru; Nagai, Masahiro; Murata, Yoshimi

    2003-07-01

    Kaempferol-3-O-gentiobioside, the major flavonoid glycoside in Indonesian Cassia alata was quantified in various parts of the plant. The mature leaf was found to contain the highest content of this metabolite. A decrease of the flavonoid content in the juvenile leaf during the period of October through December was also observed. The contents ranged from 2.0 to 5.0% and 1.0 to 4.0% in mature and juvenile leaves, respectively. The other parts studied were flower (sepal and petal), rachis, stem and seed. Kaempferol-3-O-gentiobioside was not detected in the seed. PMID:12837355

  3. In Vitro Study of SnS2, BiOCl and SnS2-Incorporated BiOCl Inorganic Nanoparticles Used as Doxorubicin Carrier.

    PubMed

    Deng, Jiangming; Mo, Yunfei; Liu, Jianghui; Guo, Rui; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2016-06-01

    Inorganic nanoparticles have been widely used in biomedical field. In this paper, we try to study the use of three types of inorganic nanoparticles (i.e., SnS2, BiOCl and SnS2-incorporated BiOCl (SnS2/BiOCl)) as doxorubicin (DOX) carriers. Firstly, SnS2, BiOCl and SnS2/BiOCl were synthesised, then were characterized by TEM, nanoparticles size and zeta potential. Next the drug release and cell viability test were carried out. The cell viability test indicated that the drug carriers can effectively kill HeLa cells while maintaining low cytotoxicity against normal cells-fibroblasts. The results show the potential of SnS2/BiOCl nanoparticles for antitumor applications. PMID:27427625

  4. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.

    PubMed

    Luo, Haitao; Rankin, Gary O; Liu, Lingzhi; Daddysman, Matthew K; Jiang, Bing-Hua; Chen, Yi Charlie

    2009-01-01

    Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers. PMID:19838928

  5. Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application.

    PubMed

    Jayalekshmi, A C; Sharma, Chandra P

    2015-02-01

    The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications. PMID:25576810

  6. Ultra-thin film composite mixed matrix membranes incorporating iron(iii)-dopamine nanoparticles for CO2 separation

    NASA Astrophysics Data System (ADS)

    Kim, Jinguk; Fu, Qiang; Scofield, Joel M. P.; Kentish, Sandra E.; Qiao, Greg G.

    2016-04-01

    Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe3+ and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe3+ ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG-based selective layer is confirmed by XPS analysis. The UTFC-MMMs (thickness: ~45 nm) formed present excellent gas separation performance with a CO2 permeance of ~1200 GPU (1 GPU = 10-6 cm3 (STP) cm-2 s-1 cmHg-1) and an enhanced CO2/N2 selectivity of over 35, which is the best performance for UTFC membranes in the reported literature.Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe3+ and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe3+ ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG

  7. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers.

    PubMed

    Celebioglu, Asli; Aytac, Zeynep; Umu, Ozgun C O; Dana, Aykutlu; Tekinay, Turgay; Uyar, Tamer

    2014-01-01

    One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. PMID:24274573

  8. Electrochemical behavior of gold nanoparticles modified nitrogen incorporated tetrahedral amorphous carbon and its application in glucose sensing.

    PubMed

    Liu, Aiping; Wu, Huaping; Qiu, Xu; Tang, Weihua

    2011-12-01

    Gold nanoparticles (NPs) with 10-50 nm in diameter were synthesized on nitrogen incorporated tetrahedral amorphous carbon (ta-C:N) thin film electrode by electrodeposition. The deposition and nucleation processes of Au on ta-C:N surface were investigated by cyclic voltammetry and chronoamperometry. The morphology of Au NPs was characterized by scanned electron microscopy. The electrochemical properties of Au NPs modified ta-C:N (ta-C:N/Au) electrode and its ability to sense glucose were investigated by voltammetric and amperometric measurements. The potentiostatic current-time transients showed a progressive nucleation process and diffusion growth of Au on the surface of ta-C:N film according to the Scharifker-Hills model. The Au NPs acted as microelectrodes improved the electron transfer and electrocatalytic oxidation of glucose on ta-C:N electrode. The ta-C:N/Au electrode exhibited fast current response, a linear detection range of glucose from 0.5 to 25 mM and a detection limit of 120 microM, which hinted its potential application as a glucose biosensor. PMID:22409057

  9. Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Dubey, Prashant; Kumar, Ashish; Prakash, Rajiv

    2015-11-01

    Reduced graphene oxide (r-GO) sheets have been modified by polyindole (PIn) via in situ chemical oxidation method to obtain stable dispersion in water and furthermore incorporation of Ag nanoparticles (Ag NPs); the resulting Ag NPs/PIn-r-GO nanocomposite is demonstrated for electrochemical applications. Ag NPs/r-GO and PIn/GO nanocomposites have also been prepared for its comparative study with Ag NPs/PIn-r-GO. Non-covalent functionalization of GO by PIn polymer leads to PIn-GO dispersion, which is stable for several months without any precipitation. This dispersed solution is used for formation of Ag NPs/PIn-r-GO nanocomposite. Various experimental tools like UV-vis, FTIR and TEM have been used to characterize as-synthesized materials. Thereafter electrochemical performance of as-synthesized nanocomposites have been compared for their charge capacitive behaviour (without its poisoning compared to Ag NPs/r-GO) which leads to be an excellent candidate for the possible applications such as electrocatalysis, charge storage devices, etc. We observed that Ag NPs/PIn-r-GO nanocomposite exhibits better processability and electroactivity as electrode material in comparison to Ag NPs/r-GO and PIn/GO nanocomposites due to synergistic effect of individual components.

  10. Nanoparticles of gadolinium-incorporated Prussian blue with PEG coating as an effective oral MRI contrast agent for gastrointestinal tract imaging.

    PubMed

    Perera, Vindya S; Chen, Guojun; Cai, Qing; Huang, Songping D

    2016-03-01

    Biocompatible nanoparticles of gadolinium-incorporated Prussian blue with the empirical formula K0.94Gd0.02Fe[Fe(CN)6] exhibit extremely high stability against the release of Gd(3+) and CN(-) ions under the acidic conditions similar to stomach juice. The high r1 relaxivity, low cytotoxicity and the ability of such nanoparticles to penetrate the cell membrane suggest that this coordination-polymer structural platform offers a unique opportunity for developing the next generation of T1-weighted oral cellular MRI probes for the early detection of tumors in the gastrointestinal tract. PMID:26890149

  11. Influence of Incorporated Pt-Fe2O3 Core-Shell Nanoparticles on the Resistive Switching Characteristics of ZnO Thin Film.

    PubMed

    Yoo, E J; Kang, S Y; Shim, E L; Yoon, T S; Kang, C J; Choi, Y J

    2015-11-01

    The resistance-switching characteristics of metal oxides have attracted great interest for the non-volatile memory applications such as resistive random access memory. A basic resistive random access memory device has a metal/insulator/metal structure, and its memory effect is achieved by applying voltage to change the resistance of the insulating layer. One of the promising candidates for explaining the resistance-switching mechanism is the formation and rupture of nanoscale conductive filaments. However, this model has an issue that needs to be addressed: the wide distribution of switching voltage due to randomly formed filaments. Therefore, some researchers have reported a decrease in switching voltage distribution and an increase in switching stability by incorporating nanoparticles into the insulating layer. In this study, we investigated influence of incorporated Pt-Fe2O3 core-shell nanoparticles on the resistive switching characteristics of ZnO thin films. Devices were fabricated on SiO2 wafers. A 100-nm-thick Cr layer was used as the bottom electrode. A 50-nm-thick ZnO layer was deposited using the sputtering method, and Pt-Fe2O3 nanoparticles were deposited on it by the dip coating method. A 50-nm-thick ZnO layer was then deposited again. A top Cr electrode (size: 100 μm x 100 μm) was deposited using a shadow mask and sputtering system. All the devices showed bipolar resistance-switching behavior that is observed in Cr/ZnO/Cr structures. However, the on/off voltage was dramatically lowered by incorporating nanoparticles into the insulating layer when compared with that of the devices without nanoparticles. In addition, the switching stability of the devices was improved upon the incorporation of nanoparticles. On the basis of these results, we can conclude that Pt-Fe2O3 nanoparticles may be used to enhance the resistance switching properties of ZnO thin films by incorporating them into the films. PMID:26726563

  12. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro

    PubMed Central

    Lee, Jungwhoi; Kim, Jae Hoon

    2016-01-01

    Pancreatic cancer is one of the most appalling cancers with a pessimistic prognosis. Despite many therapies, there has been no improvement of survival rates. In this study, we assessed the anti-cancer effects of kaempferol, a well known flavonoid having functional bio-activity against various malignant tumors. Kaempferol had anti-cancer effects on Miapaca-2, Panc-1, and SNU-213 human pancreatic cancer cells. In a dose-dependent manner, kaempferol decreased viability of these pancreatic cancer cells by increasing apoptosis. In particular, kaempferol effectively inhibited the migratory activity of human pancreatic cancer cells at relatively low dosages without any toxicity. The anti-cancer effect of kaempferol was mediated by inhibition of EGFR related Src, ERK1/2, and AKT pathways. These results collectively indicate that kaempferol, a phytochemical ingredient reported to have anti-viability and anti-oxidant properties, can act as a safety anti-migration reagent in human pancreatic cancer cells, which provide the rationale for further investigation of kaempferol as a strong candidate for the potential clinical trial of malignant pancreatic cancers. PMID:27175782

  13. Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rogozea, Elena Adina; Olteanu, Nicoleta Liliana; Petcu, Adina Roxana; Lazar, Cosmina Andreea; Meghea, Aurelia; Mihaly, Maria

    2016-06-01

    Incorporating noble metal nanoparticles (NPs) and oxides has been proved to be an effective method to tune the optical properties of silica based materials. In this paper the optical and photocatalytic properties have been studied for ZnO/SiO2 modified with Au or NiO nanoparticles. Changes in the optical properties of semiconductor ZnO particles have been observed due to the deposition of coloured Au and NiO nanoparticles by reducing the band gap energy and thus extending light absorption to visible domain. The excellent surface characteristics of NiO/ZnO/SiO2 and Au/ZnO/SiO2 favour the adsorption behaviour of these materials and limit the recombination of electron-holes pairs. Crystal Violet degradation under VIS light proved to have higher efficiency in the presence of Au/ZnO/SiO2 (97%) than for NiO/ZnO/SiO2 (60%).

  14. Linear and nonlinear optical properties of KDP crystals with incorporated Al2O3ṡnH2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Pritula, I. M.; Kosinova, A. V.; Bezkrovnaya, O. N.; Kolybaeva, M. I.; Puzikov, V. M.; Lopin, A. V.; Tkachenko, V. F.; Kopylovsky, M. A.; Yatsyna, V. O.; Gayvoronsky, V. Ya.

    2013-10-01

    Optical and nonlinear optical properties of a novel composite system based on KDP single crystals with embedded nanoparticles of nanostructured oxyhydroxide of aluminum (Al2O3·nH2O, NOA), were studied. KDP crystals with NOA nanoparticles (KDP:NOA) possess high optical quality and homogeneity. Optical spectroscopy showed the presence of an absorption band at 270 nm caused by NOA nanoparticles incorporated in the KDP matrix. There was observed an enhancement of nonlinear refractive index and inversion of its sign in KDP:NOA crystals in comparison with nominally pure KDP crystals under excitation of picosecond laser pulses. The obtained results demonstrate that KDP:NOA is a promising composite material for optoelectronics and nonlinear optics.

  15. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells

    SciTech Connect

    Hong, J.-T.; Yen, J.-H.; Wang Lisu; Lo, Y.-H.; Chen, Z.-T.; Wu, M.-J.

    2009-05-15

    Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. Our aim of research is to investigate the protective effects and mechanisms of kaempferol and rhamnocitrin (kaempferol-7-methyl ether) on oxidative damage in rat pheochromocytoma PC12 cells induced by a limited supply of serum and hydrogen peroxide (H{sub 2}O{sub 2}). The current result demonstrated that kaempferol protected PC12 cells from serum deprivation-induced apoptosis. Pretreatment of cells with kaempferol also diminished intracellular generation of reactive oxygen species (ROS) in response to H{sub 2}O{sub 2} and strongly elevated cell viability. RT-Q-PCR and Western blotting revealed that kaempferol and rhamnocitrin significantly induced heme oxygenase (HO)-1 gene expression. Addition of zinc protoporphyrin (Znpp), a HO-1 competitive inhibitor, significantly attenuated their protective effects in H{sub 2}O{sub 2}-treated cells, indicating the vital role of HO-1 in cell resistance to oxidative injury. While investigating the signaling pathways responsible for HO-1 induction, we observed that kaempferol induced sustained extracellular signal-regulated protein kinase 1/2 (ERK1/2) in PC12 cells grown in low serum medium; while rhamnocitrin only stimulated transient ERK cascade. Addition of U0126, a highly selective inhibitor of MEK1/2, which is upstream of ERK1/2, had no effect on kaempferol- or rhamnocitrin-induced HO-1 mRNA expression, indicating no direct cross-talk between these two pathways. Furthermore, both kaempferol and rhamnocitrin were able to persistently attenuate p38 phosphorylation. Taking together, the above findings suggest that kaempferol and rhamnocitrin can augment cellular antioxidant defense capacity, at least in part, through regulation of HO-1 expression and MAPK signal transduction.

  16. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. PMID:27207035

  17. CdS nanoparticles incorporated onion-like mesoporous silica films: Ageing-induced large stokes shifted intense PL emission

    NASA Astrophysics Data System (ADS)

    Mishra, Manish Kr; Mandal, Abhijit; Saha, Jony; De, Goutam

    2013-10-01

    CdS nanoparticles (NPs) were generated in onion-like ordered mesoporous SiO2 films through a modified sol-gel process using P123 as a structure directing agent. Initially Cd2+ doped (12 equivalent mol% with respect to the SiO2) mesoporous SiO2 films were prepared on glass substrate. These films after heat-treatment at 350 °C in air yielded transparent mesoporous SiO2 films having hexagonally ordered onion-like pore channels embedded with uniformly dispersed CdO NPs. The generated CdO NPs were transformed into CdS NPs after exposing the films in H2S gas at 200 °C for 2 h. The as-prepared CdS NPs incorporated mesoporous SiO2 films (transparent and bright yellow in color) showed a band-edge emission at 485 nm and a weak surface defect related emission at 530 nm. During ageing of the films in ambient condition the band-edge emission gradually weakened with time and almost disappeared after about 15 days with concomitant increase of defect related strong surface state emission band near 615 nm. This transformation was related to the decay of initially formed well crystalline CdS to relatively smaller and weakly crystalline CdS NPs with surface defects due to gradual oxidation of surface sulfide. At this condition the embedded CdS NPs show large Stokes shifted (˜180 nm) intense broad emission which could be useful for luminescent solar concentrators. The detailed process was monitored by UV-Visible, FTIR and Raman spectroscopy, XPS, XRD and TEM studies. The evolution of photoluminescence (PL) and life times of CdS/SiO2 films were monitored with respect to the ageing time.

  18. Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films.

    PubMed

    Sonkaew, Piyapong; Sane, Amporn; Suppakul, Panuwat

    2012-05-30

    Curcumin (Ccm) and ascorbyl dipalmitate (ADP) nanoparticles (NPs) with average sizes of ∼50 and ∼80 nm, respectively, were successfully produced by rapid expansion of subcritical solutions into liquid solvents (RESOLV). Pluronic F127 was employed as a stabilizer for both Ccm- and ADP-NPs in an aqueous receiving solution. Antioxidant activities of the Ccm-NPs and ADP-NPs were subsequently investigated using four assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS radical cation decolorization, β-carotene bleaching, and ferric reducing antioxidant power. Ccm-NPs and ADP-NPs showed higher antioxidant activities than those of Ccm and ADP. Ccm-NPs yielded higher antioxidant activities than those of Ccm in ethanol and water (Ccm-EtOH and Ccm-H(2)O), respectively. ADP-NPs yielded lower antioxidant activities than that of ADP in ethanol (ADP-EtOH) but higher activities than that of ADP in water (ADP-H(2)O). Moreover, incorporation of Ccm-NPs and ADP-NPs into cellulose-based films indicated that Ccm-NPs and ADP-NPs significantly enhanced the antioxidant activities of Ccm and ADP (p < 0.05). Our results show that the environmentally benign supercritical CO(2) technique should be generally applicable to NP fabrication of other important bioactive ingredients, especially in liquid form. In addition, we suggest that Ccm-NPs and ADP-NPs can be used to reduce the dosage of Ccm and ADP and improve their bioavailability, and thus merit further investigation for antioxidant packaging film and coating applications. PMID:22583595

  19. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Elizabeth, Elmy; Baranwal, Gaurav; Krishnan, Amit G.; Menon, Deepthy; Nair, Manitha

    2014-03-01

    Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.

  20. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol.

    PubMed

    Zeka, Keti; Ruparelia, Ketan C; Continenza, Maria A; Stagos, Dimitrios; Vegliò, Francesco; Arroo, Randolph R J

    2015-12-01

    Saffron from the province of L'Aquila, in the Abruzzo region of Italy, is highly prized and has been awarded a formal recognition by the European Union with EU Protected Designation of Origin (PDO) status. Despite this, the saffron regions are abandoned by the younger generations because the traditional cultivation of saffron (Crocus sativus L.) is labour intensive and yields only one crop of valuable saffron stamens per year. Petals of the saffron Crocus have had additional uses in traditional medicine and may add value to the crops for local farmers. This is especially important because the plant only flowers between October and November, and farmers will need to make the best use of the flowers harvested in this period. Recently, the petals of C. sativus L., which are considered a waste material in the production of saffron spice, were identified as a potential source of natural antioxidants. The antioxidants crocin and kaempferol were purified by flash column chromatography, and identified by thin layer chromatography (TLC), HPLC-DAD, infrared (IR), and nuclear magnetic resonance ((1)H &(13)C NMR) spectroscopy. The antioxidant activity was determined with the ABTS and DPPH tests. The antioxidant activities are mainly attributed to carotenoid and flavonoid compounds, notably glycosides of crocin and kaempferol. We found in dried petals 0.6% (w/w) and 12.6 (w/w) of crocin and kaempferol, respectively. Petals of C. sativus L. have commercial potential as a source for kaempferol and crocetin glycosides, natural compounds with antioxidant activity that are considered to be the active ingredients in saffron-based herbal medicine. PMID:26012879

  1. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  2. Improved performance of poly(3,4-ethylenedioxythiophene):poly(stylene sulfonate)/n-Si hybrid solar cell by incorporating silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Khatri, Ishwor; Liu, Qiming; Ueno, Keiji; Shirai, Hajime

    2014-11-01

    We report an enhancement in the efficiency of poly(3,4-ethylenedioxythiophene):poly(stylene sulfonate) (PEDOT:PSS)/n-Si hybrid solar cell by incorporating silver nanoparticles (AgNPs) with PEDOT:PSS. AgNPs were prepared by reducing silver nitrate in green-tea solution, which showed characteristic absorption peak due to the surface plasmonic resonance effect. AgNPs incorporated PEDOT:PSS/n-Si hybrid device shows power conversion efficiency (η) of 10.21%, which is comparatively higher to the performance of pristine device without AgNPs. Here, we noticed that incorporation of AgNPs decreases sheet resistance and enlarged surface roughness of PEDOT:PSS film for the efficient collection of charges, rather than plasmonic effect.

  3. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    SciTech Connect

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  4. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice

    PubMed Central

    Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases. PMID:26599511

  5. Critical evaluation of the therapeutic potential of bassic acid incorporated in oil-in-water microemulsions and poly-D,L-lactide nanoparticles against experimental leishmaniasis.

    PubMed

    Lala, Sanchaita; Gupta, Syamasri; Sahu, Niranjan P; Mandal, Debayan; Mondal, Nirup B; Moulik, Satya P; Basu, Mukul K

    2006-05-01

    Bassic acid, an unsaturated triterpene acid isolated from Mimusops elangii, was tested for its antileishmanial properties both in vitro and in vivo. The in vitro antileishmanial activity of bassic acid being encouraging, its activity in vivo was evaluated in hamster models of visceral leishmaniasis, both in free form, as well as incorporated in two different delivery systems, viz microemulsions and polylactide nanoparticles. The delivery systems were prepared by published protocols. The percentage intercalation of bassic acid in nanoparticles and microemulsion was found to be about 50 and 100, respectively, when determined at its absorption maxima (lambda(max)) 285 nm (epsilon(m) = 2.3 x 10(2) M(-1) cm(-1)). At an equivalent dose of 2 mg kg(-1) body weight, when injected subcutaneously for a total of six doses in 15 days, bassic acid was found to reduce spleen parasite loads by 45, 62 and 78% in free, microemulsion-incorporated and nanoparticle-incorporated forms, respectively. A comparison of specific biochemical tests related to normal liver and kidney functions revealed that the nanoparticulate form was successful in significantly reducing the hepatotoxicity and nephrotoxicity of the free drug, but the microemulsion delivery system was less effective and toxic to liver and kidney to some extent. Confocal microscopic images of Leishmania donovani promastigotes treated with bassic acid revealed that the drug induced necrotic cell death due to non-specific membrane damage. Because of its high efficacy as well as non-hepatotoxicity and non-nephrotoxicity, the nanoparticulate form of bassic acid may be considered for clinical application in humans rather than the microemulsion incorporated form. PMID:16777677

  6. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway

    PubMed Central

    Luo, Haitao; Rankin, Gary O.; Juliano, Noelle; Jiang, Bing-Hua; Chen, Yi Charlie

    2011-01-01

    Kaempferol has been reported to reduce the risk of ovarian cancer, but the mechanism is not completely understood. In this study, we tend to expand our understanding on how kaempferol regulates VEGF expression and angiogenesis in ovarian cancer cells. We timed VEGF secretion, and studied in-vitro angiogenesis by kaempferol treatment. Gene expression was examined by qRT-PCR, ELISA, Western Blotting, or luciferase assay, and pathways were examined by manipulating genetic components with plasmid or siRNA transfection. It was found that kaempferol time-dependently inhibited VEGF secretion, and suppressed in-vitro angiogenesis. Kaempferol down-regulated ERK phosphorelation as well as NFκB and cMyc expression, but promoted p21 expression. Examination of relationship between these genes suggested a novel ERK-NFκB-cMyc-p21-VEGF pathway, which accounts for kaempferol’s angioprevention effects in ovarian cancer cells. This data supplements our comprehension of the mechanisms behind kaempferol’s biological influence in ovarian cancer cells, and better characterized kaempferol toward chemoprevention. PMID:21927533

  7. Stabilization of the Nitric Oxide (NO) Prodrugs and Anti-Cancer Leads, PABA/NO and Double JS-K through Incorporation into PEG-Protected Nanoparticles

    PubMed Central

    Kumar, Varun; Hong, Sam Y.; Maciag, Anna E.; Saavedra, Joseph E.; Adamson, Douglas H.; Prud'homme, Robert K.; Keefer, Larry K.; Chakrapani, Harinath

    2009-01-01

    Here we report the stabilization of the nitric oxide (NO) prodrugs and anti-cancer lead compounds, PABA/NO (O2-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and “Double JS-K” (1,5-bis{[1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato]-2,4-dinitrobenzene), through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit. PMID:20000791

  8. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages. PMID:22433844

  9. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.

    PubMed

    Miean, K H; Mohamed, S

    2001-06-01

    Studies were conducted on the flavonoids (myricetin, quercetin, kaempferol, luteolin, and apigenin) contents of 62 edible tropical plants. The highest total flavonoids content was in onion leaves (1497.5 mg/kg quercetin, 391.0 mg/kg luteolin, and 832.0 mg/kg kaempferol), followed by Semambu leaves (2041.0 mg/kg), bird chili (1663.0 mg/kg), black tea (1491.0 mg/kg), papaya shoots (1264.0 mg/kg), and guava (1128.5 mg/kg). The major flavonoid in these plant extracts is quercetin, followed by myricetin and kaempferol. Luteolin could be detected only in broccoli (74.5 mg/kg dry weight), green chili (33.0 mg/kg), bird chili (1035.0 mg/kg), onion leaves (391.0 mg/kg), belimbi fruit (202.0 mg/kg), belimbi leaves (464.5 mg/kg), French bean (11.0 mg/kg), carrot (37.5 mg/kg), white radish (9.0 mg/kg), local celery (80.5 mg/kg), limau purut leaves (30.5 mg/kg), and dried asam gelugur (107.5 mg/kg). Apigenin was found only in Chinese cabbage (187.0 mg/kg), bell pepper (272.0 mg/kg), garlic (217.0 mg/kg), belimbi fruit (458.0 mg/kg), French peas (176.0 mg/kg), snake gourd (42.4 mg/kg), guava (579.0 mg/kg), wolfberry leaves (547.0 mg/kg), local celery (338.5 mg/kg), daun turi (39.5 mg/kg), and kadok (34.5 mg/kg). In vegetables, quercetin glycosides predominate, but glycosides of kaempferol, luteolin, and apigenin are also present. Fruits contain almost exclusively quercetin glycosides, whereas kaempferol and myricetin glycosides are found only in trace quantities. PMID:11410016

  10. Effect of crystallographic phase on green and yellow emissions in Mn-doped zinc silicate nanoparticles incorporated in silica host matrix

    NASA Astrophysics Data System (ADS)

    El Mir, L.; Omri, K.; El Ghoul, J.

    2015-09-01

    Silica host matrix reached by manganese-doped zinc silicate nanoparticles (SiO2/Zn2SiO4:Mn) were in-situ synthesized by a sol-gel process. In our approach, we synthesis ZnO:Mn nanoparticles in supercritical conditions of ethanol. After the incorporation of these nanoparticles in silica host matrix, a heat treatment at 1200 °C and 1500 °C for 2 h was performed for the elaboration of SiO2/Zn2SiO4:Mn nanocomposites. Then, these samples were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and photoluminescence (PL). These samples exhibit broad green and yellow PL bands depending on synthesis temperature. The SiO2/Zn2SiO4:Mn prepared at 1200 °C exhibit a green emission centered at about 525 nm while the yellow emission centered at 575 nm resulted from SiO2/Zn2SiO4:Mn prepared at 1500 °C. These two emissions are originated from internal transition in Mn2+ ion doped zinc silicate nanoparticles and the emission wavelength is correlated to the local crystalline field which is fixed by the crystallographic phase.

  11. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    PubMed

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion. PMID:24033637

  12. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

    PubMed Central

    Farkas, Balazs; Rodio, Marina; Romano, Ilaria; Diaspro, Alberto; Intartaglia, Romuald

    2015-01-01

    Summary We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate) (PPF), a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported. PMID:26734513

  13. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies.

    PubMed

    Farkas, Balazs; Rodio, Marina; Romano, Ilaria; Diaspro, Alberto; Intartaglia, Romuald; Beke, Szabolcs

    2015-01-01

    We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate) (PPF), a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported. PMID:26734513

  14. Enhanced energy transfer between Co-dopants Pyronin-Y and Thionine incorporated into modified polymethyl methacrylate with addition of ZnO nanoparticles.

    PubMed

    Vijayaraghavan, G V; Basheer Ahamed, M

    2016-04-01

    Using a prism dye cell arrangement, the study investigated spectral energy transfer between co-dopants Pyronin-Y and Thionine incorporated into ethanol-modified polymethyl methacrylate. The spectral parameters of the absorption and fluorescence spectra of the donor and acceptor dyes in the so designed solid-state dye laser were calculated theoretically. Fluorescence lasing properties and slope efficiency of the solid-state dye laser were investigated both with and without addition of ZnO nanoparticles. The dye pair generally improved lasing efficiency and tunability in the range from 582 to 689nm. PMID:26803748

  15. Enhanced energy transfer between Co-dopants Pyronin-Y and Thionine incorporated into modified polymethyl methacrylate with addition of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, G. V.; Basheer Ahamed, M.

    2016-04-01

    Using a prism dye cell arrangement, the study investigated spectral energy transfer between co-dopants Pyronin-Y and Thionine incorporated into ethanol-modified polymethyl methacrylate. The spectral parameters of the absorption and fluorescence spectra of the donor and acceptor dyes in the so designed solid-state dye laser were calculated theoretically. Fluorescence lasing properties and slope efficiency of the solid-state dye laser were investigated both with and without addition of ZnO nanoparticles. The dye pair generally improved lasing efficiency and tunability in the range from 582 to 689 nm.

  16. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma

    PubMed Central

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-01-01

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10–20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy. PMID:26694364

  17. Increased efficiency in multijunction solar cells through the incorporation of semimetallic ErAs nanoparticles into the tunnel junction

    SciTech Connect

    Zide, J.M.O.; Kleiman-Shwarsctein, A.; Strandwitz, N.C.; Zimmerman, J.D.; Steenblock-Smith, T.; Gossard, A.C.; Forman, A.; Ivanovskaya, A.; Stucky, G.D.

    2006-04-17

    We report the molecular beam epitaxy growth of Al{sub 0.3}Ga{sub 0.7}As/GaAs multijunction solar cells with epitaxial, semimetallic ErAs nanoparticles at the interface of the tunnel junction. The states provided by these nanoparticles reduce the bias required to pass current through the tunnel junction by three orders of magnitude, and therefore drastically reduce the voltage losses in the tunnel junction. We have measured open-circuit voltages which are 97% of the sum of the constituent cells, which result in nearly double the efficiency of our multijunction cell with a conventional tunnel junction.

  18. Development of Nanoparticles Incorporating a Novel Liposomal Membrane Destabilization Peptide for Efficient Release of Cargos into Cancer Cells

    PubMed Central

    Ohgita, Takashi; Kogure, Kentaro

    2014-01-01

    In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells. PMID:25343714

  19. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells.

    PubMed

    Liao, Wenzhen; Chen, Luying; Ma, Xiang; Jiao, Rui; Li, Xiaofeng; Wang, Yong

    2016-05-23

    The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction. PMID:26974372

  20. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice

    PubMed Central

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction. PMID:26064984

  1. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes

    PubMed Central

    Ochiai, Ayasa; Miyata, Shingo; Iwase, Masamori; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-01-01

    A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity. PMID:27109240

  2. Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation.

    PubMed

    Cabrera, Flávio C; Agostini, Deuber L S; Dos Santos, Renivaldo J; Guimarães, Francisco E G; Guerrero, Ariel R; Aroca, Ricardo F; Job, Aldo E

    2014-12-01

    Natural rubber membranes were fabricated using latex from Hevea brasiliensis trees (clone RRIM 600) by casting, and controlling the time and temperature of thermal treatment. Three temperatures were used: 65, 80 and 120 °C and the corresponding annealing times of 6, 8, 10 and 12 h. The centrifugation of the latex produces the constituent phases: solid rubber (F1), serum or protein components (F2) and bottom fraction (F3). The photoluminescence properties could be correlated with organic acid components of latex. Natural rubber membranes were used as the active substrate (reducing agent) for the incorporation of colloidal Au nanoparticles synthesized by in situ reduction at different times. The intensity of photoluminescence bands assigned to the natural rubber decreases with the increase in amount of nanoparticles present on the membrane surface. It can be assumed that Au nanoparticles may be formed by reduction of the Au cation reacting with functional groups that are directly related to photoluminescence properties. However, the quenching of fluorescence may be attributed to the formation of a large amount of metal nanostructures on the natural rubber surface. PMID:24760547

  3. ανβ3-targeted Copper Nanoparticles Incorporating an Sn 2 Lipase-Labile Fumagillin Prodrug for Photoacoustic Neovascular Imaging and Treatment

    PubMed Central

    Zhang, Ruiying; Pan, Dipanjan; Cai, Xin; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Lanza, Gregory M.; Wang, Lihong V.

    2015-01-01

    Photoacoustic (PA) tomography enables multiscale, multicontrast and high-resolution imaging of biological structures. In particular, contrast-enhanced PA imaging offers high-sensitivity noninvasive imaging of neovessel sprout formation and nascent tubules, which are important biomarkers of malignant tumors and progressive atherosclerotic disease. While gold nanoparticles or nanorods have been used as PA contrast agents, we utilized high-density copper oleate small molecules encapsulated within a phospholipid surfactant (CuNPs) to generate a soft nanoparticle with PA contrast comparable to that from gold. Within the NIR window, the copper nanoparticles provided a 4-fold higher signal than that of blood. ανβ3-integrin targeting of CuNPs in a MatrigelTM angiogenesis mouse model demonstrated prominent (p<0.05) PA contrast enhancement of the neovasculature compared with mice given nontargeted or competitively inhibited CuNPs. Furthermore, incorporation of a Sn 2 lipase-labile fumagillin prodrug into the CuNP outer lipid membrane produced marked antiangiogenesis in the same model when targeted to the ανβ3-integrin, providing proof of concept in vivo for the first targeted PA - drug delivery agent. PMID:25553103

  4. Photoacoustic molecular imaging of angiogenesis using theranostic ανβ3-targeted copper nanoparticles incorporating a sn-2 lipase-labile fumagillin prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Cai, Xin; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Pan, Dipanjan; Lanza, Gregory M.; Wang, Lihong V.

    2014-03-01

    Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. ανβ3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, ανβ3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features.

  5. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency.

    PubMed

    Xu, Shuxin; Wang, Weiwei; Li, Xijing; Liu, Jianping; Dong, Anjie; Deng, Liandong

    2014-10-01

    As drug therapies become increasingly sophisticated, the synergistic benefits of two or more drugs are often required. In this study, we aimed at improving anti-tumor efficiency of paclitaxel (PTX)-incorporated thermo-sensitive injectable hydrogel by the synergy of burst release of doxorubicin hydrochloride (DOX⋅HCl). Thermosensitive injectable hydrogel composed of nanoparticles assembled from amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolaone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) was fabricated. Hydrophobic PTX and hydrophilic DOX⋅HCl were loaded simultaneously in the thermo-sensitive injectable hydrogel by a two-stage entrapment. Thermosensitive gelling behaviors of drug-loading PECT nanoparticle aqueous dispersions were studied. In vitro release profiles of PTX and DOX⋅HCl and in vivo anti-tumor effect by dual drugs from PECT hydrogel were investigated. The results showed that hydrophilic and hydrophobic drugs could be successfully entrapped in PECT hydrogel simultaneously without affecting its thermo-sensitive behavior. In vitro release profiles demonstrated the burst release of DOX⋅HCl and the sustained release of PTX. Anti-tumor effect was improved by a fast and tense attack caused by the burst release of hydrophilic DOX⋅HCl from hydrogel, which was continued by the sequent sustained release of PTX-incorporated nanoparticles and remnant DOX⋅HCl. Unintentionally, entrapped in PECT hydrogel, hydrophilic DOX⋅HCl was observed to have a sustained releasing pattern in vitro and in vivo. PMID:24931190

  6. A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides.

    PubMed

    Dzudzevic Cancar, Hurija; Soylemez, Saniye; Akpinar, Yeliz; Kesik, Melis; Göker, Seza; Gunbas, Gorkem; Volkan, Murvet; Toppare, Levent

    2016-03-01

    To construct a sensing interface, in the present work, a conjugated polymer and core-shell magnetic nanoparticle containing biosensor was constructed for the pesticide analysis. The monomer 4,7-di(furan-2-yl)benzo[c][1,2,5]thiadiazole (FBThF) and core-shell magnetic nanoparticles were designed and synthesized for fabrication of the biosensing device. The magnetic nanoparticles were first treated with silica and then modified using carboxyl groups, which enabled binding of the biomolecules covalently. For the construction of the proposed sensor a two-step procedure was performed. First, the poly(FBThF) was electrochemically generated on the electrode surface. Then, carboxyl group modified magnetic nanoparticles (f-MNPs) and acetylcholinesterase (AChE), the model enzyme, were co-immobilized on the polymer-coated surface. Thereby, a robust and novel surface, conjugated polymer bearing magnetic nanoparticles with pendant carboxyl groups, was constructed, which was characterized using Fourier transform infrared spectrometer, cyclic voltammetry, scanning electron microscopy, and contact angle measurements. This novel architecture was then applied as an immobilization platform to detect pesticides. To the best of our knowledge, a sensor design that combines both conjugated polymer and magnetic nanoparticles was attempted for the first time, and this approach resulted in improved biosensor characteristics. Hence, this approach opens a new perspective in the field of enzyme immobilization and sensing applications. Paraoxon and trichlorfon were selected as the model toxicants. To obtain best biosensor performance, optimization studies were performed. Under optimized conditions, the biosensor in concern revealed a rapid response (5 s), a low detection limit (6.66 × 10(-3) mM), and high sensitivity (45.01 μA mM(-1) cm(-2)). The KM(app) value of poly(FBThF)/f-MNPs/AChE were determined as 0.73 mM. Furthermore, there was no considerable activity loss for 10 d for poly

  7. Incorporation of cobalt-ferrite nanoparticles into a conducting polymer in aqueous micellar medium: strategy to get photocatalytic composites.

    PubMed

    Endrődi, Balázs; Hursán, Dorottya; Petrilla, Liliána; Bencsik, Gábor; Visy, Csaba; Chams, Amani; Maslah, Nabiha; Perruchot, Christian; Jouini, Mohamed

    2014-01-01

    In this study an easy strategy for conducting polymer based nanocomposite formation is presented through the deposition of cobalt-ferrite (CoFe(2)O(4)) containing poly(3,4-ethylenedioxythiophene) (PEDOT) thin layers. The electrochemical polymerization has been performed galvanostatically in an aqueous micellar medium in the presence of the nanoparticles and the surface active Triton X-100. The nanoparticles have been characterized by Transmission electron microscopy (TEM), the thin layers has been studied by applying Scanning electron microscopy (SEM), and X-ray diffraction (XRD), and the basic electrochemical properties have been also determined. Moreover, electrocatalytic activity of the composite was demonstrated in the electrooxidation reaction of dopamine (DA). The enhanced sensitivity - related to the cobalt-ferrite content - and the experienced photocatalyitic activity are promising for future application. PMID:25125121

  8. An Investigation on Effects of TiO2 Nano-Particles Incorporated in Electroless NiP Coatings' Properties

    NASA Astrophysics Data System (ADS)

    Allahkaram, S. R.; Salmi, S.; Tohidlou, E.

    Electroless composite coatings have been vastly used in various industries during last decades due to their good properties, such as corrosion and wear resistance, hardness and uniform thickness. In this paper, co-deposition of TiO2 nano-particles with Nickel-Phosphorus electroless coatings on API-5L-X65 steel substrates was investigated. Surface morphology and composition of coatings were studied via SEM and EDX, respectively. XRD analyses showed that these coatings had amorphous structure with TiO2 crystalline particles. TiO2 nano-particles increased microhardness of coatings. Corrosion resistance of these coatings was tested using linear polarization in 0.5M sulfuric acid electrolyte. Results showed that NiP-TiO2 electroless composite coatings increased corrosion resistance of substrates.

  9. Kaempferol as Selective Human MAO-A Inhibitor: Analytical Detection in Calabrian Red Wines, Biological and Molecular Modeling Studies.

    PubMed

    Gidaro, Maria Concetta; Astorino, Christian; Petzer, Anél; Carradori, Simone; Alcaro, Francesca; Costa, Giosuè; Artese, Anna; Rafele, Giancarlo; Russo, Francesco M; Petzer, Jacobus P; Alcaro, Stefano

    2016-02-17

    The purpose of this work was to determine the kaempferol content in three red wines of Calabria, a southern Italian region with a great number of certified food products. Considering that wine cultivar, climate, and soil influence the qualitative and quantitative composition in flavonoids of Vitis vinifera L. berries, the three analyzed samples were taken from the 2013 vintage. Moreover, the Gaglioppo samples, with assigned Controlled Origin Denomination (DOC), were also investigated in the production of years 2008, 2010, and 2011. In addition to the analysis of kaempferol, which is present in higher concentration than in other Italian wines, in vitro assays were performed to evaluate, for the first time, the inhibition of the human monoamine oxidases (hMAO-A and hMAO-B). Molecular recognition studies were also carried out to provide insight into the binding mode of kaempferol and selectivity of inhibition of the hMAO-A isoform. PMID:26821152

  10. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites.

    PubMed

    Li, Yunxi; Wang, Chunhui; Li, Hailong; Wang, Xiaoyi; Han, Junhe; Huang, Mingju

    2015-11-20

    Al2O3 nanoparticles modified with different chemical reagents, prepared by using three chemical dispersants [high definition (HD), sodium dodecyl benzene sulfonate, and cetyl trimethyl ammonium chloride], were doped into photopolymer films in a polyvinyl alcohol/acrylamide (PVA/AA) system, respectively. A 647 nm Ar-Kr laser was used to expose and study the holographic properties of the samples. The research shows that doping Al2O3 nanoparticles into PVA/AA photopolymer film leads to different levels of improvement of the holographic characteristics. The diffraction efficiency of the sample can be raised to 93.8%, the maximum refractive index modulation increased to 2.28×10(-3), the shrinkage can be depressed to 0.8%, and the Bragg mismatch is 0.04°, while the concentration of 10 nm Al2O3 nanoparticles modified by HD dispersant is 1.02×10(-3)  mol·L(-1). PMID:26836540

  11. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    PubMed Central

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  12. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.

    PubMed

    Wu, Youshen; Liu, Jiajun; Ma, Jingwen; Liu, Yongchun; Wang, Ya; Wu, Daocheng

    2016-06-15

    A series of fluorescent nanothermometers (FTs) was prepared with Rhodamine dye-incorporated Pluronic F-127-melamine-formaldehyde composite polymer nanoparticles (R-F127-MF NPs). The highly soluble Rhodamine dye molecules were bound with Pluronic F127 micelles and subsequently incorporated in the cross-linked MF resin NPs during high-temperature cross-link treatment. The morphology and chemical structure of R-F127-MF NPs were characterized with dynamic light scattering, electron microscopy, and Fourier-transform infrared (FTIR) spectra. Fluorescence properties and thermoresponsivities were analyzed using fluorescence spectra. R-F127-MF NPs are found to be monodispersed, presenting a size range of 88-105 nm, and have bright fluorescence and high stability in severe treatments such as autoclave sterilization and lyophilization. By simultaneously incorporating Rhodamine B and Rhodamine 110 (as reference) dyes at a doping ratio of 1:400 in the NPs, ratiometric FTs with a high sensibility of 7.6%·°C(-1) and a wide temperature sensing range from -20 to 110 °C were obtained. The FTs exhibit good stability in solutions with varied pH, ionic strengths, and viscosities and have similar working curves in both intracellular and extracellular environments. Cellular temperature variations in Hela cells during microwave exposure were successfully monitored using the FTs, indicating their considerable potential applications in the biomedical field. PMID:27197838

  13. ENHANCED GENE DELIVERY IN PORCINE VASCULATURE TISSUE FOLLOWING INCORPORATION OF ADENO-ASSOCIATED VIRUS NANOPARTICLES INTO POROUS SILICON MICROPARTICLES

    PubMed Central

    McConnell, Kellie I.; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E.

    2014-01-01

    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells. PMID:25180449

  14. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling

    PubMed Central

    Liu, Wenwen; Su, Penglei; Gonzales, Arthur; Chen, Su; Wang, Na; Wang, Jinshu; Li, Hongyi; Zhang, Zhenting; Webster, Thomas J

    2015-01-01

    To optimize mesenchymal stem cell differentiation and antibacterial properties of titanium (Ti), nano-sized zinc oxide (ZnO) particles with tunable concentrations were incorporated into TiO2 nanotubes (TNTs) using a facile hydrothermal strategy. It is revealed here for the first time that the TNTs incorporated with ZnO nanoparticles exhibited better biocompatibility compared with pure Ti samples (controls) and that the amount of ZnO (tailored by the concentration of Zn(NO3)2 in the precursor) introduced into TNTs played a crucial role on their osteogenic properties. Not only was the alkaline phosphatase activity improved to about 13.8 U/g protein, but the osterix, collagen-I, and osteocalcin gene expressions was improved from mesenchymal stem cells compared to controls. To further explore the mechanism of TNTs decorated with ZnO on cell functions, a response surface mathematical model was used to optimize the concentration of ZnO incorporation into the Ti nanotubes for stem cell differentiation and antibacterial properties for the first time. Both experimental and modeling results confirmed (R2 values of 0.8873–0.9138 and 0.9596–0.9941, respectively) that Ti incorporated with appropriate concentrations (with an initial concentration of Zn(NO3)2 at 0.015 M) of ZnO can provide exceptional osteogenic properties for stem cell differentiation in bone cells with strong antibacterial effects, properties important for improving dental and orthopedic implant efficacy. PMID:25792833

  15. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9. PMID:25518925

  16. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells.

    PubMed

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Yee Seng; Huang, Nay Ming; Lim, Hong Ngee

    2014-01-01

    This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticles with diameter ranges between 20 and 30 nm on the rGO sheets. The electrochemical studies reveal that the rGO@PPy has smaller charge transfer resistance and similar electrocatalytic activity as that of the standard Pt counter electrode for the I₃(-)/I(-) redox reaction. The overall solar to electrical energy conversion efficiency of the DSSC with the rGO@PPy counter electrode is 2.21%, which is merely equal to the efficiency of DSSC with sputtered Pt counter electrode (2.19%). The excellent photovoltaic performance, rapid and simple fabrication method and low-cost of the rGO@PPy can be potentially exploited as a alternative counter electrode to the expensive Pt in DSSCs. PMID:24930387

  17. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells

    PubMed Central

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Yee Seng; Huang, Nay Ming; Lim, Hong Ngee

    2014-01-01

    This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticles with diameter ranges between 20 and 30 nm on the rGO sheets. The electrochemical studies reveal that the rGO@PPy has smaller charge transfer resistance and similar electrocatalytic activity as that of the standard Pt counter electrode for the I3−/I− redox reaction. The overall solar to electrical energy conversion efficiency of the DSSC with the rGO@PPy counter electrode is 2.21%, which is merely equal to the efficiency of DSSC with sputtered Pt counter electrode (2.19%). The excellent photovoltaic performance, rapid and simple fabrication method and low-cost of the rGO@PPy can be potentially exploited as a alternative counter electrode to the expensive Pt in DSSCs. PMID:24930387

  18. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine.

    PubMed

    Alizadeh, Taher; Azizi, Sorour

    2016-07-15

    Molecularly imprinted polymer (MIP) nanoparticles including highly selective recognition sites for fluoxetine were synthesized, utilizing precipitation polymerization. Methacrylic acid and vinyl benzene were used as functional monomers. Ethylene glycol dimethacrylate was used as cross-linker agent. The obtained polymeric nanoparticles were incorporated with carbon paste electrode (CPE) in order to construct a fluoxetine selective sensor. The response of the MIP-CP electrode to fluoxetine was remarkably higher than the electrode, modified with the non-imprinted polymer, indicating the excellent efficiency of the MIP sites for target molecule recognition. It was found that the addition of a little amount of graphene, synthesized via modified hummer's method, to the MIP-CP resulted in considerable enhancement in the sensitivity of the electrode to fluoxetine. Also, the style of electrode components mixing, before carbon paste preparation, was demonstrated to be influential factor in the electrode response. Some parameters, affecting sensor response, were optimized and then a calibration curve was plotted. A dynamic linear range of 6×10(-9)-1.0×10(-7)molL(-1) was obtained. The detection limit of the sensor was calculated equal to 2.8×10(-9)molL(-1) (3Sb/m). This sensor was used successfully for fluoxetine determination in the spiked plasma samples as well as fluoxetine capsules. PMID:26946258

  19. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin--are they prodrugs?

    PubMed

    Vissiennon, Cica; Nieber, Karen; Kelber, Olaf; Butterweck, Veronika

    2012-07-01

    Several in vivo and in vitro studies have confirmed that flavonols are metabolized by the intestinal microflora to their corresponding hydroxyphenylacetic acids. In this article, a comparison of the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin in the elevated plus maze after oral (po) and intraperitoneal (ip) administration to mice in a dose range of 0.1 to 2.0 mg/kg is presented. In addition, their corresponding metabolites p-hydroxyphenylacetic acid (p-HPAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were tested after intraperitoneal administration. Anxiolytic activity was detected for kaempferol and quercetin only after oral administration. No anxiolytic effects were observed when kaempferol and quercetin were given via the intraperitoneal administration route. The corresponding hydroxyphenylacetic metabolites p-HPAA and DOPAC showed anxiolytic effects after intraperitoneal application. In order to further test the hypothesis that flavonoids are possible prodrugs which require activation by intestinal bacteria, gut sterilization was performed using pretreatment with the antibiotic enrofloxacin (7.5 mg/day, po, for 4 days). After antibiotic treatment, the anxiolytic effect of kaempferol and quercetin disappeared, whereas it was still present for the positive control diazepam. Our results support the hypothesis that flavonoids act as prodrugs which are transformed into their active hydroxyphenylacetic acid metabolites by intestinal microflora. PMID:21840194

  20. The incorporation of silver nanoparticles in samarium doped magnesium tellurite glass: Effect on the characteristic of bonding and local structure

    NASA Astrophysics Data System (ADS)

    Yusoff, N. M.; Sahar, M. R.

    2015-08-01

    Samarium doped magnesium tellurite glass with and without silver nanoparticles is prepared using melt quenching technique. All glasses are amorphous in nature. The existence of silver nanoparticles in a glass matrix with an average size of 16.94 nm has been confirmed by Transmission Electron Microscopy. The UV-vis spectra are complemented with Judd-Ofelt calculation to get the Judd-Ofelt intensity parameters. It has also been used to calculate nephelauxetic ratio, bonding parameter and Racah parameters. It is found that Judd-Ofelt intensity parameters Ω2 ,Ω4 and Ω6 increase with an increase of Ag NPs contents up to 0.2 mol% and decrease thereafter. Nephelauxetic ratio, β decreases with increasing the concentration of Ag NPs, while bonding parameter, δ increases as the concentration of Ag NPs increases. The value of Racah parameters decreases as the concentration of Ag NPs increases. Fourier Transform Infrared (FTIR) and Raman spectroscopy have been manipulated to observe the structural modification of [TeO4] trigonal bipyramidal structural unit. In the FTIR spectrum, it is found that the structural unit of [TeO4] trigonal bipyramidal, [TeO3+1] polyhedral and/or [TeO3] trigonal pyramidal groups are located at 651-663 cm-1 and 772 cm-1, respectively. It is observed that the [TeO4] tbp wavenumber shifts to a higher wavenumber as the concentration of Ag NPs increases up to 0.2 mol% and decreases thereafter. Meanwhile, for the Raman spectra, it is found that [TeO4] tbp, [TeO3+1] polyhedral and [TeO3] tp groups are located at 646-666 cm-1, 714-741 cm-1, and 745-772 cm-1, respectively.

  1. [Determination of rutin, quercetin and kaempferol in Althaea rosea (L) Gavan for Uyghur medicine by high performance liquid chromatography].

    PubMed

    Muhetaer, Tu'erhong; Resalat, Yimin; Chu, Ganghui; Yin, Xuebo; Munira, Abudukeremu

    2015-12-01

    Uyghur medicine is one important part of the national medicine system. Uyghur medicine modernization, namely the study of effective components with modern technologies, is the only way for the scientification, standardization, and industrialization of Uyghur medicine. Here we developed a selective extraction method for rutin, quercetin and kaempferol in Althaea rosea (L) Gavan. The three active species were determined by high performance liquid chromatography (HPLC) with HC-C18 column (250 mm x 4.6 mm, 5 μm) and the mobile phase of CH3OH-0.4% H3PO4 (50 :50, v/v). Rutin, quercetin and kaempferol were baseline separated with each other and the interference species with flow rate of 1.0 mL/min and column temperature of 30 degrees C. Under the optimal conditions, linear correlation were obtained in the mass concentration range of 12.5-150 μg/mL (r = 0.999 8) for rutin, 12.5-125 μg/mL (r = 0.999 9) for quercetin, and 12.5-125 μg/mL (r = 0.998 8) for kaempferol. The recoveries (n = 5) of rutin, quercetin and kaempferol were 100.25% ( RSD = 1.1%), 97.60% ( RSD = 0.47%) and 97.75% (RSD = 0.71%), respectively. The method can be used to determine the contents of rutin, quercetin and kaempferol in Althaea rosea (L) Gavan and provide the guidance for the analysis of the flavonoids in other Uyghur medicines. PMID:27097460

  2. Intratracheal Administration of Prostacyclin Analogue–incorporated Nanoparticles Ameliorates the Development of Monocrotaline and Sugen-Hypoxia-induced Pulmonary Arterial Hypertension

    PubMed Central

    Matsubara, Hiromi; Kondo, Megumi; Miura, Daiji; Matoba, Tetsuya; Egashira, Kensuke; Ito, Hiroshi

    2016-01-01

    Abstract: Nanoparticles (NPs) have been used as novel drug delivery systems. Drug-incorporated NPs for local delivery might optimize the efficacy and minimize the side effects of drugs. Intravenous prostacyclin improves long-term survival in patients with pulmonary arterial hypertension (PAH), but it causes serious side effects such as catheter-related infections. We investigated the efficacy and safety of intratracheal administration of a prostacyclin analogue, beraprost (BPS), incorporated NPs in Sugen-hypoxia-normoxia and monocrotaline rat models of PAH and in human PAH pulmonary arterial smooth muscle cells (PASMCs). After a single administration, BPS NPs significantly decreased right ventricular pressure, right ventricular hypertrophy, and pulmonary artery muscularization in the 2 rat models. BPS NPs significantly improved the survival rate in the monocrotaline rat model. No infiltration of inflammatory cells, hemorrhage, or fibrosis was found in the liver, kidney, spleen, and heart after the administration of BPS NPs. No liver or kidney dysfunction was found in the blood examinations. BPS and BPS NPs significantly inhibited the proliferation of human PAH PASMCs after 24 hours of treatment. BPS NPs significantly continued to inhibit the proliferation of human PAH PASMCs at 24 hours after the removal of BPS NPs. BPS NPs significantly induced apoptosis in PAH PASMCs compared to that in non-PAH PASMCs. Intratracheal administration of BPS NPs ameliorates pulmonary hypertension in PAH rat models by a sustained antiproliferative effect and a proapoptotic effect on PAH PASMCs. PMID:26745002

  3. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    DOE PAGESBeta

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; et al

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less

  4. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Yin, Meili; Li, Zhenhua; Zhou, Li; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Recently, antibiotic drug-resistant therapies have become very important due to the emergence of antibiotic-resistant bacterial strains. The development of novel antibacterial materials has received significant attention. Here, quaternized chitosan hydrogels incorporated with NaYF4:Er/Yb/Mn@photosensitizer-doped silica (UCNPs/MB) were synthesized for effective killing of both gram-positive oxacillin-resistant S. aureus (DR-S. aureus) and gram-negative kanamyclin-resistant E. coli (DR-E. coli) bacteria upon near-infrared (NIR) laser irradiation. In this system, the cationic macroporous nature of the hydrogel acts as a molecular ‘anion sponge’, which sucks the outer part of the anionic microbe membrane into the gel interior voids and causes microbe membrane disruption. By incorporating UCNPs/MB-doped silica into the hydrogel, we have combined photodynamic therapy (PDT) with quaternized chitosan to obtain a high therapeutic index via a synergistic effect. In vitro experiments have demonstrated that our system had excellent antibacterial efficiency to both DR-S. aureus and DR-E. coli bacteria. More importantly, our new synergistic treatment modality provided an excellent therapy platform for drug-resistant bacteria, which could improve antimicrobial efficiency.

  5. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction.

    PubMed

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E; Lowe, Michael A; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A; Xin, Huolin L; Abruña, Héctor D

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  6. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  7. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    PubMed Central

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  8. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria.

    PubMed

    Yin, Meili; Li, Zhenhua; Zhou, Li; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2016-03-29

    Recently, antibiotic drug-resistant therapies have become very important due to the emergence of antibiotic-resistant bacterial strains. The development of novel antibacterial materials has received significant attention. Here, quaternized chitosan hydrogels incorporated with NaYF4:Er/Yb/Mn@photosensitizer-doped silica (UCNPs/MB) were synthesized for effective killing of both gram-positive oxacillin-resistant S. aureus (DR-S. aureus) and gram-negative kanamyclin-resistant E. coli (DR-E. coli) bacteria upon near-infrared (NIR) laser irradiation. In this system, the cationic macroporous nature of the hydrogel acts as a molecular 'anion sponge', which sucks the outer part of the anionic microbe membrane into the gel interior voids and causes microbe membrane disruption. By incorporating UCNPs/MB-doped silica into the hydrogel, we have combined photodynamic therapy (PDT) with quaternized chitosan to obtain a high therapeutic index via a synergistic effect. In vitro experiments have demonstrated that our system had excellent antibacterial efficiency to both DR-S. aureus and DR-E. coli bacteria. More importantly, our new synergistic treatment modality provided an excellent therapy platform for drug-resistant bacteria, which could improve antimicrobial efficiency. PMID:26883410

  9. The effect of Ce{sup 4+} incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles

    SciTech Connect

    Kannadasan, N.; Shanmugam, N. Cholan, S.; Sathishkumar, K.; Viruthagiri, G.; Poonguzhali, R.

    2014-11-15

    We report a simple chemical precipitation method for the preparation of undoped and cerium doped ZnO nanocrystals. The concentration of cerium in the products can be controlled in the range of 0.025–0.125 mol. The structure and chemical compositions of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy; energy dispersive spectrum and Fourier transform infrared spectroscopy. The results demonstrate that Ce{sup 4+} ions were successfully incorporated into the lattice position of Zn{sup 2+} ions in ZnO. The morphology of the products was analyzed by field emission scanning electron microscopy and confirmed by high resolution transmission electron microscope analysis. The optical properties of the products were studied by ultraviolet–visible and room temperature photoluminescence measurements. The photoluminescence emission spectra of Ce-doped ZnO showed enhanced visible emissions as a result of 5d → 4f transition of cerium. In particular, a novel photocatalytic activity of the products was assessed using methylene blue. The obtained result reveals that Ce-doped products show higher reduction efficiency for methylene blue than the undoped ZnO. - Highlights: • Nanocrystals of ZnO and ZnO:Ce{sup 4+} were grown. • XPS results confirmed the incorporated cerium in tetravalence. • PL emission exhibited 5d → 4f transition on cerium doping. • Doped ZnO decolorizes MB faster than undoped ZnO.

  10. Incorporation of photosenzitizer hypericin into synthetic lipid-based nano-particles for drug delivery and large unilamellar vesicles with different content of cholesterol

    NASA Astrophysics Data System (ADS)

    Joniova, Jaroslava; Blascakova, Ludmila; Jancura, Daniel; Nadova, Zuzana; Sureau, Franck; Miskovsky, Pavol

    2014-08-01

    Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are attractive natural occurring vehicles for drug delivery and targeting to cancer tissues. The capacity of both types of the lipoproteins to bind hydrophobic drugs and their functionality as drug carriers have been examined in several studies and it has been also shown that mixing of anticancer drugs with LDL or HDL before administration led to an increase of cytotoxic effects of the drugs in the comparison when the drugs were administered alone. However, a difficult isolation of the lipoproteins in large quantity from a biological organism as well as a variability of the composition and size of these molecules makes practical application of LDL and HDL as drug delivery systems quite complicated. Synthetic LDL and HDL and large unilamellar vesicles (LUV) are potentially suitable candidates to substitute the native lipoproteins for targeted and effective drug delivery. In this work, we have studied process of an association of potent photosensitizer hypericin (Hyp) with synthetic lipid-based nano-particles (sLNP) and large unilamellar vesicles (LUV) containing various amount of cholesterol. Cholesterol is one of the main components of both LDL and HDL particles and its presence in biological membranes is known to be a determining factor for membrane properties. It was found that the behavior of Hyp incorporation into sLNP particles with diameter ca ~ 90 nm is qualitatively very similar to that of Hyp incorporation into LDL (diameter ca. 22 nm) and these particles are able to enter U-87 MG cells by endocytosis. The presence of cholesterol in LUV influences the capacity of these vesicles to incorporate Hyp into their structure.

  11. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.

    PubMed

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-08-14

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropriate addition of Au@silica NPs regardless of the silica-shell thickness. Compared to the P3HT:PCBM/ZnO NR hybrid solar cell, a 63% enhancement in the efficiency is achieved by the P3HT:PCBM/Au@silica NP/ZnO NR hybrid solar cell. The finite difference time domain simulations indicate that the strength of the Fano resonance, i.e., the electric field of the quasi-static asymmetric quadrupole, on the surface of Au@silica NPs in the P3HT:PCBM/ZnO NR hybrid significantly decreases with increasing thickness of the silica shell. Raman characterization reveals that the degree of P3HT order increases when Au@silica NPs are incorporated into the P3HT:PCBM/ZnO NR hybrid. The charge separation at the interface between P3HT and PCBM as well as the electron transport in the active layer are retarded by the electric field of the Fano resonance. Nevertheless, the prolongation of the electron lifetime and the reduction of the electron transit time in the P3HT:PCBM/ZnO NR hybrid solar cells, which result in an enhancement of electron collection, are achieved by the addition of Au@silica NPs. This may be attributed to the improvement in the degree of P3HT order and connectivity of PCBM when Au@silica NPs are incorporated into the P3HT:PCBM active layer. PMID:26159896

  12. Effect of acid or alkaline catalyst and of different capping agents on the optical properties of CdS nanoparticles incorporated within a diureasil hybrid matrix

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luis F. F. F.; Silva, Carlos J. R.; Kanodarwala, Fehmida K.; Stride, John A.; Pereira, Mario R.

    2015-11-01

    CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol-gel process. Both alkaline and acidic catalysis of the sol-gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

  13. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    PubMed Central

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  14. Effect of Cudrania tricuspidata and Kaempferol in Endoplasmic Reticulum Stress-Induced Inflammation and Hepatic Insulin Resistance in HepG2 Cells

    PubMed Central

    Kim, Ok-Kyung; Jun, Woojin; Lee, Jeongmin

    2016-01-01

    In this study, we quantitated kaempferol in water extract from Cudrania tricuspidata leaves (CTL) and investigated its effects on endoplasmic reticulum (ER) stress-induced inflammation and insulin resistance in HepG2 cells. The concentration of kaempferol in the CTL was 5.07 ± 0.08 mg/g. The HepG2 cells were treated with 300 µg/mL of CTL, 500 µg/mL of CTL, 1.5 µg/mL of kaempferol or 2.5 µg/mL of kaempferol, followed immediately by stimulation with 100 nM of thapsigargin for ER stress induction for 24 h. There was a marked increase in the activation of the ER stress and inflammation response in the thapsigargin-stimulated control group. The CTL treatment interrupted the ER stress response and ER stress-induced inflammation. Kaempferol partially inhibited the ER stress response and inflammation. There was a significant increase in serine phosphorylation of insulin receptor substrate (IRS)-1 and the expression of C/EBPα and gluconeogenic genes in the thapsigargin-stimulated control group compared to the normal control. Both CTL and kaempferol suppressed serine phosphorylation of IRS-1, and the treatments did not interrupt the C/EBPα/gluconeogenic gene pathway. These results suggest that kaempferol might be the active compound of CTL and that it might protect against ER stress-induced inflammation and hyperglycemia. PMID:26805878

  15. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release.

    PubMed

    Scheeren, Laís E; Nogueira, Daniele R; Macedo, Letícia B; Vinardell, M Pilar; Mitjans, Montserrat; Infante, M Rosa; Rolim, Clarice M B

    2016-02-01

    The growing demand for efficient chemotherapy in many cancers requires novel approaches in target-delivery technologies. Nanomaterials with pH-responsive behavior appear to have potential ability to selectively release the encapsulated molecules by sensing the acidic tumor microenvironment or the low pH found in endosomes. Likewise, polyethylene glycol (PEG)- and poloxamer-modified nanocarriers have been gaining attention regarding their potential to improve the effectiveness of cancer therapy. In this context, DOX-loaded pH-responsive nanoparticles (NPs) modified with PEG or poloxamer were prepared and the effects of these modifiers were evaluated on the overall characteristics of these nanostructures. Chitosan and tripolyphosphate were selected to form NPs by the interaction of oppositely charged compounds. A pH-sensitive lysine-based amphiphile (77KS) was used as a bioactive adjuvant. The strong dependence of 77KS ionization with pH makes this compound an interesting candidate to be used for the design of pH-sensitive devices. The physicochemical characterization of all NPs has been performed, and it was shown that the presence of 77KS clearly promotes a pH-triggered DOX release. Accelerated and continuous release patterns of DOX from CS-NPs under acidic conditions were observed regardless of the presence of PEG or poloxamer. Moreover, photodegradation studies have indicated that the lyophilization of NPs improved DOX stability under UVA radiation. Finally, cytotoxicity experiments have shown the ability of DOX-loaded CS-NPs to kill HeLa tumor cells. Hence, the overall results suggest that these pH-responsive CS-NPs are highly potent delivery systems to target tumor and intracellular environments, rendering them promising DOX carrier systems for cancer therapy. PMID:26674840

  16. In Vitro Biocompatibility and Antibacterial Efficacy of a Degradable Poly(L-lactide-co-epsilon-caprolactone) Copolymer Incorporated with Silver Nanoparticles

    PubMed Central

    Samberg, Meghan E.; Mente, Peter; He, Ting; King, Martin W.; Monteiro-Riviere, Nancy A.

    2014-01-01

    Silver nanoparticles (Ag-nps) are currently used as a natural biocide to prevent undesired bacterial growth in clothing, cosmetics and medical products. The objective of the study was to impart antibacterial properties through the incorporation of Ag-nps at increasing concentrations to electrospun degradable 50:50 poly(L-lactide-co-epsilon-caprolactone) scaffolds for skin tissue engineering applications. The biocompatibility of the scaffolds containing Ag-nps was evaluated with human epidermal keratinocytes (HEK); cell viability and proliferation were evaluated using Live/Dead and alamarBlue viability assays following 7 and 14 days of cell culture on the scaffolds. Significant decreases in cell viability and proliferation were noted for the 1.0 mg(Ag) g(scaffold)−1 after 7 and 14 days on Ag-nps scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the 0.0 and 0.1 mg(Ag) g(scaffold)−1. Both 0.5 and 1.0 mg(Ag) g(scaffold)−1 were capable of inhibiting both Gram positive and negative bacterial strains. Uniaxial tensile tests revealed a significant (p < 0.001) decrease in the modulus of elasticity following Ag-nps incorporation compared to control. These findings suggest that a scaffold containing between 0.5 and 1.0 mg(Ag) g(scaffold)−1 is both biocompatible and antibacterial, and is suitable for skin tissue engineering graft scaffolds. PMID:24150238

  17. In vitro biocompatibility and antibacterial efficacy of a degradable poly(L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles.

    PubMed

    Samberg, Meghan E; Mente, Peter; He, Ting; King, Martin W; Monteiro-Riviere, Nancy A

    2014-07-01

    Silver nanoparticles (Ag-nps) are currently used as a natural biocide to prevent undesired bacterial growth in clothing, cosmetics and medical products. The objective of the study was to impart antibacterial properties through the incorporation of Ag-nps at increasing concentrations to electrospun degradable 50:50 poly(L-lactide-co-epsilon-caprolactone) scaffolds for skin tissue engineering applications. The biocompatibility of the scaffolds containing Ag-nps was evaluated with human epidermal keratinocytes (HEK); cell viability and proliferation were evaluated using Live/Dead and alamarBlue viability assays following 7 and 14 days of cell culture on the scaffolds. Significant decreases in cell viability and proliferation were noted for the 1.0 mg(Ag) g(scaffold)(-1) after 7 and 14 days on Ag-nps scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the 0.0 and 0.1 mg(Ag) g(scaffold)(-1). Both 0.5 and 1.0 mg(Ag) g(scaffold)(-1) were capable of inhibiting both Gram positive and negative bacterial strains. Uniaxial tensile tests revealed a significant (p < 0.001) decrease in the modulus of elasticity following Ag-nps incorporation compared to control. These findings suggest that a scaffold containing between 0.5 and 1.0 mg(Ag) g(scaffold)(-1) is both biocompatible and antibacterial, and is suitable for skin tissue engineering graft scaffolds. PMID:24150238

  18. Evaluation of polyphenols as possible therapeutics for amyloidoses: Comparative analysis of Kaempferol and Catechin.

    PubMed

    Bhat, Waseem Feeroze; Bhat, Sheraz Ahmad; Bano, Bilqees

    2015-11-01

    Several mammalian proteins fold abnormally under non physiological conditions, to form pathological deposits that are associated with many degenerative diseases. In vitro variation of solvent conditions and pH can lead to partial unfolding and subsequent fibril formation. In the present study, we examined the effects of low pH on goat brain cystatin (GBC) with a focus on amyloid fibril formation. The results demonstrate that GBC can form amyloid like fibrils at pH 3.0. Moreover this study is aimed at exploring the inhibitory activity of polyphenols, Kaempferol (KM) and Catechin (CA) against the fibrillation of GBC. Using fluorescence spectroscopic analysis with Thioflavin T, CD and electron microscopic studies, anti-fibrillation effects of polyphenols, KM and CA were analyzed. The study also revealed that KM and CA produced a concentration dependent anti-fibrillogenic effects with KM producing more pronounced effect compared to CA. The study proposed a mechanistic approach assuming structural constraints and specific aromatic interactions of polyphenols with β sheets of GBC fibrils. PMID:26231329

  19. Kaempferol inhibits the production of ROS to modulate OPN-αvβ3 integrin pathway in HUVECs.

    PubMed

    Xiao, Hong-Bo; Lu, Xiang-Yang; Liu, Zi-Kui; Luo, Zhi-Feng

    2016-06-01

    In the present study, we tested the hypothesis that aldosterone regulates osteopontin (OPN)-related signaling pathways to promote nuclear factor κB (NF-κB) activation in primary human umbilical vein endothelial cells (HUVECs) and that kaempferol, a flavonoid compound, blocks those changes. Aldosterone induced productions of reactive oxygen species (ROS), OPN, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) and expression of nicotinamide adenine dinucleotide phosphate-oxidase 4 (Nox4), NF-κB, OPN, alphavbeta3 (αvβ3) integrin, and inhibitor of NF-κB alpha phosphorylation (P-IκBα) in HUVEC. HUVECs were pretreated with kaempferol (0, 1, 3, or 10 μM) for 1 h and exposed to aldosterone (10(-6) M) for 24 h. Kaempferol reduced ROS, OPN, NF-κB, IL-6, and TNF-α levels; Nox4, αvβ3 integrin; and P-IκBα expressions. The effect of aldosterone was also abrogated by spironolactone (10(-6) M). In addition, vitamin C (20 mmol/L) reduced ROS production. Vitamin C and LM609 (10 μg/mL) treatment decreased expressions of OPN, αvβ3 integrin, and NF-κB (P < 0.05 or P < 0.01). The present results suggest that kaempferol may modulate OPN-αvβ3 integrin pathway to inhibit NF-κB activation in HUVECs. PMID:27000882

  20. [Retracted] Retinoic acid‑incorporated glycol chitosan nanoparticles inhibit the expression of Ezh2 in U118 and U138 human glioma cells.

    PubMed

    Lu, Hu-Chen; Ma, Jun; Zhuang, Zong; Zhang, Yao; Cheng, Hui-Lin; Shi, Ji-Xin

    2016-06-01

    We wish to retract our research article entitled "Retinoic acid-incorporated glycol chitosan nanoparticles inhibit Ezh2 expression in U118 and U138 human glioma cells" published in Molecular Medicine Reports 12: 6642-6648, 2015. An interested reader noted some anomalies in the presentation of Fig. 4 in our paper, calling into question the validity of the reported data. In examining our original article, we acknowledge that the data for RA (25 µm) did not show a higher density of cells compared with RA (10 µm), as shown in Fig. 4, and therefore Fig. 4 conveyed inaccurate information for the readers. Owing to the importance of these results, which bear significantly upon the conclusions that one may draw from this work, we have decided to withdraw our paper from Molecular Medicine Reports [the original article was published in Molecular Medicine Reports 12: 6642-6648, 2015; DOI: 10.3892/mmr.2015.4294. PMID:27082936

  1. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties.

    PubMed

    Sreeprasad, T S; Nguyen, Phong; Kim, Namhoon; Berry, Vikas

    2013-09-11

    Ultrathin (0.3-3 nm) metal dichalcogenides exhibit confinement of carriers, evolution of band-structure and photophysical properties with thickness, high on/off rectification (in MoS2, WS2, and so forth) and high thermal absorption. Here, we leverage the stable sulfur/nobel-metal binding to incorporate highly capacitive gold nanoparticles (Au NPs) onto MoS2 to raise the effective gate-voltage by an order of magnitude. Functionalization is achieved via both diffusion limited aggregation and instantaneous reaction arresting (using microwaves) with selective deposition on crystallographic edges (with 60° displacement). The electrical, thermal, and Raman studies show a highly capacitive interaction between Au NP and MoS2 flakes (CAu-MoS2 = 2.17 μF/cm(2)), a low Schottky barrier (14.52 meV), a reduced carrier-transport thermal-barrier (253 to 44.18 meV after Au NP functionalization), and increased thermal conductivity (from 15 to 23 W/mK post NP deposition). The process could be employed to attach electrodes to heterostructures of graphene and MoS2, where a gold film could be grown to act as an electron-tunneling gate-electrode connected to MoS2. PMID:23927716

  2. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels.

    PubMed

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2011-11-01

    The aim of this study was to investigate the antiobesity and antihyperlipidemic effects of the flavonoid kaempferol (3,5,7,4'-tetrahydroxyflavone). After being fed a high-fat diet (HFD) for two weeks, rats were dosed orally with kaempferol (75, 150, or 300 mg/kg) or fenofibrate (100 mg/kg) once daily for eight weeks. Fenofibrate is an antilipemic agent that exerts its therapeutic effects through activation of peroxisome proliferator-activated receptor α (PPAR α). Kaempferol (300 mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat-pad weights, plasma lipid levels, as well as the coronary artery risk and atherogenic indices of HFD-fed rats. Kaempferol also caused dose-related reductions in hepatic triglyceride and cholesterol content and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes in HFD-fed rats. Kaempferol and fenofibrate reversed the HFD-induced downregulation of hepatic PPAR α. HFD-induced reductions in the hepatic levels of acyl-CoA oxidase (ACO), and cytochrome P450 isoform 4A1 (CYP4A1) proteins were reversed by kaempferol and fenofibrate. The elevated expression of hepatic sterol regulatory element binding proteins (SREBPs) in HFD-fed rats were lowered by kaempferol and fenofibrate. These results suggest that kaempferol reduced the accumulation of visceral fat and improved hyperlipidemia in HFD-fed obese rats by increasing lipid metabolism through the downregulation of SREBPs and promoting the hepatic expression of ACO and CYP4A1, secondary to a direct upregulation hepatic PPAR α expression. PMID:21728151

  3. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  4. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1.

    PubMed

    Guo, Zhen; Liao, Zhangping; Huang, Liqing; Liu, Dan; Yin, Dong; He, Ming

    2015-08-15

    Mitochondria-mediated apoptosis is a critical mechanism of anoxia/ reoxygenation (A/R)-induced injury in cardiomyocytes. Kaempferol (Kae) is a natural polyphenol and a type of flavonoid, which has been demonstrated to protect myocardium against ischemia/reperfusion (I/R) injury. However, the mechanism is still not fully elucidated. We hypothesize that Kae may improve the mitochondrial function during I/R injury via a potential signal pathway. In this study, an in vitro I/R model was replicated on neonatal rat primary cardiomyocytes by A/R treatment. Cell viability was monitored by the 3-(4,5-dimethylthiazol- 2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay. The levels of intracellular reactive oxygen species, mitochondrial membrane potential (Δψm) and apoptosis were determined by flow cytometry. Protein expression was detected by Western Blotting. mPTP opening and the activity of caspase-3 were measured by colorimetric method. The results showed that Kae effectively enhanced the cell viability and decreased the LDH release in cardiomyocytes subjected to A/R injury. Kae reduced the A/R-induced reactive oxygen species generation, the loss of Δψm, and the release of cytochrome c from mitochondria into cytosol. Kae inhibited the A/R-stimulated mPTP opening and activation of caspase-3, and ultimate decrease in cardiomyocytes apoptosis. Furthermore, we found Kae up-regulated Human Silent Information Regulator Type 1 (SIRT1) expression, indicating SIRT1 signal pathway likely involved the cardioprotection of Kae. Sirtinol, a SIRT1 inhibitor, abolished the protective effect of Kae in cardiomyocytes subjected to A/R. Additionally, Kae significantly increased the expression of Bcl-2. Thus, we firstly demonstrate that Kae protects cardiomyocytes against A/R injury through mitochondrial pathway mediated by SIRT1. PMID:26086862

  5. Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation.

    PubMed

    Yi, Jiling; Xiong, Feng; Li, Binbin; Chen, Heping; Yin, Yixia; Dai, Honglian; Li, Shipu

    2016-09-01

    This study is aimed to evaluate the degradation characteristics, cell viability and host tissue responses of PDLLA/PRGD/β-TCP (PRT) composite nerve scaffold, which was fabricated by poly(d, l-lactic acid) (PDLLA), RGD peptide(Gly-Arg-Gly-Asp-Tyr, GRGDY, abbreviated as RGD) modified poly-{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]}(PRGD) and β-tricalcium phosphate (β-TCP). The scaffolds' in vitro degradation behaviors were investigated in detail by analysing changes in weight loss, pH and morphology. Then, the 3-(4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2 -H-tetrazolium bromide (MTT) assay and cell live/dead assay were carried out to assess their cell viability. Moreover, in vivo degradation patterns and host inflammation responses were monitored by subcutaneous implantation of PRT scaffold in rats. Our data showed that, among the tested scaffolds, the PRT scaffold had the best buffering capacity (pH = 6.1-6.3) and fastest degradation rate (12.4%, 8 weeks) during in vitro study, which was contributed by the incorporation of β-TCP nanoparticles. After in vitro and in vivo degradation, the high porosity structure of PRT could be observed using scanning electron microscopy. Meanwhile, the PRT scaffold could significantly promote cell survival. In the PRT scaffold implantation region, less inflammatory cells (especially for neutrophil and lymphocyte) could be detected. These results indicated that the PRT composite scaffold had a good biodegradable property; it could improve cells survival and reduced the adverse host tissue inflammation responses. PMID:27252885

  6. Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation

    PubMed Central

    Yi, Jiling; Xiong, Feng; Li, Binbin; Chen, Heping; Yin, Yixia; Dai, Honglian; Li, Shipu

    2016-01-01

    This study is aimed to evaluate the degradation characteristics, cell viability and host tissue responses of PDLLA/PRGD/β-TCP (PRT) composite nerve scaffold, which was fabricated by poly(d, l-lactic acid) (PDLLA), RGD peptide(Gly-Arg-Gly-Asp-Tyr, GRGDY, abbreviated as RGD) modified poly-{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]}(PRGD) and β-tricalcium phosphate (β-TCP). The scaffolds’ in vitro degradation behaviors were investigated in detail by analysing changes in weight loss, pH and morphology. Then, the 3-(4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2 -H-tetrazolium bromide (MTT) assay and cell live/dead assay were carried out to assess their cell viability. Moreover, in vivo degradation patterns and host inflammation responses were monitored by subcutaneous implantation of PRT scaffold in rats. Our data showed that, among the tested scaffolds, the PRT scaffold had the best buffering capacity (pH = 6.1–6.3) and fastest degradation rate (12.4%, 8 weeks) during in vitro study, which was contributed by the incorporation of β-TCP nanoparticles. After in vitro and in vivo degradation, the high porosity structure of PRT could be observed using scanning electron microscopy. Meanwhile, the PRT scaffold could significantly promote cell survival. In the PRT scaffold implantation region, less inflammatory cells (especially for neutrophil and lymphocyte) could be detected. These results indicated that the PRT composite scaffold had a good biodegradable property; it could improve cells survival and reduced the adverse host tissue inflammation responses. PMID:27252885

  7. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    PubMed Central

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  8. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    PubMed

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction. PMID:24378645

  9. Photothermally actuated interfacial hydration for fast friction switch on hydrophilic polymer brush modified PDMS sheet incorporated with Fe3O4 nanoparticles.

    PubMed

    Liu, Guoqiang; Cai, Meirong; Feng, Yange; Wang, Xiaolong; Zhou, Feng; Liu, Weimin

    2016-03-01

    A near-infrared light triggered fast interfacial friction switch was achieved with polyelectrolyte brush grafted PDMS embedded with Fe3O4 nanoparticles, where the in situ heating up of the photothermal Fe3O4 nanoparticles in the polymer matrix changes the interface humidity and thereafter alters the hydration level of the interfacial polymer brushes. PMID:26856309

  10. Incorporation of negatively charged iron oxide nanoparticles in the shell of anionic surfactant-stabilized microbubbles: The effect of NaCl concentration.

    PubMed

    Kovalenko, Artem; Jouhannaud, Julien; Polavarapu, Prasad; Krafft, Marie Pierre; Waton, Gilles; Pourroy, Geneviève

    2016-06-15

    We report on the key effect of NaCl for the stabilization of nanoparticle-decorated microbubbles coated by an anionic perfluoroalkylated phosphate C10F21(CH2)2OP(O)(OH)2 surfactant and negatively charged iron oxide nanoparticles. We show that hollow microspheres with shells of 100-200 nm in thickness can be stabilized even at high pH when a strong ionic force is required to screen the negative charges. Due to the more drastic conditions required to stabilize the hollow microspheres, they appear to be stable enough to be deposited on a surface and dried. That can be a simple way to fabricate porous ceramics. PMID:27038281

  11. CO Gas Sensing Properties of Pure and Cu-Incorporated SnO₂ Nanoparticles: A Study of Cu-Induced Modifications.

    PubMed

    Karthik, Tangirala Venkata Krishna; Olvera, María de la Luz; Maldonado, Arturo; Gómez Pozos, Heberto

    2016-01-01

    Pure and copper (Cu)-incorporated tin oxide (SnO₂) pellet gas sensors with characteristics provoking gas sensitivity were fabricated and used for measuring carbon monoxide (CO) atmospheres. Non-spherical pure SnO₂ nano-structures were prepared by using urea as the precipitation agent. The resultant SnO₂ powders were ball milled and incorporated with a transition metal, Cu, via chemical synthesis method. The incorporation is confirmed by high-resolution transmission electron microscope (HRTEM) analysis. By utilizing Cu-incorporated SnO₂ pellets an increase in the CO sensitivity by an order of three, and a decrease in the response and recovery times by an order of two, were obtained. This improvement in the sensitivity is due to two factors that arise due to Cu incorporation: necks between the microparticles and stacking faults in the grains. These two factors increased the conductivity and oxygen adsorption, respectively, at the pellets' surface of SnO₂ which, in turn, raised the CO sensitivity. PMID:27537877

  12. Transport of trans-tiliroside (kaempferol-3-β-D-(6"-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine.

    PubMed

    Luo, Zijun; Morgan, Michael R A; Day, Andrea J

    2015-01-01

    1. Absorption and metabolism of tiliroside (kaempferol 3-β-D-(6"-p-coumaroyl)-glucopyranoside) and its related compounds kaempferol, kaempferol-3-glucoside and p-coumaric acid were investigated in the small intestinal Caco-2 cell model. Apparent permeation (Papp) was determined as 0.62 × 10(-6) cm/s, 3.1 × 10(-6) cm/s, 0 and 22.8 × 10(-6) cm/s, respectively. 2. Mechanistic study showed that the transportation of tiliroside, kaempferol-3-glucoside and p-coumaric acid in Caco-2 model were transporter(s) involved, while transportation of kaempferol was solely by passive diffusion mechanism. 3. Efflux transporters, multi-drug-resistance-associated protein-2 (MRP2), were shown to play a role in limiting the uptake of tiliroside. Inhibitors of MRP2, (MK571 and rifampicin) and co-incubation with kaempferol (10 μM), increased transfer from the apical to the basolateral side by three to five fold. 4. Metabolites of kaempferol-3-glucoside and p-coumaric acid were not detected in the current Caco-2 model, while tiliroside was metabolised to a limited extent, with two tiliroside mono-glucuronides identified; and kaempferol was metabolised to a higher extent, with three mono-glucuronides and two mono-sulfates identified. 5. In conclusion, tiliroside was metabolised and transported across Caco-2 cell membrane to a limited extent. Transportation could be increased by applying MRP2 inhibitors or co-incubation with kaempferol. It is proposed that tiliroside can be absorbed by human; future pharmacokinetics studies are warranted in order to determine the usefulness of tiliroside as a bioactive agent. PMID:25761590

  13. Conversion of a metal-organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters.

    PubMed

    Zhou, Yu-Xiao; Chen, Yu-Zhen; Cao, Lina; Lu, Junling; Jiang, Hai-Long

    2015-05-14

    A Co-based metal-organic framework, ZIF-67, has been exploited as a self-template to afford N-doped porous carbon incorporating Co NPs with surface-oxidized CoO species, which exhibit excellent catalytic activity, selectivity and magnetic recyclability toward the direct oxidation of alcohols to esters with O2 as a benign oxidant under mild conditions. PMID:25877956

  14. In vitro release and in vitro–in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles

    PubMed Central

    Cao, Xia; Deng, Wen-Wen; Fu, Min; Wang, Liang; Tong, Shan-Shan; Wei, Ya-Wei; Xu, Ying; Su, Wei-Yan; Xu, Xi-ming; Yu, Jiang-Nan

    2012-01-01

    Background The purpose of this study was to develop a sustained drug-release model for water-soluble drugs using silica nanoparticles. Methods Hollow-type mesoporous silica nanoparticles (HMSNs) were prepared using Na2CO3 solution as the dissolution medium for the first time. The water-soluble compound, silybin meglumine, was used as the model drug. The Wagner–Nelson method was used to calculate the in vivo absorption fraction. Results The results of transmission electron microscopy and nitrogen adsorption revealed that the empty HMSNs had uniformly distributed particles of size 50–100 nm, a spherical appearance, a large specific surface area (385.89 ± 1.12 m2/g), and ultralow mean pore size (2.74 nm). The highly porous structure allowed a large drug-loading rate (58.91% ± 0.39%). In 0.08 M Na2CO3 solution, silybin meglumine-loaded HMSNs could achieve highly efficacious and long-term sustained release for 72 hours in vitro. The results of in vitro–in vivo correlation revealed that HMSNs in 0.08 M Na2CO3 solution had a correlation coefficient R2 value of 0.9931, while those of artificial gastric juice and artificial intestinal juice were only 0.9287 and 0.7689, respectively. Conclusion The findings of in vitro–in vivo correlation indicate that HMSNs together with Na2CO3 solution could achieve an excellent linear relationship between in vitro dissolution and in vivo absorption for 72 hours, leading to a promising model for sustained release of water-soluble drugs. PMID:22393284

  15. Doxorubicin-Incorporated Nanotherapeutic Delivery System Based on Gelatin-Coated Gold Nanoparticles: Formulation, Drug Release, and Multimodal Imaging of Cellular Internalization.

    PubMed

    Suarasan, Sorina; Focsan, Monica; Potara, Monica; Soritau, Olga; Florea, Adrian; Maniu, Dana; Astilean, Simion

    2016-09-01

    In this work, we developed a new pH- and temperature-responsive nanochemotherapeutic system based on Doxorubicin (DOX) noncovalently bound to biosynthesized gelatin-coated gold nanoparticles (DOX-AuNPs@gelatin). The real-time release profile of DOX was evaluated at different pH values (7.4, 5.3, and 4.6) and temperatures (22-45 °C) in aqueous solutions, and its therapeutic performance was examined in vitro against MCF-7 breast cancer cells. TEM, dark-field scattering, and wide-field fluorescence microscopy indicated the effective uptake of nanochemotherapeutics with the subsequent release and progressive accumulation of DOX in cell nuclei. MTT assays clearly showed the effectiveness of the treatment by inhibiting the growth of MCF-7 breast cancer cells for a loaded drug concentration of 5 μg/mL. The most informative data about the dynamic release and localization were provided by scanning confocal microscopy using time-resolved fluorescence and surface-enhanced Raman scattering (SERS) techniques. In particular, fluorescence-lifetime imaging (FLIM) recorded under 485 nm pulsed diode laser excitation revealed the bimodal distribution of DOX in cells. The shorter fluorescence lifetime of DOX localized in nuclei (1.52 ns) than in the cytoplasm (2.4 ns) is consistent with the cytotoxic mechanism induced by DOX-DNA intercalation. Remarkably, the few DOX molecules captured between nanoparticles ("electromagnetic hotspots") after most drug is released act as SERS reporters for the localization of plasmonic nanocarriers in MCF-7 cells. The high drug loading capacity and effective drug release under pH control combined with the advantage of multimodal visualization inside cells clearly indicate the high potential of our DOX-AuNPs@gelatin delivery system for implementation in nanomedicine. PMID:27537061

  16. Incorporating pTGF-β1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation.

    PubMed

    Cao, Xia; Deng, Wenwen; Wei, Yuan; Yang, Yan; Su, Weiyan; Wei, Yawei; Xu, Ximing; Yu, Jiangnan

    2012-01-01

    The objective of this study was to prepare a 3-dimensional nanoparticle gene delivery system (3D-NGDS) based on collagen/chitosan scaffolds, in which plasmid transforming growth factor beta 1 (TGF-β1)/calcium phosphate nanoparticles mixed with fibronectin (FN) were used to transfect mesenchymal stem cells (MSCs). Scanning electron microscopy was used to characterise the microstructure of 3-dimensional collagen/chitosan scaffolds. An analysis performed to quantify the TGF-b1 concentrations in MSC cultures revealed that the MSCs transfected with the 3D-NGDS showed remarkably high levels of TGF-b1 over long periods, retaining a concentration of TGF-b1 of approximately 10 ng/mL within two weeks, with the highest level (12.6 ng/mL) being observed on the 6th day. An immunohistochemistry analysis for collagen type II revealed that much higher production of collagen II from the 9th to 15th day was observed in the 3D-NGDS-transfected MSCs than that in MSCs transfected by the Lipofectamine 2000 method. The glycosaminoglycan content of the 3D-NGDS was comparable to those treated with TGF-β1 as well as TGF-β1 plus dexamethasone, and was significantly higher than those treated with free plasmid and Lipofectamine 2000. A remarkable type I collagen expression inhibition of the 3D-NGDS at day 21 was observed via ELISA. These results suggested that transfection with the 3D-NGDS could successfully induce MSC chondrogenic differentiation in vitro without dexamethasone. In summary, the 3D-NGDS could be developed into a promising alternative method to transfer exogenous nucleic acid to MSCs in clinical trials. PMID:22314694

  17. Screening of Korean Natural Products for Anti-Adipogenesis Properties and Isolation of Kaempferol-3-O-rutinoside as a Potent Anti-Adipogenetic Compound from Solidago virgaurea.

    PubMed

    Jang, Young Soo; Wang, Zhiqiang; Lee, Jeong-Min; Lee, Jae-Young; Lim, Soon Sung

    2016-01-01

    In this study, the anti-adipogenetic activity of 300 plant extracts was investigated using an Oil Red O staining assay in a 3T3-L1 cell line. Our results indicate that three plants, including the stem and leaf of Physalis angulata, the whole grass of Solidago virgaurea, and the root of Dioscorea nipponica, produced over 90% inhibition of adipogenesis. Kaempferol-3-O-rutinoside, which demonstrated a 48.2% inhibitory effect on adipogenesis without cytotoxicity, was isolated from the butanol layer of a water extract of S. virgaurea guided by the anti-adipogenesis assay in 3T3-L1. PPAR-γ and C/EBPα expression levels were determined using western blot, and our results indicate that kaempferol-3-O-rutinoside has a strong anti-adipogenic effect in 3T3-L1 cells through the suppression of increases in PPAR-γ and C/EBPα expression. PMID:26901177

  18. Synthesis and Protective Effects of Kaempferol-3'-sulfonate on Hydrogen Peroxide-induced injury in Vascular Smooth Muscle Cells.

    PubMed

    Yang, Xinbin; Wang, Qin; Wang, Chunmei; Qin, Xiaolin; Huang, Yu; Zeng, Renquan

    2016-06-01

    A novel water-soluble sulfated derivative, kaempferol-3'-sulfonate acid sodium (KS) with the composition of [C15 H9 O9 SNa]·2.5H2 O, was synthesized and characterized by elemental analysis, IR, (1) H NMR, (13) C NMR, and HRMS. Its protective effects on human vascular smooth muscle cells injured by hydrogen peroxide were evaluated by CCK-8 method, flow cytometry, and Western blotting. The experimental results indicated that the KS can significantly increase cell viability and reduce apoptosis on H2 O2 -injured VSMCs, as well as reverse the effects of H2 O2 on Bcl-2, Bad, and caspase-3 expressions. In addition, LDH leakage, MDA levels, and SOD and GSH activities were also measured with spectrophotometry. The results indicated that the KS acted as antioxidant preventing LDH leakage and MDA production, while increasing intracellular SOD and GSH activities. These findings revealed that KS might potentially serve as an effective antioxidant agent for prevention and treatment of vascular disease caused by H2 O2 -injured VSMCs. PMID:26706847

  19. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  20. Effects of Egb 761 on bone mineral density, bone microstructure, and osteoblast function: Possible roles of quercetin and kaempferol.

    PubMed

    Trivedi, Ritu; Kumar, Avinash; Gupta, Varsha; Kumar, Sudhir; Nagar, Geet K; Romero, Jose R; Dwivedi, Anil Kumar; Chattopadhyay, Naibedya

    2009-04-10

    The effects of standardized and concentrated extract of Ginkgo biloba, Egb 761, were studied on estrogen deficiency-induced bone loss in ovariectomized (OVx) rats rendered osteopenic. Upon osteopenia development, Egb 761 was administered at a dose of 100mgkg(?1)day(?1) by oral gavage to OVx rats whereas control group received vehicle. Following 5 weeks of treatment, the OVx+Egb 761 group (n=12) of rats exhibited significantly higher whole body BMD and lower bone turnover markers (serum alkaline phosphatase and osteocalcin) than OVx rats that were given vehicle (n=12). BMD levels in excised bones were also found to be higher in both trabecular (most robustly in lumbar vertebrae) and cortical bones of OVx+Egb 761 compared with OVx+vehicle group. Egb 761 did not exhibit estrogen agonistic activity at the uterine level. Microcomputed tomography demonstrated that OVx+Egb 761 group had better bone microarchitectural parameters compared with OVx+vehicle group. Moreover, OVx+Egb 761 group had higher femoral mRNA levels of osterix, type I collagen and osteocalcin compared with OVx+vehicle group. Determination of levels of three flavonoids of Egb 761, that are known to have bone conserving property, in serum and bone marrow suggests that kaempferol and quercetin, and not rutin, likely mediate the beneficial actions observed with Egb 761 treatment. These results show for the first time that oral administration of Egb 761 restores bone mass in aged OVx rats. PMID:19356626

  1. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets

    PubMed Central

    Kim, Shi Hyoung; Park, Jae Gwang; Lee, Jongsung; Yang, Woo Seok; Park, Gye Won; Kim, Han Gyung; Baek, Kwang-Soo; Hossen, Muhammad Jahangir; Lee, Mi-nam; Kim, Jong-Hoon

    2015-01-01

    Even though a lot of reports have suggested the anti-inflammatory activity of kaempferol (KF) in macrophages, little is known about its exact anti-inflammatory mode of action and its immunopharmacological target molecules. In this study, we explored anti-inflammatory activity of KF in LPS-treated macrophages. In particular, molecular targets for KF action were identified by using biochemical and molecular biological analyses. KF suppressed the release of nitric oxide (NO) and prostaglandin E2 (PGE2), downregulated the cellular adhesion of U937 cells to fibronectin (FN), neutralized the generation of radicals, and diminished mRNA expression levels of inflammatory genes encoding inducible NO synthase (iNOS), TNF-α, and cyclooxygenase- (COX-) 2 in lipopolysaccharide- (LPS-) and sodium nitroprusside- (SNP-) treated RAW264.7 cells and peritoneal macrophages. KF reduced NF-κB (p65 and p50) and AP-1 (c-Jun and c-Fos) levels in the nucleus and their transcriptional activity. Interestingly, it was found that Src, Syk, IRAK1, and IRAK4 responsible for NF-κB and AP-1 activation were identified as the direct molecular targets of KF by kinase enzyme assays and by measuring their phosphorylation patterns. KF was revealed to have in vitro and in vivo anti-inflammatory activity by the direct suppression of Src, Syk, IRAK1, and IRAK4, involved in the activation of NF-κB and AP-1. PMID:25922567

  2. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants.

    PubMed

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-01

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods. PMID:26241831

  3. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-01

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.

  4. Genetic Variation of Flavonols Quercetin, Myricetin, and Kaempferol in the Sri Lankan Tea (Camellia sinensis L.) and Their Health-Promoting Aspects

    PubMed Central

    Jeganathan, Brasathe; Kottawa-Arachchi, J. Dananjaya; Ranatunga, Mahasen A. B.; Abeysinghe, I. Sarath B.; Gunasekare, M. T. Kumudini; Bandara, B. M. Ratnayake

    2016-01-01

    Flavonol glycosides in tea leaves have been quantified as aglycones, quercetin, myricetin, and kaempferol. Occurrence of the said compounds was reported in fruits and vegetable for a long time in association with the antioxidant potential. However, data on flavonols in tea were scanty and, hence, this study aims to envisage the flavonol content in a representative pool of accessions present in the Sri Lankan tea germplasm. Significant amounts of myricetin, quercetin, and kaempferol have been detected in the beverage type tea accessions of the Sri Lankan tea germplasm. This study also revealed that tea is a good source of flavonol glycosides. The Camellia sinensis var. sinensis showed higher content of myricetin, quercetin, and total flavonols than var. assamica and ssp. lasiocalyx. Therefore flavonols and their glycosides can potentially be used in chemotaxonomic studies of tea germplasm. The nonbeverage type cultivars, especially Camellia rosaflora and Camellia japonica Red along with the exotic accessions resembling China type, could be useful in future germplasm studies because they are rich sources of flavonols, namely, quercetin and kaempferol, which are potent antioxidants. The flavonol profiles can be effectively used in choosing parents in tea breeding programmes to generate progenies with a wide range of flavonol glycosides. PMID:27366737

  5. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    PubMed Central

    Zhou, Mingjie; Ren, Huanhuan; Han, Jichun; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dtmax) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dtmax, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  6. Effect of edible oils on quercetin, kaempferol and galangin transport and conjugation in the intestinal Caco-2/HT29-MTX co-culture model.

    PubMed

    Jailani, Fadhilah; Williamson, Gary

    2014-04-01

    Solubility and matrix play an important role in the gut lumen in delivering bioactive compounds to the absorptive surface of enterocytes. The purpose of this study was to determine the effect of certain commonly consumed lipids, soybean, olive and corn oil, on the transport and conjugation of flavonols (myricetin, quercetin, kaempferol and galangin) using the conjugation-competent co-cultured Caco-2/HT29-MTX intestinal cell monolayer model. To enable identification and quantification of conjugates, each flavonol was enzymatically glucuronidated or sulphated, then analysed by HPLC with triple quadrupole mass spectrometric detection. Quantification showed large differences in mass spectrometric peak area response factors between the aglycones and many of the conjugates, with galangin-sulphate for example ionising ∼15-fold better than galangin. Flavonol aglycones and conjugates were transported to the basolateral side of Caco-2/HT29-MTX co-cultures. The total amount of methyl, sulphate and glucuronide conjugates was in the order: galangin > quercetin > kaempferol > myricetin. All oils inhibited the transport and conjugation of galangin, the most hydrophobic flavonol, whereas they increased the sulphation, and to some extent glucuronidation, of quercetin and kaempferol. The results show that the lipid matrix has the potential to modify both transport and conjugation of dietary flavonols, but that the effect depends upon the structure and hydrophobicity. PMID:24525490

  7. Soy Leaf Extract Containing Kaempferol Glycosides and Pheophorbides Improves Glucose Homeostasis by Enhancing Pancreatic β-Cell Function and Suppressing Hepatic Lipid Accumulation in db/db Mice.

    PubMed

    Li, Hua; Ji, Hyeon-Seon; Kang, Ji-Hyun; Shin, Dong-Ha; Park, Ho-Yong; Choi, Myung-Sook; Lee, Chul-Ho; Lee, In-Kyung; Yun, Bong-Sik; Jeong, Tae-Sook

    2015-08-19

    This study investigated the molecular mechanisms underlying the antidiabetic effect of an ethanol extract of soy leaves (ESL) in db/db mice. Control groups (db/+ and db/db) were fed a normal diet (ND), whereas the db/db-ESL group was fed ND with 1% ESL for 8 weeks. Dietary ESL improved glucose tolerance and lowered plasma glucose, glycated hemoglobin, HOMA-IR, and triglyceride levels. The pancreatic insulin content of the db/db-ESL group was significantly greater than that of the db/db group. ESL supplementation altered pancreatic IRS1, IRS2, Pdx1, Ngn3, Pax4, Ins1, Ins2, and FoxO1 expression. Furthermore, ESL suppressed lipid accumulation and increased glucokinase activity in the liver. ESL primarily contained kaempferol glycosides and pheophorbides. Kaempferol, an aglycone of kaempferol glycosides, improved β-cell proliferation through IRS2-related FoxO1 signaling, whereas pheophorbide a, a product of chlorophyll breakdown, improved insulin secretion and β-cell proliferation through IRS1-related signaling with protein kinase A in MIN6 cells. ESL effectively regulates glucose homeostasis by enhancing IRS-mediated β-cell insulin signaling and suppressing SREBP-1-mediated hepatic lipid accumulation in db/db mice. PMID:26211813

  8. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  9. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  10. Incorporation effect of nanosized perovskite LaFe₀.₇Co₀.₃O₃ on the electrochemical activity of Pt nanoparticles-multi walled carbon nanotube composite toward methanol oxidation

    SciTech Connect

    Noroozifar, Meissam; Khorasani-Motlagh, Mozhgan; Khaleghian-Moghadam, Roghayeh; Ekrami-Kakhki, Mehri-Saddat; Shahraki, Mohammad

    2013-05-01

    Nanosized perovskite LaFe₀.₇Co₀.₃O₃ (LFCO) is synthesized through conventional co-precipitation method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. The incorporation effect of the mentioned perovskite to catalytic activity of the PtNPs-MWCNTs-nafion (or -chitosan) catalyst toward methanol oxidation has been studied by cyclic voltammetry. Based on the electrochemical studies, all MWCNTs-PtNPs-nafion (or chitosan) and MWCNTs-PtNPs-LFCO-nafion (or chitosan) catalysts show a considerable activity for methanol oxidation. However, a synergistic effect is observed when LFCO is added to the catalyst by decreasing the poisoning rate of the Pt catalyst. - Graphical abstract: Nanosized perovskite LaFe₀.₇Co₀.₃O₃ is synthesized and characterized. The incorporation effect of the mentioned perovskite to catalytic activity of the PtNPS-MWCNTs-nafion (or -chitosan) catalyst toward methanol oxidation is studied. Highlights: • Nanocrystalline LaFe₀.₇Co₀.₃O₃ (LFCO) is prepared by a new simple co-precipitation method. • Effect of LFCO to catalytic activity of PtNPS for methanol oxidation is studied. • A synergistic effect is observed when LFCO is added to the Pt catalyst. • Oxygen of LFCO could be considered as active oxygen to remove CO intermediates.

  11. Improved performance of CdS/CdSe quantum dots sensitized solar cell by incorporation of ZnO nanoparticles/reduced graphene oxide nanocomposite as photoelectrode

    NASA Astrophysics Data System (ADS)

    Ghoreishi, F. S.; Ahmadi, V.; Samadpour, M.

    2014-12-01

    Here we present novel quantum dot sensitized solar cells (QDSSC) based on ZnO nanoparticles (NPs)/reduced graphene oxide (RGO) nanocomposite photoanodes for better light harvesting and energy conversion. Photoelectrodes are prepared by doctor blading ZnO NPs/GO nanocomposite paste on a fluorine doped tin oxide substrate which are then sintered at 450 °C to obtain ZnO NPs/RGO nanocomposites. The partial reduction of GO after thermal reduction, is studied by Fourier transform infrared and Raman spectroscopies. Cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots are deposited on the films through successive ionic layer adsorption and reaction and chemical bath deposition methods, respectively. The unique properties of ZnO NPs/RGO photoanodes, lead to a significant enhancement in the photovoltaic properties of solar cells in comparison with bare ZnO photoanodes. Current-voltage characteristics of cells are studied and the best results are obtained from ZnO NPs-RGO/CdS/CdSe with photoelectric conversion efficiency of 2.20% which is almost two times higher than cells which are made by pure ZnO NPs as photoanode (1.28%). Electrochemical impedance measurements show that the enhancement can be attributed to the increase of electron transfer rate in the ZnO NPs/RGO nanocomposite photoanode which arises from the ultrahigh electron mobility in graphene (RGO) sheets.

  12. Preparation of a novel positively charged nanofiltration composite membrane incorporated with silver nanoparticles for pharmaceuticals and personal care product rejection and antibacterial properties.

    PubMed

    Huang, Zhong-Hua; Yin, Yan-Na; Aikebaier, Gu-li-mi-la; Zhang, Yan

    2016-01-01

    A novel positively charged N-[(2-hydroxy-3-trimethylammonium)propyl] chloride chitosan (HTCC)-Ag/polyethersulfone (PES) composite nanofiltration membrane was easily prepared by coating the active layer, HTCC, onto PES as the support through epichlorohydrin as the cross-linking reagent and nano-Ag particles as the introduced inorganic components. Scanning election microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray diffraction were employed to characterize the morphology of the resultant membranes, of which the molecular weight cut-off was about 941 Da. At 25 °C, the pure water permeability is 16.27 L/h·m(2)·MPa. Our results showed that the rejection of pharmaceuticals and personal care products (PPCPs) followed the sequence: atenolol > carbamazepine > ibuprofen, confirming that the membranes were positively charged. The antibacterial properties of the membranes were compared to elucidate the existence of Ag nanoparticles which help to improve antibacterial activity against Gram-negative Escherichia coli (DH5α, Rosetta) and Gram-positive Bacillus subtilis. The inhibition zone diameters of HTCC-Ag/PES membranes towards E. coli DH5α, E. coli Rosetta and Bacillus subtilis were 17.77, 16.18, and 15.44 mm, respectively. It was found that HTCC-Ag/PES membrane has a better antibacterial activity against E. coli than against Bacillus subtilis, especially for E. coli DH5α. PMID:27120646

  13. Enhanced selectivity and capacity of clinoptilolite for Cd2+ removal from aqueous solutions by incorporation of magnetite nanoparticles and surface modification with cysteine.

    PubMed

    Sharifi, Masumeh; Baghdadi, Majid

    2016-01-01

    In this study, magnetic zeolite (MZ) nanocomposite modified with cysteine was developed in order to enhance selectivity and capacity of clinoptilolite for cadmium ion. The prepared MZ nanocomposite is containing clinoptilolite and magnetite nanoparticles with weight ratio of 3:1. The synthesized nanocomposite was characterized by transmission electron microscopy, X-ray diffraction and vibrating sample magnetometer. Surface modification was confirmed by Fourier transform infrared spectrometer. Experiments were carried out to find the optimum conditions for modification of clinoptilolite and to investigate the effective parameters (pH, adsorbent dosage, contact time, and temperature) on the adsorption of Cd(2+) ion by modified clinoptilolite. The results showed enhanced selectivity of modified MZ in the presence of other naturally occurring cations (Na(+), K(+), Ca(2+) and Mg(2+)) and ammonium. Kinetic and equilibrium data were well fitted by a pseudo second-order and Langmuir model, respectively, with high correlation coefficients. The maximum adsorption capacities of the modified and non-modified clinoptilolite were found to be 20.0 mg/g and 5.2 mg/g, respectively. Thermodynamic parameters revealed that the adsorption process is spontaneous and endothermic under studied conditions. PMID:27148732

  14. Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules.

    PubMed

    Qu, Konggang; Shi, Peng; Ren, Jinsong; Qu, Xiaogang

    2014-06-10

    Artificial enzyme mimics are a current research interest, and many nanomaterials have been found to display enzyme-mimicking activity. However, to the best of our knowledge, there have not hitherto been any reports on the use of pure nanomaterials to construct a system capable of mimicking an enzyme cascade reaction. Herein, we describe the construction of a novel nanocomposite consisting of V2O5 nanowires and gold nanoparticles (AuNPs) through a simple and facile chemical method, in which V2O5 and AuNPs possess intrinsic peroxidase and glucose oxidase (GOx)-like activity, respectively. Results suggest that this material can mimic the enzyme cascade reaction of horseradish peroxidase (HRP) and GOx. Based on this mechanism, a direct and selective colorimetric method for the detection of glucose has been successfully designed. Because single-strand and double-strand DNA (ssDNA and dsDNA) have different deactivating effects on the GOx-like activity of AuNPs, the sensing of target complementary DNA can also be realized and disease-associated single-nucleotide polymorphism of DNA can be easily distinguished. Our study opens a new avenue for the use of nanomaterials in enzyme mimetics, and holds promise for the further exploration of nanomaterials in creating alternative catalytic systems to natural enzymes. PMID:24825488

  15. trans-[Ru(NO)Cl(cyclam)](PF6)2 and [Ru(NO)(Hedta)] incorporated in PLGA nanoparticles for the delivery of nitric oxide to B16-F10 cells: cytotoxicity and phototoxicity.

    PubMed

    Gomes, Anderson J; Espreafico, Enilza M; Tfouni, Elia

    2013-10-01

    The immobilization and characterization of trans-[Ru(NO)Cl(cyclam)](PF6)2 (cyclam=1,4,8,11-tetraazacyclotetradecane), and [Ru(NO)(Hedta)] (Hedta=ethylenediaminetetraacetic acid) entrapped in poly(d,l-lactic-co-glycolic) acid (PLGA) nanoparticles (NP) using the double emulsification process is described. Scanning electron microscopy and dynamic light scattering revealed that the particles are spherical in shape, have a size distribution between 220 and 840 nm of diameter, and have a tendency to aggregate confirmed by a zeta potential between -3.2 and +3.5 mV. Using this method the loading efficiency was 26% for trans-[Ru(NO)Cl(cyclam)](PF6)2 and 32% for [Ru(NO)(Hedta)]. The release of the complexes from the NPs shows that cyclam-NP and Hedta-NP exhibited a two-phase exponential association release pattern, which was characterized by an initial complex burst during the first 24 h, followed by a slower release phase complex profile, due to a few pores observed in surface of nanoparticles using atomic force microscopy. The in vitro cytotoxic activity of the nitrosyl complexes in solution and incorporated in PLGA nanoparticles on melanoma cancer cells (cell line B16-F10) was investigated. The lower cytotoxicity of trans-[RuCl(cyclam)(NO)]2+ (12.4±2.6%) and [Ru(NO)(Hedta)] (4.0±2.7%) in solution compared to that of trans-[Ru(NO)(NH3)4py]3+ (46.1±6.4%) is consistent with the rate constant release of NO of these complexes (k-NO=6.2×10(-4) s(-1), 2.0×10(-3) s(-1), and 6.0×10(-2) s(-1), respectively); the cytotoxicities are also inhibited in the presence of the NO scavenger carboxy-PTIO. The phototoxicity of these complexes is due to NO release, which lead to 53.8±6.2% of cell death in the presence of trans-[Ru(NO)Cl(cyclam)](PF6)2 and 22.3±5.1% in the presence of [Ru(NO)(Hedta)]. The PLGA nanoparticles loaded with trans-[Ru(NO)Cl(cyclam)](PF6)2 and [Ru(NO)(Hedta)] exerted in vitro a reduced activity against melanoma cells when compared to the activity of complex in

  16. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.

    PubMed

    Toli, Aikaterini; Chalastara, Konstantina; Mystrioti, Christiana; Xenidis, Anthimos; Papassiopi, Nymphodora

    2016-07-01

    The objective of present study was to obtain the fixation of nano zero valent iron (nZVI) particles on a permeable matrix and evaluate the performance of this composite material for the removal of Cr(VI) from contaminated waters. The experiments were carried out using the cationic resin Dowex 50WX2 as porous support of the iron nanoparticles. The work was carried out in two phases. The first phase involved the fixation of nZVI on the resin matrix. The resin granules were initially mixed with a FeCl3 solution to obtain the adsorption of Fe(III). Then the Fe(III) loaded resin (RFe) was treated with polyphenol solutions to obtain the reduction of Fe(III) to the elemental state. Two polyphenol solutions were tested as reductants, i.e. green tea extract and gallic acid. Green tea was found to be inefficient, probably due to the relatively big size of the contained polyphenol molecules, but gallic acid molecules were able to reach adsorbed Fe(III) and reduce the cations to the elemental state. The second phase was focused on the investigation of Cr(VI) reduction kinetics using the nanoiron loaded resins (R-nFe). It was found that the reduction follows a kinetic law of first order with respect to Cr(VI) and to the embedded nanoiron. Compared to other similar products, this composite material was found to have comparable performance regarding reaction rates and higher degree of iron utilization. Namely the rate constant for the reduction of Cr(VI), in the presence of 1 mM nZVI, was equivalent to 1.4 h of half-life time at pH 3.2 and increased to 24 h at pH 8.5. The degree of iron utilization was as high as 0.8 mol of reduced Cr(VI) per mole of iron. It was also found that this composite material can be easily regenerated and reused for Cr(VI) reduction without significant loss of efficiency. PMID:27108046

  17. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    SciTech Connect

    Chang, Thomas K.H. . E-mail: tchang@interchange.ubc.ca; Chen Jie; Yeung, Eugene Y.H.

    2006-05-15

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K {sub i} values of 2 {+-} 0.3, 5 {+-} 0.5, 16 {+-} 1.4, and 39 {+-} 1.2 {mu}g/ml (mean {+-} SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C, and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K {sub i} = 3 {+-} 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K {sub i} 418 {+-} 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1.

  18. Lilium compounds kaempferol and jatropham can modulate cytotoxic and genotoxic effects of radiomimetic zeocin in plants and human lymphocytes In vitro.

    PubMed

    Jovtchev, Gabriele; Gateva, Svetla; Stankov, Alexander

    2016-06-01

    Organisms are constantly exposed to the detrimental effect of environmental DNA-damaging agents. The harmful effects of environmental genotoxins could be decreased in a viable way by antimutagenesis. One of the modern approaches to reduce the mutagenic burden is based on exogenous natural and synthetic compounds that possess protective and antimutagenic potential against genotoxins. The natural compounds kaempferol and jatropham isolated from Lilium candidum were tested with respect to their potential to protect cells against the radiomimetic zeocin, as well as to their cytotoxic and genotoxic activities in two types of experimental eukaryotic test systems: Hordeum vulgare and human lymphocytes in vitro. Mitotic index (MI) was used as an endpoint for cytotoxicity; the frequency of chromosome aberrations (MwA) and the number of induced micronuclei (MN), as endpoints for genotoxicity/clastogenicity. Formation of aberration "hot spots" was also used as an indicator for genotoxicity in H. vulgare. Both kaempferol and jatropham were shown to possess a potential to modulate and decrease the cytotoxic and genotoxic/clastogenic effect of zeocin depending on the experimental design and the test system. Our data could be useful for health research programs, particularly in clarifying the pharmacological potential and activity of natural plant compounds. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 751-764, 2016. PMID:25504804

  19. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots

    PubMed Central

    Yin, Ruohe; Han, Kerstin; Heller, Werner; Albert, Andreas; Dobrev, Petre I; Zažímalová, Eva; Schäffner, Anton R

    2014-01-01

    Polar auxin transport (PAT) plays key roles in the regulation of plant growth and development. Flavonoids have been implicated in the inhibition of PAT. However, the active flavonoid derivative(s) involved in this process in vivo has not yet been identified. Here, we provide evidence that a specific flavonol bis-glycoside is correlated with shorter plant stature and reduced PAT. Specific flavonoid-biosynthetic or flavonoid-glycosylating steps were genetically blocked in Arabidopsis thaliana. The differential flavonol patterns established were analyzed by high-performance liquid chromatography (HPLC) and related to altered plant stature. PAT was monitored in stem segments using a radioactive [3H]-indole-3-acetic acid tracer. The flavonoid 3-O-glucosyltransferase mutant ugt78d2 exhibited a dwarf stature in addition to its altered flavonol glycoside pattern. This was accompanied by reduced PAT in ugt78d2 shoots. The ugt78d2-dependent growth defects were flavonoid dependent, as they were rescued by genetic blocking of flavonoid biosynthesis. Phenotypic and metabolic analyses of a series of mutants defective at various steps of flavonoid formation narrowed down the potentially active moiety to kaempferol 3-O-rhamnoside-7-O-rhamnoside. Moreover, the level of this compound was negatively correlated with basipetal auxin transport. These results indicate that kaempferol 3-O-rhamnoside-7-O-rhamnoside acts as an endogenous PAT inhibitor in Arabidopsis shoots. PMID:24251900

  20. Silver Nanoparticles in Dental Biomaterials

    PubMed Central

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; da Cruz, Adriana Dibo; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time. PMID:25667594

  1. Antiplasmodial properties of kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii against chloroquine-resistant Plasmodium falciparum

    PubMed Central

    BARLIANA, MELISA I.; SURADJI, EKA W.; ABDULAH, RIZKY; DIANTINI, AJENG; HATABU, TOSHIMITSU; NAKAJIMA-SHIMADA, JUNKO; SUBARNAS, ANAS; KOYAMA, HIROSHI

    2014-01-01

    Previous intervention studies have shown that the most effective agents used in the treatment of malaria were isolated from natural sources. Plants consumed by non-human primates serve as potential drug sources for human disease management due to the similarities in anatomy, physiology and disease characteristics. The present study investigated the antiplasmodial properties of the primate-consumed plant, Schima wallichii (S. wallichii) Korth. (family Theaceae), which has already been reported to have several biological activities. The ethanol extract of S. wallichii was fractionated based on polarity using n-hexane, ethyl acetate and water. The antiplasmodial activity was tested in vitro against chloroquine-resistant Plasmodium falciparum (P. falciparum) at 100 μg/ml for 72 h. The major compound of the most active ethyl acetate fraction was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. The characterized compound was also tested against chloroquine-resistant P. falciparum in culture to evaluate its antiplasmodial activity. The ethanol extract of S. wallichii at 100 μg/ml exhibited a significant parasite shrinkage after 24 h of treatment. The ethyl acetate fraction at 100 μg/ml was the most active fraction against chloroquine-resistant P. falciparum. Based on the structural characterization, the major compound isolated from the ethyl acetate fraction was kaempferol-3-O-rhamnoside, which showed promising antiplasmodial activity against chloroquine-resistant P. falciparum with an IC50 of 106 μM after 24 h of treatment. The present study has provided a basis for the further investigation of kaempferol-3-O-rhamnoside as an active compound for potential antimalarial therapeutics. PMID:24944812

  2. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  3. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats

    PubMed Central

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases. PMID:24250417

  4. HPLC Plasma Assay of a Novel Anti-MRSA Compound, Kaempferol-3-O-Alpha-L-(2",3"-di-p-coumaroyl)rhamnoside, from Sycamore Leaves

    PubMed Central

    Zhang, Yiguan; Valeriote, Frederick; Swartz, Kenneth; Chen, Ben; Hamann, Mark T.; Rodenburg, Douglas L.; McChesney, James D.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a serious pathogen that is resistant to current antibiotic therapy. Thus, there is an urgent need for novel antimicrobial agents that can effectively combat these new strains of drug-resistant “superbugs”. Recently, fractionation of an extract from Platanus occidentalis (American sycamore) leaves produced an active kaempferol molecule, 3-O-alpha-L-(2",3"-di-p-coumaroyl)rhamnoside (KCR), in four isomeric forms; all four isomers exhibit potent anti-MRSA activity. In order to further the preclinical development of KCR as a new antibiotic class, we developed and validated a simple analytical method for assaying KCR plasma concentration. Because KCR will be developed as a new drug, although comprising four stereoisomers, the analytical method was devised to assay the total amount of all four isomers. In the present work, both a plasma processing procedure and an HPLC method have been developed and validated. Mouse plasma containing KCR was first treated with ethanol and then centrifuged. The supernatant was dried, suspended in ethanol, centrifuged, and the supernatant was injected into an HPLC system comprising a Waters C18, a mobile phase composing methanol, acetonitrile, and trifluoroacetic acid and monitored at 313 nm. The method was validated by parameters including a good linear correlation, a limit of quantification of 0.27 µg/mL, and high accuracy. In summary, this method allows a rapid analysis of KCR in the plasma samples for pharmacokinetics studies. PMID:26434123

  5. Electronically cloaked nanoparticles

    NASA Astrophysics Data System (ADS)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  6. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  7. Nanoparticles for Imaging: Top or Flop?

    PubMed Central

    Mertens, Marianne E.; Grimm, Jan; Lammers, Twan

    2014-01-01

    Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential. PMID:25247562

  8. Fabrication of latex rubber reinforced with micellar nanoparticle as an interface modifier

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforced latex rubbers were fabricated by incorporating small amount of nanoparticles as interface modifier. The rubbers were fabricated in a compression mold at 130°C. The incorporated nanoparticles were prepared from wheat protein (gliadin) and ethyl cyanoacrylate (ECA). These nanoparticles were...

  9. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  10. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  11. Volume-labeled nanoparticles and methods of preparation

    DOEpatents

    Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J

    2015-04-21

    Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.

  12. Hydrogel nanoparticle based immunoassay

    DOEpatents

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  13. A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery.

    PubMed

    Thiyagarajan, Varadharajan; Lin, Shi-Xiang; Lee, Chia-Hung; Weng, Ching-Feng

    2016-05-01

    16-Hydroxy-cleroda-3,13-dien-16,15-olide (HCD) which is extracted from a medicinal plant, Polyalthia longifolia, was shown to exhibit anticancer activity through apoptosis and FAK inhibition in our previous study. To improve its solubility and efficacy, a novel HCD delivery system using copper-substituted mesoporous silica nanoparticles (MSNs) was designed as a delivery vehicle, and the outer surfaces of MSNs were further coated with enteric polymers to prevent the drug from leaching in the stomach acid. All the data regarding synthesis and physical characterization, including Zeta potential, FT-IR spectra, N2 adsorption-desorption isotherms (BET), drug loading, powder X-ray diffraction, Thermo gravimetric analysis (TGA), Transmission electron microscopy (TEM), and Scanning electron microscopy (SEM) were well characterized. The non-coated MSN-HCD exposed to acidic pH (1.2) showed a rapid degradation of the drug, whereas the enteric-coated samples presented a sustained release profile in the gastrointestinal pHs. Cell cytotoxicity was further confirmed by the MTT-C6 Glioma cell line, in vitro. When compared with the control and pure HCD, the MSN-HCD revealed a potential anti-proliferation effect via the synergistic effect of the drug and the MSN vehicle. Additionally, this MSN-HCD had the effect of increasing the reactive oxygen species (ROS) levels and altered the Mitochondria membrane potential (MMP) in C6 cell line. The in vivo anti-tumor efficacy of enteric-coated MSN-HCD was evaluated by C6 Glioma bearing xenograft nude mice, and enteric-coated MSN-HCD clearly exhibited the greatest anti-glioma activity, as compared to the pure HCD and the untreated control. In terms of the effective treatment of brain glioma, this study provides conclusive evidence of the successful development of the anti-cancer agent HCD conjugated with enteric-coated MSN as a delivery control mechanism with enhanced dissolution characteristics. PMID:26851441

  14. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-01

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. PMID:27281582

  15. Development of molecular indicators to track the effects of nanoparticle toxicity in Arabidopsis thaliana

    EPA Science Inventory

    The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. Pre...

  16. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitosan/tripolyphosphate nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films. FT-IR and transmission electron microscopy (TEM) analyses of the nanoparticles, mechanical properties, water vapor permeability, thermal stability, scanning electron microscopy (SEM...

  17. Design and characterization of protein-quercetin bioactive nanoparticles

    PubMed Central

    2011-01-01

    Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology. PMID:21586116

  18. Nanoparticle PEGylation for imaging and therapy

    PubMed Central

    Jokerst, Jesse V; Lobovkina, Tatsiana; Zare, Richard N; Gambhir, Sanjiv S

    2011-01-01

    Nanoparticles are an essential component in the emerging field of nanomedical imaging and therapy. When deployed in vivo, these materials are typically protected from the immune system by polyethylene glycol (PEG). A wide variety of strategies to coat and characterize nanoparticles with PEG has established important trends on PEG size, shape, density, loading level, molecular weight, charge and purification. Strategies to incorporate targeting ligands are also prevalent. This article presents a background to investigators new to stealth nanoparticles, and suggests some key considerations needed prior to designing a nanoparticle PEGylation protocol and characterizing the performance features of the product. PMID:21718180

  19. Colouring crystals with inorganic nanoparticles.

    PubMed

    Kulak, Alexander N; Yang, Pengcheng; Kim, Yi-Yeoun; Armes, Steven P; Meldrum, Fiona C

    2014-01-01

    A simple, one-pot method is presented whereby gold nanoparticles coated with a zwitterionic diblock copolymer are incorporated within single crystals of calcite. This may provide a versatile alternative to dyeing crystal with organic molecules and could be extended to create a series of new nanocomposite crystals with novel properties. PMID:24202647

  20. Zinc Incorporation Into Hydroxylapatite

    SciTech Connect

    Tang, Y.; Chappell, H; Dove, M; Reeder, R; Lee, Y

    2009-01-01

    By theoretical modeling and X-ray absorption spectroscopy, the local coordination structure of Zn incorporated into hydroxylapatite was examined. Density function theory (DFT) calculations show that Zn favors the Ca2 site over the Ca1 site, and favors tetrahedral coordination. X-ray absorption near edge structure (XANES) spectroscopy results suggest one dominant coordination environment for the incorporated Zn, and no evidence was observed for other Zn-containing phases. Extended X-ray absorption fine structure (EXAFS) fitting of the synthetic samples confirms that Zn occurs in tetrahedral coordination, with two P shells at 2.85-3.07 {angstrom}, and two higher Ca shells at 3.71-4.02 {angstrom}. These fit results are consistent with the most favored DFT model for Zn substitution in the Ca2 site.

  1. Boron incorporation into mullite

    NASA Astrophysics Data System (ADS)

    Griesser, K. J.; Beran, A.; Voll, D.; Schneider, H.

    2008-03-01

    Boron-doped mullites were synthesized using aluminium nitrate-nonahydrate, tetraethoxysilane and boric acid in a sol gel process with subsequent annealing at 950 and 1300 °C for five hours. Two different bulk compositions with constant Al2O3 contents (60 and 70 mol%, respectively) and varying SiO2 plus B2O3 contents were investigated. X-ray powder diffraction analyses yielded a linear decrease of the lattice parameters with increasing bulk B2O3 content, which was interpreted as to be due to boron incorporation. Related to the increasing boron content, corresponding infrared spectra revealed a slight and continuous shift for most of the absorption bands. These data show that mullite is able to incorporate large amounts of boron into its structure (up to about 20 mol% B2O3 depending on the bulk composition of the starting materials). Infrared analyses suggest that boron is incorporated into the mullite structure in form of planar three-fold coordinated BO3 groups.

  2. Engineering nanoparticle-protein associations for protein crystal nucleation and nanoparticle arrangement

    NASA Astrophysics Data System (ADS)

    Benoit, Denise N.

    Engineering the nanoparticle - protein association offers a new way to form protein crystals as well as new approaches for arrangement of nanoparticles. Central to this control is the nanoparticle surface. By conjugating polymers on the surface with controlled molecular weights many properties of the nanoparticle can be changed including its size, stability in buffers and the association of proteins with its surface. Large molecular weight poly(ethylene glycol) (PEG) coatings allow for weak associations between proteins and nanoparticles. These interactions can lead to changes in how proteins crystallize. In particular, they decrease the time to nucleation and expand the range of conditions over which protein crystals form. Interestingly, when PEG chain lengths are too short then protein association is minimized and these effects are not observed. One important feature of protein crystals nucleated with nanoparticles is that the nanoparticles are incorporated into the crystals. What results are nanoparticles placed at well-defined distances in composite protein-nanoparticle crystals. Crystals on the size scale of 10 - 100 micrometers exhibit optical absorbance, fluorescence and super paramagnetic behavior derivative from the incorporated nanomaterials. The arrangement of nanoparticles into three dimensional arrays also gives rise to new and interesting physical and chemical properties, such as fluorescence enhancement and varied magnetic response. In addition, anisotropic nanomaterials aligned throughout the composite crystal have polarization dependent optical properties.

  3. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  4. Magnesium incorporation into hydroxyapatite.

    PubMed

    Laurencin, Danielle; Almora-Barrios, Neyvis; de Leeuw, Nora H; Gervais, Christel; Bonhomme, Christian; Mauri, Francesco; Chrzanowski, Wojciech; Knowles, Jonathan C; Newport, Robert J; Wong, Alan; Gan, Zhehong; Smith, Mark E

    2011-03-01

    The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling. High magnetic field (43)Ca solid state NMR and Ca K-edge XAS studies of a ∼10% Mg-substituted HA were performed, bringing direct evidence of the preferential substitution of Mg in the Ca(II) position. (1)H and (31)P solid state NMR show that the environment of the anions is disordered in this substituted apatite phase. Both Density Functional Theory (DFT) and interatomic potential computations of Mg-substituted HA structures are in agreement with these observations. Indeed, the incorporation of low levels of Mg in the Ca(II) site is found to be more favourable energetically, and the NMR parameters calculated from these optimized structures are consistent with the experimental data. Calculations provide direct insight in the structural modifications of the HA lattice, due to the strong contraction of the M⋯O distances around Mg. Finally, extensive interatomic potential calculations also suggest that a local clustering of Mg within the HA lattice is likely to occur. Such structural characterizations of Mg environments in apatites will favour a better understanding of the biological role of this cation. PMID:21144581

  5. Size control of magnetic carbon nanoparticles for drug delivery.

    PubMed

    Oh, W-K; Yoon, H; Jang, J

    2010-02-01

    Carbonized polypyrrole nanoparticles with controlled diameters were readily fabricated by the pyrolysis of polypyrrole nanoparticles. The carbonized polypyrrole nanoparticles showed narrow size distribution, large micropore volume, and high surface area. Magnetic phases were introduced into the carbon nanoparticles during the pyrolysis without sophisticated process, which resulted in useful magnetic properties for selective nanoparticle separation. Field emission scanning electron microscopy, Raman spectrometer, N(2) adsorption/desorption, X-ray diffraction, and superconducting interference device were employed for characterizing the carbonized polypyrrole nanoparticles. Hydrophobic guest molecules were incorporated into the carbonized polypyrrole nanoparticles by surface adsorption, pore filling, and surface covalent coupling. The carbonized polypyrrole nanoparticles exhibited embedding capability using pyrene as a typical hydrophobic fluorescent molecule. In addition, ibuprofen was incorporated into the carbon nanoparticles, and drug-loaded carbon nanoparticles sustained release property. In addition, the carbonized polypyrrole nanoparticles revealed low toxicity at concentrations below 100 microg mL(-1) via cell viability test and were uptaken inside the cells. These results suggest a new platform for the drug delivery using carbonized polypyrrole nanoparticles. PMID:19878989

  6. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOEpatents

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  7. Investigations of nano-particle toxicity and uptake of Cerium oxide and Titanium dioxide in Arabidopsis thaliana (L.)

    EPA Science Inventory

    The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. In ...

  8. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  9. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  10. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  11. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles.

    PubMed

    Hwang, Gi Byoung; Heo, Ki Joon; Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi-Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2(filter) at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  12. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  13. Properties of Novel Hydroxypropyl Methylcellulose Films Containing Chitosan Nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility and scanning and transmission electron microscopy (SEM and TEM) results were ana...

  14. Nepal CRS project incorporates.

    PubMed

    1983-01-01

    The Nepal Contraceptive Retail Sales (CRS) Project, 5 years after lauching product sales in June 1978, incorporated as a private, nonprofit company under Nepalese management. The transition was finalized in August 1983. The Company will work through a cooperative agreement with USAID/Kathmandu to complement the national family planning goals as the program continues to provide comtraceptives through retail channels at subsidized prices. Company objectives include: increase contraceptive sales by at least 15% per year; make CRS cost effective and move towards self sufficiency; and explore the possibility of marketing noncontraceptive health products to improve primary health care. After only5 years the program can point to some impressive successes. The number of retial shops selling family planning products increased from 100 in 1978 to over 8000, extending CRS product availability to 66 of the country's 75 districts. Retail sales have climbed dramatically in the 5-year period, from Rs 46,817 in 1978 to Rs 271,039 in 1982. Sales in terms of couple year protection CYP) have grown to 24,451 CYP(1982), a 36% increase over 1980 CYP. Since the beginning of the CRS marketing program, total distribution of contraceptives--through both CRS and the Family Planning Maternal and Child Haelth (FP/MCH) Project--has been increasing. While the FP/MCH program remains the largest distributor,contribution of CRS Products is increasing, indicating that CRS is creating new product acceptors. CRS market share in 1982 was 43% for condoms and 16% for oral contraceptives (OCs). CRS markets 5 products which are subsidized in order to be affordable to consumers as well as attractive to sellers. The initial products launched in June 1978 were Gulaf standard dose OCs and Dhaal lubricated colored condoms. A less expensive lubricates, plain Suki-Dhaal condom was introduced in June 1980 in an attempt to reach poorer rural populations, but rural distribution costs are excessive and Suki

  15. Precision Nanoparticles

    ScienceCinema

    John Hemminger

    2010-01-08

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  16. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  17. Precision Nanoparticles

    SciTech Connect

    John Hemminger

    2009-07-21

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  18. Biocompatibility of crystalline opal nanoparticles

    PubMed Central

    2012-01-01

    Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559

  19. Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy.

    PubMed

    Hocine, Ouahiba; Gary-Bobo, Magali; Brevet, David; Maynadier, Marie; Fontanel, Simon; Raehm, Laurence; Richeter, Sébastien; Loock, Bernard; Couleaud, Pierre; Frochot, Céline; Charnay, Clarence; Derrien, Gaëlle; Smaïhi, Monique; Sahmoune, Amar; Morère, Alain; Maillard, Philippe; Garcia, Marcel; Durand, Jean-Olivier

    2010-12-15

    The synthesis of silicalites and Mesoporous Silica Nanoparticles (MSN), which covalently incorporate original water-soluble photosensitizers for PDT applications is described. PDT was performed on MDA-MB-231 breast cancer cells. All the nanoparticles showed significant cell death after irradiation, which was not correlated with (1)O(2) quantum yield of the nanoparticles. Other parameters are involved and in particular the surface and shape of the nanoparticles which influence the pathway of endocytosis. Functionalization with mannose was necessary to obtain the best results with PDT due to an active endocytosis of mannose-functionalized nanoparticles. The quantity of mannose on the surface should be carefully adjusted as a too high amount of mannose impairs the phototoxicity of the nanoparticles. Fluorescein was also encapsulated in MCM-41 type MSN in order to localize the nanoparticles in the organelles of the cells by confocal microscopy. The MSN were localized in lysosomes after active endocytosis by mannose receptors. PMID:20934496

  20. Nanoparticle-triggered release from lipid membrane vesicles.

    PubMed

    Reimhult, Erik

    2015-12-25

    Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles. PMID:25534673

  1. Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles

    PubMed Central

    Wang, Xin; Tang, Huang; Wang, Chongzhi; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2016-01-01

    The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles. PMID:27375786

  2. Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles.

    PubMed

    Wang, Xin; Tang, Huang; Wang, Chongzhi; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2016-01-01

    The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles. PMID:27375786

  3. Using Models that Incorporate Uncertainty

    ERIC Educational Resources Information Center

    Caulkins, Jonathan P.

    2002-01-01

    In this article, the author discusses the use in policy analysis of models that incorporate uncertainty. He believes that all models should consider incorporating uncertainty, but that at the same time it is important to understand that sampling variability is not usually the dominant driver of uncertainty in policy analyses. He also argues that…

  4. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  5. Single-cell imaging detection of nanobarcoded nanoparticle biodistributions in tissues for nanomedicine

    NASA Astrophysics Data System (ADS)

    Eustaquio, Trisha; Cooper, Christy L.; Leary, James F.

    2011-03-01

    In nanomedicine, biodistribution studies are critical to evaluate the safety and efficacy of nanoparticles. Currently, extensive biodistribution studies are hampered by the limitations of bulk tissue and single-cell imaging techniques. To ameliorate these limitations, we have developed a novel method for single nanoparticle detection that incorporates a conjugated oligonucleotide as a "nanobarcode" for detection via in situ PCR. This strategy magnifies the detection signal from single nanoparticles, facilitating rapid evaluation of nanoparticle uptake by cell type over larger areas. The nanobarcoding method can enable precise analysis of nanoparticle biodistributions and expedite translation of these nanoparticles to the clinic.

  6. Physicochemical characterization of surfactant incorporating vesicles that incorporate colloidal magnetite.

    PubMed

    de Melo Barbosa, Raquel; Luna Finkler, Christine L; Bentley, Maria Vitória L B; Santana, Maria Helena A

    2013-03-01

    Drug administration through the transdermal route has optimized for the comfort of patients and easy application. However, the main limitation of transdermal drug delivery is the impermeability of the human skin. Recent advances on improvement of drug transport through the skin include elastic liposomes as a penetration enhancer. Entrapment of ferrofluids in the core of liposomes produces magnetoliposomes, which can be driven by a high-gradient magnetic field. The association of both strategies could enhance the penetration of elastic liposomes. This work relies on the preparation and characterization of elastic-magnetic liposomes designed to permeate through the skin. The incorporation of colloidal magnetite and the elastic component, octaethylene glycol laurate (PEG-8-L), in the structure of liposomes were evaluated. The capability of the elastic magnetoliposomes for permeation through nanopores of two stacked polycarbonate membranes was compared to conventional and elastic liposomes. Magnetite incorporation was dependent on vesicle diameter and size distribution as well as PEG-8-L incorporation into liposomes, demonstrating the capability of the fluid bilayer to accommodate the surfactant without disruption. On the contrary, PEG-8-L incorporation into magnetoliposomes promoted a decrease of average diameter and a lower PEG-8-L incorporation percentage as a result of reduction on the fluidity of the bilayer imparted by iron incorporation into the lipid structure. Elastic liposomes demonstrated an enhancement of the deformation capability, as compared with conventional liposomes. Conventional and elastic magnetoliposomes presented a reduced capability for deformation and permeation. PMID:23363304

  7. Preparation of drug nanoparticles by emulsion evaporation method

    NASA Astrophysics Data System (ADS)

    Hoa, Le Thi Mai; Chi, Nguyen Tai; Triet, Nguyen Minh; Thanh Nhan, Le Ngoc; Mau Chien, Dang

    2009-09-01

    Polymeric drug nanoparticles were prepared by emulsion solvent evaporation method. In this study, prepared the polymeric drug nanoparticles consist of ketoprofen and Eudragit E 100. The morphology structure was investigated by scanning electron microscopy (SEM). The interactions between the drug and polymer were investigated by Fourier transform infrared spectroscopy (FTIR). The size distribution was measured by means of Dynamic Light Scattering. The nanoparticles have an average size of about 150 nm. The incorporation ability of drugs in the polymeric nanoparticles depended on the integration between polymer and drug as well as the glass transition temperature of the polymer.

  8. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  9. Hybrid Nanoparticles for Detection and Treatment of Cancer

    PubMed Central

    Sailor, Michael J.; Park, Ji-Ho

    2012-01-01

    There is currently considerable effort to incorporate both diagnostic and therapeutic functions into a single nanoscale system for the more effective treatment of cancer. Nanoparticles have great potential to achieve such dual functions, particularly if more than one type of nanostructure can be incorporated in a nanoassembly—referred to in this review as a hybrid nanoparticle. Here we review recent developments in the synthesis and evaluation of such hybrid nanoparticles based on two design strategies (barge vs. tanker), in which liposomal, micellar, porous silica, polymeric, viral, noble metal, and nanotube systems are incorporated either within (barge) or at the surface of (tanker) a nanoparticle. We highlight the design factors that should be considered to obtain effective nanodevices for cancer detection and treatment. PMID:22610698

  10. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    PubMed

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  11. Co-administration of non-carrier nanoparticles boosts antigen immune response without requiring protein conjugation.

    PubMed

    Wibowo, Nani; Chuan, Yap P; Seth, Arjun; Cordoba, Yoann; Lua, Linda H L; Middelberg, Anton P J

    2014-06-17

    Nanotechnology promises a revolution in medicine including through new vaccine approaches. The use of nanoparticles in vaccination has, to date, focused on attaching antigen directly to or within nanoparticle structures to enhance antigen uptake by immune cells. Here we question whether antigen incorporation with the nanoparticle is actually necessary to boost vaccine effectiveness. We show that the immunogenicity of a sub-unit protein antigen was significantly boosted by formulation with silica nanoparticles even without specific conjugation of antigen to the nanoparticle. We further show that this effect was observed only for virus-sized nanoparticles (50 nm) but not for larger (1,000 nm) particles, demonstrating a pronounced effect of nanoparticle size. This non-attachment approach has potential to radically simplify the development and application of nanoparticle-based formulations, leading to safer and simpler nanoparticle applications in vaccine development. PMID:24793947

  12. Nonsolvents-induced swelling of poly(methyl methacrylate) nanoparticles.

    PubMed

    Shundo, Atsuomi; Hori, Koichiro; Penaloza, David P; Yoshihiro, Kazuki; Annaka, Masahiko; Tanaka, Keiji

    2013-10-21

    Polymer nanoparticles have been used in a wide variety of applications. In most of these applications, they are generally dispersed in a non-solvent. However, the effect of the non-solvent on the structure, physical properties and function of the nanoparticles has not yet ever taken into account. In this study, monodispersed poly(methyl methacrylate) (PMMA) nanoparticles were prepared by a surfactant-free emulsion polymerization. The PMMA nanoparticles were dispersed in water and in methanol, both typical non-solvents for PMMA, so that we could discuss the effect of the non-solvent on the nanoparticles. Dynamic light scattering measurements revealed that the hydrodynamic radius of the PMMA nanoparticles in methanol was larger than the same PMMA dispersed in water. Their DLS values were also larger than the radius of the nanoparticles measured by atomic force microscopy. When pyrene was dispersed in methanol with the PMMA nanoparticles, it was incorporated into the nanoparticles. These results clearly indicate that non-solvent molecules can be sorbed into polymer nanoparticles because the area of the interface, where polymer segments might be dissolved into liquid phases, as the total volume is quite larger for such nanoparticles. Therefore, based on our findings, it can be arguably established that the present assumption for a polymer not to be swollen in its non-solvent is not necessarily true. PMID:23955567

  13. Bright photoluminescent hybrid mesostructured silica nanoparticles.

    PubMed

    Miletto, Ivana; Bottinelli, Emanuela; Caputo, Giuseppe; Coluccia, Salvatore; Gianotti, Enrica

    2012-07-28

    Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods. PMID:22706523

  14. Nanoparticle Solubility in Liquid Crystalline Defects

    NASA Astrophysics Data System (ADS)

    Whitmer, Jonathan K.; Armas-Perez, Julio C.; Joshi, Abhijeet A.; Roberts, Tyler F.; de Pablo, Juan J.

    2013-03-01

    Liquid crystalline materials often incorporate regions (defects) where the orientational ordering present in the bulk phase is disrupted. These include point hedgehogs, line disclinations, and domain boundaries. Recently, it has been shown that defects will accumulate impurities such as small molecules, monomer subunits or nanoparticles. Such an effect is thought to be due to the alleviation of elastic stresses within the bulk phase, or to a solubility gap between a nematic phase and the isotropic defect core. This presents opportunities for encapsulation and sequestration of molecular species, in addition to the formation of novel structures within a nematic phase through polymerization and nanoparticle self-assembly. Here, we examine the solubility of nanoparticles within a coarse-grained liquid crystalline phase and demonstrate the effects of nanoparticle size and surface interactions in determining sequestration into defect regions.

  15. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles. PMID:26563983

  16. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    NASA Astrophysics Data System (ADS)

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-01

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide.

  17. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. PMID:25842338

  18. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications.

    PubMed

    Lee, Ji Eun; Lee, Nohyun; Kim, Taeho; Kim, Jaeyun; Hyeon, Taeghwan

    2011-10-18

    Clever combinations of different types of functional nanostructured materials will enable the development of multifunctional nanomedical platforms for multimodal imaging or simultaneous diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) possess unique structural features such as their large surface areas, tunable nanometer-scale pore sizes, and well-defined surface properties. Therefore, they are ideal platforms for constructing multifunctional materials that incorporate a variety of functional nanostructured materials. In this Account, we discuss recent progress by our group and other researchers in the design and fabrication of multifunctional nanocomposite nanoparticles based on mesoporous silica nanostructures for applications to simultaneous diagnosis and therapy. Versatile mesoporous silica-based nanocomposite nanoparticles were fabricated using various methods. Here, we highlight two synthetic approaches: the encapsulation of functional nanoparticles within a mesoporous silica shell and the assembly of nanoparticles on the surface of silica nanostructures. Various nanoparticles were encapsulated in MSNs using surfactants as both phase transfer agents and pore-generating templates. Using MSNs as a scaffold, functional components such as magnetic nanoparticles and fluorescent dyes have been integrated within these systems to generate multifunctional nanocomposite systems that maintain their individual functional characteristics. For example, uniform mesoporous dye-doped silica nanoparticles immobilized with multiple magnetite nanocrystals on their surfaces have been fabricated for their use as a vehicle capable of simultaneous magnetic resonance (MR) and fluorescence imaging and drug delivery. The resulting nanoparticle-incorporated MSNs were then tested in mice with tumors. These in vivo experiments revealed that these multifunctional nanocomposite nanoparticles were delivered to the tumor sites via passive targeting. These nanocomposite

  19. Towards the Rational Design of Nanoparticle Catalysts

    NASA Astrophysics Data System (ADS)

    Dash, Priyabrat

    stabilization in BMIMPF6 IL is described, and have shown that nanoparticle stability and catalytic activity of nanoparticles is dependent on the overall stability of the nanoparticles towards aggregation (manuscript submitted). The second major project is focused on synthesizing structurally well-defined supported catalysts by incorporating the nanoparticle precursors (both alloy and core shell) into oxide frameworks (TiO2 and Al2O 3), and examining their structure-property relationships and catalytic activity. a full article has been published on this project (Journal of Physical Chemistry C, 2009, 113, 12719) in which a route to rationally design supported catalysts from structured nanoparticle precursors with precise control over size, composition, and internal structure of the nanoparticles has been shown. In a continuation of this methodology for the synthesis of heterogeneous catalysts, efforts were carried out to apply the same methodology in imidazolium-based ILs as a one-pot media for the synthesis of supported-nanoparticle heterogeneous catalysts via the trapping of pre-synthesized nanoparticles into porous inorganic oxide materials. Nanoparticle catalysts in highly porous titania supports were synthesized using this methodology (manuscript to be submitted).

  20. Selenium incorporation using recombinant techniques

    SciTech Connect

    Walden, Helen

    2010-04-01

    An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  1. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography.

    PubMed

    He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan

    2014-01-10

    A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. PMID:24290172

  2. Dynamic Covalent Nanoparticle Building Blocks.

    PubMed

    Kay, Euan R

    2016-07-25

    Rational and generalisable methods for engineering surface functionality will be crucial to realising the technological potential of nanomaterials. Nanoparticle-bound dynamic covalent exchange combines the error-correcting and environment-responsive features of equilibrium processes with the stability, structural precision, and vast diversity of covalent chemistry, defining a new and powerful approach for manipulating structure, function and properties at nanomaterial surfaces. Dynamic covalent nanoparticle (DCNP) building blocks thus present a whole host of possibilities for constructing adaptive systems, devices and materials that incorporate both nanoscale and molecular functional components. At the same time, DCNPs have the potential to reveal fundamental insights regarding dynamic and complex chemical systems confined to nanoscale interfaces. PMID:27312526

  3. Physicochemical signatures of nanoparticle-dependent complement activation

    SciTech Connect

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis; Pham, Christine; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-03-21

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we developed an in vitro hemolytic assay protocol for measuring the nanoparticle-dependent complement activity of serum samples and applied this protocol to several nanoparticle formulations that differed in size, surface charge, and surface chemistry; quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework. The robustness and predictability of the model can be improved by training the model with additional data points that are uniformly distributed in the RHA/physicochemical descriptor space and by incorporating instability effects on nanoparticle physicochemical properties into the model.

  4. Apoferritin-Templated Synthesis of Encoded Metallic Phosphate Nanoparticle Tags

    SciTech Connect

    Liu, Guodong; Wu, Hong; Dohnalkova, Alice; Lin, Yuehe

    2007-07-31

    Encoded metallic-phosphate nanoparticle tags, with distinct encoding patterns, have been prepared using an apoferritin template. A center-cavity structure as well as the disassociation and reconstructive characteristics of apoferritin at different pH environments provide a facile route for preparing such encoded nanoparticle tags. Encapsulation and diffusion approaches have been investigated during the preparation. The encapsulation approach, which is based on the dissociation and reconstruction of apoferritin at different pHs, exhibits an effective route to prepare such encoded metallic-phosphate nanoparticle tags. The compositionally encoded nanoparticle tag leads to a high coding capacity with a large number of distinguishable voltammetric signals, reflecting the predetermined composition of the metal mixture solution (and hence the nanoparticle composition). Releasing the metal components from the nanoparticle tags at pH 4.6 acetate buffer avoids harsh dissolution conditions, such as strong acids. Such a synthesis of encoded nanoparticle tags, including single-component and compositionally encoded nanoparticle tags, is substantially simple, fast, and convenient compared to that of encoded metal nanowires and semiconductor nanoparticle (CdS, PbS, and ZnS) incorporated polystyrene beads. The encoded metallic-phosphate nanoparticle tags thus show great promise for bioanalytical or product-tracking/identification/protection applications.

  5. Improved catalytic activity of laser generated bimetallic and trimetallic nanoparticles.

    PubMed

    Singh, Rina; Soni, R K

    2014-09-01

    We report synthesis of silver nanoparticles, bimetallic (Al2O3@Ag) nanoparticles and trimetallic (Al2O3@AgAu) nanoparticles by nanosecond pulse laser ablation (PLA) in deionized water. Two-step laser ablation methodologies were adopted for the synthesis of bi- and tri-metallic nanoparticles. In this method a silver or gold target was ablated in colloidal solution of γ-alumina nanoparticles prepared by PLA. The TEM image analysis of bimetallic and trimetallic particles reveals deposition of fine silver particles and Ag-Au alloy particles, respectively, on large alumina particles. The laser generated nanoparticles were tested for catalytic reduction of 4-nitrophenol to 4-aminophenol and showed excellent catalytic behaviour. The catalytic rate was greatly improved by incorporation of additional metal in silver nanoparticles. The catalytic efficiency of trimetallic Al2O3@AgAu for reduction of 4-nitrophenol to 4-aminophenol was remarkably enhanced and the catalytic reaction was completed in just 5 sec. Even at very low concentration, both Al2O3@Ag nanoparticles and Al2O3@AgAu nanoparticles showed improved rate of catalytic reduction than monometallic silver nanoparticles. Our results demonstrate that alumina particles in the solution not only provide the active sites for particle dispersion but also improve the catalytic activity. PMID:25924343

  6. Incorporating Argumentation through Forensic Science

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Smetana, Lara K.

    2014-01-01

    This article outlines how to incorporate argumentation into a forensic science unit using a mock trial. Practical details of the mock trial include: (1) a method of scaffolding students' development of their argument for the trial, (2) a clearly outlined set of expectations for students during the planning and implementation of the mock…

  7. Earth abundant bimetallic nanoparticles for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Senn, Jonathan F., Jr.

    Polymer exchange membrane fuel cells have the potential to replace current fossil fuel-based technologies in terms of emissions and efficiency, but CO contamination of H2 fuel, which is derived from steam methane reforming, leads to system inefficiency or failure. Solutions currently under development are bimetallic nanoparticles comprised of earth-abundant metals in different architectures to reduce the concentration of CO by PROX during fuel cell operation. Chapter One introduces the Pt-Sn and Co-Ni bimetallic nanoparticle systems, and the intermetallic and core-shell architectures of interest for catalytic evaluation. Application, theory, and studies associated with the efficacy of these nanoparticles are briefly reviewed. Chapter Two describes the concepts of the synthetic and characterization methods used in this work. Chapter Three presents the synthetic, characterization, and catalytic findings of this research. Pt, PtSn, PtSn2, and Pt 3Sn nanoparticles have been synthesized and supported on gamma-Al2O3. Pt3Sn was shown to be an effective PROX catalyst in various gas feed conditions, such as the gas mixture incorporating 0.1% CO, which displayed a light-off temperatures of ˜95°C. Co and Ni monometallic and CoNi bimetallic nanoparticles have been synthesized and characterized, ultimately leading to the development of target Co Ni core-shell nanoparticles. Proposed studies of catalytic properties of these nanoparticles in preferential oxidation of CO (PROX) reactions will further elucidate the effects of different crystallographic phases, nanoparticle-support interactions, and architecture on catalysis, and provide fundamental understanding of catalysis with nanoparticles composed of earth abundant metals in different architectures.

  8. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor; Ganesan, Venkat

    2016-04-01

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al2O3 nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al2O3 nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seen to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.

  9. Controlling particle size in the Stöber process and incorporation of calcium.

    PubMed

    Greasley, Sarah L; Page, Samuel J; Sirovica, Slobodan; Chen, Shu; Martin, Richard A; Riveiro, Antonio; Hanna, John V; Porter, Alexandra E; Jones, Julian R

    2016-05-01

    The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20-500nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, whilst maintaining monodispersity, is desirable. Here, whilst calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated. PMID:26890387

  10. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  11. Retardation of nanoparticles growth by doping

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Rudko, Galyna; Fediv, Volodymyr; Savchuk, Andrij; Gule, Evgenij; Vorona, Igor

    2014-12-01

    The process of doping of CdS nanoparticles with Mn during colloidal synthesis is analyzed by EPR and optical studies. Analysis of EPR results demonstrated that Mn2+ ions are successfully incorporated into the nanoparticles and occupy the crystal sites both in the bulk of a NP and near the surface of a NP. Optical absorption measurements revealed the retardation of absorption edge shift during the growth for Mn-doped CdS NPs as compared to the undoped CdS NPs. It was concluded that the presence of Mn in the solution leads to the inhibition of NPs growth.

  12. Lipid Nanoparticles for Gene Delivery

    PubMed Central

    Zhao, Yi; Huang, Leaf

    2016-01-01

    Nonviral vectors which offer a safer and versatile alternative to viral vectors have been developed to overcome problems caused by viral carriers. However, their transfection efficacy or level of expression is substantially lower than viral vectors. Among various nonviral gene vectors, lipid nanoparticles are an ideal platform for the incorporation of safety and efficacy into a single delivery system. In this chapter, we highlight current lipidic vectors that have been developed for gene therapy of tumors and other diseases. The pharmacokinetic, toxic behaviors and clinic trials of some successful lipids particles are also presented. PMID:25409602

  13. Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles.

    PubMed

    de Moura, M R; Avena-Bustillos, R J; McHugh, T H; Krochta, J M; Mattoso, L H C

    2008-09-01

    In this study, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility, and scanning and transmission electron microscopy (SEM and TEM) results were analyzed. Incorporation of chitosan nanoparticles in the films improved their mechanical properties significantly, while also improving film barrier properties significantly. The chitosan poly(methacrylic acid) (CS-PMAA) nanoparticles tend to occupy the empty spaces in the pores of the HPMC matrix, inducing the collapse of the pores and thereby improving film tensile and barrier properties. This study is the first to investigate the use of nanoparticles for the purpose of strengthening HPMC films. PMID:18803724

  14. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. PMID:27207047

  15. Enzymatically Controlled Vacancies in Nanoparticle Crystals.

    PubMed

    Barnaby, Stacey N; Ross, Michael B; Thaner, Ryan V; Lee, Byeongdu; Schatz, George C; Mirkin, Chad A

    2016-08-10

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable "bonds" that link nanoparticle "atoms" into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale "bond" affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same, but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom. PMID:27428463

  16. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Fabien; Ulhaq-Bouillet, Corinne; Muller, Dominique; Slaoui, Abdelilah; Ferblantier, Gérald

    2016-05-01

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size of the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.

  17. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).

    PubMed

    Shoults-Wilson, W A; Zhurbich, Oksana I; McNear, David H; Tsyusko, Olga V; Bertsch, Paul M; Unrine, Jason M

    2011-03-01

    Silver nanoparticles have been incorporated into a wide variety of consumer products, ideally acting as antimicrobial agents. Silver exposure has long been known to cause toxic effects to a wide variety of organisms, making large scale production of silver nanoparticles a potential hazard to environmental systems. Here we describe the first evidence that an organism may be able to sense manufactured nanoparticles in a complex, environmentally relevant exposure and that the presence of nanoparticles alters the organism's behavior. We found that earthworms (Eisenia fetida) consistently avoid soils containing silver nanoparticles and AgNO(3) at similar concentrations of Ag. However, avoidance of silver nanoparticles occurred over 48 h, while avoidance of AgNO(3) was immediate. It was determined that avoidance of silver nanoparticles could not be explained by release of silver ions or any changes in microbial communities caused by the introduction of Ag. This leads us to conclude that the earthworms were in some way sensing the presence of nanoparticles over the course of a 48 h exposure and choosing to avoid exposure to them. Our results demonstrate that nanoparticle interactions with organisms may be unpredictable and that these interactions may result in ecologically significant effects on behavior at environmentally relevant concentrations. PMID:21229389

  18. Formation and characterization of nanoparticles via laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Golightly, Justin Samuel

    The work presented in this thesis encompassed laser ablation of various transition metals within a liquid environment. Through an improved understanding of the ablation process, control over the properties of the resultant nanoparticles can be obtained, and thusly nanoparticles can be tailored with specific properties. Creation of nanoparticles via laser ablation in solution is a relatively youngtechnique for nanoparticle synthesis, and the work presented should prove useful in guiding further exploration in ablation processes in liquids for nanomaterial production. When a laser is focused onto a target under a liquid environment, the target material and its surrounding liquid are vaporized. The concoction of vapor is ejected normal to the surface as a bubble. The bubble has a temperature reaching the boiling point of the metal, and has a gradient to the boiling point of the solvent. The bubble expands until it reaches a critical volume, and then subsequently collapses. It is within this bubble that nanoparticle formation occurs. As the bubble expands, the vapor cools and nanoparticle growth transpires. During the bubble collapse, pressures reaching GigaPascals have been reported, and a secondary nanoparticle formation occurs as a result of these high pressures. Chapter 1 delves a little more into the nanoparticle formation mechanisms, as well as an introduction to the analytical techniques used for characterization. Ablation of titanium took place in isopropanol, ethanol, water, and n-hexane, under various fluences, with a 532 nm Nd:YAG operating at 10 Hz. It was found that a myriad of nanoparticles could be made with vastly different compositions that were both solvent and fluence dependent. Nanoparticles were made that incorporated carbon and oxygen from the solvent, showing how solvent choice is an important factor in nanoparticle creation. Chapter 3 discusses the results of the titanium work in great detail and demonstrates carbide production with ablation in

  19. Shape effects on nanoparticle engulfment for metal matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Ozsoy, Istemi Baris; Li, Gang; Choi, Hongseok; Zhao, Huijuan

    2015-07-01

    Obtaining a uniform dispersion of the nanoparticles and their structural integrity in metal matrix is a prominent obstacle to use the intrinsic properties of metal matrix nanocomposites (MMNCs) to the full extent. In this study, a potential way to overcome the scientific and technical barrier of nanoparticle dispersion in high performance lightweight MMNCs is presented. The goal is to identify the shape and size of Al2O3 nanoparticle for its optimal dispersion in Al matrix. Critical velocity of solidification is calculated numerically for spherical, cylindrical and disk-shaped nanoparticles using an analytical model which incorporates drag force, intermolecular force and inertia effect. The results show that it is possible to reduce the critical solidification velocity for nanoparticle capture by 6 times with proper shape modification.

  20. Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles.

    PubMed

    Nistor, Manuela Tatiana; Vasile, Cornelia; Chiriac, Aurica P

    2015-08-01

    Montmorillonite nanoparticles have been physically incorporated within a crosslinked collagen/poly(N-isopropyl acrylamide) network in order to adjust the properties of the stimuli-responsive hybrid systems. The research underlines both the influence of hydrogel composition and nanoparticle type on hybrid hydrogel properties. The dispersion of the montmorillonite nanoparticles in polymeric matrix have been visualized by SEM, TEM and AFM techniques and quantitatively and qualitatively estimated using near infrared chemical imaging. The electrical charge of the nanoparticles influenced the polymeric chain arrangement and the pore size. The morphologies of the nanoparticulated layers are partially exfoliated or intercalated and uniformly dispersed through the polymeric semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide). The hybrid hydrogels exhibit pseudoplastic behavior and the addition of nanoparticles has resulted in the increase of the complex viscosity. The adhesion capacity was affected mainly by the presence of organically modified montmorillonites. PMID:26042709

  1. Uranium incorporation into amorphous silica.

    PubMed

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination. PMID:24984107

  2. Incorporating Spirituality in Primary Care.

    PubMed

    Isaac, Kathleen S; Hay, Jennifer L; Lubetkin, Erica I

    2016-06-01

    Addressing cultural competency in health care involves recognizing the diverse characteristics of the patient population and understanding how they impact patient care. Spirituality is an aspect of cultural identity that has become increasingly recognized for its potential to impact health behaviors and healthcare decision-making. We consider the complex relationship between spirituality and health, exploring the role of spirituality in primary care, and consider the inclusion of spirituality in existing models of health promotion. We discuss the feasibility of incorporating spirituality into clinical practice, offering suggestions for physicians. PMID:26832335

  3. Incorporation of additives into polymers

    DOEpatents

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  4. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-01

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  5. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  6. Drug targeting using solid lipid nanoparticles.

    PubMed

    Rostami, Elham; Kashanian, Soheila; Azandaryani, Abbas H; Faramarzi, Hossain; Dolatabadi, Jafar Ezzati Nazhad; Omidfar, Kobra

    2014-07-01

    The present review aims to show the features of solid lipid nanoparticles (SLNs) which are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Because of some unique features of SLNs such as their unique size dependent properties it offers possibility to develop new therapeutics. A common denominator of all these SLN-based platforms is to deliver drugs into specific tissues or cells in a pathological setting with minimal adverse effects on bystander cells. SLNs are capable to incorporate drugs into nanocarriers which lead to a new prototype in drug delivery which maybe used for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of targeted solid lipid nanoparticles discussing their types such as antibody SLN, magnetic SLN, pH sensitive SLN and cationic SLN. PMID:24717692

  7. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis.

    PubMed

    Gómez, Sara; Gamazo, Carlos; San Roman, Beatriz; Ferrer, Marta; Sanz, Maria Luisa; Espuelas, Socorro; Irache, Juan M

    2008-11-01

    The adjuvant and protective capacity against anaphylactic shock of the association between rough lipopolysaccharide of Brucella ovis (LPS) coencapsulated with ovalbumin (OVA), as a model allergen, in Gantrez AN nanoparticles was investigated. Several strategies were performed in order to study the adjuvant effect of the LPS either encapsulated or coating the nanoparticles. OVA, as well as LPS, was incorporated either during the manufacturing process (OVA-encapsulated or LPS-encapsulated nanoparticles, respectively) or after the preparation (OVA-coated or LPS-coated nanoparticles, respectively). After the administration of 10 microg of OVA incorporated in the different formulations, all the nanoparticles, with or without LPS, were capable of amplifying the immune response (IgG(1) and IgG(2a)). However, in a model of sensitized mice to OVA, the formulation with OVA and LPS-entrapped inside the nanoparticles administered intradermally in three doses of 3 microg of OVA each was the only treatment that totally protected the mice from death after a challenge with an intraperitoneal injection of OVA. In contrast, the control group administered with OVA adsorbed onto a commercial alhydrogel adjuvant showed 80% mortality. These results are highly suggestive for the valuable use of Gantrez nanoparticles combined with rough LPS of B. ovis in immunotherapy. PMID:18582571

  8. Antibacterial releasing titanium surface using albumin nanoparticle carriers.

    PubMed

    Kim, Da Hye; Kim, Kyo-Han; Kwon, Tae-Yub; Choi, Seok Hwa; Kang, Seong Soo; Kwon, Soon-Taek; Cho, Dae-Hyun; Kim, Hee Dong; Son, Jun Sik

    2014-11-01

    We developed a simple and highly efficient method for delivery from titanium (Ti) surfaces using albumin nanoparticle carriers. A Ti disc with a resorbable blasting media surface was used as a metal implant with a localized drug delivery structure. Human serum albumin (HSA) nanoparticles loaded with chlorhexidine (CHX) diacetate salt hydrate as the model drug were fabricated using a desolvation technique. The CHX-loaded HSA nanoparticles produced were cross linked with glutaraldehyde (GA). The nanoparticles were pre-coated with positively-charged polyethylenimine (PEI) molecules and then immobilized via electrical interactions on the negatively charged Ti disc surface. Our results suggested that the PEI-coated HSA nanoparticles loaded with CHX (PEI-CHX-HSA) were incorporated successfully and well-dispersed on the Ti disc surfaces. The agar diffusion test on the Ti surface treated with PEI-CHX-HSA nanoparticles showed a larger growth inhibition zone of Streptococcus mutans versus the control Ti surface, suggesting that this innovative delivery platform imparts potent antibacterial activity to the Ti surface. Thus, CHX, which inhibits the growth of oral bacteria, can be efficiently incorporated onto Ti surfaces by using HSA nanoparticles. PMID:25958539

  9. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  10. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  11. Crystallization of hollow mesoporous silica nanoparticles.

    PubMed

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions. PMID:25503642

  12. Iron Nanoparticles in Reactive Environmental Barriers

    SciTech Connect

    Nuxoll, Eric E.; Shimotori, Tsutomu; Arnold, William A.; Cussler, Edward L.

    2003-09-23

    Zero-valent iron is cheap, environmentally innocuous, and effective at reducing chlorinated organics. It has, as a result, become a popular candidate for remediating aquifers contaminated with trichloroethylene and other halogenated pollutants. In this paper, we discuss one such system, where iron nanoparticles are synthesized and incorporated into polyvinyl alcohol membranes, forming water-permeable barriers to these pollutants. These barriers are tested against a variety of contaminants, including carbon tetrachloride, copper, and chromate.

  13. Uranyl incorporation in natural calcite.

    SciTech Connect

    Kelly, S. D.; Newville, M. G.; Cheng, L.; Kemner, K. M.; Sutton, S. R.; Fenter, P.; Sturchio, N. C.; Spotl, C.; Environmental Research; Univ. of Chicago; Univ. of Illiois at Chicago; Univ. of Innsbruck

    2003-01-01

    The occurrence of trace amounts of uranyl in natural calcite has posed a long-standing problem in crystal chemistry because of speculation that the size and shape of the uranyl ion may preclude its incorporation in a stable lattice position in calcite. This also defines an important environmental problem because of its bearing on the transport and sequestration of uranyl released from nuclear facilities and uranium mining operations. Calcite is a nearly ubiquitous mineral in soils and groundwater aquifers. X-ray absorption spectroscopy and X-ray fluorescence microprobe studies of uranium in relatively U-rich {approx}13700-year-old calcite from a speleothem in northernmost Italy indicate substitution of uranyl for a calcium and two adjacent carbonate ions in calcite. These new data imply that uranyl has a stable lattice position in natural calcite, indicating that it may be reliably sequestered in calcite over long time scales.

  14. Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces

    PubMed Central

    Liu, Guoliang; Eichelsdoerfer, Daniel J.; Rasin, Boris; Zhou, Yu; Brown, Keith A.; Liao, Xing; Mirkin, Chad A.

    2013-01-01

    Although nanoparticles with exquisite properties have been synthesized for a variety of applications, their incorporation into functional devices is challenging owing to the difficulty in positioning them at specified sites on surfaces. In contrast with the conventional synthesis-then-assembly paradigm, scanning probe block copolymer lithography can pattern precursor materials embedded in a polymer matrix and synthesize desired nanoparticles on site, offering great promise for incorporating nanoparticles into devices. This technique, however, is extremely limited from a materials standpoint. To develop a materials-general method for synthesizing nanoparticles on surfaces for broader applications, a mechanistic understanding of polymer-mediated nanoparticle formation is crucial. Here, we design a four-step synthetic process that enables independent study of the two most critical steps for synthesizing single nanoparticles on surfaces: phase separation of precursors and particle formation. Using this process, we elucidate the importance of the polymer matrix in the diffusion of metal precursors to form a single nanoparticle and the three pathways that the precursors undergo to form nanoparticles. Based on this mechanistic understanding, the synthetic process is generalized to create metal (Au, Ag, Pt, and Pd), metal oxide (Fe2O3, Co2O3, NiO, and CuO), and alloy (AuAg) nanoparticles. This mechanistic understanding and resulting process represent a major advance in scanning probe lithography as a tool to generate patterns of tailored nanoparticles for integration with solid-state devices. PMID:23277538

  15. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    PubMed Central

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-01-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed. PMID:26388104

  16. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-09-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed.

  17. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization

  18. Dynamic nuclear polarization of spherical nanoparticles.

    PubMed

    Akbey, Ümit; Altin, Burcu; Linden, Arne; Özçelik, Serdar; Gradzielski, Michael; Oschkinat, Hartmut

    2013-12-21

    Spherical silica nanoparticles of various particle sizes (~10 to 100 nm), produced by a modified Stoeber method employing amino acids as catalysts, are investigated using Dynamic Nuclear Polarization (DNP) enhanced Nuclear Magnetic Resonance (NMR) spectroscopy. This study includes ultra-sensitive detection of surface-bound amino acids and their supramolecular organization in trace amounts, exploiting the increase in NMR sensitivity of up to three orders of magnitude via DNP. Moreover, the nature of the silicon nuclei on the surface and the bulk silicon nuclei in the core (sub-surface) is characterized at atomic resolution. Thereby, we obtain unique insights into the surface chemistry of these nanoparticles, which might result in improving their rational design as required for promising applications, e.g. as catalysts or imaging contrast agents. The non-covalent binding of amino acids to surfaces was determined which shows that the amino acids not just function as catalysts but become incorporated into the nanoparticles during the formation process. As a result only three distinct Q-types of silica signals were observed from surface and core regions. We observed dramatic changes of DNP enhancements as a function of particle size, and very small particles (which suit in vivo applications better) were hyperpolarized with the best efficiency. Nearly one order of magnitude larger DNP enhancement was observed for nanoparticles with 13 nm size compared to particles with 100 nm size. We determined an approximate DNP penetration-depth (~4.2 or ~5.7 nm) for the polarization transfer from electrons to the nuclei of the spherical nanoparticles. Faster DNP polarization buildup was observed for larger nanoparticles. Efficient hyperpolarization of such nanoparticles, as achieved in this work, can be utilized in applications such as magnetic resonance imaging (MRI). PMID:24192797

  19. Nanoparticles for transcutaneous vaccination

    PubMed Central

    Hansen, Steffi; Lehr, Claus‐Michael

    2012-01-01

    Summary The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano‐vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle‐free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra‐flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. PMID:21854553

  20. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  1. Modified natural nanoparticles as contrast agents for medical imaging

    PubMed Central

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2009-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have advantages as delivery platforms such as biodegradability. In addition, our understanding of natural nanoparticles is quite advanced, allowing their adaptation as contrast agents. They can be labeled with small molecules or ions such as Gd3+ to act as contrast agents for magnetic resonance imaging, 18F to act as positron emission tomography contrast agents or fluorophores to act as contrast agents for fluorescence techniques. Additionally, inorganic nanoparticles such as iron oxide, gold nanoparticles or quantum dots can be incorporated to add further contrast functionality. Furthermore, these natural nanoparticle contrast agents can be rerouted from their natural targets via the attachment of targeting molecules. In this review, we discuss the various modified natural nanoparticles that have been exploited as contrast agents. PMID:19900496

  2. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    PubMed

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials. PMID:27038916

  3. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    SciTech Connect

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  4. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution.

    PubMed

    Vllasaliu, Driton; Exposito-Harris, Ruth; Heras, Angeles; Casettari, Luca; Garnett, Martin; Illum, Lisbeth; Stolnik, Snow

    2010-11-15

    Present work investigates the potential of chitosan nanoparticles, formulated by the ionic gelation with tripolyphosphate (TPP), to open the cellular tight junctions and in doing so, improve the permeability of model macromolecules. A comparison is made with chitosan solution at equivalent concentrations. Initial work assessed cytotoxicity (through MTS and LDH assays) of chitosan nanoparticles and solutions on Calu-3 cells. Subsequently, a concentration of chitosan nanoparticles and solution exhibiting minimal toxicity was used to investigate the effect on TEER and macromolecular permeability across filter-cultured Calu-3 monolayer. Chitosan nanoparticles and solution were also tested for their effect on the distribution of the tight junction protein, zonnula occludens-1 (ZO-1). Chitosan nanoparticles produced a sharp and reversible decrease in TEER and increased the permeability of two FITC-dextrans (FDs), FD4 (MW 4 kDa) and FD10 (MW 10 kDa), with effects of a similar magnitude to chitosan solution. Chitosan nanoparticles produced changes in ZO-1 distribution similar to chitosan solution, indicating a tight junction effect. While there was no improvement in permeability with chitosan nanoparticles compared to solution, nanoparticles provide the potential for drug incorporation, and hence the possibility for providing controlled drug release and protection from enzymatic degradation. PMID:20727955

  5. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  6. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials.

    PubMed

    Atar-Froyman, Livnat; Sharon, Anat; Weiss, Ervin I; Houri-Haddad, Yael; Kesler-Shvero, Dana; Domb, Abraham J; Pilo, Raphael; Beyth, Nurit

    2015-04-01

    Polycationic nanoparticles show biocompatible, broad-spectrum bactericidal properties in vitro and in vivo when incorporated in denture lining material post-maxillectomy in head and neck cancer patients. In the present study, the synthesized Crosslinked quaternary ammonium polyethylenimine nanoparticles were found to have a strong bactericidal activity against a wide variety of microorganisms rapidly killing bacterial cells when incorporated at small concentrations into soft lining materials without compromising mechanical and biocompatibility properties. This appears advantageous over conventional released antimicrobials with regard to in vivo efficacy and safety, and may provide a convenient platform for the development of non-released antimicrobials. This is a crucial issue when it comes to giving an answer to the serious and life-threatening problems of contaminations in immunocompromised patients such as orofacial cancer patient. PMID:25678123

  7. Finite Size Effects on the Real-Space Pair Distribution Function of Nanoparticles

    SciTech Connect

    Gilbert, Benjamin

    2008-10-01

    The pair distribution function (PDF) method is a powerful approach for the analysis of the structure of nanoparticles. An important approximation used in nanoparticle PDF simulations is the incorporation of a form factor describing nanoparticle size and shape. The precise effect of the form factor on the PDF is determined by both particle shape and structure if these characteristics are both anisotropic and correlated. The correct incorporation of finite size effects is important for distinguishing and quantifying the structural consequences of small particle size in nanomaterials.

  8. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    template base self assembly. A 1.5 micron silica sphere is bound to poly(4-vinylpyridine) coated glass and used as a template. a mask of silica monoxide is vacuum deposited atop the spheres/glass leaving a ring just below the sphere untouched and able to bind silver nanoparticles. Optical microscopy reveal interesting results under depolarized light conditions, but ultimate structural analysis has proven elusive. Semiconducting p-type cuprous oxide was electrochemically deposited on both silver and indium tin oxide electrodes. Silver nanoparticles were incorporated into the architecture either atop the cuprous oxide or sandwiched between cuprous oxide and n-type material. Increases in photocurrent were observed in both cases and further work must be conducted to optimize a solid state device for photovoltaic applications.

  9. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.

    PubMed

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-08-01

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. PMID:23030034

  10. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to...

  11. 49 CFR 572.190 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.190 Section 572.190... Dummy, Small Adult Female § 572.190 Incorporated materials. (a) The following materials are...

  12. 49 CFR 587.5 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 587.5 Section 587.5... Barrier § 587.5 Incorporated materials. (a) The drawings and specifications referred to in this regulation that are not set forth in full are hereby incorporated in this part by reference. These materials...

  13. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to...

  14. 49 CFR 572.180 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.180 Section 572.180... Test Dummy, 50th Percentile Adult Male § 572.180 Incorporated materials. (a) The following...

  15. 49 CFR 587.5 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 587.5 Section 587.5... Barrier § 587.5 Incorporated materials. (a) The drawings and specifications referred to in this regulation that are not set forth in full are hereby incorporated in this part by reference. These materials...

  16. 49 CFR 587.5 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 587.5 Section 587.5... Barrier § 587.5 Incorporated materials. (a) The drawings and specifications referred to in this regulation that are not set forth in full are hereby incorporated in this part by reference. These materials...

  17. 49 CFR 572.190 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.190 Section 572.190... Dummy, Small Adult Female § 572.190 Incorporated materials. (a) The following materials are...

  18. 49 CFR 572.190 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.190 Section 572.190... Test Dummy, Small Adult Female § 572.190 Incorporated materials. (a) The following materials are...

  19. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to...

  20. Numeral Incorporation in Japanese Sign Language

    ERIC Educational Resources Information Center

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  1. 49 CFR 572.180 - Incorporated materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 49 Transportation 7 2014-10-01 2014-10-01 false Incorporated materials. 572.180 Section 572.180... Test Dummy, 50th Percentile Adult Male § 572.180 Incorporated materials. (a) The following...

  2. 49 CFR 587.5 - Incorporated materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Incorporated materials. 587.5 Section 587.5... Barrier § 587.5 Incorporated materials. (a) The drawings and specifications referred to in this regulation that are not set forth in full are hereby incorporated in this part by reference. These materials...

  3. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to...

  4. 49 CFR 587.5 - Incorporated materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Incorporated materials. 587.5 Section 587.5... Barrier § 587.5 Incorporated materials. (a) The drawings and specifications referred to in this regulation that are not set forth in full are hereby incorporated in this part by reference. These materials...

  5. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  6. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles

    PubMed Central

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Lin, Chwan-Fwu; Chang, Yuan-Ting; Fang, Jia-You

    2015-01-01

    This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2•−, and intracellular Ca2+ were examined. The nanoparticles showed a size of 170–225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca2+ influx. The elevation of intracellular Ca2+ induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity. PMID:25609950

  7. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles.

    PubMed

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Lin, Chwan-Fwu; Chang, Yuan-Ting; Fang, Jia-You

    2015-01-01

    This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2(•-), and intracellular Ca(2+) were examined. The nanoparticles showed a size of 170-225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca(2+) influx. The elevation of intracellular Ca(2+) induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity. PMID:25609950

  8. Ensemble learning incorporating uncertain registration.

    PubMed

    Simpson, Ivor J A; Woolrich, Mark W; Andersson, Jesper L R; Groves, Adrian R; Schnabel, Julia A

    2013-04-01

    This paper proposes a novel approach for improving the accuracy of statistical prediction methods in spatially normalized analysis. This is achieved by incorporating registration uncertainty into an ensemble learning scheme. A probabilistic registration method is used to estimate a distribution of probable mappings between subject and atlas space. This allows the estimation of the distribution of spatially normalized feature data, e.g., grey matter probability maps. From this distribution, samples are drawn for use as training examples. This allows the creation of multiple predictors, which are subsequently combined using an ensemble learning approach. Furthermore, extra testing samples can be generated to measure the uncertainty of prediction. This is applied to separating subjects with Alzheimer's disease from normal controls using a linear support vector machine on a region of interest in magnetic resonance images of the brain. We show that our proposed method leads to an improvement in discrimination using voxel-based morphometry and deformation tensor-based morphometry over bootstrap aggregating, a common ensemble learning framework. The proposed approach also generates more reasonable soft-classification predictions than bootstrap aggregating. We expect that this approach could be applied to other statistical prediction tasks where registration is important. PMID:23288332

  9. Flex joint incorporating enclosed conductors

    SciTech Connect

    Tomek, M.L.

    1989-06-27

    This patent describes a downhole elongate oil tool adapted to flex as required in placing the elongate tool in a crooked well borehole wherein electrical signals are transmitted along conductors along the elongate tool. The elongate tool incorporating a flex tool consists of: (a) a generally spherical knuckle; (b) a surrounding socket engaging the knuckle with a limited rotational range relative to a defined axis through the knuckle and socket; (c) a passage through the knuckle opening at an outlet into the socket; (d) a serially communicated passage through the socket aligned with the knuckle; (e) means cooperative with the knuckle and the socket; (1) permitting flexure in a conic angle relative to an axis through the knuckle and socket; and (2) preventing relative axial rotation between the knuckle and the socket; and (f) means for filling the passages with a pressure isolated oil bath for contacting structural components in the passages, and further wherein the oil bath is pressure isolated by a piston responsive to external fluid pressure in the well borehole to sustain a pressure on the oil bath equal to and in excess of prevailing external pressure.

  10. Assessing Nanoparticle Toxicity

    NASA Astrophysics Data System (ADS)

    Love, Sara A.; Maurer-Jones, Melissa A.; Thompson, John W.; Lin, Yu-Shen; Haynes, Christy L.

    2012-07-01

    Nanoparticle toxicology, an emergent field, works toward establishing the hazard of nanoparticles, and therefore their potential risk, in light of the increased use and likelihood of exposure. Analytical chemists can provide an essential tool kit for the advancement of this field by exploiting expertise in sample complexity and preparation as well as method and technology development. Herein, we discuss experimental considerations for performing in vitro nanoparticle toxicity studies, with a focus on nanoparticle characterization, relevant model cell systems, and toxicity assay choices. Additionally, we present three case studies (of silver, titanium dioxide, and carbon nanotube toxicity) to highlight the important toxicological considerations of these commonly used nanoparticles.

  11. Electrostatic method for the production of polymer nanofibers blended with metal-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaworek, A.; Krupa, A.; Lackowski, M.; Sobczyk, A. T.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D.

    2009-01-01

    The paper presents investigations of a method of the production of non-woven polymer fabrics with incorporated metal oxide nanoparticles based on electrospinning and electrospraying. Two main configurations of electrospraying/electrospinning systems have been tested: two-step process of electrospinning of polymer solution followed by electrospraying of nanoparticle suspension, and simultaneous electrospinning of polymer solution and electrospraying of nanoparticle suspension. By this method TiO2, MgO, or Al2O3 nanoparticles of the size from 20 to 100 nm were deposited onto electrospun PVC nanofibers.

  12. Tailored Composite Polymer-Metal Nanoparticles by Miniemulsion Polymerization and Thiol-ene Functionalization

    PubMed Central

    van Berkel, Kim Y.

    2010-01-01

    A simple and modular synthetic approach, based on miniemulsion polymerization, has been developed for the fabrication of composite polymer-metal nanoparticle materials. The procedure produces well-defined composite structures consisting of gold, silver or MnFe2O4 nanoparticles (∼10 nm in diameter) encapsulated within larger spherical nanoparticles of poly(divinylbenzene) (∼100 nm in diameter). This methodology readily permits the incorporation of multiple metal domains into a single polymeric particle, while still preserving the useful optical and magnetic properties of the metal nanoparticles. The morphology of the composite particles is retained upon increasing the inorganic content, and also upon redispersion in organic solvents. Finally, the ability to tailor the surface chemistry of the composite nanoparticles and incorporate steric stabilizing groups using simple thiol-ene chemistry is demonstrated. PMID:20657708

  13. Hierarchical mesoporous silica nanoparticles as superb light scattering materials.

    PubMed

    Ryu, Jaehoon; Yun, Juyoung; Lee, Jungsup; Lee, Kisu; Jang, Jyongsik

    2016-02-01

    A novel approach to enhance the light scattering effect was explored by applying hierarchical silica nanoparticles in DSSCs as scattering layers. The WSN-incorporated cells showed a PCE value of 9.53% and a PCE enhancement of 30.19% compared with those of the reference cells. PMID:26699659

  14. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug. PMID:24610743

  15. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhao, Gongpu; Sun, Kai; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2014-05-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.

  16. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  17. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  18. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery.

    PubMed

    Barbi, Mariana Da Silva; Carvalho, Flávia Chiva; Kiill, Charlene Priscila; Barud, Hernane Da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Gremião, Maria Palmira Daflon

    2015-01-01

    Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT

  19. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System

    PubMed Central

    Mukherjee, S.; Ray, S.; Thakur, R. S.

    2009-01-01

    Solid lipid nanoparticles are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery, clinical medicine and research, as well as in other varied sciences. Due to their unique size-dependent properties, lipid nanoparticles offer the possibility to develop new therapeutics. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for secondary and tertiary levels of drug targeting. Hence, solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence have attracted wide attention of researchers. This review presents a broad treatment of solid lipid nanoparticles discussing their advantages, limitations and their possible remedies. The different types of nanocarriers which were based on solid lipid like solid lipid nanoparticles, nanostructured lipid carriers, lipid drug conjugates are discussed with their structural differences. Different production methods which are suitable for large scale production and applications of solid lipid nanoparticles are described. Appropriate analytical techniques for characterization of solid lipid nanoparticles like photon correlation spectroscopy, scanning electron microscopy, differential scanning calorimetry are highlighted. Aspects of solid lipid nanoparticles route of administration and their biodistribution are also incorporated. If appropriately investigated, solid lipid nanoparticles may open new vistas in therapy of complex diseases. PMID:20502539

  20. A simple method to ordered mesoporous carbons containing nickel nanoparticles

    SciTech Connect

    Dai, Sheng; Wang, Xiqing

    2009-01-01

    A series of ordered mesoporous carbons containing magnetic Ni nanoparticles (Ni-OMCs) with a variety of Ni loadings was made by a simple one-pot synthetic procedure through carbonization of phenolic resin-Pluronic block copolymer composites containing various amount of nickel nitrate. Such composite materials were characterized by N{sub 2} sorption, XRD, and STEM. Ni-OMCs exhibited high BET surface area, uniform pore size, and large pore volume without obvious pore blockage with a Ni loading as high as 15 wt%. Ni nanoparticles were crystalline with a face-center-cubic phase and observed mainly in the carbon matrix and on the outer surface as well. The average particle size of Ni nanoparticles was dependent on the preparation (carbonization) temperature and Ni loading; the higher the temperature was used and the more the Ni was incorporated, the larger the Ni nanoparticles were observed. One of the applications of Ni-OMCs was demonstrated as magnetically separable adsorbents.

  1. Magnetic Nanoparticles in Non-magnetic CNTs and Graphene

    NASA Astrophysics Data System (ADS)

    Kayondo, Moses; Seifu, Dereje

    Magnetic nanoparticles were embedded in non-magnetic CNTs and graphene matrix to incorporate all the advantages and the unique properties of CNTs and graphene. Composites of CNTs and graphene with magnetic nanoparticles may offer new opportunities for a wide variety of potential applications such as magnetic data storage, magnetic force microscopy tip, electromagnetic interference shields, thermally conductive films, reinforced polymer composites, transparent electrodes for displays, solar cells, gas sensors, magnetic nanofluids, and magnetically guided drug delivery systems. Magnetic nanoparticles coated CNTs can also be used as an electrode in lithium ion battery to replace graphite because of the higher theoretical capacity. Graphene nanocomposites, coated with magnetic sensitive nanoparticles, have demonstrated enhanced magnetic property. We would like to acknowledge support by NSF-MRI-DMR-1337339.

  2. Spiropyran-based Photochromic Polymer Nanoparticles with Optically Switchable Luminescence

    PubMed Central

    Zhu, Ming-Qiang; Zhu, Linyong; Han, Jason J.; Wuwei, Wu; Hurst, James K.; Li, Alexander D. Q.

    2008-01-01

    Emulsion polymerization yields 40–400 nm diameter polymer nanoparticles with spiropyran-merocyanine dyes incorporated into their hydrophobic cavities; in contrast to their virtually nonfluorescent character in most environments, the merocyanine forms of the encapsulated dyes are highly fluorescent. Spiro-mero photoisomerization is reversible, allowing the fluorescence to be switched “on” and “off” by alternating UV and visible light. Immobilizing the dye inside hydrophobic pockets of nanoparticles also improves its photostability, rendering it more resistant than the same dyes in solution to fatigue effects arising from photochemical switching. The photophysical characteristics of the encapsulated fluorophores differ dramatically from those of the same species in solution, making nanoparticle-protected hydrophobic fluorophores attractive materials for potential applications such as optical data storage and switching and biological fluorescent labeling. To evaluate the potential for biological tagging, these optically addressable nanoparticles have been delivered into living cells and imaged with a liquid nitrogen cooled CCD. PMID:16569006

  3. Measurement of Nanoparticle Magnetic Hyperthermia Using Fluorescent Microthermal Imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaowan; van Keuren, Edward

    Nanoparticle magnetic hyperthermia uses the application of an AC magnetic field to ferromagnetic nanoparticles to elevate the temperature of cancer cells. The principle of hyperthermia as a true cell-specific therapy is that tumor cells are more sensitive to high temperature, so it is of great importance to control the locality and magnitude of the temperature differences. One technique to measure temperature variations on microscopic length scales is fluorescent microthermal imaging (FMI). Since it is the local temperature that is measured in FMI, effects such as heating due to nearby field coils can be accounted for. A dye, the rare earth chelate europium thenoyltrifluoroacetonate (Eu:TTA), with a strong temperature-dependent fluorescence emission has been incorporated into magnetic nanoparticles dispersed in a polymer films. FMI experiments were carried out on these samples under an applied high frequency magnetic field. Preliminary results show that FMI is a promising technique for characterizing the local generation of heat in nanoparticle magnetic hyperthermia.

  4. Green processing of metal oxide core-shell nanoparticles as low-temperature dielectrics in organic thin-film transistors.

    PubMed

    Portilla, Luis; Etschel, Sebastian H; Tykwinski, Rik R; Halik, Marcus

    2015-10-21

    TiO2 , Fe3 O4, AlOx , ITO (indium tin oxide), and CeO2 nanoparticles are tailored to exhibit excellent dispersability in deionized water and alcohols. The latter provides an ecofriendly solution for processing metal oxide nanoparticles at a neutral pH. Water-processed dielectrics from the metal oxide nanoparticles are incorporated into organic thin-film transistors fabricated on rigid and flexible substrates. PMID:26308740

  5. Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds

    PubMed Central

    Stevenson, Louise M.; Dickson, Helen; Klanjscek, Tin; Keller, Arturo A.; McCauley, Edward; Nisbet, Roger M.

    2013-01-01

    The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles. PMID:24086348

  6. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  7. Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis.

    PubMed

    Peiris, Pubudu M; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P; Lee, Zhenghong; Karathanasis, Efstathios

    2015-08-01

    The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  8. Near infrared light responsive hybrid nanoparticles for synergistic therapy.

    PubMed

    Liang, Yan; Gao, Wenxia; Peng, Xinyu; Deng, Xin; Sun, Changzhen; Wu, Huayue; He, Bin

    2016-09-01

    A near infrared (NIR) light responsive chromophore 7-(diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one (DEACM) was synthesized and incorporated to β-cyclodextrins with cRGD functionalized poly(ethylene glycol), the amphiphiles were coordinated with Au nanorods or nanoparticles to load anticancer drug doxorubicin (DOX) for fabricating hybrid nanoparticles. The π-π stacking interaction between DEACM and DOX was formed in the hybrid nanoparticles, which contributed to the high drug loading content. The Au nanorods or nanoparticles enhanced the photosolvolysis of DEACM under the irradiation of NIR with 808 nm wavelength and triggered the accelerated drug release from the nanoparticles. The drug loaded hybrid nanoparticles with NIR irradiation exhibited efficient inhibition effect on the proliferation of 4T1 breast cancer cells in vitro. The in vivo anticancer activity study on breast cancer bearing mice revealed that the hybrid nanoparticles containing Au nanorods exhibited excellent anticancer activity under the irradiation of 808 nm wavelength NIR with 800 mW. PMID:27244691

  9. In vitro incorporation of LNA nucleotides.

    PubMed

    Veedu, Rakesh N; Vester, Birte; Wengel, Jesper

    2007-01-01

    An LNA modified nucleoside triphosphate 1 was synthesized in order to investigate its potential to act as substrate for DNA strand synthesis by polymerases. Primer extension assays for the incorporation experiments revealed that Phusion High Fidelity DNA polymerase is an efficient enzyme for incorporation of the LNA nucleotide and for extending strand to full length. It was also observed that pfu DNA polymerase could incorporate the LNA nucleotide but it failed to extend the strand to a full length product. PMID:18058567

  10. Photodynamic characterization and optimization using multifunctional nanoparticles for brain cancer treatment

    NASA Astrophysics Data System (ADS)

    Herrmann, Kristen; Lee Koo, Yong-Eun; Orringer, Daniel A.; Sagher, Oren; Philbert, Martin; Kopelman, Raoul

    2013-03-01

    Photosensitizer-conjugated polyacrylamide nanoparticles were prepared for in vivo characterization of the minimally invasive and localized treatment of photodynamic therapy (PDT) on brain tumors. By incorporating a variety of nanoparticle matrixes, choosing methylene blue as a photosensitizer, and targeting the nanoparticle by the use of F3 peptide we have made nanoparticle-based PDT improvements to current PDT efficiency. Quantitative growth patterns were determined through visual observation of the tumorigenic response to various treatments by the use of an animal cranial window model. PDT treatments with methylene blue-polyacrylamide (MB-PAA) nanoparticles produced significant adjournment of tumor growth over control groups, clearly demonstrating the advantages of nanoparticle-based PDT agents for the eradication of local tumors, leading to the potential palliation of the advancing disease.

  11. Nanoparticles and direct immunosuppression.

    PubMed

    Ngobili, Terrika A; Daniele, Michael A

    2016-05-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  12. Aptamer conjugated magnetic nanoparticles as nanosurgeons

    NASA Astrophysics Data System (ADS)

    Nair, Baiju G.; Nagaoka, Yutaka; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2010-11-01

    Magnetic nanoparticles have shown promise in the fields of targeted drug delivery, hyperthermia and magnetic resonance imaging (MRI) in cancer therapy. The ability of magnetic nanoparticles to undergo surface modification and the effect of external magnetic field in the dynamics of their movement make them an excellent nanoplatform for cancer destruction. Surgical removal of cancerous or unwanted cells selectively from the interior of an organ or tissue without any collateral damage is a serious problem due to the highly infiltrative nature of cancer. To address this problem in surgery, we have developed a nanosurgeon for the selective removal of target cells using aptamer conjugated magnetic nanoparticles controlled by an externally applied three-dimensional rotational magnetic field. With the help of the nanosurgeon, we were able to perform surgical actions on target cells in in vitro studies. LDH and intracellular calcium release assay confirmed the death of cancer cells due to the action of the nanosurgeon which in turn nullifies the possibility of proliferation by the removed cells. The nanosurgeon will be a useful tool in the medical field for selective surgery and cell manipulation studies. Additionally, this system could be upgraded for the selective removal of complex cancers from diverse tissues by incorporating various target specific ligands on magnetic nanoparticles.

  13. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  14. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  15. Nanoparticles for biomedical imaging

    PubMed Central

    Nune, Satish K; Gunda, Padmaja; Thallapally, Praveen K; Lin, Ying-Ying; Forrest, M Laird; Berkland, Cory J

    2011-01-01

    Background Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. PMID:19743894

  16. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Gu, Jinlou; Fan, Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-04-01

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.

  17. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation.

    PubMed

    Lu, Guang; Li, Shaozhou; Guo, Zhen; Farha, Omar K; Hauser, Brad G; Qi, Xiaoying; Wang, Yi; Wang, Xin; Han, Sanyang; Liu, Xiaogang; DuChene, Joseph S; Zhang, Hua; Zhang, Qichun; Chen, Xiaodong; Ma, Jan; Loo, Say Chye Joachim; Wei, Wei D; Yang, Yanhui; Hupp, Joseph T; Huo, Fengwei

    2012-04-01

    Microporous metal-organic frameworks (MOFs) that display permanent porosity show great promise for a myriad of purposes. The potential applications of MOFs can be developed further and extended by encapsulating various functional species (for example, nanoparticles) within the frameworks. However, despite increasing numbers of reports of nanoparticle/MOF composites, simultaneously to control the size, composition, dispersed nature, spatial distribution and confinement of the incorporated nanoparticles within MOF matrices remains a significant challenge. Here, we report a controlled encapsulation strategy that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8). The incorporated nanoparticles are well dispersed and fully confined within the ZIF-8 crystals. This strategy also allows the controlled incorporation of multiple nanoparticles within each ZIF-8 crystallite. The as-prepared nanoparticle/ZIF-8 composites exhibit active (catalytic, magnetic and optical) properties that derive from the nanoparticles as well as molecular sieving and orientation effects that originate from the framework material. PMID:22437717

  18. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    SciTech Connect

    Gu Jinlou; Fan Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-04-15

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15. - Graphical abstract: A facile and novel strategy has been developed to incorporate gold nanoparticles into the pore channels of mesoporous SBA-15 assisted by microwave radiation (MR) with mild reaction condition and rapid reaction speed. Due to the rapid and homogeneous nucleation, simultaneous propagation and termination by MR, the size of gold nanoparticles are effectively controlled.

  19. Constraints on Noun Incorporation in Korean.

    ERIC Educational Resources Information Center

    Khym, Hangyoo

    1997-01-01

    A study of the noun incorporation phenomenon in Korean suggests that noun incorporation occurs at D-structure and obeys the Head Movement Constraint syntactically, and the Theme-Only Constraint semantically. First, the structure of "sunrise"-type words is identified, showing that before derivation through nominalization of the affix "-i,"…

  20. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Incorporated materials. 572.30 Section 572.30 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Hybrid III Test Dummy § 572.30 Incorporated materials. (a)...

  1. 49 CFR 572.40 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.40 Section 572.40... Percentile Male § 572.40 Incorporated materials. (a) The drawings, specifications, manual, and computer... by reference. These materials are thereby made part of this regulation. The Director of the...

  2. 49 CFR 572.180 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR part 51. Copies of the materials may be inspected at the Department of Transportation, Docket... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.180 Section 572.180... Dummy, 50th Percentile Adult Male § 572.180 Incorporated materials. (a) The following materials...

  3. 10 CFR 218.31 - Incorporated procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Incorporated procedures. 218.31 Section 218.31 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Procedures § 218.31 Incorporated procedures. The following subparts of part 205 of this chapter are, as appropriate, hereby made applicable...

  4. 49 CFR 572.180 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR part 51. Copies of the materials may be inspected at the Department of Transportation, Docket... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.180 Section 572.180... Dummy, 50th Percentile Adult Male § 572.180 Incorporated materials. (a) The following materials...

  5. 49 CFR 572.40 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.40 Section 572.40... Percentile Male § 572.40 Incorporated materials. (a) The drawings, specifications, manual, and computer... by reference. These materials are thereby made part of this regulation. The Director of the...

  6. 49 CFR 572.40 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.40 Section 572.40... Percentile Male § 572.40 Incorporated materials. (a) The drawings, specifications, manual, and computer... by reference. These materials are thereby made part of this regulation. The Director of the...

  7. 77 FR 16761 - Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    .... We published an announcement of the petition and a request for comments on February 27, 2012. 77 FR...; ] OFFICE OF THE FEDERAL REGISTER 1 CFR Part 51 Incorporation by Reference AGENCY: Office of the Federal... regulations governing the approval of agency requests to incorporate material by reference into the Code...

  8. Incorporating Sociology into Community Service Classes

    ERIC Educational Resources Information Center

    Hochschild, Thomas R., Jr.; Farley, Matthew; Chee, Vanessa

    2014-01-01

    Sociologists and instructors who teach about community service share an affinity for understanding and addressing social problems. While many studies have demonstrated the benefits of incorporating community service into sociology courses, we examine the benefits of incorporating sociological content into community service classes. The authors…

  9. 49 CFR 572.190 - Incorporated materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) SAE J1733 of 1994-12, “Sign Convention for Vehicle Crash Testing.” (b) The Director of the Federal Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part... Impact Crash Test Dummy, July 1, 2008,” incorporated by reference in § 572.191; (4) SAE...

  10. 49 CFR 572.190 - Incorporated materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) SAE J1733 of 1994-12, “Sign Convention for Vehicle Crash Testing.” (b) The Director of the Federal Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part... Impact Crash Test Dummy, July 1, 2008,” incorporated by reference in § 572.191; (4) SAE...

  11. 49 CFR 572.40 - Incorporated materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Incorporated materials. 572.40 Section 572.40... Percentile Male § 572.40 Incorporated materials. (a) The drawings, specifications, manual, and computer... by reference. These materials are thereby made part of this regulation. The Director of the...

  12. Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances

    SciTech Connect

    Dev, A.; Richters, J. P.; Gutowski, J.; Voss, T.; Sartor, J.; Kalt, H.

    2011-03-28

    We investigated the photoluminescence properties of ZnO nanowires coated with Au, Ag, and Pt nanoparticles deposited by dc sputtering. A strong enhancement of the near-band-edge emission was observed in all metal-coated samples but also if the samples were treated with Ar plasma without any nanoparticle deposition. High-resolution photoluminescence spectroscopy revealed hydrogen-donor-bound-exciton emission in all samples indicating unintentional hydrogen incorporation. A shorter decay time of the near-band-edge emission was observed in all cases. The results indicate that unintentional hydrogen incorporation plays a dominant role when metal deposition is performed by sputtering.

  13. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties

    PubMed Central

    Jiao, Yucong; Han, Dandan; Ding, Yi; Zhang, Xianfeng; Guo, Guannan; Hu, Jianhua; Yang, Dong; Dong, Angang

    2015-01-01

    Three-dimensional superlattices consisting of nanoparticles represent a new class of condensed materials with collective properties arising from coupling interactions between close-packed nanoparticles. Despite recent advances in self-assembly of nanoparticle superlattices, the constituent materials have been limited to those that are attainable as monodisperse nanoparticles. In addition, self-assembled nanoparticle superlattices are generally weakly coupled due to the surface-coating ligands. Here we report the fabrication of three-dimensionally interconnected nanoparticle superlattices with face-centered cubic symmetry without the presynthesis of the constituent nanoparticles. We show that mesoporous carbon frameworks derived from self-assembled supercrystals can be used as a robust matrix for the growth of nanoparticle superlattices with diverse compositions. The resulting interconnected nanoparticle superlattices embedded in a carbon matrix are particularly suitable for energy storage applications. We demonstrate this by incorporating tin oxide nanoparticle superlattices as anode materials for lithium-ion batteries, and the resulting electrochemical performance is attributable to their unique architectures. PMID:25739732

  14. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles

    PubMed Central

    Neeves, Keith B.; Sawyer, Andrew J.; Foley, Conor P.; Saltzman, W. Mark; Olbricht, William L.

    2007-01-01

    This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 50% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration. PMID:17920047

  15. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. PMID:25173605

  16. UEA I-bearing nanoparticles for brain delivery following intranasal administration.

    PubMed

    Gao, Xiaoling; Chen, Jun; Tao, Weixing; Zhu, Jianhua; Zhang, Qizhi; Chen, Hongzhuan; Jiang, Xinguo

    2007-08-01

    Surface engineering of nanoparticles with lectins opened a novel pathway to improve the brain uptake of agents loaded by biodegradable PEG-PLA nanoparticles following intranasal administration. Ulex europeus agglutinin I (UEA I), specifically binding to l-fucose, which is largely located in the olfactory epithelium, was selected as a promising targeting ligand and conjugated onto the PEG-PLA nanoparticles surface with an optimized protocol relying on maleimide-mediated covalent binding technique. The in vivo results in rats suggested that UEA I modification at the nanoparticles surface facilitated the absorption of a fluorescent marker--6-coumarin associated with the nanoparticles into the brain following intranasal administration with significant increase in the area under the concentration-time curve (about 1.7 times) in different brain tissues compared with that of coumarin incorporated in the unmodified ones. UEA I-conjugation also elevated the brain-targeting efficiency of nanoparticles. Inhibition experiment of specific sugar suggested that the interactions between the nasal mucosa and the lectinised nanoparticles were due to the immobilization of carbohydrate-binding pockets on the surface of the nanoparticles. Distribution profiles of UEA I-modified nanoparticles indicated their higher affinity to the olfactory mucosa than to the respiratory one. Therefore, the UEA I-modified nanoparticles might serve as potential carriers for brain drug delivery, especially for mental therapeutics with multiple biological effects. PMID:17499948

  17. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.

    PubMed

    Jiao, Yucong; Han, Dandan; Ding, Yi; Zhang, Xianfeng; Guo, Guannan; Hu, Jianhua; Yang, Dong; Dong, Angang

    2015-01-01

    Three-dimensional superlattices consisting of nanoparticles represent a new class of condensed materials with collective properties arising from coupling interactions between close-packed nanoparticles. Despite recent advances in self-assembly of nanoparticle superlattices, the constituent materials have been limited to those that are attainable as monodisperse nanoparticles. In addition, self-assembled nanoparticle superlattices are generally weakly coupled due to the surface-coating ligands. Here we report the fabrication of three-dimensionally interconnected nanoparticle superlattices with face-centered cubic symmetry without the presynthesis of the constituent nanoparticles. We show that mesoporous carbon frameworks derived from self-assembled supercrystals can be used as a robust matrix for the growth of nanoparticle superlattices with diverse compositions. The resulting interconnected nanoparticle superlattices embedded in a carbon matrix are particularly suitable for energy storage applications. We demonstrate this by incorporating tin oxide nanoparticle superlattices as anode materials for lithium-ion batteries, and the resulting electrochemical performance is attributable to their unique architectures. PMID:25739732

  18. Latex nanoparticles for multimodal imaging and detection in vivo

    NASA Astrophysics Data System (ADS)

    Cartier, R.; Kaufner, L.; Paulke, B. R.; Wüstneck, R.; Pietschmann, S.; Michel, R.; Bruhn, H.; Pison, U.

    2007-05-01

    The aim of the present work was to develop a multimodal imaging and detection approach to study the behaviour of nanoparticles in animal studies. Highly carboxylated 144 nm-sized latex nanoparticles were labelled with 68Ga for positron emission tomography, 111In for quantitative gamma scintigraphy or Gd3+ for magnetic resonance imaging. Following intravenous injection into rats, precise localization was achieved revealing the tracer in the blood compartment with a time-dependent accumulation in the liver. In addition, rhodamine B was also incorporated to examine specific interactions with blood cells. Flow cytometry and fluorescent microscopy show uptake of nanoparticles by leucocytes and, unexpectedly, thrombocytes, but not erythrocytes. Cellular internalization was an active and selective process. Further incorporation of polyethylene glycol into the nanoparticle corona could prevent uptake by thrombocytes but not macrophages or monocytes. Our data demonstrate the feasibility of a multimodal approach and its usefulness to analyse the fate of nanoparticles at the macroscopic and cellular level. It will facilitate the development of functionalized nanocarrier systems and extend their biomedical applications.

  19. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  20. Dispersion of TiO₂ nanoparticle agglomerates by Pseudomonas aeruginosa.

    PubMed

    Horst, Allison M; Neal, Andrea C; Mielke, Randall E; Sislian, Patrick R; Suh, Won Hyuk; Mädler, Lutz; Stucky, Galen D; Holden, Patricia A

    2010-11-01

    Engineered nanoparticles are increasingly incorporated into consumer products and are emerging as potential environmental contaminants. Upon environmental release, nanoparticles could inhibit bacterial processes, as evidenced by laboratory studies. Less is known regarding bacterial alteration of nanoparticles, including whether bacteria affect physical agglomeration states controlling nanoparticle settling and bioavailability. Here, the effects of an environmental strain of Pseudomonas aeruginosa on TiO₂ nanoparticle agglomerates formed in aqueous media are described. Environmental scanning electron microscopy and cryogenic scanning electron microscopy visually demonstrated bacterial dispersion of large agglomerates formed in cell culture medium and in marsh water. For experiments in cell culture medium, quantitative image analysis verified that the degrees of conversion of large agglomerates into small nanoparticle-cell combinations were similar for 12-h-growth and short-term cell contact experiments. Dispersion in cell growth medium was further characterized by size fractionation: for agglomerated TiO₂ suspensions in the absence of cells, 81% by mass was retained on a 5-μm-pore-size filter, compared to only 24% retained for biotic treatments. Filtrate cell and agglomerate sizes were characterized by dynamic light scattering, revealing that the average bacterial cell size increased from 1.4 μm to 1.9 μm because of nano-TiO₂ biosorption. High-magnification scanning electron micrographs showed that P. aeruginosa dispersed TiO₂ agglomerates by preferential biosorption of nanoparticles onto cell surfaces. These results suggest a novel role for bacteria in the environmental transport of engineered nanoparticles, i.e., growth-independent, bacterially mediated size and mass alterations of TiO₂ nanoparticle agglomerates. PMID:20851981

  1. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    PubMed

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties. PMID:27174622

  2. Biocompatible nanoparticles and biopolyelectrolytes

    NASA Astrophysics Data System (ADS)

    Zribi, Olena

    The research presented in this manuscript encompasses a merger of two research directions: a study of aqueous nanoparticle colloids and a study of biological polyelectrolytes. The majority of biomedical applications of nanoparticles require stable aqueous colloids of nanoparticles as a starting point. A new one-step method of preparation of aqueous solutions of ultra-fine ferroelectric barium titanate nanoparticles was developed and generalized to the preparation of stable aqueous colloids of semiconductor nanoparticles. This high-energy ball milling technique is low cost, environmentally friendly, and allows for control of nanoparticle size by changing milling time. Aqueous colloids of BaTiO3 nanoparticles are stable over time, maintain ferroelectricity and can be used as second harmonic generating nanoprobes for biomedical imaging. Biopolyelectrolytes exhibit a variety of novel liquid-crystalline phases in aqueous solutions where their electrolytic nature is a driving force behind phase formation. We study medically relevant mixtures of F-actin, DNA and oppositely charged ions (such as multivalent salts and antibiotic drugs) and map out phase diagrams and laws that govern phase transitions. We combine these research directions in studies of the condensation behavior in aqueous solutions of biocompatible nanoparticles and biopolyelectrolytes.

  3. Nanoparticle Oscillations and Fronts

    SciTech Connect

    Lagzi, Istvan; Kowalczyk, Bartlomiej; Wang, Dawei; Grzybowski, Bartosz A.

    2010-09-30

    Chemical oscillations can be coupled to the dynamic self-assembly of nanoparticles. Periodic pH changes translate into protonation and deprotonation of the ligands that stabilize the nanoparticles, thus altering repulsive and attractive interparticle forces. In a continuous stirred-tank reactor, rhythmic aggregation and dispersion is observed; in spatially distributed media, propagation of particle aggregation fronts is seen.

  4. Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Magnin, Y.; Zappelli, A.; Amara, H.; Ducastelle, F.; Bichara, C.

    2015-11-01

    The carbon rich phase diagrams of nickel-carbon nanoparticles, relevant to catalysis and catalytic chemical vapor deposition synthesis of carbon nanotubes, are calculated for system sizes up to about 3 nm (807 Ni atoms). A tight binding model for interatomic interactions drives the grand canonical Monte Carlo simulations used to locate solid, core shell and liquid stability domains, as a function of size, temperature, and carbon chemical potential or concentration. Melting is favored by carbon incorporation from the nanoparticle surface, resulting in a strong relative lowering of the eutectic temperature and a phase diagram topology different from the bulk one. This should lead to a better understanding of the nanotube growth mechanisms.

  5. Single nanoparticle plasmonic sensors.

    PubMed

    Sriram, Manish; Zong, Kelly; Vivekchand, S R C; Gooding, J Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  6. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  7. Targeting intracellular compartments by magnetic polymeric nanoparticles.

    PubMed

    Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

    2013-09-27

    Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 μg/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells. PMID:23603023

  8. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  9. A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Freitas, Jilian N.; Gonçalves, Agnaldo S.; Nogueira, Ana F.

    2014-05-01

    In this review the use of solution-processed chalcogenide quantum dots (CdS, CdSe, PbS, etc.) in hybrid organic-inorganic solar cells is explored. Such devices are known as potential candidates for low-cost and efficient solar energy conversion, and compose the so-called third generation solar cells. The incorporation of oxides and metal nanoparticles has also been successfully achieved in this new class of photovoltaic devices; however, we choose to explore here chalcogenide quantum dots in light of their particularly attractive optical and electronic properties. We address herein a comprehensive review of the historical background and state-of-the-art comprising the incorporation of such nanoparticles in polymer matrices. Later strategies for surface chemistry manipulation, in situ synthesis of nanoparticles, use of continuous 3D nanoparticles network (aerogels) and ternary systems are also reviewed.

  10. Understanding the physics of magnetic nanoparticles and their applications in the biomedical field

    NASA Astrophysics Data System (ADS)

    Laha, Suvra Santa

    The study of magnetic nanoparticles is of great interest because of their potential uses in magnetic-recording, medical diagnostic and therapeutic applications. Additionally, they also offer an opportunity to understand the physics underlying the complex behavior exhibited by these materials. Two of the most important relaxation phenomena occurring in magnetic nanoparticles are superparamagnetic blocking and spin-glass-like freezing. In addition to features attributed to superparamagnetism, these nanoparticles can also exhibit magnetic relaxation effects at very low temperatures (≤ 50 K). Our studies suggest that all structural defects, and not just surface spins, are responsible for the low-temperature glass-like relaxation observed in many magnetic nanoparticles. The characteristic dipolar interaction energy existing in an ensemble of magnetic nanoparticles does not apparently depend on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution. Our findings revealed that incorporating a small percentage of boron can stabilize the spinel structure in Mn 3O4 nanoparticles. We have also demonstrated that the dipolar interactions between the magnetic cores can be tuned by introducing non-magnetic nanoparticles. In particular, we studied the magnetic properties of Gd-doped Fe3O4 nanoparticles, a potential applicant for T1--T2 dual-modal MRI contrast agent. We have explored the interactions of BiFeO3 nanoparticles on live cells and the binding of FITC-conjugated Fe3O 4 nanoparticles with artificial lipid membranes to investigate these materials as candidates in medical imaging. Taken together, these studies have advanced our understanding of the fundamental physical principles that governs magnetism in magnetic materials with a focus on developing these nanoparticles for advanced biomedical applications. The materials developed and studied expand the repertoire of tools available for

  11. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis

    PubMed Central

    Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.

    2008-01-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters (~40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio β-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370

  12. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, Fatemeh; Ansari, Reza; Darvizeh, Mansour

    2015-12-01

    This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

  13. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    SciTech Connect

    Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao; Miller, Lisa M.; Gross, Richard A.

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  14. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  15. Active curcumin nanoparticles formed from a volatile microemulsion template.

    PubMed

    Margulis, K; Srinivasan, S; Ware, M J; Summers, H D; Godin, B; Magdassi, S

    2014-01-01

    We report on biological performance of organic nanoparticles formed by a simple method based on rapid solvent removal from a volatile microemulsion. The particular focus of the study was on testing the suitability of the method for substances soluble in partially water-miscible organic solvents as well as on evaluating the therapeutic activity of the resultant nanoparticles. Curcumin was employed as a model for hydrophobic drug, and, as it is soluble in water-miscible organic solvents, it was successfully incorporated into a new cyclopentanone-water microemulsion system. During rapid solvent removal by spray-drying, the nanometric droplets of the microemulsion were converted into nanoparticles containing amorphous curcumin with the average size of 20.2±3.4 nm, having ζ potential of -36.2 ±1.8 mV. These nanoparticles were dispersible in water and retained the high loading of the active substance. The therapeutic activity of the resulting nanoparticles was demonstrated in a pancreatic cancer cell line Panc-1. The effective concentration for reducing the metabolic activity was found to be 11.5 μM for nanoparticles compared with 19.5 μM for free curcumin. PMID:25485110

  16. Characterisation of copper oxide nanoparticles for antimicrobial applications.

    PubMed

    Ren, Guogang; Hu, Dawei; Cheng, Eileen W C; Vargas-Reus, Miguel A; Reip, Paul; Allaker, Robert P

    2009-06-01

    Copper oxide (CuO) nanoparticles were characterised and investigated with respect to potential antimicrobial applications. It was found that nanoscaled CuO, generated by thermal plasma technology, contains traces of pure Cu and Cu2O nanoparticles. Transmission electron microscopy (TEM) demonstrated particle sizes in the range 20-95 nm. TEM energy dispersive spectroscopy gave the ratio of copper to oxygen elements as 54.18% to 45.26%. The mean surface area was determined as 15.69 m(2)/g by Brunau-Emmet-Teller (BET) analysis. CuO nanoparticles in suspension showed activity against a range of bacterial pathogens, including meticillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli, with minimum bactericidal concentrations (MBCs) ranging from 100 microg/mL to 5000 microg/mL. The ability of CuO nanoparticles to reduce bacterial populations to zero was enhanced in the presence of sub-MBC concentrations of silver nanoparticles. Studies of CuO nanoparticles incorporated into polymers suggest release of ions may be required for optimum killing. PMID:19195845

  17. Applications and toxicity of silver nanoparticles: a recent review.

    PubMed

    Marin, Stefania; Vlasceanu, George Mihail; Tiplea, Roxana Elena; Bucur, Ioana Raluca; Lemnaru, Madalina; Marin, Maria Minodora; Grumezescu, Alexandru Mihai

    2015-01-01

    Silver nanoparticles (AgNPs) exhibit a consistent amount of flexible properties which endorse them for a larger spectrum of applications in biomedicine and related fields. Over the years, silver nanoparticles have been subjected to numerous in vitro and in vivo tests to provide information about their toxic behavior towards living tissues and organisms. Researchers showed that AgNPs have high antimicrobial efficacy against many bacteria species including Escherichia coli, Neisseria gonorrhea, Chlamydia trachomatis and also viruses. Due to their novel properties, the incorporation of silver nanoparticles into different materials like textile fibers and wound dressings can extend their utility on the biomedical field while inhibiting infections and biofilm development. Among the noble metal nanoparticles, AgNPs present a series of features like simple synthesis routes, adequate and tunable morphology, and high surface to volume ratio, intracellular delivery system, a large plasmon field area recommending them as ideal biosensors, catalysts or photo-controlled delivery systems. In bioengineering, silver nanoparticles are considered potentially ideal gene delivery systems for tissue regeneration. The remote triggered detection and release of bioactive compounds of silver nanoparticles has proved their relevance also in forensic sciences. The authors report an up to date review related to the toxicity of AgNPs and their applications in antimicrobial activity and biosensors for gene therapy. PMID:25877089

  18. Magnetite-Alginate-AOT nanoparticles based drug delivery platform

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Sudakar, C.; Dixit, A.; Naik, R.; Lawes, G.; Toti, U.; Panyam, J.; Vaishnava, P. P.

    2008-03-01

    Iron oxide having the magnetite structure is a widely used biomaterial, having applications ranging from cell separation and drug delivery to hyperthermia. In order to increase the efficacy of drug treatments, magnetite nanoparticles can be incorporated into a composite system with a surfactant-polymer nanoparticle, which can act as a platform for sustained and enhanced cellular delivery of water-soluble molecules. Here we report a composite formulation based on magnetite and Alginate-aerosol OT (AOT) nanoparticles formulated using an emulsion-cross-linking process loaded with Rhodamine 6G [1]. We prepared two set of nanoparticles by using Ca^2+ or Fe^2+ to cross-link the alginate polymer. Additionally, we added ˜8 nm diameter Fe3O4 magnetic nanoparticles prepared by a soft chemical method to these alginate-AOT nanoparticles. The resulting composites were superparamagnetic at room temperature, with a saturation magnetization of approximately 0.006 emu/g of solution. We will present detailed studies on the structural and magnetic properties of these samples. We will also discuss HPLC measurements on Rhodamine uploading in these composites. [1] M.D.Chavanpatil, Pharmaceutical Research, vol.24, (2007) 803.

  19. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.

    PubMed

    Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V

    2008-03-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370

  20. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. PMID:22027546

  1. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the materials may be obtained from Rowley-Scher... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth...

  2. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the materials may be obtained from Rowley-Scher... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth...

  3. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the materials may be obtained from Rowley-Scher... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth...

  4. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the materials may be obtained from Rowley-Scher... 49 Transportation 7 2014-10-01 2014-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth...

  5. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the materials may be obtained from Rowley-Scher... 49 Transportation 7 2012-10-01 2012-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth...

  6. Direct Electrochemistry of Cytochrome bo Oxidase at a series of Gold Nanoparticles-Modified Electrodes.

    PubMed

    Melin, Frederic; Meyer, Thomas; Lankiang, Styven; Choi, Sylvia K; Gennis, Robert B; Blanck, Christian; Schmutz, Marc; Hellwig, Petra

    2013-01-01

    New membrane-protein based electrodes were prepared incorporating cytochrome bo(3) from E. coli and gold nanoparticles. Direct electron transfer between the electrode and the immobilized enzymes was achieved, resulting in an electrocatalytic activity in presence of O(2). The size of the gold nanoparticles was shown to be important and smaller particles were shown to reduce the overpotential of the process. PMID:23335854

  7. Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics.

    PubMed

    Nguyen, Kim Truc; Zhao, Yanli

    2015-12-15

    Together with the simultaneous development of nanomaterials and molecular biology, the bionano interface brings about various applications of hybrid nanoparticles in nanomedicine. The hybrid nanoparticles not only present properties of the individual components but also show synergistic effects for specialized applications. Thus, the development of advanced hybrid nanoparticles for targeted and on-demand diagnostics and therapeutics of diseases has rapidly become a hot research topic in nanomedicine. The research focus is to fabricate novel classes of programmable hybrid nanoparticles that are precisely engineered to maximize drug concentrations in diseased cells, leading to enhanced efficacy and reduced side effects of chemotherapy for the disease treatment. In particular, the hybrid nanoparticle platforms can simultaneously target diseased cells, enable the location to be imaged by optical methods, and release therapeutic drugs to the diseased cells by command. This Account specially discusses the rational fabrication of integrated hybrid nanoparticles and their applications in diagnostics and therapeutics. For diagnostics applications, hybrid nanoparticles can be utilized as imaging agents that enable detailed visualization at the molecular level. By the use of suitable targeting ligands incorporated on the nanoparticles, targeted optical imaging may be feasible with improved performance. Novel imaging techniques such as multiphoton excitation and photoacoustic imaging using near-infrared light have been developed using the intrinsic properties of particular nanoparticles. The use of longer-wavelength excitation sources allows deeper penetration into the human body for disease diagnostics and at the same time reduces the adverse effects on normal tissues. Furthermore, multimodal imaging techniques have been achieved by combining several types of components in nanoparticles, offering higher accuracy and better spatial views, with the aim of detecting life

  8. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics

    PubMed Central

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-01-01

    A novel particulate delivery matrix based on ionically crosslinked casein (CAS) nanoparticles was developed for controlled release of the poorly soluble anticancer drug flutamide (FLT). Nanoparticles were fabricated via oil-in-water emulsification then stabilized by ionic crosslinking of the positively charged CAS molecules below their isoelectric point, with the polyanionic crosslinker sodium tripolyphosphate. With the optimal preparation conditions, the drug loading and incorporation efficiency achieved were 8.73% and 64.55%, respectively. The nanoparticles exhibited a spherical shape with a size below 100 nm and a positive zeta potential (+7.54 to +17.3 mV). FLT was molecularly dispersed inside the nanoparticle protein matrix, as revealed by thermal analysis. The biodegradability of CAS nanoparticles in trypsin solution could be easily modulated by varying the sodium tripolyphosphate crosslinking density. A sustained release of FLT from CAS nanoparticles for up to 4 days was observed, depending on the crosslinking density. After intravenous administration of FLT-CAS nanoparticles into rats, CAS nanoparticles exhibited a longer circulation time and a markedly delayed blood clearance of FLT, with the half-life of FLT extended from 0.88 hours to 14.64 hours, compared with drug cosolvent. The results offer a promising method for tailoring biodegradable, drug-loaded CAS nanoparticles as controlled, long-circulating drug delivery systems of hydrophobic anticancer drugs in aqueous vehicles. PMID:23658490

  9. Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Jensen, Lasse

    2016-07-01

    The plasmonic properties of metallic nanoparticles typically depend strongly on their shapes and local environment. However, not much is known about the shape effects on the plasmonic response in small metallic nanoparticles when quantum size effects become important. In this work, we use atomistic electrodynamics models incorporated with quantum size effects to study the optical properties of both bare and ligand coated Ag nanoparticles in different shapes. Using classical electrodynamics, we find that the plasmonic response of bare metallic nanoparticles depends strongly on the morphology of the nanoparticles due to the presence of higher-order plasmon modes. By including quantum size effects in the simulations, we find a significant blue-shift of the dipole plasmon as well as the smearing-out of the multipole plasmon modes, and both lead to a weak shape dependence. The ligand effects on the nanoparticles cause a significant red-shift of the plasmon resonance arising from the reduction of the conductivity of the Ag atoms where the ligands bind. In contrast to the bare nanoparticles, we find several higher-order plasmon modes in the ligand coated nanoparticles, that are likely caused by the weak electron spill-out effect and the symmetry breaking at the surface in the presence of the ligands. Furthermore, we show that the ligand layer strongly modify the near-field distribution due to the screening of the ligands. This work highlights the importance of quantum size and ligand effects on the optical properties of small metallic nanoparticles.

  10. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  11. NIR fluorescent silica nanoparticles as reporting labels in bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sydney

    2015-03-01

    The use of the NIR spectral region (650-900 nm) for bioanalytical and biomedical analyses is advantageous due to the inherently lower background interference in biological matrices and the high molar absorptivities of NIR chromophores. There are several different groups of NIR fluorescing dye are available for bioanalytical applications. One of these groups, NIR carbocyanines are increasingly used in analytical, bioanalytical and medical applications. These dyes can be used as reporter labels for sensitive bioanalytical use, such as immunochemistry. Due to the spectroscopic sensitivity of NIR carbocyanines for polarity changes in the microenvironment fluorescence quantum yield can vary significantly dependent on the microenvironment. NIR dyes can have relatively low fluorescent quantum yields as compared to visible fluorophores, especially in aqueous buffers but the lower quantum yield is compensated for by a much higher molar absorptivity. The fluorescence intensity of NIR reporting labels can significantly be increased by enclosing several dye molecules in silica nanoparticles. Incorporation of NIR dyes in silica nanoparticles creates a unique challenge as these dyes can be unstable under certain chemical conditions present during silica nanoparticles syntheses. In addition, self quenching may also become a problem for carbocyanines at higher a concentrations that typically found inside of NIR dye loaded silica nanoparticles. Dyes possessing high Stokes' shift can significantly reduce this problem. NIR carbocyanines are uniquely positioned for achieving this goal using a synthetic route that substitutes meso position halogens in NIR fluorescent carbocyanines with a linker containing amino moiety, which can also serve as a linker for covalently attaching the dye molecule to the nanoparticle backbone. The resulting silica nanoparticles can contain a large number of NIR dyes dependent on their size. For example some NIR fluorescent silica nanoparticle labels

  12. The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins.

    PubMed

    Rezvani, Mohammad Bagher; Atai, Mohammad; Hamze, Faeze; Hajrezai, Reihane

    2016-01-01

    Background. Nanotechnology has introduced many nanoparticles in recent years, which can be incorporated for mechanical improvement of dental materials. However, the existing data are widely sparse. This study investigated the reinforcing effect of silica nanoparticles when incorporated into the matrix phase of an experimental dental fiber-reinforced compositeresin (FRC) through evaluation of its flexural properties. Methods. In this experimental study FRC samples were divided into two main groups (containing two or three bundles),either of whic consisted of five subgroups with 0, 0.2, 0.5, 2 and 5 wt% of silica nanoparticles in the matrix resin (n=10 in each subgroup); a commercial FRC (Angelus, Brazil) was used as the control group (n=10). Three-point bending test was performed to evaluate the flexural strength and modulus. Thereafter, the microstructure of the fractured samples was evalu-ated using scanning electron microscopy (SEM). The results were analyzed with one-way ANOVA and HSD Tukey tests (α = 0.05). Results. The results revealed that the silica nanoparticles had a significant and positive effect on the flexural strength and modulus of FRCs (P<0.05), with no significant differences from 0.2 to 5 wt% of nanoparticles (P > 0.05) in either group with two or three bundles of fibers. Conclusion. Incorporating silica nanoparticles into the FRC resin phase resulted in improved flexural strength and modulus of the final product. PMID:27429728

  13. The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins

    PubMed Central

    Rezvani, Mohammad Bagher; Atai, Mohammad; Hamze, Faeze; Hajrezai, Reihane

    2016-01-01

    Background. Nanotechnology has introduced many nanoparticles in recent years, which can be incorporated for mechanical improvement of dental materials. However, the existing data are widely sparse. This study investigated the reinforcing effect of silica nanoparticles when incorporated into the matrix phase of an experimental dental fiber-reinforced compositeresin (FRC) through evaluation of its flexural properties. Methods. In this experimental study FRC samples were divided into two main groups (containing two or three bundles),either of whic consisted of five subgroups with 0, 0.2, 0.5, 2 and 5 wt% of silica nanoparticles in the matrix resin (n=10 in each subgroup); a commercial FRC (Angelus, Brazil) was used as the control group (n=10). Three-point bending test was performed to evaluate the flexural strength and modulus. Thereafter, the microstructure of the fractured samples was evalu-ated using scanning electron microscopy (SEM). The results were analyzed with one-way ANOVA and HSD Tukey tests (α = 0.05). Results. The results revealed that the silica nanoparticles had a significant and positive effect on the flexural strength and modulus of FRCs (P<0.05), with no significant differences from 0.2 to 5 wt% of nanoparticles (P > 0.05) in either group with two or three bundles of fibers. Conclusion. Incorporating silica nanoparticles into the FRC resin phase resulted in improved flexural strength and modulus of the final product. PMID:27429728

  14. Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses.

    PubMed

    Poecheim, Johanna; Barnier-Quer, Christophe; Collin, Nicolas; Borchard, Gerrit

    2016-01-01

    The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP. PMID:27626449

  15. Thermoelectric Properties of Carbon nanohybrids Incorporated Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wang, Shiren

    2015-03-01

    In this work, non-covalently functionalized graphene with fluorinated fullerene (F-C60) by π- π stacking was integrated into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). F-C60 as a p-type organic semiconductor with deep highest occupied molecular orbital (HOMO) level modulates the band structure of reduced graphene oxide (rGO). Altering HOMO levels of rGO has been achieved by changing the ratio between rGO and F-C60. Incorporating of rGO/F-C60 nanohybrids into highly conductivity metallic PEDOT:PSS formed Schottky barrier to selectively scatter low-energy carriers. Enhanced thermoelectric power factor of rGO/F-C60/PEDOT:PSS nanocomposites were observed with the optimized power factor of 83.2 μW/m.K2, which is 19 times of that of the highly conductive PEDOT:PSS. Additionally, the F-C60 nanoparticles on rGO surfaces hinder thermal transport by phonon scattering, resulting in the synergistic effect on enhancing thermoelectric properties. As a result, a figure of merit (ZT) of 0.10 was achieved. NSF

  16. Water-soluble Pd nanoparticles capped with glutathione: synthesis, characterization, and magnetic properties.

    PubMed

    Sharma, Sachil; Kim, Bit; Lee, Dongil

    2012-11-13

    The synthesis, characterization, and magnetic properties of water-soluble Pd nanoparticles capped with glutathione are described. The glutathione-capped Pd nanoparticles were synthesized under argon and air atmospheres at room temperature. Whereas the former exhibits a bulklike lattice parameter, the lattice parameter of the latter is found to be considerably greater, indicating anomalous lattice expansion. Comparative structural and compositional studies of these nanoparticles suggest the presence of oxygen in the core lattice when Pd nanoparticles are prepared under an air atmosphere. Both Pd nanoparticles prepared under argon and air show ferromagnetism at 5 K, but the latter exhibits significantly greater coercivity (88 Oe) and magnetization (0.09 emu/g at 50 kOe). The enhanced ferromagnetic properties are explained by the electronic effect of the incorporated oxygen that increases the 4d density of holes at the Pd site and localizes magnetic moments. PMID:23092154

  17. Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry.

    PubMed

    Titus, Deena; Samuel, E James Jebaseelan; Mohana Roopan, Selvaraj

    2016-06-01

    In past decades, the possibility of using high atomic number nanoparticle has gained interest in gel dosimetry to enhance the dose deposited in the tumor while using low radiation as well as for better imaging purposes. Sparing of healthy tissues and targeting the tumor part have become much more captivating with the help of these systems. The gel dosimetry is a the three-dimensional dosimeter for extracting the dose, which can be used along with the nanoparticles like gold, platinum, and silver, for better therapeutic efficiency for modern radiotherapy techniques. These nanoparticles of different size prepared either by chemical route or green synthesis and incorporated into the gel system respond in a different manner. Having wide applications in therapeutic field, this study reviews the use of gel dosimeters in the therapeutic procedures and also with the aid of nanoparticles so as to achieve dose enhancement. The biological activity of the various nanoparticles has been discussed. PMID:27100529

  18. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer.

    PubMed

    Mirshojaei, Seyedeh Fatemeh; Ahmadi, Amirhossein; Morales-Avila, Enrique; Ortiz-Reynoso, Mariana; Reyes-Perez, Horacio

    2016-01-01

    Nanotechnology has been used for every single modality in the molecular imaging arena for imaging purposes. Synergic advantages can be explored when multiple molecular imaging modalities are combined with respect to single imaging modalities. Multifunctional nanoparticles have large surface areas, where multiple functional moieties can be incorporated, including ligands for site-specific targeting and radionuclides, which can be detected to create 3D images. Recently, radiolabeled nanoparticles with individual properties have attracted great interest regarding their use in multimodality tumor imaging. Multifunctional nanoparticles can combine diagnostic and therapeutic capabilities for both target-specific diagnosis and the treatment of a given disease. The future of nanomedicine lies in multifunctional nanoplatforms that combine the diagnostic ability and therapeutic effects using appropriate ligands, drugs, responses and technological devices, which together are collectively called theranostic drugs. Co-delivery of radiolabeled nanoparticles is useful in multifunctional molecular imaging areas because it comprises several advantages based on nanoparticles architecture, pharmacokinetics and pharmacodynamic properties. PMID:26061297

  19. In vitro uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells.

    PubMed

    Missirlis, Dimitris; Hubbell, Jeffrey A

    2010-06-15

    We here report improved synthesis and in vitro interactions of amphiphilic hydrogel nanoparticles with the macrophage cell line J774A.1. Nanoparticles comprising dispersed hydrophobic nanodomains of poly(propylene glycol) within a continuous phase of hydrophilic poly (ethylene glycol) (PEG) were prepared via inverse emulsion crosslinking polymerization, using acrylated PEG and Pluronic F127 as macromonomer blocks. Functionality and fluorescent labeling were achieved through incorporation of reactive comonomers and a posteriori reaction with fluorescein, respectively. When introduced to a static cell culture of adhered J774A.1 macrophages, the cells internalized these hydrogel nanoparticles in a dose- and time- dependent manner through clathrin-mediated and other pathways. Amphiphilic nanoparticle uptake was however dramatically lower than that of a model system (Fluospheres) and similar to PEG-coated colloids reported in the literature, which are considered "stealth." Our findings support the potential of the nanoparticles presented here as long-circulating drug carriers. PMID:20014289

  20. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized viareduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml-1 for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  1. High-harmonic generation by nonlinear resonant excitation of surface plasmon modes in metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hurst, Jérôme; Haas, Fernando; Manfredi, Giovanni; Hervieux, Paul-Antoine

    2014-04-01

    The nonlinear electron dynamics in metallic nanoparticles is studied using a hydrodynamic model that incorporates most quantum many-body features, including spill-out and nonlocal effects as well as electron exchange and correlations. We show that, by irradiating the nanoparticle with a chirped laser pulse of modest intensity (autoresonance), it is possible to drive the electron dynamics far into the nonlinear regime, leading to enhanced energy absorption and complete ionization of the nanoparticle on a time scale of the order of 100 fs. The accompanying radiated power spectrum is rich in high-order harmonics.

  2. Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device

    NASA Astrophysics Data System (ADS)

    Tseng, Ricky J.; Ouyang, Jianyong; Chu, Chih-Wei; Huang, Jinsong; Yang, Yang

    2006-03-01

    Recently, electrical bistability was demonstrated in polymer thin films incorporated with metal nanoparticles [J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Nat. Mater. 3, 918 (2004)]. In this letter, we show the evidence that electrons are the dominant charge carriers in these bistable devices. Direct integration of bistable polymer layer with a light-emitting polymer layer shows a unique light-emitting property modulated by the electrical bistability. A unique negative differential resistance induced by the charged gold nanoparticles is observed due to the charge trapping effect from the nanoparticles when interfaced with the light-emitting layer.

  3. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting.

    PubMed

    Khung, Yit Lung; Narducci, Dario

    2015-12-01

    In the past decade, zwitterionic-based anti-biofouling layers had gained much focus as a serious alternative to traditional polyhydrophilic films such as PEG. In the area of assembling silica nanoparticles with stealth properties, the incorporation of zwitterionic surface film remains fairly new but considering that silica nanoparticles had been widely demonstrated as useful biointerfacing nanodevice, zwitterionic film grafting on silica nanoparticle holds much potential in the future. This review will discuss on the conceivable functional chemistry approaches, some of which are potentially suitable for the assembly of such stealth systems. PMID:26589704

  4. Spray-coated nanoscale conductive patterns based on in situ sintered silver nanoparticle inks.

    PubMed

    Zheng, Yifan; Li, Shuguang; Shi, Wei; Yu, Junsheng

    2014-01-01

    Nanoscale patterns with high conductivity based on silver nanoparticle inks were fabricated using spray coating method. Through optimizing the solution content and spray operation, accurate nanoscale patterns consisting of silver nanoparticles with a square resistance lower than 1 Ω /cm2 were obtained. By incorporating in situ sintering to substitute the general post sintering process, the time consumption could be significantly reduced to one sixth, qualifying it for large-scale and cost-effective fabrication of printed electronics. To testify the application of spray-coated silver nanoparticle inks, an inverted polymer solar cell was also fabricated, which exhibited a power conversion efficiency of 2.76%. PMID:24666992

  5. Spray-coated nanoscale conductive patterns based on in situ sintered silver nanoparticle inks

    NASA Astrophysics Data System (ADS)

    Zheng, Yifan; Li, Shuguang; Shi, Wei; Yu, Junsheng

    2014-03-01

    Nanoscale patterns with high conductivity based on silver nanoparticle inks were fabricated using spray coating method. Through optimizing the solution content and spray operation, accurate nanoscale patterns consisting of silver nanoparticles with a square resistance lower than 1 Ω /cm2 were obtained. By incorporating in situ sintering to substitute the general post sintering process, the time consumption could be significantly reduced to one sixth, qualifying it for large-scale and cost-effective fabrication of printed electronics. To testify the application of spray-coated silver nanoparticle inks, an inverted polymer solar cell was also fabricated, which exhibited a power conversion efficiency of 2.76%.

  6. Preparation and luminescent properties of GdOF:Ce, Tb nanoparticles and their transparent PMMA nanocomposites

    NASA Astrophysics Data System (ADS)

    Cai, Wen; Wang, Aiwu; Fu, Li; Hu, Jie; Rao, Tingke; Wang, Junqing; Zhong, Jiasong; Xiang, Weidong

    2015-05-01

    GdOF:Ce, Tb nanoparticles and their poly (methyl methacrylate) (PMMA) nanocomposites have been successfully prepared by a thermolysis route and thermal polymerization of methyl methacrylate (MMA) monomer, respectively. The obtained nanoparticles and nanocomposites are characterized by XRD, EDS, TEM, FTIR, TGA, UV-Vis and PL spectrum. The as-synthesized transparent GdOF:Ce, Tb/PMMA nanocomposites exhibit green photoluminescence under the irradiation of 254 nm UV lamp due to the incorporation of luminescent GdOF:Ce, Tb nanoparticles into the PMMA matrix. The present route would provide a general strategy to prepare other functional nanocomposites.

  7. Crystallization of DNA-capped gold nanoparticles in high-concentration, divalent salt environments.

    PubMed

    Tan, Shawn J; Kahn, Jason S; Derrien, Thomas L; Campolongo, Michael J; Zhao, Mervin; Smilgies, Detlef-M; Luo, Dan

    2014-01-27

    The multiparametric nature of nanoparticle self-assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non-base-pairing DNA as a model ligand instead of the typical base-pairing design for programmability, long-range 2D DNA-gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength. PMID:24459055

  8. Electrodeposition and characterization of Pd nanoparticles doped amorphous hydrogenated carbon films

    NASA Astrophysics Data System (ADS)

    Yu, Yuanlie; Zhang, Junyan

    2009-11-01

    Palladium (0) nanoparticles incorporated hydrogenated amorphous carbon (Pd/a-C:H) films were synthesized on single crystal silicon (100) substrates by electrochemical deposition route using methanol and camphor as carbon source, and Pd nanoparticles as dopant. The characterization results indicate that Pd nanocrystalline particles with diameter in the range of 1-5 nm dispersed in the amorphous carbon matrix. Compared with pure a-C:H films, the introduction of Pd nanoparticles didn't change the structure of carbon films. At the end, the growth mechanism of the Pd/a-C:H composite films was discussed.

  9. New strategies for luminescence thermometry in the biological range using upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Savchuk, Ol. A.; Carvajal, J. J.; Pujol, M. C.; Massons, J.; Haro-González, P.; Jaque, D.; Aguiló, M.; Díaz, F.

    2014-05-01

    We have studied different strategies of use of luminescence thermometry with upconverting nanoparticles in the biological range of temperatures, among them, the thermal sensing ability of fluoresncent lifetime of Er,Yb:NaY2F5 nanoparticles. Er,Yb:NaY2F5O nanocrystals show great potentiality as thermal sensors at the nanoscale for biomedical applications due to the incorporation of additional non-radiative relaxation mechanisms that shorten the emission lifetime generated by the oxygen present in the structure. Here we report ex-vivo temperature determination by laser induced heating in chicken breast using lifetime-based thermometry in these up-conversion nanoparticles.

  10. Spray-coated nanoscale conductive patterns based on in situ sintered silver nanoparticle inks

    PubMed Central

    2014-01-01

    Nanoscale patterns with high conductivity based on silver nanoparticle inks were fabricated using spray coating method. Through optimizing the solution content and spray operation, accurate nanoscale patterns consisting of silver nanoparticles with a square resistance lower than 1 Ω /cm2 were obtained. By incorporating in situ sintering to substitute the general post sintering process, the time consumption could be significantly reduced to one sixth, qualifying it for large-scale and cost-effective fabrication of printed electronics. To testify the application of spray-coated silver nanoparticle inks, an inverted polymer solar cell was also fabricated, which exhibited a power conversion efficiency of 2.76%. PMID:24666992

  11. Shaped gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Yugang; An, Changhua

    2011-03-01

    Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.

  12. Importance of the DNA "bond" in programmable nanoparticle crystallization.

    PubMed

    Macfarlane, Robert J; Thaner, Ryan V; Brown, Keith A; Zhang, Jian; Lee, Byeongdu; Nguyen, SonBinh T; Mirkin, Chad A

    2014-10-21

    If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling's rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner. PMID:25298535

  13. Hyperspectral imaging of plasmon resonances in metallic nanoparticles.

    PubMed

    Zopf, David; Jatschka, Jacqueline; Dathe, André; Jahr, Norbert; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-07-15

    The spectroscopy of metal nanoparticles shows great potential for label-free sensing. In this article we present a hyper-spectral imaging system combined with a microfluidic system, which allows full spectroscopic characterization of many individual nanoparticles simultaneously (>50 particles). With such a system we were able overcome several limitations that are present in LSPR sensing with nanoparticle ensemble. We experimentally quantified (incorporating atomic force microscopy as well) the correlation between geometry, position of plasmon resonance (λPeak) and sensitivity of the particles (Sb=1.63λPeak-812.47[nm/RIU]). We were able to follow the adsorption of protein layers and determined their spatial inhomogeneity with the help of the hyperspectral imaging. PMID:26974477

  14. Poly(amino acid) functionalized maghemite and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Perego, Davide; Masciocchi, Norberto; Guagliardi, Antonietta; Domínguez-Vera, José Manuel; Gálvez, Natividad

    2013-02-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging.

  15. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    PubMed Central

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  16. Fabrication, modeling and characterization of multi-crosslinked methacrylate copolymeric nanoparticles for oral drug delivery.

    PubMed

    Ngwuluka, Ndidi C; Pillay, Viness; Choonara, Yahya E; Modi, Girish; Naidoo, Dinesh; du Toit, Lisa C; Kumar, Pradeep; Ndesendo, Valence M K; Khan, Riaz A

    2011-01-01

    Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN) system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC) modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer) to 321 nm (methacrylate copolymer blend) and a zeta potential range of 15.8-43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery. PMID:22016653

  17. Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging.

    PubMed

    Crick, Colin R; Noimark, Sacha; Peveler, William J; Bear, Joseph C; Ivanov, Aleksandar P; Edel, Joshua B; Parkin, Ivan P

    2016-01-01

    The fabrication of polymer-nanoparticle composites is extremely important in the development of many functional materials. Identifying the precise composition of these materials is essential, especially in the design of surface catalysts, where the surface concentration of the active component determines the activity of the material. Antimicrobial materials which utilize nanoparticles are a particular focus of this technology. Recently swell encapsulation has emerged as a technique for inserting antimicrobial nanoparticles into a host polymer matrix. Swell encapsulation provides the advantage of localizing the incorporation to the external surfaces of materials, which act as the active sites of these materials. However, quantification of this nanoparticle uptake is challenging. Previous studies explore the link between antimicrobial activity and surface concentration of the active component, but this is not directly visualized. Here we show a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of CdSe/ZnS nanoparticles can be accurately visualized through cross-sectional fluorescence imaging. Using this method, we can quantify the uptake of nanoparticles via swell encapsulation and measure the surface concentration of encapsulated particles, which is key in optimizing the activity of functional materials. PMID:27500449

  18. Fabrication, Modeling and Characterization of Multi-Crosslinked Methacrylate Copolymeric Nanoparticles for Oral Drug Delivery

    PubMed Central

    Ngwuluka, Ndidi C.; Pillay, Viness; Choonara, Yahya E.; Modi, Girish; Naidoo, Dinesh; du Toit, Lisa C.; Kumar, Pradeep; Ndesendo, Valence M.K.; Khan, Riaz A.

    2011-01-01

    Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN) system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC) modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer) to 321 nm (methacrylate copolymer blend) and a zeta potential range of 15.8–43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery. PMID:22016653

  19. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT. PMID:19485374

  20. Drug Delivery Nanoparticles in Skin Cancers

    PubMed Central

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298