Science.gov

Sample records for nanoparticles induced cytotoxicity

  1. Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells.

    PubMed

    Castiglioni, Sara; Cazzaniga, Alessandra; Perrotta, Cristiana; Maier, Jeanette A M

    2015-09-17

    Silver nanoparticles are toxic both in vitro and in vivo. We have investigated the possibility to exploit the cytotoxic potential of silver nanoparticles in T24 bladder carcinoma cells using both bare and PolyVinylPyrrolidone-coated silver nanoparticles. We show that the two types of silver nanoparticles promote morphological changes and cytoskeletal disorganization, are cytotoxic and induce cell death. These effects are due to the increased production of reactive oxygen species which are responsible, at least in part, for the sustained activation of ERK1/2. Indeed, both cytotoxicity and ERK1/2 activation are prevented by exposing the cells to the anti-oxidant N-acetylcysteine. Also blocking the ERK1/2 pathway with the MEK inhibitor PD98059 protects the cells from nanoparticles' cytotoxicity. Our findings suggest that ERK activation plays a role in silver nanoparticle-mediated cytotoxicity in T24 cells. PMID:26149761

  2. Silver nanoparticles increase cytotoxicity induced by intermediate frequency low voltages.

    PubMed

    Yadegari-Dehkordi, Sajedeh; Sadeghi, Hamid Reza; Attaran-Kakhki, Neda; Shokouhi, Mahin; Sazgarnia, Ameneh

    2015-12-01

    Electrical properties of the cells play a key role in biological processes. Intermediate frequencies of electrical fields influence the cells proliferation without heat generation and electrical stimulation. Silver nanoparticle (SNP) as a metallic agent can change the electrical characteristics of the cells. We study the effect of low voltages at an intermediate frequency (300 kHz) on a human breast adenocarcinoma cell line (MCF7) in the presence of SNPs. At first, cell toxicity of SNPs was determined at different concentrations. Then three different voltages were applied to the cells for 15?min, both in the presence and absence of SNPs. The treatments efficiency was evaluated by MTT assay. The results showed that the intermediate frequency-low voltages with SNPs not only provide an additive efficacy on cytotoxicity, but also a synergism was observed between these factors. By increasing the voltage from 3 to 9?V, a rising synergistic rate was observed. It seems that the synergistic effect between SNPs and the 300?kHz low voltages can inhibit cell proliferation and/or increases cell death of MCF-7, and hence increases treatment efficiency of SNPs, effectively. PMID:24901460

  3. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells

    SciTech Connect

    De Berardis, Barbara; Civitelli, Gabriele; Condello, Maria; Lista, Pasquale; Pozzi, Roberta; Arancia, Giuseppe; Meschini, Stefania

    2010-08-01

    Engineered nanoparticles offer great promise in many industrial and biomedical applications, however little information is available about gastrointestinal toxicity. The purpose of this study was to assess the cytotoxicity, oxidative stress, apoptosis and proinflammatory mediator release induced by ZnO nanoparticles on human colon carcinoma LoVo cells. The biological activity of these particles was related to their physico-chemical characteristics. The physico-chemical characteristics were evaluated by analytical electron microscopy. The cytotoxicity was determined by growth curves and water-soluble tetrazolium assay. The reactive oxygen species production, cellular glutathione content, changes of mitochondrial membrane potential and apoptosis cell death were quantified by flow cytometry. The inflammatory cytokines were evaluated by enzyme-linked immunoadsorbent assay. Treatment with ZnO (5 {mu}g/cm{sup 2} corresponding to 11.5 {mu}g/ml) for 24 h induced on LoVo cells a significant decrease of cell viability, H{sub 2}O{sub 2}/OH{center_dot} increase, O2{sup -{center_dot}} and GSH decrease, depolarization of inner mitochondrial membranes, apoptosis and IL-8 release. Higher doses induced about 98% of cytotoxicity already after 24 h of treatment. The experimental data show that oxidative stress may be a key route in inducing the cytotoxicity of ZnO nanoparticles in colon carcinoma cells. Moreover, the study of the relationship between toxicological effects and physico-chemical characteristics of particles suggests that surface area does not play a primary role in the cytotoxicity.

  4. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    PubMed Central

    2011-01-01

    Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS) usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial) and HK-2 (epithelial proximal) cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-?b was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential. PMID:21371295

  5. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent on time, concentration and nanoparticle size. Additionally, the question of cell recovery once the source of AuNPs is removed was investigated in the present work. It was found that full cell functions recovery is possible after removing the source of nanoparticles.

  6. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. PMID:25875951

  7. A dual role of transient receptor potential melastatin 2 channel in cytotoxicity induced by silica nanoparticles

    PubMed Central

    Yu, Peilin; Li, Jin; Jiang, Jialin; Zhao, Zunquan; Hui, Zhaoyuan; Zhang, Jun; Zheng, Yifan; Ling, Daishun; Wang, Lie; Jiang, Lin-Hua; Luo, Jianhong; Zhu, Xinqiang; Yang, Wei

    2015-01-01

    Silica nanoparticles (NPs) have remarkable applications. However, accumulating evidence suggests NPs can cause cellular toxicity by inducing ROS production and increasing intracellular Ca2+ ([Ca2+]i), but the underlying molecular mechanism is largely unknown. Transient receptor potential melastatin 2 (TRPM2) channel is known to be a cellular redox potential sensor that provides an important pathway for increasing the [Ca2+]i under oxidative stress. In this study, we examined the role of TRPM2 channel in silica NPs-induced oxidative stress and cell death. By quantitation of cell viability, ROS production, [Ca2+]i, and protein identification, we showed that TRPM2 channel is required for ROS production and Ca2+ increase induced by silica NPs through regulating NADPH oxidase activity in HEK293 cells. Strikingly, HEK293 cells expressing low levels of TRPM2 were more susceptible to silica NPs than those expressing high levels of TRPM2. Macrophages from young mice showed significantly lower TRPM2 expression than those from senescent mice and had significantly lower viability after silica NPs exposure than those from senescent ones. Taken together, these findings demonstrate for the first time that TRPM2 channel acts as an oxidative stress sensor that plays a dual role in silica NPs-induced cytotoxicity by differentially regulating the NADPH oxidase activity and ROS generation. PMID:26656285

  8. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides

    PubMed Central

    Wang, Tao; Chen, Xiaoyan; Long, Xiaohua; Liu, Zhaopu; Yan, Shaohua

    2016-01-01

    Copper nanoparticles (Cu-NPs) were widely used in various industrial and commercial applications. The aim of this study was to analyze the cytotoxicity of Cu-NPs on primary hepatocytes of E.coioides compared with copper sulphate (CuSO4). Cultured cells were exposed to 0 or 2.4 mg Cu L-1 as CuSO4or Cu-NPs for 24-h. Results showed either form of Cu caused a dramatic loss in cell viability, more so in the CuSO4 than Cu-NPs treatment. Compared to control, either CuSO4 or Cu-NPs significantly increased reactive oxygen species(ROS) and malondialdehyde(MDA) concentration in hepatocytes by overwhelming total superoxide dismutase (T-SOD) activity, catalase(CAT) activity and glutathione(GSH) concentration. In addition, the antioxidative-related genes [SOD (Cu/Zn), SOD (Mn), CAT, GPx4] were also down-regulated. The apoptosis and necrosis percentage was significantly higher after the CuSO4 or Cu-NPs treatment than the control. The apoptosis was induced by the increased cytochrome c concentration in the cytosol and elevated caspase-3, caspase-8 and caspase-9 activities. Additionally, the apoptosis-related genes (p53, p38β and TNF-α) and protein (p53 protein) were up-regulated after the CuSO4 or Cu-NPs treatment, with CuSO4 exposure having a greater effect than Cu-NPs. In conclusion, Cu-NPs had similar types of toxic effects as CuSO4 on primary hepatocytes of E.coioides, but toxicity of CuSO4 was more severe than that of Cu-NPs. PMID:26890000

  9. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-07-01

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials. Electronic supplementary information (ESI) available: Nano-TiO2 characterization; changes in nucleus morphology; apoptosis assay; variations in Ca2+; schematic of the experiment to simulate ion exchange; TEM images; ion concentration change after being filtered through the nano-deposition films; theoretical simulation methods; ROS generation; intercellular communication; the movie shows the process of Na+ in the films. See DOI: 10.1039/c5nr03269e

  10. The Protective Effect of Bafilomycin A1 Against Cobalt Nanoparticle-Induced Cytotoxicity and Aseptic Inflammation in Macrophages In Vitro.

    PubMed

    Wang, Songhua; Liu, Fan; Zeng, Zhaoxun; Yang, Huilin; Jiang, Haitao

    2016-01-01

    Co ions released due to corrosion of Co nanoparticles (CoNPs) in the lysosomes of macrophages may be a factor in the particle-induced cytotoxicity and aseptic inflammation accompanying metal-on-metal (MOM) hip prosthesis failure. Here, we show that CoNPs are easily dissolved under a low pH, simulating the acidic lysosomal environment. We then used bafilomycin A1 to change the pH inside the lysosome to inhibit intracellular corrosion of CoNPs and then investigated its protective effects against CoNP-induced cytotoxicity and aseptic inflammation on murine macrophage RAW264.7 cells. XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} assays revealed that bafilomycin A1 can significantly decrease CoNP-induced cytotoxicity in RAW264.7 cells. Enzyme-linked immunosorbent assays showed that bafilomycin A1 can significantly decrease the subtoxic concentration of CoNP-induced levels of pro-inflammatory cytokines (tumor necrosis factor-?, interleukin-1?, and interleukin-6), but has no effect on anti-inflammatory cytokines (transforming growth factor-? and interleukin-10) in RAW264.7 cells. We studied the protective mechanism of bafilomycin A1 against CoNP-induced effects in RAW264.7 cells by measuring glutathione/oxidized glutathione (GSH/GSSG), superoxide dismutase, catalase, and glutathione peroxidase levels and employed scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer assays to observe the ultrastructural cellular changes. The changes associated with apoptosis were assessed by examining the pAKT and cleaved caspase-3 levels using Western blotting. These data strongly suggested that bafilomycin A1 can potentially suppress CoNP-induced cytotoxicity and aseptic inflammation by inhibiting intracellular corrosion of CoNPs and that the reduction in Co ions released from CoNPs may play an important role in downregulating oxidative stress in RAW264.7 cells. PMID:26054709

  11. Cytotoxicity of gold nanoparticles.

    PubMed

    Pan, Yu; Bartneck, Matthias; Jahnen-Dechent, Willi

    2012-01-01

    Nanomaterials are now routinely used in technical as well as medical applications. The very physicochemical properties that favor nanomaterial application are the prime cause that these materials cannot be considered "generally safe." We are still far from predicting the toxicological profile of new nanoparticles, despite continuous attempts to establish a structure-function relation between the physical and chemical properties of nanoparticles and their interactions with biological systems. Herein, we summarize some basic concept to assess nanoparticle toxicity, death pathways, cell cycle, and oxidative stress in response to nanoparticle exposure of cells. PMID:22568908

  12. Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death.

    PubMed

    Leite, Paulo Emílio Corrêa; Pereira, Mariana Rodrigues; do Nascimento Santos, Carlos Antonio; Campos, Andrea Porto Carreiro; Esteves, Ticiana Mota; Granjeiro, José Mauro

    2015-08-01

    Gold nanoparticles (AuNP) have been widely used for many applications, including as biological carriers. A better understanding concerning AuNP safety on muscle cells is crucial, since it could be a potential tool in the nanomedicine field. Here, we describe the impact of polyethylene glycol-coated gold nanoparticles (PEG-AuNP) interaction with differentiated skeletal muscle C2C12 cells on cell viability, mitochondria function, cell signaling related to survival, cytokine levels and susceptibility to apoptosis. Intracellular localization of 4.5 nm PEG-AuNP diameter size was evidenced by STEM-in-SEM in myotube cells. Methods for cytotoxicity analysis showed that PEG-AuNP did not affect cell viability, but intracellular ATP levels and mitochondrial membrane potential increased. Phosphorylation of ERK was not altered but p-AKT levels reduced (p<0.01). Pre-treatment of cells with PEG-AuNP followed by staurosporine induction increased the caspases-3/7 activity. Indeed, cytokines analysis revealed a sharp increase of IFN-γ and TGF-β1 levels after PEG-AuNP treatment, suggesting that inflammatory and fibrotic phenotypes process were activated. These data demonstrate that PEG-AuNP affect the myotube physiology leading these cells to be more susceptible to death stimuli in the presence of staurosporine. Altogether, these results present evidence that PEG-AuNP affect the susceptibility to apoptosis of muscle cells, contributing to development of safer strategies for intramuscular delivery. PMID:25790728

  13. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Y, Al Omar Suliman; Ahamed, Maqusood; Siddiqui, Maqsood A; Al-Khedhairy, Abdulaziz A

    2013-01-01

    Background Cobalt oxide nanoparticles (Co3O4NPs) are increasingly recognized for their utility in biological applications, magnetic resonance imaging, and drug delivery. However, little is known about the toxicity of Co3O4NPs in human cells. Methods We investigated the possible mechanisms of genotoxicity induced by Co3O4NPs in human hepatocarcinoma (HepG2) cells. Cell viability, reactive oxygen species (ROS), glutathione, thiobarbituric acid reactive substance, apoptosis, and DNA damage were assessed in HepG2 cells after Co3O4NPs and Co2+ exposure. Results Co3O4NPs elicited a significant (P < 0.01) reduction in glutathione with a concomitant increase in lipid hydroperoxide, ROS generation, superoxide dismutase, and catalase activity after 24- and 48-hour exposure. Co3O4NPs had a mild cytotoxic effect in HepG2 cells; however, it induced ROS and oxidative stress, leading to DNA damage, a probable mechanism of genotoxicity. The comet assay showed a statistically significant (P < 0.01) dose- and time-related increase in DNA damage for Co3O4NPs, whereas Co2+ induced less change than Co3O4NPs but significantly more than control. Conclusion Our results demonstrated that Co3O4NPs induced cytotoxicity and genotoxicity in HepG2 cells through ROS and oxidative stress. PMID:23326189

  14. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts.

    PubMed

    Uboldi, Chiara; Giudetti, Guido; Broggi, Francesca; Gilliland, Douglas; Ponti, Jessica; Rossi, Franois

    2012-06-14

    Although amorphous silica nanoparticles (aSiO(2)NPs) are believed to be non-toxic and are currently used in several industrial and biomedical applications including cosmetics, food additives and drug delivery systems, there is still no conclusive information on their cytotoxic, genotoxic and carcinogenic potential. For this reason, this work has investigated the effects of aSiO(2)NPs on Balb/3T3 mouse fibroblasts, focusing on cytotoxicity, cell transformation and genotoxicity. Results obtained using aSiO(2)NPs, with diameters between 15 nm and 300 nm and exposure times up to 72 h, have not shown any cytotoxic effect on Balb/3T3 cells as measured by the MTT test and the Colony Forming Efficiency (CFE) assay. Furthermore, aSiO(2)NPs have induced no morphological transformation in Balb/3T3 cells and have not resulted in genotoxicity, as shown by Cell Transformation Assay (CTA) and Micronucleus (MN) assay, respectively. To understand whether the absence of any toxic effect could result from a lack of internalization of the aSiO(2)NPs by Balb/3T3 cells, we have investigated the uptake and the intracellular distribution following exposure to 85 nm fluorescently-labelled aSiO(2)NPs. Using fluorescence microscopy, it was observed that fluorescent aSiO(2)NPs are internalized and located exclusively in the cytoplasmic region. In conclusion, we have demonstrated that although aSiO(2)NPs are internalized in vitro by Balb/3T3 mouse fibroblasts, they do not trigger any cytotoxic or genotoxic effect and do not induce morphological transformation, suggesting that they might be a useful component in industrial applications. PMID:22094287

  15. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.

    PubMed

    Sayes, Christie; Ivanov, Ivan

    2010-11-01

    With the increasing use of nanomaterials incorporated into consumer products, there is a need for developing approaches to establish "quantitative structure-activity relationships" (QSARs). These relationships could be used to predict various biological responses after exposure to nanomaterials for the purposes of risk analysis. This risk analysis is applicable to manufacturers of nanomaterials in an effort to determine potential hazards. Because metal oxide materials are some of the most widely applicable and studied nanoparticle types for incorporation into cosmetics, food packaging, and paints and coatings, we focused on comparing different approaches for establishing QSARs for this class of materials. Metal oxide nanoparticles are believed, by some, to cause alterations in cellular function due to their size and/or surface area. Others have said that these nanomaterials, because of the oxidized state of the metal, do not induce stress in biological tests systems. This controversy highlights the need to systematically develop structure-activity relationships (i.e., the relationship between physicochemical features to the cellular responses) and tools for predicting potential biological effects after a metal oxide nanomaterial exposure. Here, we attempt to identify a set of properties of two specific metal oxide nanomaterials-TiO(2) and ZnO-that could be used to characterize and predict the induced cellular membrane damage of immortalized human lung epithelial cells. We adopt a mathematical modeling approach that uses the engineered nanomaterial size characterized as a dry nanopowder and the nanomaterial behavior in ultrapure water, phosphate buffer, and cell culture media to predict nanomaterial-induced cellular membrane damage (via lactate dehydrogenase release). Results of these studies provide insights on how engineered nanomaterial features influence cellular responses and thereby outline possible approaches for developing and applying predictive computational models for biological responses caused by exposure to nanomaterials. PMID:20561263

  16. Cytotoxic Potential of Silver Nanoparticles

    PubMed Central

    Zhang, Tianlu; Wang, Liming

    2014-01-01

    Silver nanoparticles (AgNPs) have been widely used in industrial, household, and healthcare-related products due to their excellent antimicrobial activity. With increased exposure of AgNPs to human beings, the risk of safety has attracted much attention from the public and scientists. In review of recent studies, we discuss the potential impact of AgNPs on individuals at the cell level. In detail, we highlight the main effects mediated by AgNPs on the cell, such as cell uptake and intracellular distribution, cytotoxicity, genotoxicity, and immunological responses, as well as some of the major factors that influence these effects in vivo and in vivo, such as dose, time, size, shape, surface chemistry, and cell type. At the end, we summarize the main influences on the cell and indicate the challenges in this field, which may be helpful for assessing the risk of AgNPs in future. PMID:24532494

  17. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity.

    PubMed

    Hashimoto, M; Sasaki, J I; Yamaguchi, S; Kawai, K; Kawakami, H; Iwasaki, Y; Imazato, S

    2015-08-01

    Nanoparticles (NPs) are currently the focus of considerable attention for dental applications; however, their biological effects have not been fully elucidated. The long-term, slow release of matrix metalloproteases (MMPs) digests collagen fibrils within resin-dentin bonds. Therefore, MMP inhibitors can prolong the durability of resin-dentin bonds. However, there have been few reports evaluating the combined effect of MMP inhibition and the cytotoxic effects of NPs for dentin bonding. The aim of this study was to evaluate MMP inhibition and cytotoxic responses to gold (AuNPs) and platinum nanoparticles (PtNPs) stabilized by polyvinylpyrrolidone (PVP) in cultured murine macrophages (RAW264) by using MMP inhibition assays, measuring cell viability and inflammatory responses (quantitative reverse transcription polymerase chain reaction [RT-qPCR]), and conducting a micromorphological analysis by fluorescence and transmission electron microscopy. Cultured RAW264 cells were exposed to metal NPs at various concentrations (1, 10, 100, and 400 µg/mL). AuNPs and PtNPs markedly inhibited MMP-8 and MMP-9 activity. Although PtNPs were cytotoxic at high concentrations (100 and 400 µg/mL), no cytotoxic effects were observed for AuNPs at any concentration. Transmission electron microscopy images showed a significant nonrandom intercellular distribution for AuNPs and PtNPs, which were mostly observed to be localized in lysosomes but not in the nucleus. RT-qPCR analysis demonstrated inflammatory responses were not induced in RAW264 cells by AuNPs or PtNPs. The cytotoxicity of nanoparticles might depend on the core metal composition and arise from a "Trojan horse" effect; thus, MMP inhibition could be attributed to the surface charge of PVP, which forms the outer coating of NPs. The negative charge of the surface coating of PVP binds to Zn(2+) from the active center of MMPs by chelate binding and results in MMP inhibition. In summary, AuNPs are attractive NPs that effectively inhibit MMP activity without cytotoxicity or inflammatory responses. PMID:26040283

  18. Laser-induced modifications of gold nanoparticles and their cytotoxic effect.

    PubMed

    Abdelhamid, Shimaa; Saleh, Hazem; Abdelhamid, Mahmoud; Gohar, Adel; Youssef, Tareq

    2012-06-01

    As nanotechnology continues to develop, an assessment of nanoparticles' toxicity becomes very crucial for biomedical applications. The current study examines the deleterious effects of pre-irradiated gold nanoparticles (GNPs) solutions on primary rat kidney cells (PRKCs). Spectroscopic and transmission electron microscopic studies demonstrated that exposure of 15 nm GNPs in size to pulsed laser caused a reduction both in optical density and mean particle diameter. GNPs showed an aggregation when added to the cell culture medium (DMEM). This aggregation was markedly decreased upon adding serum to the medium. Under our experimental conditions, trypan blue and MTT assays revealed no significant changes in cell viability when PRKCs were incubated with non-irradiated GNPs over a period of 72 h and up to 4 nM GNPs concentration. On the contrary, when cells were incubated with irradiated GNPs a significant reduction in PRKCs viability was revealed. PMID:22734787

  19. Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells.

    PubMed

    Gohulkumar, M; Gurushankar, K; Rajendra Prasad, N; Krishnakumar, N

    2014-08-01

    Silibinin (SIL) is a plant derived flavonoid isolated from the fruits and seeds of the milk thistle (Silybum marianum). Silibinin possesses a wide variety of biological applications including anticancer activities but poor aqueous solubility and poor bioavailability limit its potential and efficacy at the tumor sites. In the present study, silibinin was encapsulated in Eudragit® E (EE) nanoparticles in the presence of stabilizing agent polyvinyl alcohol (PVA) and its anticancer efficacy in oral carcinoma (KB) cells was studied. Silibinin loaded nanoparticles (SILNPs) were prepared by nanoprecipitation technique and characterized in terms of size distribution, morphology, surface charge, encapsulation efficiency and in vitro drug release. MTT assay revealed higher cytotoxic efficacy of SILNPs than free SIL in KB cells. Meanwhile, reactive oxygen species (ROS) determination revealed the significantly higher intracellular ROS levels in SILNPs treated cells compared to free SIL treated cells. Therefore, the differential cytotoxicity between SILNPs and SIL may be mediated by the discrepancy of intracellular ROS levels. Moreover, acridine orange (AO) and ethidium bromide (EB) dual staining and reduced mitochondrial membrane potential (MMP) confirmed the induction of apoptosis with nanoparticle treatment. Further, the extent of DNA damage (evaluated by comet assay) was significantly increased in SILNPs than free SIL in KB cells. Taken together, the present study suggests that silibinin-loaded nanoparticles can be used as an effective drug delivery system to produce a better chemopreventive response for the treatment of cancer. PMID:24907761

  20. Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment.

    PubMed

    Yang, Sheng-Tao; Liu, Jia-Hui; Wang, Jing; Yuan, Yuan; Cao, Aoneng; Wang, Haifang; Liu, Yuanfang; Zhao, Yuliang

    2010-12-01

    While ZnO particles are widely used in many fields, including personal care products, the high toxicity of ZnO nanoparticles has been reported and aroused great health concerns. In this study, the cytotoxicity of ZnO nanoparticles was evaluated and, in particular, the role of microenvironment in their toxicity was investigated. Our results show that ZnO nanoparticles are highly toxic to NIH/3T3 cells, inducing viability loss, membrane leakage and morphology changes. The microenviroment, here the CO2 atmosphere under cell culture condition, promoted the solubilization of ZnO nanoparticles. Then the released Zn from ZnO nanoparticles induces the cytotoxicity. The importance of microenvironment on the ZnO nanotoxicity is presented and the implications to future nanotoxicology studies are discussed. PMID:21121377

  1. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  2. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin.

    PubMed

    Siddiqui, Maqsood A; Ahamed, Maqusood; Ahmad, Javed; Majeed Khan, M A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Alrokayan, Salman A

    2012-03-01

    Nickel oxide nanoparticles (NiO NPs) are increasingly utilized in a number of applications. However, little is known about the toxicity of NiO NPs following exposure to human cells. This study was designed to investigate NiO NPs induced cytotoxicity, oxidative stress and apoptosis in cultured human airway epithelial (HEp-2) and human breast cancer (MCF-7) cells. The results show that cell viability was reduced by NiO NPs and degree of reduction was dose-dependent. NiO NPs were also found to induce oxidative stress in dose-dependent manner indicated by depletion of glutathione and induction of reactive oxygen species and lipid peroxidation. Induction of caspase-3 enzyme activity and DNA fragmentation, biomarkers of apoptosis were also observed in NiO NPs exposed cells. Preventive potential of a dietary antioxidant curcumin against NiO NPs induced toxicity in HEp-2 MCF-7 cells was further examined. We found that co-exposure of curcumin significantly attenuated the cytotoxicity and oxidative stress induced by NiO NPs in both types of cells. This is the first report showing that NiO NPs induced ROS mediated cytotoxicity and apoptosis that is abrogated by curcumin. The pharmacological potential of curcumin against NiO NPs induced toxicity warrants further investigation. PMID:22273695

  3. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929).

    PubMed

    Siddiqui, Maqsood A; Saquib, Quaiser; Ahamed, Maqusood; Farshori, Nida N; Ahmad, Javed; Wahab, Rizwan; Khan, Shams T; Alhadlaq, Hisham A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Pant, Aditya B

    2015-01-01

    The present investigation was aimed to study the cytotoxicity, oxidative stress, and genotoxicity induced by molybdenum nanoparticles (Mo-NPs) in mouse skin fibroblast cells (L929). Cells were exposed to different concentrations (1-100 ?g/ml) of Mo-NPs (size 40 nm) for 24 and 48 h. After the exposure, different cytotoxicity assays (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, MTT; neutral red uptake, NRU; and cellular morphology) and oxidative stress markers (lipid peroxidation, LPO; glutathione, GSH; and catalase) were studied. Further, Mo-NPs-induced intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage were also studied. L929 cells treated with Mo-NPs showed a concentration- and time-dependent decrease in cell viability and a loss of the normal cell morphology. The percentage cell viability was recorded as 25%, 42%, and 58% by MTT assay and 24%, 46%, and 56% by NRU assay at 25, 50, and 100 ?g/ml of Mo-NPs, respectively after 48 h exposure. Furthermore, the cells showed a significant induction of oxidative stress. This was confirmed by the increase in LPO and ROS generation, as well as the decrease in the GSH and catalase levels. The decrease in MMP also confirms the impaired mitochondrial membrane. The cell cycle analysis and comet assay data revealed that Mo-NPs induced G2/M arrest and DNA damage in a concentration-dependent manner. Our results demonstrated, for the first time, Mo-NPs induced cytotoxicity, oxidative stress and genotoxicity in L929 cells. Thus, data suggest the potential hazardous nature of Mo-NPs. PMID:25437066

  4. Cytotoxicity and Apoptosis Inducing Activities of 2-Amino-4H-chromene-3-carbonitrile Derivatives Loaded on Gold Nanoparticles Against Human Breast Cancer Cell Line T47D.

    PubMed

    Saffari, Zahra; Zarabi, Maryam Farahnak; Aryapour, Hasan; Foroumadi, Alireza; Farhangi, Ali; Ghassemi, Soheil; Akbarzadeh, Azim

    2015-04-01

    Chemotherapy drugs, used for prevention of uncontrolled cell proliferation in certain tissues as well as inducing apoptosis in tumor cells, are important candidates for treatment of cancer. The synthesized 2-amino-4H-chromene-3-carbonitrile derivatives effective on cancerous cells resistant to other drugs such as Paclitaxel were used due to their ability in induction of apoptosis. The growth inhibitory and inducing apoptosis activities were determined. In order to make it target-oriented, the best compound was conjugated with gold nanoparticles (NPs) by aspartic acid with chemical reduction method. Cytotoxicity effect of 2-amino-4H-chromene-3-carbonitrile derivatives against the T47D breast cancer cell line was determined by MTT assay. The synthesis of gold NPs was confirmed by transmission electron microscopy, UV-Vis and dynamic light scattering. To assess the effects of compounds on the process of apoptosis, staining methods with acridine orange-ethidium bromide and Hoechst staining by fluorescence microscopy and DNA fragmentation by the diphenylamine method were used. The synthesized compounds containing two NH2 groups on benzene rings, demonstrated more cytotoxicity effect. The effect of conjugation with gold NPs and the induction of apoptosis were studied with the best compound. The cytotoxicity effects of the synthesized 2-amino-4H-chromene-3-carbonitrile compounds were changed by replacement of NO2 group on thiol ring with different chemical groups on the benzene ring. Analyses of treated cell lines by conjugated and non-conjugated forms of compounds verified their ability in inducing apoptosis while conjugated form demonstrated higher apoptosis. PMID:25883420

  5. Experimental considerations on the cytotoxicity of nanoparticles

    PubMed Central

    Kong, Bokyung; Seog, Ji Hyun; Graham, Lauren M; Lee, Sang Bok

    2011-01-01

    Engineered nanoparticles are one of the leading nanomaterials currently under investigation due to their applicability in various fields, including drug and gene delivery, biosensors, cancer treatment and diagnostic tools. Moreover, the number of commercial products containing nanoparticles released on the market is rapidly increasing. Nanoparticles are already widely distributed in air, cosmetics, medicines and even in food. Therefore, the unintended adverse effect of nanoparticle exposure is a growing concern both academically and socially. In this context, the toxicity of nanoparticles has been extensively studied; however, several challenges are encountered due to the lack of standardized protocols. In order to improve the experimental conditions of nanoparticle toxicity studies, serious consideration is critical to obtain reliable and realistic data. The cell type must be selected considering the introduction route and target organ of the nanoparticle. In addition, the nanoparticle dose must reflect the realistic concentration of nanoparticles and must be loaded as a well-dispersed form to observe the accurate size- and shape-dependent effect. In deciding the cytotoxicity assay method, it is important to choose the appropriate method that could measure the toxicity of interest without the false-negative or -positive misinterpretation of the toxicity result. PMID:21793681

  6. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

    PubMed Central

    Shafagh, Maryam; Rahmani, Fatemeh; Delirezh, Norouz

    2015-01-01

    Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity was evaluated using cell viability, oxidative stress and apoptosis detection. In addition, the expression levels of P53, Caspase 3, Bcl-2, and Bax genes in K562 cells were studied by reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: CuO NPs exerted distinct effects on cell viability via selective killing of cancer cells in a dose-dependent manner while not impacting normal cells in MTT assay. The dose-dependent cytotoxicity of CuO NPs against K562 cells was shown through reactive oxygen species (ROS) generation. The CuO NPs induced apoptosis was confirmed through acridine orange and propidium iodide double staining. Tumor suppressor gene P53 was up regulated due to CuO NPs exposure, and increase in Bax/Bcl-2 ratio suggested mitochondria-mediated pathway is involved in CuO NPs induced apoptosis. We also observed that Caspase 3 gene expression remained unchanged up to 24 hr exposure. Conclusion: These molecular alterations provide an insight into CuO NPs-caused inhibition of growth, generation of ROS, and apoptotic death of K562 cells. PMID:26730334

  7. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  8. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells.

    PubMed

    Wang, Yurong; Cui, Haiyan; Zhou, Jiaping; Li, Fengjuan; Wang, Jinju; Chen, Mianhua; Liu, Qingdai

    2015-04-01

    Concerns about the risk of titanium dioxide nanoparticles (TiO2 NPs) to human health and environment are gradually increasing due to their wide range of applications. In this study, cytotoxicity, DNA damage, and apoptosis induced by TiO2 NPs (5nm) in A549 cells were investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed the time- and concentration-dependent cytotoxic effects of TiO2 NPs in a concentration range of 50 to 200?g/mL. A statistically significant (p?induced by TiO2 NPs at the above concentrations were observed by scanning electron micrographs. Flow cytometric analysis demonstrated that the cells treated with TiO2 NPs at concentrations of 100 and 200?g/mL showed a significant G2/M phase arrest and a significant increased proportion of apoptotic cells. TiO2 NPs also disrupted the mitochondrial membrane potential evaluated by rhodamine 123 staining. Further analysis by quantitative real-time PCR (qRT-PCR) indicated that the expression of caspase-3 and caspase-9 messenger RNA (mRNA) was increased significantly at the concentrations of 100 and 200?g/mL TiO2 NPs for 48h. Taken together, these findings suggest that TiO2 NPs can inhibit A549 cell proliferation, cause DNA damage, and induce apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data provide strong evidence that TiO2 NPs can induce cytotoxicity, significant DNA damage, and apoptosis of A549 cells, suggesting that exposure to TiO2 NPs could cause cell injury and be hazardous to health. PMID:25339530

  9. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells. Electronic supplementary information (ESI) available: Additional tables and figures supporting the information presented in the manuscript. See DOI: 10.1039/c2nr31785k

  10. Cytotoxicity of titanium and silicon dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagner, Stefanie; Mnzer, Simon; Behrens, Peter; Scheper, Thomas; Bahnemann, Detlef; Kasper, Cornelia

    2009-05-01

    Different TiO2 and SiO2 nanoparticles have been tested concerning their toxicity on selected mammalian cell lines. Various powders and suspensions, all of which consist of titanium or silicon dioxide nanoparticles have been examined. These particles differ in the crystal structure, the size and the BET-surface area. There was also a classification in fixed particles and in particles easily accessible in solution. With focus on the possible adsorption of the nanoparticles into the human organism, via skin and via respiratory tract, the effects on fibroblasts (NIH-3T3) and on a human lung adenocarcinoma epithelial cell line were examined. Additionally, the particles were tested with HEP-G2 cells, which are often used as model cell line for biocompatibility tests, and PC-12 cells, a rat adrenal pheochromocytoma cell line. The viability of the cells was examined by the MTT-test. The viability results were found to partly depend on the type of cells used. The experimental results show that the adhesion of the cells on the different powders strongly depends on the type of cell lines as well as on the type of powder. It was found that the lower viability of some cells on the powder coatings is not only caused by a cytotoxicity effect of the powders, but is also due to a lower adhesion of the cells on the particle surfaces. Furthermore, it could be shown that the physical properties of the powders cannot be easily correlated to any observed biological effect. While some powders show a significant suppression of the cell growth, others with similar physical properties indicate no toxic effect.

  11. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media.

    PubMed

    Xue, Yuying; Zhang, Ting; Zhang, Bangyong; Gong, Fan; Huang, Yanmei; Tang, Meng

    2016-03-01

    Silver nanoparticles (Ag NPs) have been widely used in medical and healthcare products owing to their unique antibacterial activities. However, their safety for humans and the environment has not yet been established. This study evaluated the cellular proliferation and apoptosis of Ag NPs suspended in different solvents using human liver HepG2 cells. The ionization of Ag NPs in different dispersion media [deionized water, phosphate-buffered saline (PBS), saline and cell culture] was measured using an Ag ion selective electrode. The MTT assay was used to examine the cell proliferation activities. The effects of Ag NPs on cell cycle, induction of apoptosis, production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. The degree of Ag NPs ionization differed with dispersion media, with the concentrations of silver ions in deionized water being the highest in all suspensions. Ag NPs could inhibit the viability of HepG2 cells in a time- and concentration-dependent manner. Ag NPs (40, 80 and 160 µg ml(-1) ) exposure could cause cell-cycle arrest in the G2/M phase, significantly increasing the apoptosis rate and ROS generation, and decreasing the MMP in HepG2 cells more sensitive to deionized water than in cell culture. These results suggested that the cellular toxicological mechanism of Ag NPs might be related to the oxidative stress of cells by the generation of ROS, leading to mitochondria injury and induction of apoptosis. It also implies that it is important to assess the physicochemical properties of NPs in the media where the biological toxicity tests are performed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198703

  12. Comparison of iron oxide nanoparticle and waterbath hyperthermia cytotoxicity

    NASA Astrophysics Data System (ADS)

    Ogden, J. A.; Tate, J. A.; Strawbridge, R. R.; Ivkov, R.; Hoopes, P. J.

    2009-02-01

    The development of medical grade iron oxide nanoparticles (IONP) has renewed interest in hyperthermia cancer therapy. Because of their modifiable size and heating capabilities under an AC magnetic field (alternating magnetic field, AMF), IONPs have the potential to damage or kill cells in a manner more therapeutically efficient than previous hyperthermia techniques. The use of IONPs in hyperthermia cancer therapy has prompted numerous questions regarding the cytotoxic mechanism associated with IONP heat therapy and if such mechanism is different (more or less effective) with respect to conventional hyperthermia techniques. In this in vitro study, we determine the immediate and long-term (24 hours) cytotoxic effects of isothermal IONP hyperthermia treatment versus a conventional global heating technique (water bath). Using the same heating time and temperature we showed significantly greater cytotoxicity in IONP-heated cells as opposed to water bath-treated cells. We postulate that the difference in treatment efficacy is due to the spatial relationship of particle-induced thermal damage within cells. Although the exact mechanism is still unclear, it appears likely that intracellular IONPs have to achieve a very high temperature in order to heat the surrounding environment; therefore it is reasonable to assume that particles localized to specific areas of the cell such as the membrane can deliver exacerbated injury to those areas. In this experiment, although detectable global temperature for the particle-heated cells stands comparable to the conventional heat treatment, particle-induced cell death is higher. From the results of this study, we propose that the mechanism of IONP hyperthermia renders enhanced cytotoxicity compared to conventional waterbath hyperthermia at the same measured thermal dose.

  13. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    PubMed

    Hatipoglu, Manolya Kukut; Kele?temur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used LeeMeisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity. PMID:25904404

  14. Source of cytotoxicity in a colloidal silver nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Kukut Hatipoglu, Manolya; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-01

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee-Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  15. SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells

    PubMed Central

    2010-01-01

    Background Nanometer silicon dioxide (nano-SiO2) has a wide variety of applications in material sciences, engineering and medicine; however, the potential cell biological and proteomic effects of nano-SiO2 exposure and the toxic mechanisms remain far from clear. Results Here, we evaluated the effects of amorphous nano-SiO2 (15-nm, 30-nm SiO2). on cellular viability, cell cycle, apoptosis and protein expression in HaCaT cells by using biochemical and morphological analysis, two-dimensional differential gel electrophoresis (2D-DIGE) as well as mass spectrometry (MS). We found that the cellular viability of HaCaT cells was significantly decreased in a dose-dependent manner after the treatment of nano-SiO2 and micro-sized SiO2 particles. The IC50 value (50% concentration of inhibition) was associated with the size of SiO2 particles. Exposure to nano-SiO2 and micro-sized SiO2 particles also induced apoptosis in HaCaT cells in a dose-dependent manner. Furthermore, the smaller SiO2 particle size was, the higher apoptotic rate the cells underwent. The proteomic analysis revealed that 16 differentially expressed proteins were induced by SiO2 exposure, and that the expression levels of the differentially expressed proteins were associated with the particle size. The 16 proteins were identified by MALDI-TOF-TOF-MS analysis and could be classified into 5 categories according to their functions. They include oxidative stress-associated proteins; cytoskeleton-associated proteins; molecular chaperones; energy metabolism-associated proteins; apoptosis and tumor-associated proteins. Conclusions These results showed that nano-SiO2 exposure exerted toxic effects and altered protein expression in HaCaT cells. The data indicated the alterations of the proteins, such as the proteins associated with oxidative stress and apoptosis, could be involved in the toxic mechanisms of nano-SiO2 exposure. PMID:20180970

  16. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials.

    PubMed

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M; Roberts, Jeffrey T

    2015-07-15

    The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled. PMID:25797930

  17. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells.

    PubMed

    Reeves, James F; Davies, Simon J; Dodd, Nicholas J F; Jha, Awadhesh N

    2008-04-01

    TiO(2) nanoparticles (< 100 nm diameter) have been reported to cause oxidative stress related effects, including inflammation, cytotoxicity and genomic instability, either alone or in the presence of UVA irradiation in mammalian studies. Despite the fact that the aquatic environment is often the ultimate recipient of all contaminants there is a paucity of data pertaining to the potential detrimental effects of nanoparticles on aquatic organisms. Therefore, these investigations aimed to evaluate the potential cytotoxic and genotoxic effects of TiO(2) nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO(2) alone (0.1-1000 microg ml(-1)) had little effect whereas co-exposure with UVA (0.5-2.0 kJm(-2)) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO(2) and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 microg ml(-1) in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO(2). UVA irradiation of TiO(2)-treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO(2) were most likely due to hydroxyl radical (OH) formation. PMID:18258270

  18. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells

    PubMed Central

    Lu, Xun; Qian, Jiangchao; Zhou, Huanjun; Gan, Qi; Tang, Wei; Lu, Jingxiong; Yuan, Yuan; Liu, Changsheng

    2011-01-01

    Background Silica nanoparticles have been discovered to exert cytotoxicity and induce apoptosis in normal human cells. However, until now, few studies have investigated the cytotoxicity of silica nanoparticles in tumor cells. Methods This study investigated the cytotoxicity of 750 nm silica nanoparticles in human HepG2 hepatoma cells, using normal human L-02 hepatocytes as a control. Cell nucleus morphology changes, cellular uptake, and expression of procaspase-9, p53, Bcl-2, and Bax, as well as the activity of caspase-3, and intracellular reactive oxygen species and glutathione levels in the silica nanoparticle-treated cells, were analyzed. Results The antitumor activity of the silica nanoparticles was closely related to particle size, and the antiproliferation activity decreased in the order of 20 nm > 7 nm > 50 nm. The silica nanoparticles were also cytotoxic in a dose- and time-dependent manner. However, the silica nanoparticles showed only slight toxicity in the L-02 control cells, Moreover, in HepG2 cells, oxidative stress and apoptosis were induced after exposure to 720 nm silica nanoparticles. Expression of p53 and caspase-3 increased, and expression of Bcl-2 and procaspase-9 decreased in a dose-dependent manner, whereas the expression of Bax was not significantly changed. Conclusion A mitochondrial-dependent pathway triggered by oxidative stress mediated by reactive oxygen species may be involved in apoptosis induced by silica nanoparticles, and hence cytotoxicity in human HepG2 hepatic cancer cells. PMID:21931484

  19. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts

    PubMed Central

    Ramos, Joseph F; Webster, Thomas J

    2012-01-01

    Background: Ventilator-associated pneumonia is a deadly nosocomial infection caused by contaminated endotracheal tubes. It has been shown that polyvinyl chloride (PVC, the endotracheal tube substrate) coated with elemental selenium nanoparticles reduces bacterial adherence and proliferation on PVC by over 99%. However, it is not known if selenium nanoparticles elicit a cytotoxic effect in vitro. The purpose of this study was to investigate the cytotoxic effects of PVC coated with selenium nanoparticles on fibroblasts, which are mammalian cells central to endotracheal tube intubation. Methods: Different concentrations of selenium nanoparticles were precipitated onto the PVC surface by reduction of selenium salts using glutathione. Characterization of PVC coated with selenium nanoparticles was done by scanning electron microscopy, energy dispersive x-ray, and contact angle measurements. For the cytotoxicity experiments, fibroblasts were seeded at a density of 5000 cm2 onto PVC coated with three different concentrations of selenium nanoparticles (high, medium, low) and incubated for 4 hours (adhesion) as well as for 24 hours and 72 hours (proliferation). The half-maximal inhibitory concentration (IC50) value was determined after 72 hours using an ultrahigh concentration. MTT assays were used to assess cell viability at the indicated time points. Results: The three concentrations of selenium nanoparticles did not elicit a cytotoxic effect after 72 hours (P < 0.01, n = 3). It was found that the IC50value was at the ultrahigh concentration of selenium nanoparticles. The nanoparticulate elemental selenium concentration previously shown to decrease the function of bacteria was shown not to cause a cytotoxic effect on fibroblasts in vitro. Conclusion: These findings demonstrate great selectivity between bacteria and healthy cells, and are a viable option for coating endotracheal tubes in order to prevent ventilator-associated pneumonia. PMID:22915842

  20. Nanoparticle Incorporation of Melittin Reduces Sperm and Vaginal Epithelium Cytotoxicity

    PubMed Central

    Jallouk, Andrew P.; Moley, Kelle H.; Omurtag, Kenan; Hu, Grace; Lanza, Gregory M.; Wickline, Samuel A.; Hood, Joshua L.

    2014-01-01

    Melittin is a cytolytic peptide component of bee venom which rapidly integrates into lipid bilayers and forms pores resulting in osmotic lysis. While the therapeutic utility of free melittin is limited by its cytotoxicity, incorporation of melittin into the lipid shell of a perfluorocarbon nanoparticle has been shown to reduce its toxicity in vivo. Our group has previously demonstrated that perfluorocarbon nanoparticles containing melittin at concentrations <10 M inhibit HIV infectivity in vitro. In the current study, we assessed the impact of blank and melittin-containing perfluorocarbon nanoparticles on sperm motility and the viability of both sperm and vaginal epithelial cells. We found that free melittin was toxic to sperm and vaginal epithelium at concentrations greater than 2 M (p<0.001). However, melittin nanoparticles were not cytotoxic to sperm (p?=?0.42) or vaginal epithelium (p?=?0.48) at an equivalent melittin concentration of 10 M. Thus, nanoparticle formulation of melittin reduced melittin cytotoxicity fivefold and prevented melittin toxicity at concentrations previously shown to inhibit HIV infectivity. Melittin nanoparticles were toxic to vaginal epithelium at equivalent melittin concentrations ?20 M (p<0.001) and were toxic to sperm at equivalent melittin concentrations ?40 M (p<0.001). Sperm cytotoxicity was enhanced by targeting of the nanoparticles to the sperm surface antigen sperm adhesion molecule 1. While further testing is needed to determine the extent of cytotoxicity in a more physiologically relevant model system, these results suggest that melittin-containing nanoparticles could form the basis of a virucide that is not toxic to sperm and vaginal epithelium. This virucide would be beneficial for HIV serodiscordant couples seeking to achieve natural pregnancy. PMID:24748389

  1. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles

    PubMed Central

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Lin, Chwan-Fwu; Chang, Yuan-Ting; Fang, Jia-You

    2015-01-01

    This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2•−, and intracellular Ca2+ were examined. The nanoparticles showed a size of 170–225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca2+ influx. The elevation of intracellular Ca2+ induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity. PMID:25609950

  2. Biodegradable nanoparticles designed for drug delivery: The number of nanoparticles impacts on cytotoxicity.

    PubMed

    Mendes, Lvia Palmerston; Delgado, Jorge Miguel Ferreira; Costa, Angela Daniela A; Vieira, Marcelo Sousa; Benfica, Poliana Lopes; Lima, Eliana Martins; Valadares, Marize Campos

    2015-09-01

    Nanostructured drug delivery systems are based on biocompatible and biodegradable components. Composition, size and membrane surface properties are characteristics that may influence cell viability in cytotoxicity assays. In this work, four nanostructured systems commonly used for drug delivery were prepared and cytotoxicity was evaluated on human lymphocytes and Balb/c 3T3 fibroblasts. The hemolytic potential was also investigated. Polymeric nanocapsules (NC) and nanospheres (NS), nanostructured lipid carriers (NLC) and liposomes were prepared and characterized for size, distribution, zeta potential and number per volume of the colloidal dispersion. Cell viability was evaluated, 24 and 48h, by MTT and neutral red assays (NR). Cells were incubated with each particle in eight different dilutions varying from 2.110(4) to 2.110(11)particles/mL. Diameter of nanoparticles was between 130 and 200nm, all samples exhibited narrow size distribution (polydispersity index below 0.1) and zeta potential varied from -6.8 to -19.5mV. NC, NS and NLC reduced cell viability in a dilution dependent manner. For these nanoparticles, the higher number of particles induced cell death for both cell types. Liposomes did not cause loss of cell viability even at the highest number of particles. Results suggest that, depending on the kind of nanoparticle, the number of particles in the dispersion can negatively influence cell viability in pre-clinical drug development. PMID:25596133

  3. Unraveling the cytotoxic potential of Temozolomide loaded into PLGA nanoparticles

    PubMed Central

    2014-01-01

    Background Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells. Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry. Results PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility. Conclusion PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity. PMID:24410831

  4. The mechanism of asbestos-induced cytotoxicity

    SciTech Connect

    Goodglick, L.A.

    1988-01-01

    Crocidolite asbestos fibers constitute a serious environmental pollutant capable of causing pleural scarring and cancer. This thesis addresses three questions: (1) what is the mechanism of asbestos-induced cytotoxicity in vitro and in vivo (2) What is the influence of fiber size on cytotoxicity in vitro and in vivo (3) What is the chronic response of the peritoneal cavity to asbestos fibers of varying lengths Macrophages release reactive oxygen metabolites when exposed to crocidolite in vitro or in vivo. Crocidolite-induced cytotoxicity is prevented with superoxide dismutase (SOD) and catalase. In addition, presoaking crocidolite fibers in deferoxamine, prevents cytotoxicity in vitro and in vivo. In vitro, macrophages exposed to crocidolite also lose mitochondrial membrane potential and undergo lipid peroxidation. Neither of these changes in itself, however, is responsible for macrophage death. We also examined the role of crocidolite fiber size in cytoxicity. Both long and short crocidolite fibers are toxic to macrophages in vitro via an oxidant dependent mechanism. Within the periotoneal cavity long crocidolite fibers are acutely cytotoxic and inflammatory while short fibers are not. Weekly intraperitoneal injections of long and native crocidolite asbestos fibers produced mesotheliomas in 20-40% of mice after 35-50 weeks. Neoplastic and preneoplastic cells were obtained from these mice, cultured, and characterized for in vitro transformation and in vivo tumorigenicity.

  5. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    NASA Astrophysics Data System (ADS)

    Hanley, Cory; Thurber, Aaron; Hanna, Charles; Punnoose, Alex; Zhang, Jianhui; Wingett, Denise G.

    2009-12-01

    Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-?, TNF-?, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  6. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    PubMed Central

    2011-01-01

    The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles. PMID:21439072

  7. Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles.

    PubMed

    Ma, Zhifang; Bai, Jing; Jiang, Xiue

    2015-08-19

    Established nanobio interactions face the challenge that the formation of nanoparticle-protein corona complexes shields the inherent properties of the nanoparticles and alters the manner of the interactions between nanoparticles and biological systems. Therefore, many studies have focused on protein corona-mediated nanoparticle binding, internalization, and intracellular transportation. However, there are a few studies to pay attention to if the corona encounters degradation after internalization and how the degradation of the protein corona affects cytotoxicity. To fill this gap, we prepared three types of off/on complexes based on gold nanoparticles (Au NPs) and dye-labeled serum proteins and studied the extracellular and intracellular proteolytic processes of protein coronas as well as their accompanying effects on cytotoxicity through multiple evaluation mechanisms, including cell viability, adenosine triphosphate (ATP) content, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). The proteolytic process was confirmed by recovery of the fluorescence of the dye-labeled protein molecules that was initially quenched by Au NPs. Our results indicate that the degradation rate of protein corona is dependent on the type of the protein based on systematical evaluation of the extracellular and intracellular degradation processes of the protein coronas formed by human serum albumin (HSA), γ-globulin (HGG), and serum fibrinogen (HSF). Degradation is the fastest for HSA corona and the slowest for HSF corona. Notably, we also find that the Au NP-HSA corona complex induces lower cell viability, slower ATP production, lower MMP, and higher ROS levels. The cytotoxicity of the nanoparticle-protein corona complex may be associated with the protein corona degradation process. All of these results will enrich the database of cytotoxicity induced by nanomaterial-protein corona complexes. PMID:26200209

  8. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells

    PubMed Central

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J.; Hofmann, Marie-Claude

    2010-01-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO3) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro. PMID:16014736

  9. Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts.

    PubMed

    Setyawati, Magdiel Inggrid; Khoo, Pheng Kian Stella; Eng, Bao Hui; Xiong, Sijing; Zhao, Xinxin; Das, Gautom Kumar; Tan, Timothy Thatt-Yang; Loo, Joachim Say Chye; Leong, David Tai; Ng, Kee Woei

    2013-03-01

    Engineered nanomaterials have become prevalent in our everyday life. While the popularity of using nanomaterials in consumer products continues to rise, increasing awareness of nanotoxicology has also fuelled efforts to accelerate our understanding of the ill effects that different nanomaterials can bring to biological systems. In this study, we investigated the potential cytotoxicity and genotoxicity of three nanoparticles: titanium dioxide (TiO(2)), terbium-doped gadolinium oxide (Tb-Gd(2)O(3)), and poly(lactic-co-glycolic acid) (PLGA). To evaluate nanoparticle-induced genotoxicity more realistically, a human skin fibroblast cell line (BJ) with less mutated genotype compared with cancer cell line was used. The nanoparticles were first characterized by size, morphology, and surface charge. Cytotoxicity effects of the nanoparticles were then evaluated by monitoring the proliferation of treated BJ cells. Genotoxic influence was ascertained by profiling DNA damage via detection of ?H2AX expression. Our results suggested that both TiO(2) and Tb-Gd(2)O(3) nanoparticles induced cytotoxicity in a dose dependent way on BJ cells. These two nanomaterials also promoted genotoxicity via DNA damage. On the contrary, PLGA nanoparticles did not induce significant cytotoxic or genotoxic effects on BJ cells. PMID:22927021

  10. Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity.

    PubMed

    Pooja, Deep; Panyaram, Sravani; Kulhari, Hitesh; Rachamalla, Shyam S; Sistla, Ramakrishna

    2014-09-22

    Xanthan gum (XG) has been widely used in food, pharmaceutical and cosmetic industries. In the present study, we explored the potential of XG in the synthesis of gold nanoparticle. XG was used as both reducing and stabilizing agent. The effect of various formulation and process variables such as temperature, reaction time, gum concentration, gum volume and gold concentration, in GNP preparation was determined. The XG stabilized, rubey-red XGNP were obtained with 5 ml of XG aqueous solution (1.5 mg/ml). The optimum temperature was 80C whereas the reaction time was 3 h. The optimized nanoparticles were also investigated as drug delivery carrier for doxorubicin hydrochloride. DOX loaded gold nanoparticles (DXGP) were characterized by dynamic light scattering, TEM, FTIR, and DSC analysis. The synthesized nanoparticle showed mean particle size of 15-20 nm and zeta potential -29.1 mV. The colloidal stability of DXGP was studied under different conditions of pH, electrolytes and serum. Nanoparticles were found to be stable at pH range between pH 5-9 and NaCl concentration up to 0.5 M. In serum, nanoparticles showed significant stability up to 24h. During toxicity studies, nanoparticles were found biocompatible and non-toxic. Compared with free DOX, DXGP displayed 3 times more cytotoxicity in A549 cells. In conclusion, this study provided an insight to synthesize GNP without using harsh chemicals. PMID:24906721

  11. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.

    PubMed

    Toropova, Alla P; Toropov, Andrey A; Rallo, Robert; Leszczynska, Danuta; Leszczynski, Jerzy

    2015-02-01

    The Monte Carlo technique has been used to build up quantitative structure-activity relationships (QSARs) for prediction of dark cytotoxicity and photo-induced cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of lethal concentration for 50% bacteria pLC50, LC50 in mol/L). The representation of nanoparticles include (i) in the case of the dark cytotoxicity a simplified molecular input-line entry system (SMILES), and (ii) in the case of photo-induced cytotoxicity a SMILES plus symbol '^'. The predictability of the approach is checked up with six random distributions of available data into the visible training and calibration sets, and invisible validation set. The statistical characteristics of these models are correlation coefficient 0.90-0.94 (training set) and 0.73-0.98 (validation set). PMID:25463851

  12. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00458b

  13. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles.

    PubMed

    Shi, Jingwen; Karlsson, Hanna L; Johansson, Katarina; Gogvadze, Vladimir; Xiao, Lisong; Li, Jiangtian; Burks, Terrance; Garcia-Bennett, Alfonso; Uheida, Abdusalam; Muhammed, Mamoun; Mathur, Sanjay; Morgenstern, Ralf; Kagan, Valerian E; Fadeel, Bengt

    2012-03-27

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO(2), CeO(2), SiO(2), and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO(2) and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO(2) and CeO(2). We also noted pronounced cytotoxicity for three out of four additional SiO(2) nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO(2) nanoparticles tested and for one of the supplementary SiO(2) nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO(2) nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn(2+) with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn(2+) could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO(2) nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  14. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    PubMed Central

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  15. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    SciTech Connect

    Loh, Jing Wen; Saunders, Martin; Lim, Lee-Yong; School of Biomedical, Biomolecular and Chemical Sciences, 35 Stirling Hwy, Crawley 6009

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  16. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.

    PubMed

    Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Bhattacharyya, Soumya Sundar; Das, Durba; Khuda-Bukhsh, Anisur Rahman

    2013-01-01

    The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer. PMID:23010037

  17. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    PubMed

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications. PMID:26456245

  18. Docetaxel loaded chitosan nanoparticles: formulation, characterization and cytotoxicity studies.

    PubMed

    Jain, Ankit; Thakur, Kanika; Kush, Preeti; Jain, Upendra K

    2014-08-01

    The primary objective of the present investigation was to explore biodegradable chitosan as a polymeric material for formulating docetaxel nanoparticles (DTX-NPs) to be used as a delivery system for breast cancer treatment. Docetaxel loaded chitosan nanoparticles were formulated by water-in-oil nanoemulsion system and characterized in terms of particle size, zeta potential, polydispersity index, drug entrapment efficiency (EE), loading capacity (LC), scanning electron microscopy (SEM), in vitro release study and drug release kinetics. Further, to evaluate the potential anticancer efficacy of docetaxel loaded chitosan nanoparticulate system, in vitro cytotoxicity studies on human breast cancer cell line (MDA-MB-231) were carried out. The morphological studies revealed the spherical shape of docetaxel loaded chitosan nanoparticles having an average size of 170.15.42-227.67.87nm, polydispersity index in the range of 0.2150.041-0.3780.059 and zeta potential between 28.3 and 31.4mV. Nanoparticles exhibited 65-76% of drug entrapment and 8-12% loading capacity releasing about 68-83% of the drug within 12h following Higuchi's square-root kinetics. An increase of 20% MDA-MB-231 cell line growth inhibition was determined by docetaxel loaded chitosan nanoparticles with respect to the free drug after 72h incubation. PMID:24971551

  19. Comparison of Iron Oxide Nanoparticle and Waterbath Hyperthermia Cytotoxicity

    PubMed Central

    Ogden, JA; Tate, JA; Strawbridge, RR; Ivkov, R; Hoopes, PJ

    2014-01-01

    The development of medical grade iron oxide nanoparticles (IONP) has renewed interest in hyperthermia cancer therapy. Because of their modifiable size and heating capabilities under an AC magnetic field (alternating magnetic field, AMF), IONPs have the potential to damage or kill cells in a manner more therapeutically efficient than previous hyperthermia techniques. The use of IONPs in hyperthermia cancer therapy has prompted numerous questions regarding the cytotoxic mechanism associated with IONP heat therapy and if such mechanism is different (more or less effective) with respect to conventional hyperthermia techniques. PMID:25301987

  20. Comparison of Iron Oxide Nanoparticle and Waterbath Hyperthermia Cytotoxicity.

    PubMed

    Ogden, Ja; Tate, Ja; Strawbridge, Rr; Ivkov, R; Hoopes, Pj

    2009-02-12

    The development of medical grade iron oxide nanoparticles (IONP) has renewed interest in hyperthermia cancer therapy. Because of their modifiable size and heating capabilities under an AC magnetic field (alternating magnetic field, AMF), IONPs have the potential to damage or kill cells in a manner more therapeutically efficient than previous hyperthermia techniques. The use of IONPs in hyperthermia cancer therapy has prompted numerous questions regarding the cytotoxic mechanism associated with IONP heat therapy and if such mechanism is different (more or less effective) with respect to conventional hyperthermia techniques. PMID:25301987

  1. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells

    PubMed Central

    Kim, Jung-Eun; Kim, Hyejin; An, Seong Soo A; Maeng, Eun Ho; Kim, Meyoung-Kon; Song, Yoon-Jae

    2014-01-01

    Silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles are widely used in various applications, raising issues regarding the possible adverse effects of these metal oxide nanoparticles on human cells. In this study, we determined the cytotoxic effects of differently charged SiO2 and ZnO nanoparticles, with mean sizes of either 100 or 20 nm, on the U373MG human glioblastoma cell line. The overall cytotoxicity of ZnO nanoparticles against U373MG cells was significantly higher than that of SiO2 nanoparticles. Neither the size nor the surface charge of the ZnO nanoparticles affected their cytotoxicity against U373MG cells. The 20 nm SiO2 nanoparticles were more toxic than the 100 nm nanoparticles against U373MG cells, but the surface charge had little or no effect on their cytotoxicity. Both SiO2 and ZnO nanoparticles activated caspase-3 and induced DNA fragmentation in U373MG cells, suggesting the induction of apoptosis. Thus, SiO2 and ZnO nanoparticles appear to exert cytotoxic effects against U373MG cells, possibly via apoptosis. PMID:25565841

  2. Synthesis, colloidal properties and cytotoxicity of biopolymer nanoparticles.

    PubMed

    Moorkoth, Dhanya; Nampoothiri, Kesavan Madhavan

    2014-11-01

    To characterize the physicochemical and biological stability of nanodevices suitable for biomedical applications, polylactic acid (PLA) nanoparticles (NPs) of 112??6 nm and polyhydroxy butyrate (PHB) of 15??5 nm size were prepared by standardizing the suitable method for each. Morphology of NPs was studied by scanning and transmission electron microscopy and temperature stability by thermogravimetric analysis. Their stability in biological fluids (simulated gastrointestinal and saliva) and tolerance against 0.5 mM NaCl were analyzed. PHB NPs remained stable in all fluids, while after 24 h treatment, the PLA NPs showed the beginning of disintegration with intestinal fluid mimic. In addition to the preparation of polyethylene glycol (PEG) surface-coated NPs, PLA-PEG-PLA triblock copolymer (MW???7,366 Da) was also chemically synthesized and characterized. Cytotoxicity of all forms of nanoparticles was tested by MTT assay and by annexin pi staining. PMID:25172058

  3. Size and surface chemistry of Au nanoparticles determine doxorubicin cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Chibli, Hicham; Nadeau, Jay

    2011-03-01

    Gold nanoparticles may assist in the delivery of anti-cancer drugs, such as doxorubicin, deeper into cells and tumors in vitro and in vivo. However, the ideal shape, size, and surface chemistry of the particles have not been well determined. This is especially difficult in the case of doxorubicin, which has multiple modes of action, reacting differently in cancer cells vs. normal cells and in cytoplasm vs. nucleus. We begin to address these issues here by examining the cytotoxicity of two sizes of Au-doxorubicin particles, as well as examining the tracking of injected Au-doxorubicin in mice in vivo. Finally, we examine mechanisms of toxicity in different cell lines, finding that nanoparticles may assist in overcoming anti-apoptotic mechanisms in cancer cells.

  4. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines

    PubMed Central

    2013-01-01

    Background Photocopiers emit nanoparticles with complex chemical composition. Short-term exposures to modest nanoparticle concentrations triggered upper airway inflammation and oxidative stress in healthy human volunteers in a recent study. To further understand the toxicological properties of copier-emitted nanoparticles, we studied in-vitro their ability to induce cytotoxicity, pro-inflammatory cytokine release, DNA damage, and apoptosis in relevant human cell lines. Methods Three cell types were used: THP-1, primary human nasal- and small airway epithelial cells. Following collection in a large volume photocopy center, nanoparticles were extracted, dispersed and characterized in the cell culture medium. Cells were doped at 30, 100 and 300 μg/mL administered doses for up to 24 hrs. Estimated dose delivered to cells, was ~10% and 22% of the administered dose at 6 and 24 hrs, respectively. Gene expression analysis of key biomarkers was performed using real time quantitative PCR (RT-qPCR) in THP-1 cells at 5 μg nanoparticles/mL for 6-hr exposure for confirmation purposes. Results Multiple cytokines, GM-CSF, IL-1β, IL-6, IL-8, IFNγ, MCP-1, TNF-α and VEGF, were significantly elevated in THP-1 cells in a dose-dependent manner. Gene expression analysis confirmed up-regulation of the TNF-α gene in THP-1 cells, consistent with cytokine findings. In both primary epithelial cells, cytokines IL-8, VEGF, EGF, IL-1α, TNF-α, IL-6 and GM-CSF were significantly elevated. Apoptosis was induced in all cell lines in a dose-dependent manner, consistent with the significant up-regulation of key apoptosis-regulating genes P53 and Casp8 in THP-1 cells. No significant DNA damage was found at any concentration with the comet assay. Up-regulation of key DNA damage and repair genes, Ku70 and Rad51, were also observed in THP-1 cells, albeit not statistically significant. Significant up-regulation of the key gene HO1 for oxidative stress, implicates oxidative stress induced by nanoparticles. Conclusions Copier-emitted nanoparticles induced the release of pro-inflammatory cytokines, apoptosis and modest cytotoxicity but no DNA damage in all three-human cell lines. Taken together with gene expression data in THP-1 cells, we conclude that these nanoparticles are directly responsible for inflammation observed in human volunteers. Further toxicological evaluations of these nanoparticles, including across different toner formulations, are warranted. PMID:23968360

  5. Cytotoxicity of ?-D-glucose coated silver nanoparticles on human lymphocytes

    NASA Astrophysics Data System (ADS)

    Vergallo, Cristian; Panzarini, Elisa; Izzo, Daniela; Carata, Elisabetta; Mariano, Stefania; Buccolieri, Alessandro; Serra, Antonio; Manno, Daniela; Dini, Luciana

    2014-06-01

    This study deals with the cytotoxicity of 30 nm sized ?-D-Glucose-coated silver NanoParticles (AgNPs-G) on human lymphocytes isolated from peripheral blood. Human lymphocytes were treated with different amounts (2 or 10103 NPs/cell) of AgNPs-G for 24hs. AgNPs-G toxicity was assayed with MTT test and morphological observations. Further evaluation included: (i) ROS generation (NBT assay) and (ii) absorption/uptake of AgNPs-G by lymphocytes (GF-AAS). As a general result, AgNPs-G were absorbed/taken up by lymphocytes and cytotoxicity and morphology changes were amount and time-dependent. By incubating cells with the highest NPs amount, only 10% viable lymphocytes were found at the end of experimental time. Parallel to cytotoxicity, morphological modifications and ROS generation were induced, thus supporting the increasing cell deaths. Interestingly, the lower amount of AgNPs-G increased cell viability as the glucose did. Our findings suggest that AgNPs-G-induced cytotoxicity depends on NPs amount and provide evidence of AgNPs-G adsorption/entering by lymphocytes; however, the mechanisms of interaction/internalization needs to be further investigated.

  6. Comparative cytotoxicity studies of carbon-encapsulated iron nanoparticles in murine glioma cells.

    PubMed

    Grudzinski, Ireneusz P; Bystrzejewski, Michal; Cywinska, Monika A; Kosmider, Anita; Poplawska, Magdalena; Cieszanowski, Andrzej; Fijalek, Zbigniew; Ostrowska, Agnieszka

    2014-05-01

    Carbon-encapsulated iron nanoparticles (CEINs) have recently emerged as a new class of magnetic nanomaterials with a great potential for an increasing number of biomedical applications. To address the current deficient knowledge of cellular responses due to CEIN exposures, we focused on the investigation of internalization profile and resulting cytotoxic effects of CEINs (0.0001-100 μg/ml) in murine glioma cells (GL261) in vitro. The studied CEIN samples were characterized (TEM, FT-IR, Zeta potential, Boehm titration) and examined as raw and purified nanomaterials with various surface chemistry composition. Of the four type CEINs (the mean diameter 47-56 nm) studied here, the as-synthesized raw nanoparticles (Fe@C/Fe) exhibited high cytotoxic effects on the plasma cell membrane (LDH, Calcein AM/PI) and mitochondria (MTT, JC-1) causing some pro-apoptotic evens (Annexin V/PI) in glioma cells. The effects of the purified (Fe@C) and surface-modified (Fe@C-COOH and Fe@C-(CH2)2COOH) CEINs were found in quite similar patterns; however, most of these cytotoxic events were slightly diminished compared to those induced by Fe@C/Fe. The study showed that the surface-functionalized CEINs affected the cell cycle progression in both S and G2/M phases to a greater extent compared to that of the rest of nanoparticles studied to data. Taken all together, the present results highlight the importance of the rational design of CEINs as their physicochemical features such as morphology, hydrodynamic size, impurity profiles, and especially surface characteristics are critical determinants of different cytotoxic responses. PMID:24632386

  7. Rhamnose-coated superparamagnetic iron-oxide nanoparticles: an evaluation of their in vitro cytotoxicity, genotoxicity and carcinogenicity.

    PubMed

    Paolini, Alessandro; Guarch, Constança Porredon; Ramos-López, David; de Lapuente, Joaquín; Lascialfari, Alessandro; Guari, Yannick; Larionova, Joulia; Long, Jerome; Nano, Rosanna

    2016-04-01

    Tumor recurrence after the incomplete removal of a tumor mass inside brain tissue is the main reason that scientists are working to identify new strategies in brain oncologic therapy. In particular, in the treatment of the most malignant astrocytic tumor glioblastoma, the use of magnetic nanoparticles seems to be one of the most promising keys in overcoming this problem, namely by means of magnetic fluid hyperthermia (MFH) treatment. However, the major unknown issue related to the use of nanoparticles is their toxicological behavior when they are in contact with biological tissues. In the present study, we investigated the interaction of glioblastoma and other tumor cell lines with superparamagnetic iron-oxide nanoparticles covalently coated with a rhamnose derivative, using proper cytotoxic assays. In the present study, we focused our attention on different strategies of toxicity evaluation comparing different cytotoxicological approaches in order to identify the biological damages induced by the nanoparticles. The data show an intensive internalization process of rhamnose-coated iron oxide nanoparticles by the cells, suggesting that rhamnose moiety is a promising biocompatible coating in favoring cells' uptake. With regards to cytotoxicity, a 35% cell death at a maximum concentration, mainly as a result of mitochondrial damages, was found. This cytotoxic behavior, along with the high uptake ability, could facilitate the use of these rhamnose-coated iron-oxide nanoparticles for future MFH therapeutic treatments. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26708321

  8. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes.

    PubMed

    Periasamy, Vaiyapuri S; Athinarayanan, Jegan; Alfawaz, Mohammed A; Alshatwi, Ali A

    2016-02-01

    Carbon based nanomaterials, including carbon nanotubes, graphene, nanodiamond and carbon nanoparticles, have emerged as potential candidates for a wide variety of applications because of their unusual electrical, mechanical, thermal and optical properties. However, our understanding of how increased usage of carbon based nanomaterials could lead to harmful effects in humans and other biological systems is inadequate. Our present investigation is focused on the cellular toxicity of carbon nanoparticles (CNPs) on human mesenchymal stem cells (hMSCs). Following exposure to CNPs, cell viability, nuclear morphological changes, apoptosis and cell cycle progression were monitored. Furthermore, the expression of genes involved in both cell death (e.g., P53, TNF3, CDKN1A, TNFRSF1A, TNFSF10, NFKBIA, BCL2L1) and cell cycle regulation (e.g., PCNA, EGR1, E2F1, CCNG1, CCND1, CCNC, CYCD3) were assessed using qPCR. Our results indicated that CNPs reduce cell viability and cause chromatin condensation and DNA fragmentation. Cell cycle analysis indicated that CNPs affect the cell cycle progression. However, the gene expression measurements confirmed that CNPs significantly upregulated the P53, TNF3, CDKNIA, and NFKBIA genes and downregulated the EGR1 gene in hMSCs. Our findings suggest that CNPs reduce cell viability by disrupting the expression of cell death genes in human mesenchymal stem cell (hMSC). The results of this investigation revealed that CNPs exhibited moderate toxicity on hMSCs. PMID:26364217

  9. The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells.

    PubMed

    Lai, Xiaofeng; Wei, Yifang; Zhao, Hu; Chen, Suning; Bu, Xin; Lu, Fan; Qu, Dingding; Yao, Libo; Zheng, Jianyong; Zhang, Jian

    2015-06-01

    Metallic nanoparticles (NPs) have potential applications in industry and medicine, but they also have the potential to cause many chronic pulmonary diseases. Mechanisms for their cytotoxicity, glucose and energy metabolism responses need to be fully explained in lung epithelial cells after treatment with metallic nanoparticles. In our study, two different metallic nanoparticles (Fe2 O3 and ZnO) and two cell-based assays (BEAS-2B and A549 cell lines) were used. Our findings demonstrate that ZnO nanoparticles, but not Fe2 O3 nanoparticles, induce cell cycle arrest, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial dysfunction and glucose metabolism perturbation, which are responsible for cytotoxicity. These results also suggest that the glucose metabolism and bioenergetics had a great potential in evaluating the cytotoxicity and thus were very helpful in understanding their underlying molecular mechanisms. PMID:25727528

  10. Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study.

    PubMed

    Ashtari, Khadijeh; Khajeh, Khosro; Fasihi, Javad; Ashtari, Parviz; Ramazani, Ali; Vali, Hojatollah

    2012-05-01

    Silica-encapsulated magnetic nanoparticles (MNPs) were prepared via microemulsion method. The products were characterized by high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). MNPs with no observed cytotoxic activity against human lung carcinoma cell and brine shrimp lethality were used as suitable support for glucose oxidase (GOD) immobilization. Binding of GOD onto the support was confirmed by the FTIR spectra. The amount of immobilized GODs was 95 mg/g. Storage stability study showed that the immobilized GOD retained 98% of its initial activity after 45 days and 90% of the activity was also remained after 12 repeated uses. Considerable enhancements in thermal stabilities were observed for the immobilized GOD at elevated temperatures up to 80C and the activity of immobilized enzyme was less sensitive to pH changes in solution. PMID:22269345

  11. Cytotoxicity of glass ionomer cements containing silver nanoparticles

    PubMed Central

    Magalhães, Ana-Paula-Rodrigues; Pires, Wanessa-Carvalho; Pereira, Flávia-Castro; Silveira-Lacerda, Elisângela-Paula; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Souza-Costa, Carlos-Alberto; Lopes, Lawrence-Gonzaga; Estrela, Carlos

    2015-01-01

    Background Some studies have investigated the possibility of incorporating silver nanoparticles (NAg) into dental materials to improve their antibacterial properties. However, the potential toxic effect of this material on pulp cells should be investigated in order to avoid additional damage to the pulp tissue. This study evaluated the cytotoxicity of conventional and resin-modified glass ionomer cements (GIC) with and without addition of NAg. Material and Methods NAg were added to the materials at two different concentrations by weight: 0.1% and 0.2%. Specimens with standardized dimensions were prepared, immersed in 400 µL of culture medium and incubated at 37°C and 5% CO2 for 48 h to prepare GIC liquid extracts, which were then incubated in contact with cells for 48 h. Culture medium and 0.78% NAg solution were used as negative and positive controls, respectively. Cell viability was determined by MTT and Trypan Blue assays. ANOVA and the Tukey test (α=0.05) were used for statistical analyses. Results Both tests revealed a significant decrease in cell viability in all groups of resin modified cements (p<0.001). There were no statistically significant differences between groups with and without NAg (p>0.05). The differences in cell viability between any group of conventional GIC and the negative control were not statistically significant (p>0.05). Conclusions NAg did not affect the cytotoxicity of the GIC under evaluation. Key words:Glass ionomer cements, totoxicity, cell culture techniques, nanotechnology, metal nanoparticles. PMID:26644839

  12. Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2.

    PubMed

    Bhmert, Linda; Niemann, Birgit; Thnemann, Andreas F; Lampen, Alfonso

    2012-07-01

    Silver nanoparticles are used in a wide range of consumer products such as clothing, cosmetics, household goods, articles of daily use and pesticides. Moreover, the use of a nanoscaled silver hydrosol has been requested in the European Union for even nutritional purposes. However, despite the wide applications of silver nanoparticles, there is a lack of information concerning their impact on human health. In order to investigate the effects of silver nanoparticles on human intestinal cells, we used the Caco-2 cell line and peptide-coated silver nanoparticles with defined colloidal, structural and interfacial properties. The particles display core diameter of 20 and 40 nm and were coated with the small peptide L-cysteine L-lysine L-lysine. Cell viability and proliferation were measured using Promegas CellTiter-Blue Cell Viability assay, DAPI staining and impedance measurements. Apoptosis was determined by Annexin-V/7AAD staining and FACS analysis, membrane damage with Promegas LDH assay and reactive oxygen species by dichlorofluorescein assay. Exposure of proliferating Caco-2 cells to silver nanoparticle induced decreasing adherence capacity and cytotoxicity, whereby the formation of reactive oxygen species could be the mode of action. The effects were dependent on particle size (20, 40 nm), doses (5-100 ?g/mL) and time of incubation (4-48 h). Apoptosis or membrane damage was not detected. PMID:22418598

  13. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells.

    PubMed

    Asare, Nana; Instanes, Christine; Sandberg, Wiggo J; Refsnes, Magne; Schwarze, Per; Kruszewski, Marcin; Brunborg, Gunnar

    2012-01-27

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines; including the potential effects on reproduction and fertility, are relevant for this risk evaluation. In this study, we examined effects of silver particles of nano- (20nm) and submicron- (200nm) size, and titanium dioxide nanoparticles (TiO(2)-NPs; 21nm), with emphasis on reproductive cellular- and genotoxicity. Ntera2 (NT2, human testicular embryonic carcinoma cell line), and primary testicular cells from C57BL6 mice of wild type (WT) and 8-oxoguanine DNA glycosylase knock-out (KO, mOgg1(-/-)) genotype were exposed to the particles. The latter mimics the repair status of human testicular cells vs oxidative damage and is thus a suitable model for human male reproductive toxicity studies. The results suggest that silver nano- and submicron-particles (AgNPs) are more cytotoxic and cytostatic compared to TiO(2)-NPs, causing apoptosis, necrosis and decreased proliferation in a concentration- and time-dependent manner. The 200nm AgNPs in particular appeared to cause a concentration-dependent increase in DNA-strand breaks in NT2 cells, whereas the latter response did not seem to occur with respect to oxidative purine base damage analysed with any of the particles tested. PMID:22085606

  14. Cytotoxicity evaluation of silica nanoparticles using fish cell lines.

    PubMed

    Vo, Nguyen T K; Bufalino, Mary R; Hartlen, Kurtis D; Kitaev, Vladimir; Lee, Lucy E J

    2014-01-01

    Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100?g/mL were needed to achieve 24h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16nm) were relatively more toxic than larger sized ones (24 and 44nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays. PMID:24357037

  15. Cytotoxicity of TiO{sub 2} nanoparticles towards freshwater sediment microorganisms at low exposure concentrations

    SciTech Connect

    Kumari, Jyoti; Kumar, Deepak; Mathur, Ankita; Naseer, Arif; Kumar, Ravi Ranjan; Thanjavur Chandrasekaran, Prathna; Chaudhuri, Gouri; Pulimi, Mrudula; Raichur, Ashok M.; Babu, S.; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava

    2014-11-15

    There is a persistent need to assess the effects of TiO{sub 2} nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO{sub 2} nanoparticle-induced acute toxicity at sub-ppm level (≤1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. - Highlights: • Toxicity of NPs towards freshwater sediment bacteria at sub-ppm concentrations. • Decreased toxicity of the nanoparticles in the consortium of microorganisms. • Enhanced bacterial resistance through EPS and biofilm formation in the presence of NPs. • Considerable surface damage of cells and internalization of NPs. • Gene expression analyses related to biofilm formation in the presence of NPs.

  16. Vitamin E ameliorates iodine-induced cytotoxicity in thyroid.

    PubMed

    Yu, Jiashu; Shan, Zhongyan; Chong, Wei; Mao, Jinyuan; Geng, Yuxiu; Zhang, Caixia; Xing, Qian; Wang, Weiwei; Li, Ningna; Fan, Chenling; Wang, Hong; Zhang, Hongmei; Teng, Weiping

    2011-06-01

    Acute and excessive iodine supplementation leads to iodine-induced thyroid cytotoxicity. Excessive oxidative stress has been suggested to be one of the underlying mechanisms in the development of thyroid cytotoxicity. The aim of this study was to investigate whether vitamin E (VE), an important antioxidant, could ameliorate iodine-induced thyroid cytotoxicity. A goiter was induced in rats by feeding a low-iodine (LI) diet for 12 weeks. Involution of hyperplasia was obtained by administering a twofold physiological dose of iodine in feeding water with/without the supplementation of 25-, 50-, or 100-fold physiological dose of VE in the LI diet for 4 weeks. In iodine-supplemented rats, thyroid epithelial cell ultrastructure injuries remained and were more severe. Relative weights of iodine-induced involuting glands were significantly reduced compared with the goiter, but still higher than control. Immunohistochemistry indicated that the expression of 4-hydroxynonenal, 8-hydroxyguanine, peroxiredoxin 5, and CD68 in thyroid increased (P<0.01), whereas thioredoxin reductase 1 decreased (P<0.01). VE supplementation attenuated thyroid cytotoxicity induced by iodine. A 50-fold VE dose was optimal in attenuating twofold iodine-induced thyroid cytotoxicity. However, VE supplementation did not reduce the weight or relative weight of the iodine-induced involuting gland. These results show that excess iodine leads to thyroid damage and VE supplementation can partly ameliorate iodine-induced thyroid cytotoxicity. PMID:21406454

  17. Cytotoxical products formation on the nanoparticles heated by the pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Kogan, Boris Ya.; Titov, Andrey A.; Rakitin, Victor Yu.; Kvacheva, Larisa D.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2006-02-01

    Cytotoxical effect of a pulsed laser irradiation in presence of nanoparticles of carbon black, sulphuretted carbon and fullerene-60 on death of human uterus nick cancer HeLa and mice lymphoma P 388 cells was studied in vitro. Bubbles formation as result of "microexplosions" of nanoparticles is one of possible mechanisms of this effect. Other possible mechanism is cytotoxical products formation in result of pyrolysis of nanoparticles and biomaterial which is adjoining. The cytotoxical effect of addition of a supernatant from the carbon nanoparticles suspensions irradiated by the pulsed laser was studied to test this assumption. Analysis using gas chromatograph determined that carbon monoxide is principal gaseous product of such laser pyrolysis. This is known as cytotoxical product. Efficiency of its formation is estimated.

  18. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles.

    PubMed

    Lira, M C B; Santos-Magalhães, N S; Nicolas, V; Marsaud, V; Silva, M P C; Ponchel, G; Vauthier, C

    2011-09-01

    The aim was to synthesize and characterize fucoidan-coated poly(isobutylcyanoacrylate) nanoparticles. The nanoparticles were prepared by anionic emulsion polymerization (AEP) and by redox radical emulsion polymerization (RREP) of isobutylcyanoacrylate using fucoidan as a new coating material. The nanoparticles were characterized, and their cytotoxicity was evaluated in vitro on J774 macrophage and NIH-3T3 fibroblast cell lines. Cellular uptake of labeled nanoparticles was investigated by confocal fluorescence microscopy. Results showed that both methods were suitable to prepare stable formulations of fucoidan-coated PIBCA nanoparticles. Stable dispersions of nanoparticles were obtained by AEP with up to 100% fucoidan as coating material. By the RREP method, stable suspensions of nanoparticles were obtained with only up to 25% fucoidan in a blend of polysaccharide composed of dextran and fucoidan. The zeta potential of fucoidan-coated nanoparticles was decreased depending on the percentage of fucoidan. It reached the value of -44 mV for nanoparticles prepared by AEP with 100% of fucoidan. Nanoparticles made by AEP appeared more than four times more cytotoxic (IC(50) below 2 μg/mL) on macrophages J774 than nanoparticles made by RREP (IC(50) above 9 μg/mL). In contrast, no significant difference in cytotoxicity was highlighted by incubation of the nanoparticles with a fibroblast cell line. On fibroblasts, both types of nanoparticles showed similar cytotoxicity. Confocal fluorescence microscopy observations revealed that all types of nanoparticles were taken up by both cell lines. The distribution of the fluorescence in the cells varied greatly with the type of nanoparticles. PMID:21349331

  19. Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents.

    PubMed

    Zhou, Jing; Duan, Lei; Chen, Huaming; Ren, Xiaomei; Zhang, Zhang; Zhou, Fengtao; Liu, Jinsong; Pei, Duanqing; Ding, Ke

    2009-09-01

    2-Piperazinyl naphthoquinones (2) and 2-piperidinyl naphthoquinones (3) were designed and synthesized as new cytotoxic and apoptosis inducing agents by utilizing the anti-parasite drug atovaquone as lead compound. Several compounds displayed significantly improved cytotoxic activities against a panel of cancer cell lines than that of atovaquone. These compounds also induced apoptosis through activating pro-apoptotic caspases 9 and 3. PMID:19632833

  20. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    PubMed

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. PMID:24433880

  1. Diethyldithiocarbamate-induced cytotoxicity and apoptosis in leukemia cell lines.

    PubMed

    Kanno, Syu-ichi; Matsukawa, Emi; Miura, Ai; Shouji, Ai; Asou, Keiko; Ishikawa, Masaaki

    2003-07-01

    Diethyldithiocarbamate (DDTC) has been shown to induce cytotoxicity in several different systems. We examined whether the DDTC-induced cytotoxicity was via apoptosis, or in relation to intracellular glutathione (GSH) in various murine and human leukemia cell lines. The cells most sensitive to DDTC-induced cytotoxicity were P388 lymphoid neoplasma cells and NALM-6, a B cell line of acute lymphocytic leukemia (ALL). The next level of susceptible cells included J774.1, having a macrophage function, HL-60 premyelocytic leukemia cells, MOLT-4, an acute lymphoblastic leukemia cell, and Jurkat, a T-cell leukemia. U937 (expressing many monocyte-like characteristics), K562 erythroleukemia and K562/DXR (a multidrug-resistant clone derived from K562) were almost unaffected by DDTC. P388 was also highly susceptible to H(2)O(2), a most useful exogenous reactive oxygen species generator, and was lower in intracellular total GSH content than other leukemia cells. DDTC-induced cytotoxicity was closely related to intracellular GSH, but the level of cellular GSH did not always correlate with H(2)O(2)-induced cytotoxicity in this experiment. K562 had a higher intracellular total GSH content and showed lower susceptibility to DDTC and H(2)O(2), but with the combination of DDTC and DL-buthionine-(S,R)-sulfoximine (BSO), cytotoxicity increased significantly. The ratio of GSH/GSSG in P388 was reduced by DDTC or H(2)O(2). H(2)O(2)-induced cytotoxicity was completely blocked by catalase (CAT), while it was enhanced by superoxide dismutase (SOD). CAT or SOD did not affect DDTC-induced cytotoxicity. N-Acetylcysteine (NAC: 1 mM), a vanguard substance of GSH, and aurintricarboxylic acid (ATA: 100 microM), an endonuclease inhibitor, ameliorated DDTC-induced cytotoxicity and apoptosis. In conclusion, we suggest that DDTC-induced cytotoxicity was via an oxidative shift in the intracellular redox state, and accompanied the activation of endonuclease through apoptosis in leukemia cell lines. PMID:12843619

  2. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    PubMed Central

    Hong, Seong Cheol; Lee, Jong Ho; Lee, Jaewook; Kim, Hyeon Yong; Park, Jung Youn; Cho, Johann; Lee, Jaebeom; Han, Dong-Wook

    2011-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with ?O? groups, so-called bare SPIONs. Following this, they were modified with three different functional groups hydroxyl (?OH), carboxylic (?COOH), and amine (?NH2) groups by coating their surfaces with tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS), TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity, and DNA stability in L-929 fibroblasts were determined by water-soluble tetrazolium, 2?,7?-dichlorodihydrofluorescein, lactate dehydrogenase, and comet assays, respectively. Our toxicological observations suggest that the functional groups and sizes of SPIONs are critical determinants of cellular responses, degrees of cytotoxicity and genotoxicity, and potential mechanisms of toxicity. Nanoparticles with various surface modifications and of different sizes induced slight, but possibly meaningful, changes in cell cytotoxicity and genotoxicity, which would be significantly valuable in further studies of bioconjugation and cell interaction for drug delivery, cell culture, and cancer-targeting applications. PMID:22238510

  3. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity.

    PubMed

    He, Chengyong; Jiang, Shengwei; Jin, Haijing; Chen, Shuzhen; Lin, Gan; Yao, Huan; Wang, Xiaoyong; Mi, Peng; Ji, Zhiliang; Lin, Yuchun; Lin, Zhongning; Liu, Gang

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are highly cytotoxic and target cancer cells with high specificity; however, the mechanism by which SPIONs induce cancer cell-specific cytotoxicity remains unclear. Herein, the molecular mechanism of SPION-induced cancer cell-specific cytotoxicity to cancer cells is clarified through DNA microarray and bioinformatics analyses. SPIONs can interference with the mitochondrial electron transport chain (METC) in cancer cells, which further affects the production of ATP, mitochondrial membrane potential, and microdistribution of calcium, and induces cell apoptosis. Additionally, SPIONs induce the formation of reactive oxygen species in mitochondria; these reactive oxygen species trigger cancer-specific cytotoxicity due to the lower antioxidative capacity of cancer cells. Moreover, the DNA microarray and gene ontology analyses revealed that SPIONs elevate the expression of metallothioneins in both normal and cancer cells but decrease the expression of METC genes in cancer cells. Overall, these results suggest that SPIONs induce cancer cell death by targeting the METC, which is helpful for designing anti-cancer nanotheranostics and evaluating the safety of future nanomedicines. PMID:26773667

  4. Effect of polyethylene glycol modification of TiO?nanoparticles on cytotoxicity and gene expressions in human cell lines.

    PubMed

    Mano, Sharmy Saimon; Kanehira, Koki; Sonezaki, Shuji; Taniguchi, Akiyoshi

    2012-01-01

    Nanoparticles (NPs) are tiny materials used in a wide range of industrial and medical applications. Titanium dioxide (TiO(2)) is a type of nanoparticle that is widely used in paints, pigments, and cosmetics; however, little is known about the impact of TiO(2) on human health and the environment. Therefore, considerable research has focused on characterizing the potential toxicity of nanoparticles such as TiO(2) and on understanding the mechanism of TiO(2) NP-induced nanotoxicity through the evaluation of biomarkers. Uncoated TiO(2) NPs tend to aggregate in aqueous media, and these aggregates decrease cell viability and induce expression of stress-related genes, such as those encoding interleukin-6 (IL-6) and heat shock protein 70B' (HSP70B'), indicating that TiO(2) NPs induce inflammatory and heat shock responses. In order to reduce their toxicity, we conjugated TiO(2) NPs with polyethylene glycol (PEG) to eliminate aggregation. Our findings indicate that modifying TiO(2) NPs with PEG reduces their cytotoxicity and reduces the induction of stress-related genes. Our results also suggest that TiO(2) NP-induced effects on cytotoxicity and gene expression vary depending upon the cell type and surface modification. PMID:22489177

  5. Effect of Polyethylene Glycol Modification of TiO2 Nanoparticles on Cytotoxicity and Gene Expressions in Human Cell Lines

    PubMed Central

    Mano, Sharmy Saimon; Kanehira, Koki; Sonezaki, Shuji; Taniguchi, Akiyoshi

    2012-01-01

    Nanoparticles (NPs) are tiny materials used in a wide range of industrial and medical applications. Titanium dioxide (TiO2) is a type of nanoparticle that is widely used in paints, pigments, and cosmetics; however, little is known about the impact of TiO2 on human health and the environment. Therefore, considerable research has focused on characterizing the potential toxicity of nanoparticles such as TiO2 and on understanding the mechanism of TiO2 NP-induced nanotoxicity through the evaluation of biomarkers. Uncoated TiO2 NPs tend to aggregate in aqueous media, and these aggregates decrease cell viability and induce expression of stress-related genes, such as those encoding interleukin-6 (IL-6) and heat shock protein 70B (HSP70B), indicating that TiO2 NPs induce inflammatory and heat shock responses. In order to reduce their toxicity, we conjugated TiO2 NPs with polyethylene glycol (PEG) to eliminate aggregation. Our findings indicate that modifying TiO2 NPs with PEG reduces their cytotoxicity and reduces the induction of stress-related genes. Our results also suggest that TiO2 NP-induced effects on cytotoxicity and gene expression vary depending upon the cell type and surface modification. PMID:22489177

  6. An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Cimpan, M. R.; Mordal, T.; Schlermann, J.; Allouni, Z. E.; Pliquett, U.; Cimpan, E.

    2013-04-01

    Impedance-based assays can constitute a reliable alternative to the conventional methods used in nanotoxicology due to the important advantages of being label-free and monitoring the cells in real-time. In this study, the suitability of impedance-monitoring for the screening of nanoparticle (NP)-induced cytotoxicity was assessed. The effect of titanium dioxide (TiO2)-NPs on cellular proliferation, viability, spreading, and detachment from substrate was evaluated by continuous impedance-based measurements made with an xCELLigence system. Fibroblasts seeded in microelectrode-embedded E-plates were exposed to spherical anatase nano-TiO2 (5, 10, and 40 nm in diameter) for up to 120 h. An alternative excitation signal (20 mV control voltage amplitude) was applied at 10, 25, and 50 kHz to the microelectrodes in the E-plates. Cells attached to the electrode surfaces act as insulators and lead to an increase in impedance. For validating the impedance-method, Trypan Blue exclusion and ultrahigh resolution imaging (URI) were employed. The general trend observed was a decrease in impedance following exposure to TiO2-NPs. Impedance-based results were in most instances in accordance with those from the Trypan Blue exclusion and URI assays indicating that the impedance-based approach has merit. Further studies are needed to validate it as a high-throughput method for evaluating NPs' cytotoxicity.

  7. Cytotoxicity of TiO? nanoparticles and their detoxification in a freshwater system.

    PubMed

    Dalai, Swayamprava; Pakrashi, Sunandan; Joyce Nirmala, M; Chaudhri, Apoorvi; Chandrasekaran, N; Mandal, A B; Mukherjee, Amitava

    2013-08-15

    In the current study, two aspects concerning (i) the cytotoxicity potential of TiO? nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (?1 ?g/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO? NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration-sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects. PMID:23680676

  8. Green Synthesis of Small Silver Nanoparticles Using Geraniol and Its Cytotoxicity against Fibrosarcoma-Wehi 164

    PubMed Central

    Safaepour, Mona; Shahverdi, Ahmad Reza; Shahverdi, Hamid Reza; Khorramizadeh, Mohammad Reza; Gohari, Ahmad Reza

    2009-01-01

    Many reports have been published about the biogenesis of silver nanoparticles using several plant extracts such as Pelargonium graveolens (P.graveolens- geranium) and Azadirachta indica (neem) but the capacity of their natural reducing constituents to form silver nanoparticles has not yet been studied. In this research the synthesis of silver nanoparticles using geraniol has been investigated. We successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1 to 10 nm with an average size of 6 nm. Also the cytotoxicity of the prepared silver nanoparticles was investigated using a cancer cell line (Fibrosarcoma-Wehi 164). The cytotoxicity analysis of the sample shows a direct dose-response relationship; cytotoxicity increased at higher concentrations. At concentration of 1 g/ml, silver nanoparticles was able to inhibit the cell line's growth by less than 30%. Conversly, the presence of 5 g/ml of silver nanoparticlse significantly inhibited the cell line's growth (>60%). The concentration necessary to produce 50% cell death was 2.6 g/ml for this silver nanoparticles preapared with geraniol. PMID:23407598

  9. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  10. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells. PMID:25159881

  11. Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Sadhukhan, Ratan; Ghosh, Utpal; Das, Tapan Kumar

    2015-04-01

    The interaction of calf thymus DNA (CTDNA) with silver nanoparticles (SNP) has been investigated following spectroscopic studies, analysis of melting temperature (Tm) curves and hydrodynamic measurement. In spectrophotometric titration and thermal denaturation studies of CTDNA it was found that SNP can form a complex with double-helical DNA and the increasing value of Tm also supported the same. The association constant of SNP with DNA from UV-Vis study was found to be 4.1 × 103 L/mol. The fluorescence emission spectra of intercalated ethidium bromide (EB) with increasing concentration of SNP represented a significant reduction of EB intensity and quenching of EB fluorescence. The results of circular dichroism (CD) suggested that SNP can change the conformation of DNA. From spectroscopic, hydrodynamic, and DNA melting studies, SNP has been found to be a DNA groove binder possessing partial intercalating property. Cell cytotoxicity of SNP was compared with that of normal silver salt solution on HeLa cells. Our results show that SNP has less cytotoxicity compared to its normal salt solution and good cell staining property.

  12. Hitchhiking nanoparticles: Reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes.

    PubMed

    Wayteck, Laura; Dewitte, Heleen; De Backer, Lynn; Breckpot, Karine; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2016-01-01

    Following intravenous injection of anti-cancer nanomedicines, many barriers need to be overcome en route to the tumor. Cell-mediated delivery of nanoparticles (NPs) is promising in terms of overcoming several of these barriers based on the tumoritropic migratory properties of particular cell types. This guided transport aims to enhance the NP accumulation in the tumor and moreover enhance the infiltration of regions that are typically inaccessible for free NPs. Within this study, cytotoxic CD8(+) T cells were selected as carriers based on both their ability to migrate to the tumor and their intrinsic cytolytic activity against tumor cells. Many anti-cancer nanomedicines require tumor cell internalization to mediate cytosolic drug delivery and enhance the anti-cancer effect. This proof-of-concept therefore reports on the reversible attachment of liposomes to the surface of cytotoxic T lymphocytes via a reduction sensitive coupling. The activation status of the T cells and the liposome composition are shown to strongly influence the loading efficiency. Loading the cells with liposomes does not compromise T cell functionalities like proliferation and cytolytic function. Additionally, the triggered liposome release is demonstrated upon the addition of glutathione. Based on this optimization using liposomes as model NPs, a small interfering RNA (siRNA)-loaded NP was developed that can be coupled to the surface of CD8(+) T cells. PMID:26606450

  13. Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro.

    PubMed

    ?kien?, Rasa; Snitka, Valentinas

    2015-11-01

    Bovine serum albumin (BSA) and zinc oxide nanoparticles (ZnO NPs) are chosen as a model system to investigate NPs-protein corona complex formation. ZnO NPs with average size of ?20nm are coated with BSA using covalent and non-covalent conjugation at temperatures of 4C and 20C. The interaction mechanism between ZnO NPs and BSA is studied by using UV-vis absorption, fluorescence, synchronous fluorescence and Raman spectroscopy. Raman spectra of BSA in the presence of ZnO NPs are registered for the first time and confirm decreased ?-helix content, increased unstructured folding and ?-sheet content in BSA structure. The synchronous fluorescence spectra revealed that the hydrophobicity of the tyrosine residue is decreased and that of the tryptophan is increased. The relation of elucidated changes in BSA structure of BSA-coated ZnO NPs cytotoxicity is tested for CHO cell viability and reactive oxygen species (ROS) generation in vitro. Covalent and non-covalent binding of BSA to ZnO NPs reduces ZnO NPs cytotoxicity and ROS generation, however changes in BSA conformation makes corona less protective against ZnO NPs. PMID:26275837

  14. Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: limitations of in vitro testing for nanosafety

    NASA Astrophysics Data System (ADS)

    KimPresent Address: Institute Of Pharmaceutical Sciences, Department Of Chemistry; Applied Biosciences, Eth Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland., Jong Ah; SalvatiPresent Address: Division Of Pharmacokinetics, Toxicology; Targeting, Department Of Pharmacy, Antonius Deusinglaan 1, 9713 Av Groningen, The Netherlands., Anna; ÅbergPresent Address: Groningen Institute Of Biomolecular Sciences; Biotechnology, University Of Groningen, Nijenborgh 4, 9747 Ag Groningen, The Netherlands., Christoffer; Dawson, Kenneth A.

    2014-11-01

    Nanomaterials challenge paradigms of in vitro testing because unlike molecular species, biomolecules in the dispersion medium modulate their interactions with cells. Exposing cells to nanoparticles known to cause cell death, we observed cytotoxicity suppression by increasing the amount of serum in the dispersion medium towards in vivo-relevant conditions.Nanomaterials challenge paradigms of in vitro testing because unlike molecular species, biomolecules in the dispersion medium modulate their interactions with cells. Exposing cells to nanoparticles known to cause cell death, we observed cytotoxicity suppression by increasing the amount of serum in the dispersion medium towards in vivo-relevant conditions. Electronic supplementary information (ESI) available: Experimental procedures; cell viability, proliferation and endocytosis levels of cultures grown in the relevant media; cellular uptake and physicochemical characterisation by DCS of silica nanoparticles; physicochemical characterisation by DLS of the amino-modified polystyrene nanoparticles used in the relevant biological media. See DOI: 10.1039/c4nr04970e

  15. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    PubMed

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  16. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    SciTech Connect

    Kang, Su Jin; Daegu Haany University, College of Oriental Medicine, Gyeongsan-si, Gyeongsangbuk-do 712-715 ; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung; The Catholic University of Korea, College of Pharmacy, 43-1 Yeokgok 2-dong, Bucheon, Gyeonggi-do 420-743

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are involved in Nrf2/HO-1 induction.

  17. Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat.

    PubMed

    Meena, Ramovatar; Kajal, Kumari; R, Paulraj

    2015-01-01

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use in consumer products and medicines; also, the potential effects on reproduction and fertility are relevant for this risk evaluation. In the present study, we examined the effects of intravenously injected titanium dioxide nanoparticles (TiO2-NPs; 21 nm), with special emphasis on reproductive system. Antioxidant enzymes such as catalase, glutathione peroxidase, and superoxide dismutase showed a significant decrease, while significant increase in lipid peroxidase was observed. Our results confirmed the bioaccumulation of TiO2-NPs in testicular cells. In TiO2-NPs-treated animals, various functional and pathological disorders, such as reduced sperm count, increase in caspase-3 (a biomarker of apoptosis), creatine kinase activity, DNA damage, and cell apoptosis were observed. Moreover, the testosterone activity was decreased significantly in a dose-dependent manner in the animals treated with TiO2-NPs as compared with control group animals. It is concluded that TiO2-NPs induce oxidative stress, which produce cytotoxic and genotoxic changes in sperms which may affect the fertilizing potential of spermatozoa. PMID:25344432

  18. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  19. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55?nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51?eV for pure to 3.87?eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44??g/ml while for the Al-doped ZnO counterparts was 31??g/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  20. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  1. Embedded carbon nanotubes nanoparticles in plasma membrane induce cellular calcium outflow imbalancing.

    PubMed

    Wang, Jingyi; Liu, Ru; Su, Yunming; Li, Wei

    2014-06-01

    In this report, embedded single-wall carbon nanotubes (SWCNTs) nanoparticles in plasma membrane inducing cellular calcium outflow imbalancing are disclosed. Compared ssDNA-SWCNTs with polystyrene (PS) nanoparticles, we analyzed the cytotoxicity of these nanoparticles and the effect of these nanoparticles on intracellular Ca2+ ion levels by depletion of Ca2+ from the endoplasmic reticulum (ER) evoked by Thapsigargin (Tg) in SKN-SH cells. The results had shown that ssDNA-SWCNTs and PS nanoparticles have no cytotoxicity on SKN-SH cells. However, contrary to PS nanoparticles, cellular Ca2+ ion outflow imbalancing was investigated in SKN-SH cells after pretreated with ssDNA-SWCNTs induced by Tg, which could be proposed mainly due to the interaction of embedded ssDNA-SWCNTs with cellular membrane. PMID:24738351

  2. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review.

    PubMed

    Ingle, Avinash P; Duran, Nelson; Rai, Mahendra

    2014-02-01

    Nanotechnology is an emerging branch of science, which has potential to solve many problems in different fields. The union of nanotechnology with other fields of sciences including physics, chemistry, and biology has brought the concept of synthesis of nanoparticles from their respective metals. Till date, many types of nanoparticles have been synthesized and being used in different fields for various applications. Moreover, copper nanoparticles attract biologists because of their significant and broad-spectrum bioactivity. Due to the large surface area to volume ratio, copper nanoparticles have been used as potential antimicrobial agent in many biomedical applications. But the excess use of any metal nanoparticles increase the chance of toxicity to humans, other living beings, and environment. In this article, we have critically reviewed the bioactivities and cytotoxicity of copper nanoparticles. We have also focused on possible mechanism involved in its interaction with microbes. PMID:24305741

  3. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit.

    PubMed

    Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. PMID:24268240

  4. Cytotoxic and genotoxic impact of TiO2 nanoparticles on A549 cells.

    PubMed

    Jugan, M L; Barillet, S; Simon-Deckers, A; Sauvaigo, S; Douki, T; Herlin, N; Carrire, M

    2011-02-01

    Titania nanoparticles are produced by tons, and included in commercial products, raising concerns about their potential impact on human health. This study relates their cytotoxic and genotoxic impact on a cell line representative of human lung, namely A549 alveolar epithelial cells. PMID:21485783

  5. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    NASA Astrophysics Data System (ADS)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  6. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

    SciTech Connect

    Loh, Jing Wen; Yeoh, George; Saunders, Martin; Lim, Lee-Yong

    2010-12-01

    Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4 h of exposure to 0.5% w/v of chitosan nanoparticles (18 {+-} 1 nm, 7.5 {+-} 1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4 h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.

  7. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  8. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  9. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells

    PubMed Central

    2011-01-01

    The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4. PMID:21801413

  10. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells

    NASA Astrophysics Data System (ADS)

    Kai, Wei; Xiaojun, Xu; Ximing, Pu; Zhenqing, Hou; Qiqing, Zhang

    2011-07-01

    The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

  11. Synthesis, Characterization and Cytotoxicity Evaluation of Nitric Oxide-Iron Oxide magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddad, P. S.; Britos, T. N.; Santos, M. C.; Seabra, A. B.; Palladino, M. V.; Justo, G. Z.

    2015-05-01

    The present work is focused on the synthesis, characterization and cytotoxic evaluation of superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs have been proposed for an increasing number of biomedical applications, such as drug-delivery. To this end, toxicological studies of their potential effects in biological systems must be better evaluated. The aim of this study was to examine the in vitro cytotoxicity of thiolated (SH) and S-nitrosated (S-NO) SPIONs in cancer cell lines. SPIONs were prepared by the coprecipitation method using ferrous and ferric chlorides in aqueous solution. The nanoparticles (Fe3O4) were coated with thiol containing molecule cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of an aqueous dispersion of thiolated nanoparticles (SH- SPIONs). These particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results obtained showed that Cys-SPIONs have a mean diameter of 14 nm at solid state and present super paramagnetic behavior at room temperature. Thiol groups on the surface of the nanoparticles were nitrosated through the addition of sodium nitrite leading to the formation of S-NOCys-SPIONs (S-nitrosated-Cys-SPIONs), which act as spontaneous nitric oxide (NO) donor). The cytotoxicity of thiolated and S-nitrosated nanoparticles was evaluated in acute T cell leukemia (Jurkat cell line) and Lewis lung carcinoma (3LL) cells. The results showed that at low concentrations thiolated (Cys) and S- nitrosated (S-NOCyst) SPIONs display low cytotoxicity in both cell types. However, at higher concentrations, Cys-SPIONs exhibited cytotoxic effects, whereas S-NOCys-SPIONs protected them, and also promoted cell proliferation.

  12. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim HJ; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb EM; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Isa, Norhaszalina Mohd; Zowalaty, Mohamed Ezzat El

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.61,000 ?g/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells. PMID:23885175

  13. Glyconanoparticle Aided Detection of ?-Amyloid by Magnetic Resonance Imaging and Attenuation of ?-Amyloid Induced Cytotoxicity

    PubMed Central

    2013-01-01

    The development of a noninvasive method for the detection of Alzheimers disease is of high current interest, which can be critical in early diagnosis and in guiding treatment of the disease. The aggregates of ?-amyloid are a pathological hallmark of Alzheimers disease. Carbohydrates such as gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using superparamagnetic iron oxide glyconanoparticles to detect ?-amyloid. The bindings of ?-amyloid by the glyconanoparticles were demonstrated through several techniques including enzyme linked immunosorbent assay, gel electrophoresis, tyrosine fluorescence assay, and transmission electron microscopy. The superparamagnetic nature of the nanoparticles allowed easy detection of ?-amyloid both in vitro and ex vivo by magnetic resonance imaging. Furthermore, the glyconanoparticles not only were nontoxic to SH-SY5Y neuroblastoma cells but also greatly reduced ?-amyloid induced cytotoxicity to cells, highlighting the potential of these nanoparticles for detection and imaging of ?-amyloid. PMID:23590250

  14. Fluorescent chitosan functionalized magnetic polymeric nanoparticles: Cytotoxicity and invitro evaluation of cellular uptake.

    PubMed

    Kaewsaneha, Chariya; Jangpatarapongsa, Kulachart; Tangchaikeeree, Tienrat; Polpanich, Duangporn; Tangboriboonrat, Pramuan

    2014-11-01

    Nanoparticles possessing magnetic and fluorescent properties were fabricated by the covalent attachment of fluorescein isothiocyanate onto magnetic polymeric nanoparticles functionalized by chitosan. The synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate were successfully used for labeling the living organ and blood-related cancer cells, i.e., HeLa, Hep G2, and K562 cells. The cytotoxicity test of nanoparticles at various incubation times indicated the high cell viability (>90%) without morphological change. The confocal microscopy revealed that they could pass through cell membrane within 2?h for K562 cells and 3?h for HeLa and Hep G2 cells and then confine inside cytoplasm of all types of tested cells for at least 24?h. Therefore, the synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate would potentially be used as cell tracking in theranostic applications. PMID:24951458

  15. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Mingjun; Yang, Jinmei; Shu, Jing; Fu, Changhong; Liu, Shengnan; Xu, Ge; Zhang, Dechun

    2014-11-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway.

  16. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells

    PubMed Central

    2014-01-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway. PMID:25411570

  17. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells.

    PubMed

    Zhang, Mingjun; Yang, Jinmei; Shu, Jing; Fu, Changhong; Liu, Shengnan; Xu, Ge; Zhang, Dechun

    2014-01-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway. PMID:25411570

  18. Effects of Internalized Gold Nanoparticles with Respect to Cytotoxicity and Invasion Activity in Lung Cancer Cells

    PubMed Central

    Guo, Zhirui; Liu, Ying; Shen, Yujie; Zhou, Ping; Lu, Xiang

    2014-01-01

    The effect of gold nanoparticles on lung cancer cells is not yet clear. In this study, we investigated the cytotoxicity and cell invasion activity of lung cancer cells after treatment with gold nanoparticles and showed that small gold nanoparticles can be endocytosed by lung cancer cells and that they facilitate cell invasion. The growth of A549 cells was inhibited after treatment with 5-nm gold nanoparticles, but cell invasion increased. Endocytosed gold nanoparticles (size, 10 nm) notably promoted the invasion activity of 95D cells. All these effects of gold nanoparticles were not seen after treatment with larger particles (20 and 40 nm). The enhanced invasion activity may be associated with the increased expression of matrix metalloproteinase 9 and intercellular adhesion molecule-1. In this study, we obtained evidence for the effect of gold nanoparticles on lung cancer cell invasion activity in vitro. Moreover, matrix metalloproteinase 9 and intercellular adhesion molecule-1, key modulators of cell invasion, were found to be regulated by gold nanoparticles. These data also demonstrate that the responses of the A549 and 95D cells to gold nanoparticles have a remarkable relationship with their unique size-dependent physiochemical properties. Therefore, this study provides a new perspective for cell biology research in nanomedicine. PMID:24901215

  19. Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and In Vitro Antifungal Evaluation.

    PubMed

    Casa, Diani Meza; Karam, Thaysa Ksiaskiewcz; Alves, Aline de Cristo Soares; Zgoda, Aline Aparecida; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    In this study, nanoparticles based on bovine serum albumin (BSA) containing amphotericin B (AmB) were obtained by the desolvation method and characterized with respect to size, size distribution, AmB encapsulation efficiency, AmB state of aggregation, and AmB in vitro release profile. After, the effect of nanoparticles on the cytotoxicity of human erythrocytes in vitro and efficacy over strains of Candida spp. were evaluated. The mean particle size was 156 nm and the AmB encapsulation efficiency was over 82%. The in vitro release profile revealed a sustained release of approximately 48% of AmB over 5 days. AmB is present in BSA nanoparticles as monomer. AmB-loaded nanoparticles showed very low index of hemolysis (less than 8%) in 72 h of assay compared to free AmB, which presented 100% of hemolysis in 2 h of incubation. The AmB-loaded BSA nanoparticles were as effective as free AmB against Candida albicans and Candida tropicalis, considering their sustained release profile. Thus, BSA nanoparticles are potential carriers for AmB, reducing its molecular aggregation and prolonging its release, resulting in lower cytotoxicity while maintaining its antifungal activity. PMID:26682465

  20. Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity.

    PubMed

    Altmeyer, Clescila; Karam, Thaysa Ksiaskiewcz; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-03-01

    In this study, poly(L-lactide) (PLA) nanoparticles containing Tamoxifen (Tmx) were developed using an emulsion/solvent evaporation method, observing the influence of surfactants and their concentrations on mean particle size and drug entrapment. Nanoparticles were characterized in terms of size, morphology, polydispersity, interaction drug-polymer and in vitro drug release profile. Cytotoxicity over erythrocytes and tumor cells was assessed. The optimized formulation employed as surfactant 1% polyvinyl alcohol. Mean particle size was 155±4nm (n=3) and Tmx encapsulation efficiency was 85±8% (n=3). The in vitro release profile revealed a biphasic release pattern diffusion-controlled with approximately 24% of drug released in 24h followed by a sustained release up to 120h (30% of Tmx released). PLA nanoparticles containing Tmx presented a very low index of hemolysis (less than 10%), in contrast to free Tmx that was significantly hemolytic. Tmx-loaded PLA nanoparticles showed IC50 value 2-fold higher than free Tmx, but considering the prolonged Tmx release from nanoparticles, cytotoxicity on tumor cells was maintained after nanoencapsulation. Thus, PLA nanoparticles are promising carriers for controlled delivery of Tmx with potential application in cancer treatment. PMID:26706516

  1. Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages

    NASA Astrophysics Data System (ADS)

    Nabeshi, Hiromi; Yoshikawa, Tomoaki; Arimori, Akihiro; Yoshida, Tokuyuki; Tochigi, Saeko; Hirai, Toshiro; Akase, Takanori; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2011-12-01

    Surface properties are often hypothesized to be important factors in the development of safer forms of nanomaterials (NMs). However, the results obtained from studying the cellular responses to NMs are often contradictory. Hence, the aim of this study was to investigate the relationship between the surface properties of silica nanoparticles and their cytotoxicity against a murine macrophage cell line (RAW264.7). The surface of the silica nanoparticles was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C). First, the properties of the silica nanoparticles were characterized. RAW264.7 cells were then exposed to nSP70, nSP70-N, or nSP70-C, and any cytotoxic effects were monitored by analyzing DNA synthesis. The results of this study show that nSP70-N and nSP70-C have a smaller effect on DNA synthesis activity by comparison to unmodified nSP70. Analysis of the intracellular localization of the silica nanoparticles revealed that nSP70 had penetrated into the nucleus, whereas nSP70-N and nSP70-C showed no nuclear localization. These results suggest that intracellular localization is a critical factor underlying the cytotoxicity of these silica nanoparticles. Thus, the surface properties of silica nanoparticles play an important role in determining their safety. Our results suggest that optimization of the surface characteristics of silica nanoparticles will contribute to the development of safer forms of NMs.

  2. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, S?awomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, Andr; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  3. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, S?awomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, Andr; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  4. Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    PubMed Central

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  5. Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium

    NASA Astrophysics Data System (ADS)

    di, Weihua; Li, Jie; Shirahata, Naoto; Sakka, Yoshio; Willinger, Marc-Georg; Pinna, Nicola

    2011-03-01

    Luminescent TbPO4 nanoparticles were synthesized via a citric-acid-mediated hydrothermal route. Eu3+ doping of TbPO4 enables an efficient Tb3+-to-Eu3+ energy transfer, leading to a four-fold increase of the absolute emission quantum yield (QY), compared to that of undoped TbPO4. To check the potential of biological use, we conducted in vitro biological experiments on human cervical carcinoma HeLa cells incubated with TbPO4:Eu nanoparticles. TbPO4:Eu nanoparticles can be successfully internalized into the cells, and they show bright intracellular luminescence and very low cytotoxicity. Photoluminescence intensity dependence upon time demonstrates that Eu3+-doped TbPO4 nanoparticles are highly resistant to photobleaching. Our present work represents a demonstration of the use of rare-earth-based nanocrystals as a biological labeling agent because they combine several advantages including high emission quantum yield, long luminescence lifetime, low cytotoxicity and high photostability.Luminescent TbPO4 nanoparticles were synthesized via a citric-acid-mediated hydrothermal route. Eu3+ doping of TbPO4 enables an efficient Tb3+-to-Eu3+ energy transfer, leading to a four-fold increase of the absolute emission quantum yield (QY), compared to that of undoped TbPO4. To check the potential of biological use, we conducted in vitro biological experiments on human cervical carcinoma HeLa cells incubated with TbPO4:Eu nanoparticles. TbPO4:Eu nanoparticles can be successfully internalized into the cells, and they show bright intracellular luminescence and very low cytotoxicity. Photoluminescence intensity dependence upon time demonstrates that Eu3+-doped TbPO4 nanoparticles are highly resistant to photobleaching. Our present work represents a demonstration of the use of rare-earth-based nanocrystals as a biological labeling agent because they combine several advantages including high emission quantum yield, long luminescence lifetime, low cytotoxicity and high photostability. Electronic supplementary information (ESI) available: XRD pattern of the as-synthesized TbPO4 (Fig. S1), room temperature excitation spectra of pure TbPO4 and Eu3+-doped TbPO4 (Fig. S2), and the luminescence intensity of cells incubated with TbPO4:Eu nanoparticles at 37 C and 4 C, respectively (Fig. S3). See DOI: 10.1039/c0nr00673d

  6. Protective effects of Asian green vegetables against oxidant induced cytotoxicity

    PubMed Central

    Rose, Peter; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    AIM: To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage. PMID:16437686

  7. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro.

    PubMed

    De Marzi, Laura; Monaco, Antonina; De Lapuente, Joaquin; Ramos, David; Borras, Miquel; Di Gioacchino, Mario; Santucci, Sandro; Poma, Anna

    2013-01-01

    Owing to their radical scavenging and UV-filtering properties, ceria nanoparticles (CeO(2)-NPs) are currently used for various applications, including as catalysts in diesel particulate filters. Because of their ability to filter UV light, CeO(2)-NPs have garnered significant interest in the medical field and, consequently, are poised for use in various applications. The aim of this work was to investigate the effects of short-term (24 h) and long-term (10 days) CeO(2)-NP exposure to A549, CaCo2 and HepG2 cell lines. Cytotoxicity assays tested CeO(2)-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL, whereas genotoxicity assays tested CeO(2)-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL. In vitro assays showed almost no short-term exposure toxicity on any of the tested cell lines. Conversely, long-term CeO(2)-NP exposure proved toxic for all tested cell lines. NP genotoxicity was detectable even at 24-h exposure. HepG2 was the most sensitive cell line overall; however, the A549 line was most sensitive to the lowest concentration tested. Moreover, the results confirmed the ceria nanoparticles' capacity to protect cells when they are exposed to well-known oxidants such as H(2)O(2). A Comet assay was performed in the presence of both H(2)O(2) and CeO(2)-NPs. When hydrogen peroxide was maintained at 25 ?M, NPs at 0.5 ?g/mL, 50 ?g/mL, and 500 ?g/mL protected the cells from oxidative damage. Thus, the NPs prevented H(2)O(2)-induced genotoxic damage. PMID:23377016

  8. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro

    PubMed Central

    De Marzi, Laura; Monaco, Antonina; De Lapuente, Joaquin; Ramos, David; Borras, Miquel; Di Gioacchino, Mario; Santucci, Sandro; Poma, Anna

    2013-01-01

    Owing to their radical scavenging and UV-filtering properties, ceria nanoparticles (CeO2-NPs) are currently used for various applications, including as catalysts in diesel particulate filters. Because of their ability to filter UV light, CeO2-NPs have garnered significant interest in the medical field and, consequently, are poised for use in various applications. The aim of this work was to investigate the effects of short-term (24 h) and long-term (10 days) CeO2-NP exposure to A549, CaCo2 and HepG2 cell lines. Cytotoxicity assays tested CeO2-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL, whereas genotoxicity assays tested CeO2-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL. In vitro assays showed almost no short-term exposure toxicity on any of the tested cell lines. Conversely, long-term CeO2-NP exposure proved toxic for all tested cell lines. NP genotoxicity was detectable even at 24-h exposure. HepG2 was the most sensitive cell line overall; however, the A549 line was most sensitive to the lowest concentration tested. Moreover, the results confirmed the ceria nanoparticles capacity to protect cells when they are exposed to well-known oxidants such as H2O2. A Comet assay was performed in the presence of both H2O2 and CeO2-NPs. When hydrogen peroxide was maintained at 25 ?M, NPs at 0.5 ?g/mL, 50 ?g/mL, and 500 ?g/mL protected the cells from oxidative damage. Thus, the NPs prevented H2O2-induced genotoxic damage. PMID:23377016

  9. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. PMID:25966046

  10. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells

    PubMed Central

    Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang

    2015-01-01

    Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285

  11. Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions.

    PubMed

    Nomura, Toshiyuki; Tani, Shuji; Yamamoto, Makoto; Nakagawa, Takumi; Toyoda, Shunsuke; Fujisawa, Eri; Yasui, Akiko; Konishi, Yasuhiro

    2016-04-01

    The effects of surface physicochemical properties of functionalized polystyrene latex (PSL) nanoparticles (NPs) and model filamentous fungi Aspergillus oryzae and Aspergillus nidulans cultivated in different environment (aqueous and atmospheric environment) on the colloidal behavior and cytotoxicity were investigated in different isotonic solutions (154 mM NaCl and 292 mM sucrose). When the liquid cultivated fungal cells were exposed to positively charged PSL NPs in 154 mM NaCl solution, the NPs were taken into A. oryzae, but not A. nidulans. Atomic force microscopy revealed that the uptake of NPs was more readily through the cell wall of A. oryzae because of its relatively softer cell wall compared with A. nidulans. In contrast, the positively charged PSL NPs entirely covered the liquid cultivated fungal cell surfaces and induced cell death in 292 mM sucrose solution because of the stronger electrostatic attractive force between the cells and NPs compared with in 154 mM NaCl. When the agar cultivated fungal cells were exposed to the positively charged PSL NPs, both fungal cells did not take the NPs inside the cells. Contact angle measurement revealed that the hydrophobin on the agar cultivated cell surfaces inhibited the uptake of NPs because of its relatively more hydrophobic cell surface compared with the liquid cultivated cells. PMID:26855210

  12. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles

    PubMed Central

    Suresh Babu, K; Anandkumar, M; Tsai, TY; Kao, TH; Stephen Inbaraj, B; Chen, BH

    2014-01-01

    Background Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. Methods In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. Results The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0–1,000 μM except for Au at >100 μM. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 μM. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus, while, in coculture tests with Lactobacillus plantarum, S. aureus was inhibited to a greater extent than the other bacteria. Conclusion Gold-supported CeO2 nanoparticles may be a potential nanomaterial for in vivo application owing to their biocompatible and antibacterial properties. PMID:25473288

  13. Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Murawala, P.; Shiras, A.; Pokharkar, V.; Prasad, B. L. V.

    2012-01-01

    The preparation of highly stable water dispersions of silver nanoparticles using the naturally available gellan gum as a reducing and capping agent is reported. Further, exploiting the gel formation characteristic of gellan gum silver nanoparticle incorporated gels have also been prepared. The optical properties, morphology, zeta potential and long-term stability of the synthesized silver nanoparticles were investigated. The superior stability of the gellan gum-silver nanoparticle dispersions against pH variation and electrolyte addition is revealed. Finally, we studied the cytotoxicity of AgNP dispersions in mouse embryonic fibroblast cells (NIH3T3) and also evaluated the in vitro diffusion of AgNP dispersions/gels across rat skin.The preparation of highly stable water dispersions of silver nanoparticles using the naturally available gellan gum as a reducing and capping agent is reported. Further, exploiting the gel formation characteristic of gellan gum silver nanoparticle incorporated gels have also been prepared. The optical properties, morphology, zeta potential and long-term stability of the synthesized silver nanoparticles were investigated. The superior stability of the gellan gum-silver nanoparticle dispersions against pH variation and electrolyte addition is revealed. Finally, we studied the cytotoxicity of AgNP dispersions in mouse embryonic fibroblast cells (NIH3T3) and also evaluated the in vitro diffusion of AgNP dispersions/gels across rat skin. Electronic supplementary information (ESI) available: Time dependent UV-Vis spectral studies revealing the stability of AgNP dispersions and agar plate images displaying the antibacterial activity of AgNPs. See DOI: 10.1039/c1nr10957j

  14. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. PMID:26838832

  15. Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles

    PubMed Central

    Mftah, Ae; Alhassan, Fatah H; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed Ezzat; Webster, Thomas J; Sh-eldin, Mohammed; Rasedee, Abdullah; Taufiq-Yap, Yun Hin; Rashid, Shah Samiur

    2015-01-01

    Nanoparticle sulphated zirconia with Brnsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.91,000 ?g/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brnsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications. PMID:25632233

  16. Classification Nano-SAR Development for Cytotoxicity of Metal Oxide Nanoparticles

    PubMed Central

    Liu, Rong; Rallo, Robert; George, Saji; Ji, Zhaoxia; Nair, Sumitra; Nel, Andr E.

    2014-01-01

    A classification based cytotoxicity nano-structure-activity-realtionship (nano-SAR) is presented based on a set of nine metal oxide nanoparticles to which transformed bronchial epithelial cells (BEAS-2B) were exposed over a range of concentrations of 0.375200 mgL?1 and exposure times up to 24 h. The nano-SAR is developed using cytotoxicity data from high throughput screening (HTS) assay that was processed to identify and label toxic (in terms of the Propidium Iodide uptake of BEAS-2B cells) versus non-toxic events relative to unexposed control cell population. Starting with a set of fourteen intuitive but fundamental physicochemical nano-SAR input parameters, a number of models were identified which had classification accuracy above 95%. The best performing model had a 100% classification accuracy in both internal and external validation. This model is based on four descriptors including the atomization energy of the metal oxide, period of the nanoparticle metal, nanoparticle primary size, in addition to nanoparticle volume fraction (in solution). Notwithstanding the success of the present modeling approach with a relatively small nanoparticle library, it is important to recognize that a significantly larger data set would be needed in order to expand the applicability domain and increase the confidence and reliability of data-driven nano-SARs. PMID:21456088

  17. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles.

    PubMed

    Jain, Ankit; Thakur, Kanika; Sharma, Gajanand; Kush, Preeti; Jain, Upendra K

    2016-02-10

    The present investigation aimed at the fabrication and characterization of ionically cross-linked docetaxel (DTX) loaded chitosan nanoparticles (DTX-CH-NP) using ionic gelation technique with sodium tripolyphosphate (TPP) as the cross-linking agent. The formulated nanoparticles were characterized in terms of particle size, drug entrapment efficiency (EE), scanning electron microscopy (SEM), in vitro release and cytotoxicity studies. Formulation factors (chitosan, TPP and drug concentration) were examined systematically for their effects on size of the nanoparticles. The average size of the nanoparticles was observed to be in the range of 159.23.31 to 220.72.23nm with 78-92% encapsulation efficiency (EE). The in vitro cytotoxicity studies on breast cancer cell lines (MDA-MB-231) revealed the advantages of DTX-CH-NP over pure DTX with approximately 85% cell viability reduction. The results indicate that systematic modulation of the surface charge and particle size of ionically cross-linked nanoparticles can be readily achieved with the right control of critical processing parameters. Thus, DTX-CH-NP presents a promising delivery alternative for breast cancer treatment. PMID:26686106

  18. In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells

    NASA Astrophysics Data System (ADS)

    Ridolfi, D. M.; Marcato, P. D.; Machado, D.; Silva, R. A.; Justo, G. Z.; Durán, N.

    2011-07-01

    In recent years, the interest in nanostructured systems to drug delivery has increased because they offer several advantages over conventional dosage forms. Solid Lipid Nanoparticles (SLN) have been highlighted among these systems because they have advantages such as high physical stability, protection against drug degradation and ease of scale-up and manufacturing, without using organic solvent. The aim of this work was to evaluate the potential of SLN, by in vitro cytotoxicity assays, for dermal drug delivery. SLN of three different lipids were prepared by hot high pressure homogenization and the cytotoxicity was assessed by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test in mouse 3T3 fibroblasts and human HaCaT keratinocytes. SLN showed no cytotoxic potential suggesting a great potential for dermal application.

  19. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    PubMed Central

    Federman, Noah; Chan, Jason; Nagy, Jon O.; Landaw, Elliot M.; McCabe, Katelyn; Wu, Anna M.; Triche, Timothy; Kang, HyungGyoo; Liu, Bin; Marks, James D.; Denny, Christopher T.

    2012-01-01

    Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (?-AL-HPLN) to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that ?-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, ?-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma. PMID:23024593

  20. NLRP3 inflammasome activation and cytotoxicity induced by particulate adjuvants.

    PubMed

    Yang, Marie; Hearnden, Claire H A; Oleszycka, Ewa; Lavelle, Ed C

    2013-01-01

    The ability of particulate materials to provoke inflammatory immune responses has been well documented. In the case of endogenous and environmental particulates, these effects can often lead to pathological disorders. In contrast, particulate adjuvants incorporated into vaccines promote immune responses, which in turn provide efficient protection against infectious diseases. In recent years, studies have revealed that the NLRP3 inflammasome plays a key role in particulate-driven inflammation and its associated cytotoxicity. Hence, this chapter covers protocols useful to (1) assess NLRP3 inflammasome activation triggered by particulate adjuvants or materials in mouse bone marrow-derived dendritic cell (BMDCs) differentiated cultures, and (2) measure particle-induced cytotoxicity. More specifically, protocols are described for the preparation and differentiation of BMDCs, their priming and stimulation using particulate NLRP3 agonists such as monosodium urate monohydrate (MSU) and the vaccine adjuvant alum. We then detail protocols to assess particulate-driven cytotoxicity via flow cytometry using annexin V-propidium iodide (PI) and novel dye LIVE/DEAD() aqua stain. General considerations are provided that warn against the use of endotoxin-contaminated particles and emphasize the use of experimental controls. Suggestions are also outlined for further assessment of the immunomodulatory effects of particulate materials in vivo using the mouse peritonitis model. PMID:23852596

  1. [Role of Monocarboxylate Transporter in Statin-induced Cytotoxicity].

    PubMed

    Kobayashi, Masaki

    2015-01-01

    Although exercise and drug therapy are important to prevent progression of arteriosclerotic disease, exercise leads to an increase in muscular disorder induced by HMG-CoA reductase inhibitors (statins). Elucidation of this mechanism is needed to prevent the occurrence of muscular disorders. Since exercise induces expression of monocarboxylate transporter (MCT) 4, we focused on the association between MCT4 function and statin-induced muscle injury. First, we examined the transport of L-lactate via MCT4 using MCT4 cRNA-injected Xenopus laevis oocytes. L-lactate uptake by MCT4-expressing oocytes was markedly reduced by alkalizing the buffer pH and saturated at higher L-lactate concentrations. On the other hand, AMP-activated protein kinase (AMPK) and protein kinase C (PKC) are activated by exercise. We next examined whether AMPK and PKC activation affects the expression and function of MCT4 in rat skeletal muscle and RD cells as an in vitro skeletal muscle model. AMPK and PKC activation increased MCT4 expression level and lactate efflux by MCT4. Finally, we examined the association between MCT4 function and statin-induced cytotoxicity. Statins inhibited transport of L-lactate via MCT4 in a concentration-dependent manner. Statin-induced cytotoxicity was associated with intracellular acidification and caspase-3/7 activation. On the other hand, bicarbonate suppressed statin-induced pH alteration, caspase activation, and morphological change. The results suggest that statin-induced muscle injury exacerbated by exercise is associated with intracellular acidification and that the effects of statins on L-lactate transport are mediated by MCT4. PMID:26521871

  2. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells.

    PubMed

    Ahamed, Maqusood; Alhadlaq, Hisham A; Ahmad, Javed; Siddiqui, Maqsood A; Khan, Shams T; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2015-06-01

    Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration-dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration-dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real-time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up-regulated whereas the anti-apoptotic gene bcl-2 was down-regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase-3 and caspase-9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N-acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level. PMID:25663373

  3. Human cell line-dependent WC-Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production.

    PubMed

    Paget, V; Moche, H; Kortulewski, T; Grall, R; Irbah, L; Nesslany, F; Chevillard, S

    2015-02-01

    Although tungsten carbide-cobalt (WC-Co) nanoparticles (NPs) have been widely used because of their robustness, their risk to human health remains poorly studied, despite the International Agency for Research on Cancer (IARC) classifying them as "probably carcinogenic" for humans (Group 2A) in 2006. Our current study aimed at defining the cytotoxicity and genotoxicity of one set of commercially available 60-nm diameter WC-Co NPs on three human cell lines representative of potential target organs: A549 (lung), Hep3B (liver), and Caki-1 (kidney). The cytotoxicity of WC-Co NPs was determined by evaluating cell impedance (xCELLigence), cell survival/death, and cell cycle checkpoints. Flow cytometry was used to not only evaluate cell cycle checkpoints, but to also estimate reactive oxygen species (ROS) generation. In addition, ?-H2Ax foci detection (confocal microscopy), considered to be the most sensitive technique for studying DNA double-strand breaks, was utilized to evaluate genotoxicity. As a final part of this study, we assessed the cellular incorporation of WC-Co NPs, first byflow cytometry (side scatter), and then by confocal microscopy (light reflection) to ensure that the NPs had entered cells. Overall, our current findings demonstrate that WC-Co NPs induce cell mortality, DNA double-strand breaks, and cell cycle arrest in human renal (Caki-1) and liver (Hep3B) cell lines, but do not induce significant cytotoxic effects in A549 lung cells. Interestingly, although WC-Co NPs effectively entered the cells in all 3 lines tested, ROS were detected in Caki-1 and Hep3B, but not in A549. This may explain the great differences in the cytotoxic and genotoxic effects we observed between these lines. PMID:25398624

  4. Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity.

    PubMed

    Wang, Liming; Zhang, Tianlu; Li, Panyun; Huang, Wanxia; Tang, Jinglong; Wang, Pengyang; Liu, Jing; Yuan, Qingxi; Bai, Ru; Li, Bai; Zhang, Kai; Zhao, Yuliang; Chen, Chunying

    2015-06-23

    To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single cell and the chemical information on intracellular NPs. Here, by integrating synchrotron radiation-beam transmission X-ray microscopy (SR-TXM) and SR-X-ray absorption near edge structure (SR-XANES) spectroscopy, we successfully capture the 3D distribution of silver NPs (AgNPs) inside a single human monocyte (THP-1), associated with the chemical transformation of silver. The results reveal that the cytotoxicity of AgNPs is largely due to the chemical transformation of particulate silver from elemental silver (Ag(0))n, to Ag(+) ions and Ag-O-, then Ag-S- species. These results provide direct evidence in the long-lasting debate on whether the nanoscale or the ionic form dominates the cytotoxicity of silver nanoparticles. Further, the present approach provides an integrated strategy capable of exploring the chemical origins of cytotoxicity in metallic nanoparticles. PMID:25994391

  5. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    PubMed

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250?nm in diameter with smooth surface and were negatively charged with a zeta potential of?-?17.4?mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs. PMID:24712731

  6. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash.

    PubMed

    Cervini-Silva, Javiera; Antonio-Nieto-Camacho; Gomez-Vidales, Virginia; Ramirez-Apan, Mara Teresa; Palacios, Eduardo; Montoya, Ascencin; Kaufhold, Stephan; Abidin, Zeanal; Theng, Benny K G

    2014-06-15

    This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe(3+), and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 0.2 nmol TBARS mg prot(-1). LP was surface controlled but not restricted by structural or surface-bound Fe(3+), because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe(3+) soluble species stemming from surface-bound Fe(3+) or small-sized Fe(3+) refractory minerals in allophane surpassed that of structural Fe(3+) located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell-viability values were as low as 68.5 6.7%. PMID:24793297

  7. Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture.

    PubMed

    Singh, Shweta; Banerjee, Subham; Chattopadhyay, Pronobesh; Borthakur, Sashin Kumar; Veer, Vijay

    2015-03-01

    Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is widely found as a contaminant of food. DON is responsible for a wide range of toxic activities, including gastro-intestinal, lymphoid, bone-marrow and cardiotoxicity. But, the complete explorations of toxicity in terms of hepatotoxicity, nephrotoxicity, cytotoxicity and genotoxicity as well have not been documented well. Again, the mechanisms through which DON damages the DNA and promotes cellular toxicity are not well established. Considering the above fact, this research article is focused on the effects of DON-induced toxicities on experimental animal model as well as its effects on cellular level via various toxicological investigations. DON treatment showed cytotoxicity and DNA damage. Further, flow cytometric analysis of hepatocytes showed cellular apoptosis, suggesting that DON-induced hepatotoxicity is, may be partly, mediated by apoptosis. Moreover, significant differences were found in each haematology and clinical chemistry value, either (p > 0.05). No abnormality of any organ was found during histopathological examination. Hence, it can be concluded that DON induces oxidative DNA damage and increases the formation of centromere positive micronuclei due to aneugenic activity. PMID:25578892

  8. Dihydrolipoic Acid Induces Cytotoxicity in Mouse Blastocysts through Apoptosis Processes

    PubMed Central

    Houng, Wei-Li; Lin, Cheng-An J.; Shen, Ji-Lin; Yeh, Hung-I; Wang, Hsueh-Hsiao; Chang, Walter H.; Chan, Wen-Hsiung

    2012-01-01

    ?-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 ?M DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 ?M DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 ?M DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 ?M do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 ?M DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity. PMID:22489194

  9. Cellular Targets and Mechanisms in the Cytotoxic Action of Non-biodegradable Engineered Nanoparticles

    PubMed Central

    Fröhlich, Eleonore

    2013-01-01

    The use of nanoparticles (NPs) has improved the quality of many industrial, pharmaceutical, and medical products. Increased surface reactivity, a major reason for the positive effects of NPs, may, on the other hand, also cause adverse biological effects. Almost all non-biodegradable NPs cause cytotoxic effects but employ quite different modes of action. The relation of biodegradable or loaded NPs to cytotoxic mechanism is more difficult to identify because effects may by caused by the particles or degradation products thereof. This review introduces problems of NPs in conventional cytotoxicity testing (changes of particle parameters in biological fluids, cellular dose, cell line and assay selection). Generation of reactive oxygen and nitrogen species by NPs and of metal ions due to dissolution of the NPs is discussed as a cause for cytotoxicity. The effects of NPs on plasma membrane, mitochondria, lysosomes, nucleus, and intracellular proteins as cellular targets for cytotoxicity are summarized. The comparison of the numerous studies on the mechanism of cellular effects shows that, although some common targets have been identified, other effects are unique for particular NPs or groups of NPs. While titanium dioxide NPs appear to act mainly by generation of reactive oxygen and nitrogen species, biological effects of silver and iron oxide are caused by both reactive species and free metal ions. NPs lacking heavy metals, such as carbon nanotubes and polystyrene particles, interfere with cell metabolism mainly by binding to macromolecules. PMID:24160294

  10. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells.

    PubMed

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  11. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  12. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100?g/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ?50?g/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the MFI-50 nanoparticles was found to accumulate over a longer period of time as compared to MFI-100 nanoparticles. The study therefore points towards the capability of the non-cytotoxic zeolite nanoparticles to induce oxidative stress resulting in short-term altered cellular metabolism up-regulation and genomic instability. Although the damage was found to be short-lived, its persistence over longer durations, or stabilization cannot be neglected. Further studies are in progress to yield a better understanding of the mechanisms for oxidative stress and resulting cascade of events leading to genetic damage in the human lung alveolar epithelial cells following exposure to zeolite nanoparticles of different sizes. PMID:23103338

  13. Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

    PubMed Central

    Ha, Ho-Kyung; Kim, Jin Wook; Lee, Mee-Ryung; Jun, Woojin; Lee, Won-Jae

    2015-01-01

    It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as β-lactoglobulin (β-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of β-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of β-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of β-lg nanoparticles. The β-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (−14.8 to −17.6 mV) were successfully formed. A decrease in heating temperature from 70°C to 60°C resulted in a decrease in the particle size and an increase in the zeta-potential value of β-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. There was an increase in cellular uptake of β-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake β-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of β-lg nanoparticles play an important role in the cellular uptake. The β-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity. PMID:25656189

  14. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite.

    PubMed

    Abdel-Mohsen, A M; Abdel-Rahman, Rasha M; Fouda, Moustafa M G; Vojtova, L; Uhrova, L; Hassan, A F; Al-Deyab, Salem S; El-Shamy, Ibrahim E; Jancar, J

    2014-02-15

    Silver nanoparticles (Ag-NPs) have been successfully prepared with a simple and "green" chemical reduction method. Triple helical schizophyllan (SPG) was used for the first time as reducing and stabilizing agents. The effect of temperature, silver nitrate/schizophyllan concentrations, pH of the reactions medium and the reaction time were investigated. The obtained schizophyllan/Ag-NP was characterized by UV-vis spectroscopy, TEM, DLS, X-ray diffraction, TGA, and ATR-FTIR. The results revealed that, Ag-NPs attached to SPG through a strong non-covalent interaction, leading to good dispersion of Ag-NPs with a diameter of 6 nm within the biopolymer matrix. By increasing the pH of the reaction medium, the triple helical structure of SPG was partially broken. The SPG/AgNP nanocomposite was non-toxic for mouse fibroblast line (NIH-3T3) and human keratinocyte cell line (HaCaT). PMID:24507278

  15. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application.

    PubMed

    Weyenberg, Wim; Filev, Plamen; Van den Plas, Dave; Vandervoort, Jo; De Smet, Kris; Sollie, Philippe; Ludwig, Annick

    2007-06-01

    The cytotoxicity and physical properties of various submicron O/W emulsions and solid lipid nanoparticles for dermal applications were investigated. Droplet size and zetapotential of submicron emulsions depended on the composition of the cosurfactant blend used. The viability of J774 macrophages, mouse 3T3 fibroblasts and HaCaT keratinocytes was significantly reduced in the presence of stearylamine. Nanoparticles consisting of stearic acid or different kinds of adeps solidus could be manufactured when formulated with lecithin, sodium taurocholate, polysorbate 80 and stearylamine. Survival of macrophages was highly affected by stearic acid and stearylamine. In general a viability of more than 90% was observed when semi-synthetic glycerides or hard fat was employed to formulate nanoparticles. PMID:17300887

  16. Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hyun; Heo, Dan; Park, Jinsung; Na, Sungsoo; Suh, Jin-Suck; Haam, Seungjoo; Park, Sahng Wook; Huh, Yong-Min; Yang, Jaemoon

    2012-12-01

    Amphiphilic surfactants have been used to disperse magnetic nanoparticles in biological media, because they exhibit a dual hydrophobic/hydrophilic affinity that facilitates the formation of a nanoemulsion, within which nanoparticle surfaces can be modified to achieve different physicochemical properties. For the investigation of the interactions of cells with charged magnetic nanoparticles in a biological medium, we selected the nanoemulsion method to prepare water-soluble magnetic nanoparticles using amphiphilic surfactant (polysorbate 80). The hydroxyl groups of polysorbate 80 were modified to carboxyl or amine groups. The chemical structures of carboxylated and aminated polysorbate 80 were confirmed, and water-soluble manganese ferrite nanoparticles (MFNPs) were synthesized with three types of polysorbate 80. Colloidal size, morphology, monodispersity, solubility and T2 relaxivity were found to be similar between the three types of MFNP. However, cationic MFNPs exhibited greater cytotoxicity in macrophages (RAW264.7 cells) and lower cellular membrane effective stiffness than anionic and non-ionic MFNPs. Moreover, cationic MFNPs exhibited large uptake efficiency for RAW264.7 cells compared with anionic or non-ionic MFNPs under the same conditions. Therefore, we propose that surface charge should be a key consideration factor in the design of magnetic nanoparticles for theragnostic applications.

  17. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation.

    PubMed

    Rabolli, Virginie; Thomassen, Leen C J; Uwambayinema, Francine; Martens, Johan A; Lison, Dominique

    2011-10-10

    The aggregation state of NP has been a significant source of difficulty for assessing their toxic activity and great efforts have been done to reduce aggregation of and/or to disperse NP in experimental systems. The exact impact of aggregation on toxicity has, however, not been adequately assessed. Here we compared in vitro the cytotoxic activity of stable monodisperse and aggregated silicon-based nanoparticles (SNP) without introducing a dispersing agent that may affect NP properties. SNP aggregates (180 nm) were produced by controlled electrostatic aggregation through addition of KCl to a Ludox SM sol (25 nm) followed by stabilization and extensive dialysis. The size of the preparations was characterized by TEM and DLS; specific surface area and porosity were derived from N(2) sorption measurements. Macrophage (J774) and fibroblast (3T3) cell lines were exposed to monodisperse or aggregate-enriched suspensions of SNP in DMEM in absence of serum. The cytotoxic activity of the different preparations was assessed by the WST1 assay after 24h of exposure. Parameters that determined the cytotoxic activity were traced by comparing the doses of the different preparations that induced half a maximal reduction in WST1 activity (ED(50)) in both cell lines. We found that ED(50) (6-9 ?g/ml and 15-22 ?g/ml, in J774 and 3T3, respectively) were hardly affected upon aggregation, which was consistent with the fact that the specific surface area of the SNP, a significant determinant of their cytotoxic activity, was unaffected upon aggregation (283-331 m(2)/g). Thus studying small aggregated NP could be as relevant as studying disperse primary NP, when aggregates keep the characteristics of NP, i.e. a high specific surface area and a nanosize dimension. This conclusion does, however, not necessarily hold true for other toxicity endpoints for which the determinants may be different and possibly modified by the aggregation process. PMID:21803137

  18. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  19. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells.

    PubMed

    Song, Yijuan; Guan, Rongfa; Lyu, Fei; Kang, Tianshu; Wu, Yihang; Chen, Xiaoqiang

    2014-11-01

    With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200?g/mL of Ag NPs and ZnO NPs (90nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0-200?g/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD50 of ZnO NPs in Caco-2 cells is 0.431mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells' antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50?g/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials than ZnO NPs. PMID:25771730

  20. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. PMID:21382431

  1. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach

    NASA Astrophysics Data System (ADS)

    Luan, Feng; Kleandrova, Valeria V.; González-Díaz, Humberto; Ruso, Juan M.; Melo, André; Speck-Planche, Alejandro; Cordeiro, M. Natália D. S.

    2014-08-01

    Nowadays, the interest in the search for new nanomaterials with improved electrical, optical, catalytic and biological properties has increased. Despite the potential benefits that can be gathered from the use of nanoparticles, only little attention has been paid to their possible toxic effects that may affect human health. In this context, several assays have been carried out to evaluate the cytotoxicity of nanoparticles in mammalian cells. Owing to the cost in both resources and time involved in such toxicological assays, there has been a considerable increase in the interest towards alternative computational methods, like the application of quantitative structure-activity/toxicity relationship (QSAR/QSTR) models for risk assessment of nanoparticles. However, most QSAR/QSTR models developed so far have predicted cytotoxicity against only one cell line, and they did not provide information regarding the influence of important factors rather than composition or size. This work reports a QSTR-perturbation model aiming at simultaneously predicting the cytotoxicity of different nanoparticles against several mammalian cell lines, and also considering different times of exposure of the cell lines, as well as the chemical composition of nanoparticles, size, conditions under which the size was measured, and shape. The derived QSTR-perturbation model, using a dataset of 1681 cases (nanoparticle-nanoparticle pairs), exhibited an accuracy higher than 93% for both training and prediction sets. In order to demonstrate the practical applicability of our model, the cytotoxicity of different silica (SiO2), nickel (Ni), and nickel(ii) oxide (NiO) nanoparticles were predicted and found to be in very good agreement with experimental reports. To the best of our knowledge, this is the first attempt to simultaneously predict the cytotoxicity of nanoparticles under multiple experimental conditions by applying a single unique QSTR model.Nowadays, the interest in the search for new nanomaterials with improved electrical, optical, catalytic and biological properties has increased. Despite the potential benefits that can be gathered from the use of nanoparticles, only little attention has been paid to their possible toxic effects that may affect human health. In this context, several assays have been carried out to evaluate the cytotoxicity of nanoparticles in mammalian cells. Owing to the cost in both resources and time involved in such toxicological assays, there has been a considerable increase in the interest towards alternative computational methods, like the application of quantitative structure-activity/toxicity relationship (QSAR/QSTR) models for risk assessment of nanoparticles. However, most QSAR/QSTR models developed so far have predicted cytotoxicity against only one cell line, and they did not provide information regarding the influence of important factors rather than composition or size. This work reports a QSTR-perturbation model aiming at simultaneously predicting the cytotoxicity of different nanoparticles against several mammalian cell lines, and also considering different times of exposure of the cell lines, as well as the chemical composition of nanoparticles, size, conditions under which the size was measured, and shape. The derived QSTR-perturbation model, using a dataset of 1681 cases (nanoparticle-nanoparticle pairs), exhibited an accuracy higher than 93% for both training and prediction sets. In order to demonstrate the practical applicability of our model, the cytotoxicity of different silica (SiO2), nickel (Ni), and nickel(ii) oxide (NiO) nanoparticles were predicted and found to be in very good agreement with experimental reports. To the best of our knowledge, this is the first attempt to simultaneously predict the cytotoxicity of nanoparticles under multiple experimental conditions by applying a single unique QSTR model. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01285b

  2. Cytotoxicity Induced by Engineered Silver Nanocrystallites is Dependent on Surface Coatings and Cell Types

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Wang, Wei; Morrell-Falvey, Jennifer L; Doktycz, Mitchel John

    2012-01-01

    Due to their unique antimicrobial properties silver nanocrystallites have garnered substantial recognition and are used extensively in biomedical applications such as wound dressing, surgical instruments and as bone substitute material. They are also released into unintended locations such as the environment or biosphere. Therefore it is imperative to understand the potential interactions, fate and transport of nanoparticles with environmental biotic systems. Although numerous factors including the composition, size, shape, surface charge and capping molecule of nanoparticles are known to influence the cell cytotoxicity, our results demonstrate for the first time that surface coatings are a major determinant in eliciting the potential cytotoxicity and cell interactions of silver nanoparticles. In the present investigation, silver nanocrystallites with nearly uniform size and shape distribution but with different surface coatings, imparting overall high negativity to high positivity, were synthesized. These nanoparticles were poly (diallyldimethylammonium) chloride-Ag, biogenic-Ag, colloidal-Ag (uncoated) and oleate-Ag with zeta potentials +45 5 mV, -12 2 mV, -42 5 mV and -45 5 mV respectively; the particles were thoroughly purified so as to avoid false cytotoxicity interpretations. A systematic investigation on the cytotoxic effects, cellular response and membrane damage caused by these four different silver nanoparticles were evaluated using multiple toxicity measurements on mouse macrophage (RAW-264.7) and lung epithelial (C-10) cell lines. From a toxicity perspective, our results clearly indicated that the cytotoxicity was depend on various factors such as synthesis procedure, surface coat or surface charge and the cell-type for the different silver nanoparticles that were investigated. Poly (diallyldimethylammonium) chloride -Ag was found to be the most toxic, followed by biogenic-Ag and oleate-Ag, whereas uncoated-Ag was found to be least toxic to both macrophage and epithelial cells. Also, based on our cytotoxicity interpretations, epithelial cells were found to be more resistant to the silver nanoparticles than the macrophage cells, regardless of the surface coating.

  3. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    PubMed Central

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-01-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg) were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  4. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress.

    PubMed

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-02-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 ?M. Nanoparticles prepared from ?-lactoglobulin (?-lg) were successfully developed. The ?-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with ?-lg nanoparticles. Fluorescein isothiocynate-conjugated ?-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  5. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Nhung Hoang, Thi My; Thu Trang Mai, Thi; Quynh Trang Nguyen, Thi; Doan Do, Hai; Hien Pham, Thi; Lap Nguyen, Thi; Thu Ha, Phuong

    2015-01-01

    Doxorubicin (DOX) is one of the most effective anticancer drugs for treating many types of cancer. However, the clinical applications of DOX were hindered because of serious side-effects resulting from the unselective delivery to cancer cell including congestive heart failure, chronic cardiomyopathy and drug resistance. Recently, it has been demonstrated that loading anti-cancer drugs onto drug delivery nanosystems helps to maximize therapeutic efficiency and minimize unwanted side-effects via passive and active targeting mechanisms. In this study we prepared folate decorated DOX loaded PLA-TPGS nanoparticles with the aim of improving the potential as well as reducing the side-effects of DOX. Characteristics of nanoparticles were investigated by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) method and Fourier transform infrared spectroscopy (FTIR). Anticancer activity of the nanoparticles was evaluated through cytotoxicity and cellular uptake assays on HeLa and HT29 cancer cell lines. The results showed that prepared drug delivery system had size around 100 nm and exhibited higher cytotoxicity and cellular uptake on both tested HeLa and HT29 cells.

  6. Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells.

    PubMed

    Singh, Surya Prakash; Sharma, Mrinalini; Gupta, Pradeep Kumar

    2015-03-01

    We report results of our investigations on the cytotoxic efficacy of Organically modified silica nanoparticle (SiNp)-curcumin complex conjugated with hyaluronic acid (HA) (HA-SiNp-cur) and HA free SiNp-cur complex in human colon carcinoma (colo-205) cells. Curcumin was loaded in SiNp and resulting complexes were conjugated with HA, which has a strong affinity for cancer cells expressing CD44. After conjugation with HA, the average size of the SiNp-cur nanoparticles increased from 45 nm to 70 nm, and zeta potential changed to -33 mV from -26 mV. Compared to free curcumin and SiNp-cur, curcumin in HA-SiNp was more stable. The uptake and cytotoxicity of curcumin delivered through HA-SiNp-cur was significantly higher in monolayer and spheroids as compared to free curcumin and HA free SiNp-cur. Concomitantly, HA-SiNp-cur complex treatment resulted in higher inhibition of growth and migration of cells in spheroids. Further, incubation of colo-205 cancer cells with an excess of HA impaired the uptake of HA-SiNp-cur confirming the involvement of receptor mediated endocytosis in the uptake of HA conjugated nanocomplex. Time dependent increase in the fluorescence of curcumin observed in the release media when HA-SiNp-cur was incubated with hyaluronidase suggests involvement of enzyme in release of curcumin from nanoparticle. PMID:25511568

  7. Resveratrol Inhibited Hydroquinone-Induced Cytotoxicity in Mouse Primary Hepatocytes

    PubMed Central

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-01-01

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 M hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (?1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 M, 100 M), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1. PMID:23202692

  8. Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity.

    PubMed

    Jambhrunkar, Siddharth; Qu, Zhi; Popat, Amirali; Yang, Jie; Noonan, Owen; Acauan, Luiz; Ahmad Nor, Yusilawati; Yu, Chengzhong; Karmakar, Surajit

    2014-10-01

    Mesoporous silica nanoparticles (MCM-41) with different surface chemistry were used as carrier system to study its influence on drug delivery and anticancer activity of curcumin (CUR). CUR was encapsulated in pristine MCM-41 (hydrophilic and negatively charged), amino functionalized MCM-41 (MCM-41-NH2 which is hydrophilic and positively charged), and methyl functionalized MCM-41 (MCM-41-CH3 which is hydrophobic and negatively charged) and evaluated for in vitro release and cell cytotoxicity in human squamous cell carcinoma cell line (SCC25). Various techniques were employed to evaluate the performance of these materials on cellular uptake and anticancer activity in the SCC25 cell line. Both positively and negatively charged surfaces demonstrated enhanced drug release and anticancer activity compared to pure CUR. Positively charged nanoparticles showed higher cell uptake compared to negatively charged nanoparticles owing to its electrostatic interaction with cells. However, hydrophobic surface modified nanoparticles (MCM-41-CH3) showed no improvement in drug release and anticancer activity due to its poor wetting effect. Cell cycle analysis and cell apoptosis studies revealed different pathway mechanisms followed by the positively and negatively charged nanoparticles but exhibiting similar anticancer activity in SCC25 cells. PMID:25166282

  9. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells

    NASA Astrophysics Data System (ADS)

    Dhas, T. Stalin; Kumar, V. Ganesh; Karthick, V.; Govindaraju, K.; Shankara Narayana, T.

    2014-12-01

    In this investigation, biological synthesis of gold nanoparticles (AuNPs) using Sargassum swartzii and its cytotoxicity against human cervical carcinoma (HeLa) cells is reported. The biological synthesis involved the reduction of chloroauric acid led to the formation of AuNPs within 5 min at 60 C and the formation of AuNPs was confirmed using UV-vis spectrophotometer. The AuNPs were stable; spherical in shape with well-defined dimensions, and the average size of the particle is 35 nm. A zeta potential value of -27.6 mV revealed synthesized AuNPs were highly stable. The synthesized AuNPs exhibited a dose-dependent cytotoxicity against human cervical carcinoma (HeLa) cells. Furthermore, induction of apoptosis was measured by DAPI (4?,6-Diamidino-2-phenylindole dihydrochloride) staining.

  10. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    SciTech Connect

    Stępnik, Maciej; Arkusz, Joanna; Smok-Pieniążek, Anna; Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.; Gromadzińska, Jolanta; De Jong, Wim H.; Rydzyński, Konrad

    2012-08-15

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows alterations in both cell lines with both silica NP tested. ► Buthionine sulfoximine enhances cytotoxicity of Ludox CL-X in 3T3-L1 cells.

  11. Mycoplasma pneumoniae induces cytotoxic activity in guinea pig bronchoalveolar cells

    SciTech Connect

    Kist, M.; Koester, H.; Bredt, W.

    1985-06-01

    Precultured guinea pig alveolar macrophages (AM) and freshly harvested alveolar cells (FHAC) activated by interaction with Mycoplasma pneumoniae were cytotoxic for xenogeneic /sup 75/selenomethionine-labeled tumor target cells. Phagocytosis of whole opsonized or nonopsonized M. pneumoniae cells was more effective in eliciting cytotoxicity than uptake of sonicated microorganisms. The addition of living mycoplasma cells to the assay system enhanced the cytotoxic effect considerably. Target cells were significantly more susceptible to the cytotoxic action of phagocytes if they were coated with mycoplasma antigen or cocultured together with M. pneumoniae. The activation of the phagocytes could be inhibited by 2-deoxy-D-glucose but not by antimicrobial substances suppressing mycoplasma protein synthesis. It was accompanied by /sup 51/Cr release without detectable signs of cell damage. The supernatants of activated cells were cytotoxic for approximately 24 h. Inhibition, release, and cytotoxic activity indicate the necessity of an intact metabolism of the effector cells and suggest a secretion of cytotoxic substances.

  12. Effect of radiation energy and intracellular iron dose on iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Strawbridge, Rendall R.; Thompson, Ella S.; Petryk, Alicia A.; Gladstone, David J.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONPs) are one of several high-Z materials currently being investigated for their ability to enhance the cytotoxic effects of therapeutic ionizing radiation. Studies with iron oxide, silver, gold, and hafnium oxide suggest radiation dose, radiation energy, cell type, and the type and level of metallic nanoparticle are all critical factors in achieving radiation enhancement in tumor cells. Using a single 4 Gy radiation dose, we compared the level of tumor cell cytotoxicity at two different intracellular iron concentrations and two different radiation energies in vitro. IONPs were added to cell culture media at concentrations of 0.25 mg Fe/mL and 1.0 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for 72 hours. Extracellular iron was then removed and cells were irradiated at either 662 keV or 10 MV. At the 0.25 mg Fe/mL dose (4 pg Fe/cell), radiation energy did not affect the level of cytotoxicity. However with 1.0 mg Fe/mL (9 pg Fe/cell), the higher 10 MV radiation energy resulted in 50% greater cytotoxicity as compared to cells without IONPs irradiated at this energy. These results suggest IONPs may be able to significantly enhance the cytotoxic effects of radiation and improve therapeutic ratio if they can be selectively associated with cancer cells and/or tumors. Ongoing in vivo studies of IONP radiation enhancement in a murine tumor model are too immature to draw conclusions from at this time, however preliminary data suggests similar effectiveness of IONP radiation enhancement at 6 MV and 18 MV energy levels. In addition to the IONP-based radiation enhancement demonstrated here, the use of tumor-localized IONP with an externally delivered, non-toxic alternating magnetic field affords the opportunity to selectively heat and kill tumor cells. Combining IONP-based radiation sensitization and heat-based cytotoxicity provides a unique and potentially highly effective opportunity for therapeutic ratio enhancement.

  13. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Puzyn, Tomasz; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Hu, Xiaoke; Dasari, Thabitha P.; Michalkova, Andrea; Hwang, Huey-Min; Toropov, Andrey; Leszczynska, Danuta; Leszczynski, Jerzy

    2011-03-01

    It is expected that the number and variety of engineered nanoparticles will increase rapidly over the next few years, and there is a need for new methods to quickly test the potential toxicity of these materials. Because experimental evaluation of the safety of chemicals is expensive and time-consuming, computational methods have been found to be efficient alternatives for predicting the potential toxicity and environmental impact of new nanomaterials before mass production. Here, we show that the quantitative structure-activity relationship (QSAR) method commonly used to predict the physicochemical properties of chemical compounds can be applied to predict the toxicity of various metal oxides. Based on experimental testing, we have developed a model to describe the cytotoxicity of 17 different types of metal oxide nanoparticles to bacteria Escherichia coli. The model reliably predicts the toxicity of all considered compounds, and the methodology is expected to provide guidance for the future design of safe nanomaterials.

  14. Green synthesized silver nanoparticles using Nelumbonucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities.

    PubMed

    Sreekanth, T V M; Ravikumar, Sambandam; Eom, In-Yong

    2014-12-01

    Silver nanoparticles (AgNPs) with a mean particle size of ∼ 16.7 nm were synthesized using an eco-friendly reducing material, aqueous Nelumbo nucifera root extract. Rapid reduction resulted in the formation of polydispersed nanoparticles. The formation of AgNPs was characterized by surface plasmon resonance, which was determined by ultraviolet-visible (UV-Vis) spectroscopy (band at 412 nm), Fourier transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction. The interaction of the green synthesized AgNPs with Bovine Serum Albumin (BSA) at various temperatures was investigated. Fluorescence quenching, synchronous and resonance light scattering spectroscopy along with UV-Vis absorption studies revealed the efficient binding between BSA and the AgNPs. In addition, the AgNPs exhibited moderate antioxidant and cytotoxicity activities against HeLa cell lines. PMID:25463656

  15. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery

    NASA Astrophysics Data System (ADS)

    Pandey, Ambarish; Sarangi, Sasmit; Chien, Kelly; Sengupta, Poulomi; Papa, Anne-Laure; Basu, Sudipta; Sengupta, Shiladitya

    2014-11-01

    Tumor vasculature is critically dependent on platelet mediated hemostasis and disruption of the same can augment delivery of nano-formulation based chemotherapeutic agents which depend on enhanced permeability and retention for tumor penetration. Here, we evaluated the role of Clopidogrel, a well-known inhibitor of platelet aggregation, in potentiating the tumor cytotoxicity of cisplatin nano-formulation in a murine breast cancer model. In vivo studies in murine syngeneic 4T1 breast cancer model showed a significant greater penetration of macromolecular fluorescent nanoparticles after clopidogrel pretreatment. Compared to self-assembling cisplatin nanoparticles (SACNs), combination therapy with clopidogrel and SACN was associated with a 4 fold greater delivery of cisplatin to tumor tissue and a greater reduction in tumor growth as well as higher survival rate. Clopidogrel enhances therapeutic efficiency of novel cisplatin based nano-formulations agents by increasing tumor drug delivery and can be used as a potential targeting agent for novel nano-formulation based chemotherapeutics.

  16. In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests.

    PubMed

    Costa, Carla; Brandão, Fátima; Bessa, Maria João; Costa, Solange; Valdiglesias, Vanessa; Kiliç, Gözde; Fernández-Bertólez, Natalia; Quaresma, Pedro; Pereira, Eulália; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (ION) have attracted great interest for use in several biomedical fields. In general, they are considered biocompatible, but little is known of their effects on the human nervous system. The main objective of this work was to evaluate the cytotoxicity of two ION (magnetite), coated with silica and oleic acid, previously determining the possible interference of the ION with the methodological procedures to assure the reliability of the results obtained. Human neuroblastoma SHSY5Y and glioblastoma A172 cells were exposed to different concentrations of ION (5-300 µg ml(-1) ), prepared in complete and serum-free cell culture medium for three exposure times (3, 6 and 24 h). Cytotoxicity was evaluated by means of the MTT, neutral red uptake and alamar blue assays. Characterization of the main physical-chemical properties of the ION tested was also performed. Results demonstrated that both ION could significantly alter absorbance readings. To reduce these interferences, protocols were modified by introducing additional washing steps and cell-free systems. Significant decreases in cell viability were observed for both cell lines in specific conditions by all assays. In general, oleic acid-coated ION were less cytotoxic than silica-coated ION; besides, a serum-protective effect was observed for both ION studied and cell lines. These results contribute to increase the knowledge of the potential harmful effects of ION on the human nervous system. Understanding these effects is essential to establish satisfactory regulatory policies on the safe use of magnetite nanoparticles in biomedical applications. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26212026

  17. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells.

    PubMed

    Ramamurthy, Ch; Sampath, K S; Arunkumar, P; Kumar, M Suresh; Sujatha, V; Premkumar, K; Thirunavukkarasu, C

    2013-08-01

    Green synthesis of selenium nanoparticles (SeNPs) was achieved by a simple biological procedure using the reducing power of fenugreek seed extract. This method is capable of producing SeNPs in a size range of about 50-150 nm, under ambient conditions. The synthesized nanoparticles can be separated easily from the aqueous sols by a high-speed centrifuge. These selenium nanoparticles were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elemental analysis by X-ray fluorescence spectrometer (XRF). Nanocrystalline SeNPs were obtained without post-annealing treatment. FTIR spectrum confirms the presence of various functional groups in the plant extract, which may possibly influence the reduction process and stabilization of nanoparticles. The cytotoxicity of SeNPs was assayed against human breast-cancer cells (MCF-7). It was found that SeNPs are able to inhibit the cell growth by dose-dependent manner. In addition, combination of SeNPs and doxorubicin shows better anticancer effect than individual treatments. PMID:23446776

  18. Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake

    PubMed Central

    Tee, Nicolin; Zhu, Yingdong; Mortimer, Gysell M; Martin, Darren J; Minchin, Rodney F

    2015-01-01

    Polyurethanes are widely used in biomedical devices such as heart valves, pacemaker leads, catheters, vascular devices, and surgical dressings because of their excellent mechanical properties and good biocompatibility. Layered silicate nanoparticles can significantly increase tensile strength and breaking strain of polyurethanes potentially increasing the life span of biomedical devices that suffer from wear in vivo. However, very little is known about how these nanoparticles interact with proteins and cells and how they might exert unwanted effects. A series of fluoromica nanoparticles ranging in platelet size from 90 to over 600 nm in diameter were generated from the same base material ME100 by high energy milling and differential centrifugation. The cytotoxicity of the resulting particles was dependent on platelet size but in a manner that is opposite to many other types of nanomaterials. For the fluoromicas, the smaller the platelet size, the less toxicity was observed. The small fluoromica nanoparticles (<200 nm) were internalized by macrophages via scavenger receptors, which was dependent on the protein corona formed in serum. This internalization was associated with apoptosis in RAW cells but not in dTHP-1 cells. The larger particles were not internalized efficiently but mostly decorated the surface of the cells, causing membrane disruption, even in the presence of 80% serum. This work suggests the smaller fluoromica platelets may be safer for use in humans but their propensity to recognize macrophage scavenger receptors also suggests that they will target the reticulo-endoplasmic system in vivo. PMID:25848256

  19. Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts.

    PubMed

    ava?, Tolga; ink?l?, Nilfer; Vatan, zgr; Y?lmaz, Dilek

    2014-09-01

    The aim of this study was to investigate the effects of water soluble fullerene (fullerenol) nanoparticles on the in vitro genotoxicity induced by the insecticide acetamiprid. Healthy human lung cells (IMR-90) were treated with fullerenol C60(OH)n (n: 18-22) alone and in combination with acetamiprid for 24h. The micronucleus test, comet assay and ?-H2AX foci formation assays were used as genotoxicity endpoints. Cytotoxicity was evaluated using the clonogenic assay. The maximum tested concentration of fullerenol (1.600 ?g/ml) induced 77% survival where as the lowest concentration (25 ?g/ml) was not cytotoxic where as acetamiprid was cytotoxic. Fullerenol did not induce genotoxicity at tested concentrations (50-1600 ?g/L). On the other hand, acetamiprid (>50 ?M) significantly induced formation of micronuclei, and double and single stranded DNA breaks in IMR-90 cells. For simultaneous exposure studies, two non-cytotoxic concentrations (50 and 200 ?g/ml) of fullerenol and three cytotoxic concentrations of acetamiprid (100, 200 and 400 ?M) were selected. As a result, we observed that co-exposure with fullerenol significantly reduced the cytotoxicity and genotoxicity of acetamiprid in IMR-90 cells. Our results indicated the protective effect of water soluble fullerene particles on herbicide induced genotoxicity. PMID:25175643

  20. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis.

    PubMed

    Platel, Anne; Carpentier, Rodolphe; Becart, Elodie; Mordacq, Gwendoline; Betbeder, Didier; Nesslany, Fabrice

    2016-03-01

    With the ongoing commercialization of nanotechnology products, human exposure to nanoparticles (NPs) is set to increase dramatically and an evaluation of their potential adverse effects is essential. Surface charge, among other physico-chemicals parameters, is a key criterion that should be considered when using a definition for nanomaterials in a regulatory context. It has recently been recognized as an important factor in determining the toxicity of NPs; however, a complete understanding of the mechanisms involved is still lacking. In this context, the aim of the present study was to investigate the influence of the surface charge modification of NPs on in vitro toxicity assays. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles bearing different surface charges, positive(+), neutral(n) or negative(-), were synthesized. In vitro genotoxicity assays (micronucleus and comet assays) coupled with an assessment of cytotoxicity, were performed in different cell lines (L5178Y mouse lymphoma cells, TK6 human B-lymphoblastoid cells and 16HBE14o- human bronchial epithelial cells). Reactive oxygen species (ROS) production and endocytosis studies were also performed. Our results showed that PLGA(+) NPs were cytotoxic. They are endocytosed by the clathrin pathway and induced ROS in the three cell lines. They led to chromosomal aberrations without primary DNA damage in 16HBE14o- cells, suggesting that aneuploidy may be considered as an important biomarker when assessing the genotoxic potential of NPs. Moreover, 16HBE14o- cells seem to be more suitable for the in vitro screening of inhaled NPs than the regulatory L5178Y and TK6 cells. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26487569

  1. THE EFFECT OF TUNGSTATE NANOPARTICLES ON REACTIVE OXYGEN SPECIES AND CYTOTOXICITY IN RAW 264.7 MOUSE MONOCYTE MACROPHAGE CELLS

    PubMed Central

    Dunnick, Katherine M.; Badding, Melissa A.; Schwegler-Berry, Diane; Patete, Jonathan M.; Koenigsmann, Christopher; Wong, Stanislaus S.; Leonard, Stephen S.

    2015-01-01

    Due to their unique size, surface area, and chemical characteristics, nanoparticles use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting. As with many NP, no apparent toxicity studies have been completed with tungstate NP. The hypothesis that tungstate NP in vitro exposure results in reactive oxygen species (ROS) formation and cytotoxicity was examined. Differences in toxicity based on tungstate NP size, shape (sphere vs. wire), and chemical characteristics were determined. RAW 264.7 mouse monocyte macrophages were exposed to tungstate NP, and ROS formation was assessed via electron spin resonance (ESR), and several assays including hydrogen peroxide, intracellular ROS, and Comet. Results showed ROS production induced by tungstate nanowire exposure, but this exposure did not result in oxidative DNA damage. Nanospheres showed neither ROS nor DNA damage following cellular exposure. Cells were exposed over 72 h to assess cytotoxicity using an MTT (tetrazolium compound) assay. Results showed that differences in cell death between wires and spheres occurred at 24 h but were minimal at both 48 and 72 h. The present results indicate that tungstate nanowires are more reactive and produce cell death within 24 h of exposure, whereas nanospheres are less reactive and did not produce cell death. Results suggest that differences in shape may affect reactivity. However, regardless of the differences in reactivity, in general both shapes produced mild ROS and resulted in minimal cell death at 48 and 72 h in RAW 264.7 cells. PMID:25208664

  2. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    PubMed Central

    Kumaran, Rangarajulu Senthil; Choi, Yong-Keun; Singh, Vijay; Song, Hak-Jin; Song, Kyung-Guen; Kim, Kwang Jin; Kim, Hyung Joo

    2015-01-01

    Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS), glutathione S-transferase (GST) and catalase, were quantified using real-time polymerase chain reactions (molecular level) and molecular beacon technologies (cellular level). The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells) at different concentrations (25, 75 and 150 g/mL) and incubation times (24, 48 and 72 h). Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 g/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool. PMID:25854426

  3. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Rietjens, Ivonne M. C. M.; Singh, Mani P.; Atkins, Tonya M.; Purkait, Tapas K.; Xu, Zejing; Regli, Sarah; Shukaliak, Amber; Clark, Rhett J.; Mitchell, Brian S.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Fink, Mark J.; Veinot, Jonathan G. C.; Kauzlarich, Susan M.; Zuilhof, Han

    2013-05-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe3+ ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (??m) and ATP production, induction of ROS generation, increased cytoplasmic Ca2+ content, production of TNF-? and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine.Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe3+ ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (??m) and ATP production, induction of ROS generation, increased cytoplasmic Ca2+ content, production of TNF-? and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine. Electronic supplementary information (ESI) available: Syn

  4. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges.

    PubMed

    Bhattacharjee, Sourav; Rietjens, Ivonne M C M; Singh, Mani P; Atkins, Tonya M; Purkait, Tapas K; Xu, Zejing; Regli, Sarah; Shukaliak, Amber; Clark, Rhett J; Mitchell, Brian S; Alink, Gerrit M; Marcelis, Antonius T M; Fink, Mark J; Veinot, Jonathan G C; Kauzlarich, Susan M; Zuilhof, Han

    2013-06-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe(3+) ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (??m) and ATP production, induction of ROS generation, increased cytoplasmic Ca(2+) content, production of TNF-? and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine. PMID:23619571

  5. Cytotoxicity of Surface-functionalized Silicon and Germanium Nanoparticles: The Dominant Role of Surface Charges

    PubMed Central

    Bhattacharjee, Sourav; Rietjens, Ivonne MCM; Singh, Mani P; Atkins, Tonya M; Purkait, Tapas K; Xu, Zejing; Regli, Sarah; Shukaliak, Amber; Clark, Rhett J; Mitchell, Brian S; Alink, Gerrit M; Marcelis, Antonius TM; Fink, Mark J; Veinot, Jonathan GC; Kauzlarich, Susan M; Zuilhofa, Han

    2013-01-01

    Although it is hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used, to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1 % Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1 % Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe3+ ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be a target organ for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (??m) and ATP production, induction of ROS generation, increased cytoplasmic Ca2+ content, production of TNF-? and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight in the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine. PMID:23619571

  6. Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: Characterization and cytotoxicity analysis

    NASA Astrophysics Data System (ADS)

    Li, Yan; Teck Nam, Chai; Ooi, Chui Ping

    2009-09-01

    Calcium hydroxyapatite (HA) is the main inorganic component of natural bones and can bond to bone directly in vivo. Thus HA is widely used as coating material on bone implants due to its good osteoconductivity and osteoinductivity. Metal ions doped HA have been used as catalyst or absorbents since the ion exchange method has introduced new properties in HA which are inherent to the metal ions. For example, Mn2+ ions have the potential to increase cell adhesion while Fe3+ ions have magnetic properties. Here, Fe(III) substituted hydroxyapatite (Fe-HA) and Mn(II) substituted hydroxyapatite (Mn-HA) were produced by wet chemical method coupled with ion exchange mechanism. Compared with pure HA, the colour of both Fe-HA and Mn-HA nanoparticles changed from white to brown and pink respectively. The intensity of the colours increased with increasing substitution concentrations. XRD patterns showed that all samples were single phased HA while the FTIR spectra revealed all samples possessed the characteristic phosphate and hydroxyl adsorption bands of HA. However, undesired adsorption bands of carbonate substitution (B-type carbonated HA) and H2O were also detected, which was reasonable since the wet chemical method was used in the synthesis of these nanoparticles. FESEM images showed all samples were elongated spheroids with small size distribution and of around 70 nm, regardless of metal ion substitution concentrations. EDX spectra showed the presence of Fe and Mn and ICP-AES results revealed all metal ion substituted HA were non-stoichiometric (Ca/P atomic ratio deviates from 1.67). Fe-HA nanoparticles were paramagnetic and the magnetic susceptibility increased with the increase of Fe content. Based on the extraction assay for cytotoxicity test, both Fe-HA and Mn-HA displayed non-cytotoxicity to osteoblast.

  7. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli.

    PubMed

    Tran, Phong A; O'Brien-Simpson, Neil; Reynolds, Eric C; Pantarat, Namfon; Biswas, Dhee P; O'Connor, Andrea J

    2016-01-29

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection-resisting, non-cytotoxic coatings for medical devices. PMID:26656836

  8. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; O’Brien-Simpson, Neil; Reynolds, Eric C.; Pantarat, Namfon; Biswas, Dhee P.; O’Connor, Andrea J.

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices.

  9. Cytotoxic interactions of bare and coated NaGdF4:Yb(3+):Er(3+) nanoparticles with macrophage and fibroblast cells.

    PubMed

    Wysokińska, E; Cichos, J; Zioło, E; Bednarkiewicz, A; Strządała, L; Karbowiak, M; Hreniak, D; Kałas, W

    2016-04-01

    The lanthanide nano-compounds are well suited to serve as fluorescent and magnetic contrast agents and luminescent labels. Although they are considered as promising materials for bio-imaging and bio-sensors in vivo or in vitro, the amount of data is still insufficient for deep understanding the toxicity of these nanomaterials. This knowledge is of great importance in the light of growing use of the biofunctionalized nanoparticles, which raises some questions about safety of these materials. Despite lanthanide-doped NaGdF4 nanocrystals are considered as non-toxic, here we present the data showing the fatal effect of newly synthetized NaGdF4:Yb(3+):Er(3+) on chosen types of cells. Our studies were performed on two cell lines NIH3T3 fibroblasts, and RAW264.7 macrophages. Cytotoxic properties of NaGdF4:Yb(3+):Er(3+) nanoparticles and their biological effects were studied by assessing cell culture viability (MTS), proliferation and apoptosis. Bare NaGdF4:Yb(3+):Er(3+) nanocrystals were cytotoxic and induced apoptosis of both NIH3T3 and RAW264.7 cells. Their cytotoxicity was reduced by PEGylation, at the expense of minimizing direct interactions between the compound and the cell. On the other hand, coating with silica reduced cell death induced by Yb(3+):Er(3+) codoped NaGdF4 nanocrystals (but proliferation was still inhibited). The NH2-modified silica coated nanoparticles were clearly less cytotoxic than pristine nanoparticles, which suggests that both, silica and PEG coatings are reasonable approaches to decrease cytotoxicity of the nanocrystal labels. The silica and PEG shell, should also enable and simplify further bio-functionalization of these luminescent labels. The authors acknowledge the financial support from: Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (IITD PAN) grant no. 3/15, Polish Ministry of Science and Higher Education, Grant N N507 499538 and from the Wroclaw Research Centre EIT+ within the project "The Application of Nanotechnology in Advanced Materials" - NanoMat (POIG.01.01.02-02-002/08) financed by the European Regional Development Fund (Operational Program Innovative Economy, 1.1.2). PMID:26639924

  10. Increased Nuclear Thioredoxin-1 Potentiates Cadmium-Induced Cytotoxicity

    PubMed Central

    Jones, Dean P.

    2013-01-01

    Cadmium (Cd) is a widely dispersed environmental agent that causes oxidative toxicity through mechanisms that are sensitive to thioredoxin-1 (Trx1). Trx1 is a cytoplasmic protein that translocates to nuclei during oxidative stress. Recent research shows that interaction of Trx1 with actin plays a critical role in cell survival and that increased nuclear Trx-1 potentiates proinflammatory signaling and death in cell and mouse models. These observations indicate that oxidative toxicity caused by low-dose Cd could involve disruption of actin-Trx1 interaction, nuclear Trx1 translocation, and potentiation of proinflammatory cell death mechanisms. In this study, we investigated the role of nuclei-localized Trx1 in Cd-induced inflammation and cytotoxicity using in vitro and in vivo models. The results show that Cd stimulated nuclear translocation of Trx1 and p65 of NF-κB. Elevation of Trx1 in nuclei in in vitro cells and kidney of transgenic mice potentiated Cd-stimulated NF-κB activation and cell death. Cd-stimulated Trx1 nuclear translocation and NF-κB activation were inhibited by cytochalasin D, an inhibitor of actin polymerization, suggesting that actin regulates Trx1 nuclear translocation and NF-κB activation by Cd. A nuclear-targeted dominant negative form of Trx1 blocked Cd-stimulated NF-κB activation and decreased cell death. Addition of zinc, known to antagonize Cd toxicity by increasing metallothionein, had no effect on Cd-stimulated nuclear translocation of Trx1 and NF-κB activation. Taken together, the results show that nuclear translocation and accumulation of redox-active Trx1 in nuclei play an important role in Cd-induced inflammation and cell death. PMID:22961094

  11. Laser pulse induced gold nanoparticle gratings

    SciTech Connect

    Hung, W.-C.; Cheng, W.-H.; Tsai, M.-S.; Chung, W.-C.; Jiang, I-M.; Yeh, Pochi

    2008-08-11

    We report the results of our experimental investigation of laser induced gold nanoparticle gratings and their optical diffraction properties. A single shot of a pair Nd-YAG laser pulses with the same polarization is directed toward a 6 nm thick gold film on a substrate of polymethyl methacrylate. As a result of the laser illumination, the thin gold film is fragmented into an array of nanoparticles. Through the observation of scanning electron and dark-field optical microscopes, we discovered that the morphology of the gold nanoparticle grating is dependent on the fluence of laser pulse. The spectrum of first order diffraction shows the dependence on the absorbance property due to the presence of the nanoparticles. The ablation of nanothickness thin films via the use of laser pulses may provide a simple and efficient method for the fabrication of nanoscale structures, including two dimensional arrays of nanoparticles.

  12. Study the cytotoxicity of different kinds of water-soluble nanoparticles in human osteoblast-like MG-63 cells

    SciTech Connect

    Niu, Lu; Li, Yang; Li, Xiaojie; Gao, Xue; Su, Xingguang

    2012-11-15

    Highlights: ► Preparation of three kinds of water-soluble QDs: CdTe, CdTe@SiO{sub 2}, Mn:ZnSe. ► Evaluated the cytotoxicity qualitatively and quantitatively. ► Fluorescent staining. ► Detected the total intracellular cadmium in cells. -- Abstract: Quantum nanoparticles have been applied extensively in biological and medical fields, the cytotoxicity of nanoparticles becomes the key point we should concern. In this paper, the cytotoxicity of three kinds of water-soluble nanoparticles: CdTe, CdTe@SiO{sub 2} and Mn:ZnSe was studied. We evaluated the nanoparticles toxicity qualitatively by observing the morphological changes of human osteoblast-like MG-63 cells at different incubation times and colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were carried out to detect the cell viability quantitatively. The results showed that CdTe nanoparticles with high concentrations caused cells to die largely while CdTe@SiO{sub 2} and Mn:ZnSe nanoparticles had no obvious effect. For further study, we studied the relation between the cell viability and the total cadmium concentration in cells and found that the viability of cells treated with CdTe@SiO{sub 2} nanoparticles was higher than that treated with CdTe nanoparticles. We also discovered that the death rate of cells co-incubated with CdTe nanoparticles was proportional to the total intracellular cadmium concentrations.

  13. Spectral Induced Polarization of Goethite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Moradi, S.; Zimmermann, E.; Bosch, J.; Vereecken, H.

    2014-12-01

    Goethite nanoparticles are being considered as a tool to enhance in situ remediation of aquifers contaminated with aromatic hydrocarbons. Injection of goethite nanoparticles into the plume is expected to enhance microbial iron reduction and associated beneficial oxidation of hydrocarbons in a cost-effective manner. Amongst others, current challenges associated with this novel approach are the monitoring of nanoparticle delivery and the nanoparticle and contaminant concentration dynamics over time. Obviously, non-invasive monitoring of these properties would be highly useful. In this study, we aim to evaluate whether spectral induced polarization (SIP) measurements of the complex electrical conductivity are suitable for such non-invasive characterization. In principle, this is not unreasonable because the electrical double layers of the goethite nanoparticles are expected to affect electrical polarization and thus the imaginary part of the complex electrical conductivity. In a first set of measurements, we determined the complex electrical conductivity of goethite nanoparticle suspensions with different nanoparticle concentrations, pH, and ionic strength in the mHz to kHz frequency range. In a second set of measurements, mixtures of sand and different concentrations of goethite nanoparticles and variable pH and ionic strengths were analyzed. Finally, flow experiments were monitored with SIP in a 1-m long laboratory column to investigate dynamic effects associated with goethite nanoparticle injection and delivery. The results showed that the imaginary part of the electrical conductivity was only affected in the high frequency range (Hz - kHz), which is expected from the small size of the goethite nanoparticles. Overall, we found that the goethite nanoparticles are associated with a small increase in the imaginary electrical conductivity at 1 kHz that can be measured in situ using recently improved borehole electrical impedance tomography measurement equipment that provides the required accuracy for frequencies above 100 Hz.

  14. Uremic toxins enhance statin-induced cytotoxicity in differentiated human rhabdomyosarcoma cells.

    PubMed

    Uchiyama, Hitoshi; Tsujimoto, Masayuki; Shinmoto, Tadakazu; Ogino, Hitomi; Oda, Tomoko; Yoshida, Takuya; Furukubo, Taku; Izumi, Satoshi; Yamakawa, Tomoyuki; Tachiki, Hidehisa; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2014-09-01

    The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF). Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins-hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate-on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated). In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated). However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated). These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins. PMID:25192420

  15. Involvement of Iysosomal proteolysis in hepatocyte cytotoxicity induced by Cu (II) or Cr (VI)

    NASA Astrophysics Data System (ADS)

    Pourahmad, J.; O'Brien, P. J.

    2003-05-01

    Previously we showed that the redox active Cu (II) and Cr (VI) were very powerful at inducing reactive oxygen species (ROS) formation in hepatocytes and furthermore ROS scavengers prevented Cu (II) and Cr (VI) induced hepatocyte cytotoxicity[1,2]. In the following it is shown that hepatocyte cytotoxicity induced by Cu (II) and Cr(VI) were preceded by lysosomal proteolysis as demonstrated by tyrosine release. Hepatocyte lysosomal proteolysis was also prevented by leupeptin and pepstatin (lysosomal protease inhibitors). Cu(II) and Cr (VI) induced cytotoxicity was also prevented by leupeptin and pepstatin. A marked increase in Cu (II) and Cr (VI) induced hepatocyte toxicity also occurred if the lysosomal toxins gentamicin or aurothioglucose were added at the same time as the Cu (II) and Cr (VI). Furthermore destabilizing lysosomal membranes beforehand by preincubating the hepatocytes with gentamicin or aurothioglucose prevented Cu (II) and Cr (VI) induced hepatocyte cytotoxicity. It is proposed that Cu (II) and Cr (VI) induced cytotoxicity involves lysosomal damage that causes the release of cytotoxic digestive enzymes as a result of lysosomal membrane damage by ROS".

  16. Protein Corona Formation on Magnetite Nanoparticles: Effects of Culture Medium Composition, and Its Consequences on Superparamagnetic Nanoparticle Cytotoxicity.

    PubMed

    Mbeh, D A; Javanbakht, T; Tabet, L; Merhi, Y; Maghni, K; Sacher, E; Yahia, L H

    2015-05-01

    The physicochemical properties and potential cytotoxicity of nanoparticles (NPs) are significantly influenced by their inter- action with proteins, which results in corona formation. Here, we have determined whether corona formation, resulting from interactions between superparamagnetic iron oxide nanoparticles (SPIONs) and different cell culture media, may have consequences for driving NP toxic effects. To address this issue, complementary methods were used. The deter- mination of the hydrodynamic size distribution by ? (zeta) potential measurement indicated that SPIONs were negatively charged under all conditions but that the actual charge was differed with the cell culture medium used. In vitro protein adsorption studies were carried out using the Bradford protein assay and Fourier transform infrared spectroscopy (FTIR). The Bradford assay revealed that the concentration of unadsorbed proteins and other biomolecules decreased when the SPION concentration increased. FTIR showed that the proteins were, indeed, adsorbed onto the NP surface. This was followed by matrix-assisted laser desorption/ionization time-of-flight secondary ion mass spectrometry (MALDI TOF-SIMS), to identify the adsorbed proteins. Ultimately, three different cell viability assays led to the conclusion that the SPIONs were not toxic for all the concentrations used here. In summary, we found that corona formation on the SPIONs depends on the composition of the culture media but has no consequence for nanotoxicity. We have shown that the application of complementary methods has provided novel insights into SPION/protein interactions. PMID:26349395

  17. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro; Toledano Furman, Naama E; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. PMID:26653875

  18. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity

    PubMed Central

    Lee, Yeon Kyung; Choi, Eun-Ju; Webster, Thomas J; Kim, Sang-Hyun; Khang, Dongwoo

    2015-01-01

    Although the cytotoxicity of nanoparticles (NPs) is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses. PMID:25565807

  19. Evaluation of Azathioprine-Induced Cytotoxicity in an In Vitro Rat Hepatocyte System

    PubMed Central

    Maruf, Abdullah Al; Wan, Luke; O'Brien, Peter J.

    2014-01-01

    Azathioprine (AZA) is widely used in clinical practice for preventing graft rejection in organ transplantations and various autoimmune and dermatological diseases with documented unpredictable hepatotoxicity. The potential molecular cytotoxic mechanisms of AZA towards isolated rat hepatocytes were investigated in this study using Accelerated Cytotoxicity Mechanism Screening techniques. The concentration of AZA required to cause 50% cytotoxicity in 2?hrs at 37C was found to be 400??M. A significant increase in AZA-induced cytotoxicity and reactive oxygen species (ROS) formation was observed when glutathione- (GSH-) depleted hepatocytes were used. The addition of N-acetylcysteine decreased cytotoxicity and ROS formation. Xanthine oxidase inhibition by allopurinol decreased AZA-induced cytotoxicity, ROS, and hydrogen peroxide (H2O2) formation and increased % mitochondrial membrane potential (MMP). Addition of N-acetylcysteine and allopurinol together caused nearly complete cytoprotection against AZA-induced hepatocyte death. TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl), a known ROS scavenger and a superoxide dismutase mimic, and antioxidants, like DPPD (N,N?-diphenyl-p-phenylenediamine), Trolox (a water soluble vitamin E analogue), and mesna (2-mercaptoethanesulfonate), also decreased hepatocyte death and ROS formation. Results from this study suggest that AZA-induced cytotoxicity in isolated rat hepatocytes may be partly due to ROS formation and GSH depletion that resulted in oxidative stress and mitochondrial injury. PMID:25101277

  20. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells

    NASA Astrophysics Data System (ADS)

    Ge, Gaoyuan; Wu, Hengfang; Xiong, Fei; Zhang, Yu; Guo, Zhirui; Bian, Zhiping; Xu, Jindan; Gu, Chunrong; Gu, Ning; Chen, Xiangjian; Yang, Di

    2013-05-01

    One major obstacle for successful application of nanoparticles in medicine is its potential nanotoxicity on the environment and human health. In this study, we evaluated the cytotoxicity effect of dimercaptosuccinic acid-coated iron oxide (DMSA-Fe2O3) using cultured human aortic endothelial cells (HAECs). Our results showed that DMSA-Fe2O3 in the culture medium could be absorbed into HAECs, and dispersed in the cytoplasm. The cytotoxicity effect of DMSA-Fe2O3 on HAECs was dose-dependent, and the concentrations no more than 0.02 mg/ml had little toxic effect which were revealed by tetrazolium dye assay. Meanwhile, the cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without DMSA-Fe2O3). However, the endocrine function for endothelin-1 and prostacyclin I-2, as well as the urea transporter function, was altered even without obvious evidence of cell injury in this context. We also showed by real-time PCR analysis that DMSA-Fe2O3 exposure resulted in differential effects on the expressions of pro- and anti-apoptosis genes of HAECs. Meanwhile, it was noted that DMSA-Fe2O3 exposure could activate the expression of genes related to oxidative stress and adhesion molecules, which suggested that inflammatory response might be evoked. Moreover, we demonstrated by in vitro endothelial tube formation that even a small amount of DMSA-Fe2O3 (0.01 and 0.02 mg/ml) could inhibit angiogenesis by the HAECs. Altogether, these results indicate that DMSA-Fe2O3 have some cytotoxicity that may cause side effects on normal endothelial cells.

  1. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Jeyaraj, Muniyandi; Kim, Jin-Hoi

    2013-01-01

    Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25??g/mL) for 24?h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy. PMID:23936814

  2. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    PubMed Central

    Frhlich, Eleonore

    2012-01-01

    Many types of nanoparticles (NPs) are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging. PMID:23144561

  3. Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and s-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment.

    PubMed

    Seabra, Amedea B; Pasquto, Tatiane; Ferrarini, Ana Carolina F; Santos, Marconi da Cruz; Haddad, Paula S; de Lima, Renata

    2014-07-21

    Iron oxide magnetic nanoparticles have been proposed for an increasing number of biomedical applications, such as drug delivery. To this end, toxicological studies of their potent effects in biological media must be better evaluated. The aim of this study was to synthesize, characterize, and examine the potential in vitro cytotoxicity and genotoxicity of thiolated (SH) and S-nitrosated (S-NO) iron oxide superparamagnetic nanoparticles toward healthy and cancer cell lines. Fe3O4 nanoparticles were synthesized by coprecipitation techniques and coated with small thiol-containing molecules, such as mercaptosuccinic acid (MSA) or meso-2,3-dimercaptosuccinic acid (DMSA). The physical-chemical, morphological, and magnetic properties of thiol-coating Fe3O4 nanoparticles were characterized by different techniques. The thiol groups on the surface of the nanoparticles were nitrosated, leading to the formation of S-nitroso-MSA- or S-nitroso-DMSA-Fe3O4 nanoparticles. The cytotoxicity and genotoxicity of thiolated and S-nitrosated nanoparticles were more deeply evaluated in healthy (3T3, human lymphocytes cells, and chinese hamster ovary cells) and cancer cell lines (MCF-7). The results demonstrated that thiol-coating iron oxide magnetic nanoparticles have few toxic effects in cells, whereas S-nitrosated-coated particles did cause toxic effects. Moreover, due to the superaramagnetic behavior of S-nitroso-Fe3O4 nanoparticles, those particles can be guided to the target site upon the application of an external magnetic field, leading to local toxic effects in the tumor cells. Taken together, the results suggest the promise of S-nitroso-magnetic nanoparticles in cancer treatment. PMID:24949992

  4. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells.

    PubMed

    Kanno, Syu-Ichi; Shouji, Ai; Asou, Keiko; Ishikawa, Masaaki

    2003-06-01

    Flavonoids are widely recognized as naturally occurring antioxidants. Naringin (NG) is one of the flavonoid components in citrus fruits such as grapefruit. Hydrogen peroxide (H2O2) causes cytotoxicity through oxidative stress and apoptosis. In this paper, we examined the effects of NG on H2O2-induced cytotoxicity and apoptosis in mouse leukemia P388 cells. Cytotoxicity was determined by mitochondrial activity (MTT assay). Apoptosis and DNA damage were analyzed by measuring chromatin condensation and Comet assay (alkaline single cell gel electrophoresis), respectively. H2O2-induced cytotoxicity was significantly attenuated by NG or the reduced form of glutathione (GSH), a typical intracellular antioxidant. NG suppressed chromatin condensation and DNA damage induced by H2O2. These results indicate that NG from natural products is a useful drug having antioxidant and anti-apoptopic properties. PMID:12832847

  5. Active targeted nanoparticles: Preparation, physicochemical characterization and in vitro cytotoxicity effect

    PubMed Central

    Heidarian, Sh.; Derakhshandeh, K.; Adibi, H.; Hosseinzadeh, L.

    2015-01-01

    In this study, the folate decorated biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles were developed for tumor targeting of anticancer agents. Due to the overexpression of the folate receptor on tumor surface, the folate has been efficiently employed as a targeting moiety for various anticancer agents to avoid their non-specific attacks on normal tissues and also to increase their cellular uptake within target cells. Folate conjugate PLGA was synthesized successfully and its chemical structure was evaluated by FTIR, DSC and 1HNMR spectroscopy. PLGA-folate nanoparticles (PLGA-Fol NPs) were prepared by nanoprecipitation method, adopting PLGA as a drug carrier, folic acid as a targeting ligand and 9-nitrocampthotecin as a model anticancer drug. The average size and encapsulation efficiency of the prepared PLGA-Fol NPs were found to be around 115 12 nm and 57%, respectively. In vitro release profile indicated that nearly 85% of the drug was released in 50 h. The in vitro intracellular uptakes of PLGA-Fol NPs showed greater cytotoxicity on cancer cell lines compared to non-folate mediated carriers. PMID:26600851

  6. Active targeted nanoparticles: Preparation, physicochemical characterization and in vitro cytotoxicity effect.

    PubMed

    Heidarian, Sh; Derakhshandeh, K; Adibi, H; Hosseinzadeh, L

    2015-01-01

    In this study, the folate decorated biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles were developed for tumor targeting of anticancer agents. Due to the overexpression of the folate receptor on tumor surface, the folate has been efficiently employed as a targeting moiety for various anticancer agents to avoid their non-specific attacks on normal tissues and also to increase their cellular uptake within target cells. Folate conjugate PLGA was synthesized successfully and its chemical structure was evaluated by FTIR, DSC and (1)HNMR spectroscopy. PLGA-folate nanoparticles (PLGA-Fol NPs) were prepared by nanoprecipitation method, adopting PLGA as a drug carrier, folic acid as a targeting ligand and 9-nitrocampthotecin as a model anticancer drug. The average size and encapsulation efficiency of the prepared PLGA-Fol NPs were found to be around 115 12 nm and 57%, respectively. In vitro release profile indicated that nearly 85% of the drug was released in 50 h. The in vitro intracellular uptakes of PLGA-Fol NPs showed greater cytotoxicity on cancer cell lines compared to non-folate mediated carriers. PMID:26600851

  7. Cytotoxic and anti-angiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles

    PubMed Central

    Liu, Zhijun; Zhang, Fang; Koh, Gar Yee; Dong, Xin; Hollingsworth, Javoris; Zhang, Jian; Russo, Paul S.; Yang, Peiying; Stout, Rhett W.

    2014-01-01

    Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic due to its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated this unique PTX-RUB formulation. Paclitaxel was solubilized by RUB in water to levels of 1.6 to 6.3 mg/mL at 10 to 40% weight/volume. These, nanomicellar, PTX-RUB complexes were dried to a powder which was subsequently reconstituted in physiologic solutions. After 2.5 hrs in gastric fluid 85 to 99% of PTX-RUB remained soluble, while 79 to 96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB with an average diameter of 6.6 nm. Compared with Taxol, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with DMSO-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 nM to 20 nM. Additionally, tubular formation and migration of HUVECs were inhibited at levels as low as 5 nM. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations. PMID:25243454

  8. DNA melting and genotoxicity induced by silver nanoparticles and graphene.

    PubMed

    Ivask, Angela; Voelcker, Nicolas H; Seabrook, Shane A; Hor, Maryam; Kirby, Jason K; Fenech, Michael; Davis, Thomas P; Ke, Pu Chun

    2015-05-18

    We have revealed a connection between DNA-nanoparticle (NP) binding and in vitro DNA damage induced by citrate- and branched polyethylenimine-coated silver nanoparticles (c-AgNPs and b-AgNPs) as well as graphene oxide (GO) nanosheets. All three types of nanostructures triggered an early onset of DNA melting, where the extent of the melting point shift depends upon both the type and concentration of the NPs. Specifically, at a DNA/NP weight ratio of 1.1/1, the melting temperature of lambda DNA dropped from 94 C down to 76 C, 60 C, and room temperature for GO, c-AgNPs and b-AgNPs, respectively. Consistently, dynamic light scattering revealed that the largest changes in DNA hydrodynamic size were also associated with the binding of b-AgNPs. Upon introduction to cells, b-AgNPs also exhibited the highest cytotoxicity, at the half-maximal inhibitory (IC50) concentrations of 3.2, 2.9, and 5.2 mg/L for B and T-lymphocyte cell lines and primary lymphocytes, compared to the values of 13.4, 12.2, and 12.5 mg/L for c-AgNPs and 331, 251, and 120 mg/L for GO nanosheets, respectively. At cytotoxic concentrations, all NPs elicited elevated genotoxicities via the increased number of micronuclei in the lymphocyte cells. However, b-AgNPs also induced micronuclei at subtoxic concentrations starting from 0.1 mg/L, likely due to their stronger cellular adhesion and internalization, as well as their subsequent interference with normal DNA synthesis or chromosome segregation during the cell cycle. This study facilitates our understanding of the effects of NP chemical composition, surface charge, and morphology on DNA stability and genotoxicity, with implications ranging from nanotoxicology to nanobiotechnology and nanomedicine. PMID:25781053

  9. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766).

    PubMed

    Vignardi, Caroline P; Hasue, Fabio M; Sartrio, Priscila V; Cardoso, Caroline M; Machado, Alex S D; Passos, Maria J A C R; Santos, Thais C A; Nucci, Juliana M; Hewer, Thiago L R; Watanabe, Ii-Sei; Gomes, Vicente; Phan, Ngan V

    2015-01-01

    Nanoparticles have physicochemical characteristics that make them useful in areas such as science, technology, medicine and in products of everyday use. Recently the manufacture and variety of these products has grown rapidly, raising concerns about their impact on human health and the environment. Adverse effects of exposure to nanoparticles have been reported for both terrestrial and aquatic organisms, but the toxic effects of the substances on marine organisms remain poorly understood. The main aim of this study was to evaluate the genotoxicity of TiO2-NP in the marine fish Trachinotus carolinus, through cytogenotoxic methods. The fish received two different doses of 1.5 ?g and 3.0 ?g-TiO2-NP g(-1) by intraperitoneal injection. Blood samples were collected to analyze erythrocyte viability using the Trypan Blue exclusion test, comet assay (pH>13), micronucleus (MN) and other erythrocyte nuclear abnormalities (ENA) 24, 48 and 72 h after injection. The possible cell uptake of TiO2-NP in fish injected with the higher dose was investigated after 72 h using transmission electron microscopy (TEM). The results showed that TiO2-NP is genotoxic and potentially cytotoxic for this species, causing DNA damage, inducing the formation of MN and other ENA, and decreasing erythrocyte viability. TEM examination revealed that cell uptake of TiO2-NP was mainly in the kidney, liver, gills and to a lesser degree in muscle. To the extent of the authors' knowledge, this is the first in vivo study of genotoxicity and other effects of TiO2-NP in a marine fish. PMID:25481788

  10. Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumor treatment: in vitro evaluation of cytotoxicity and magnetohyperthermia efficacy

    PubMed Central

    Estevanato, Luciana LC; Silva, Jaqueline R Da; Falqueiro, André M; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Tedesco, Antônio C; Morais, Paulo C; Lacava, Zulmira GM

    2012-01-01

    Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy. PMID:23055734

  11. Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study.

    PubMed

    Mattos, Ana Cristina de; Altmeyer, Clescila; Tominaga, Tania Toyomi; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-03-10

    Poly(lactic acid) (PLA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) blend nanoparticles were developed loading 5-fluorouracil (5-FU), an antitumor agent broadly used in therapy. A 2(3) factorial experimental design was conducted to indicate an optimal formulation and demonstrate the influence of the interactions of components on the mean particle size and drug encapsulation efficiency. Optimized PLA nanoparticles presented 294nm and 51% of 5-FU encapsulation efficiency and PLA-PEG blend nanoparticles presented 283nm and 55% of 5-FU encapsulation efficiency. In vitro release assay demonstrated after 320h about 50% of 5-FU was released from PLA and PLA-PEG blend nanoparticles. Release kinetics of 5-FU from nanoparticles followed second order and the release mechanism calculated by Korsmeyer-Peppas model was diffusion and erosion. In the assessment of cytotoxicity over Hep-2 tumor cells, PLA or PLA-PEG blend nanoparticles presented similar IC50 value than free 5-FU. Pharmacokinetic parameters after oral administration of 5-FU were improved by nanoencapsulation. Bioavailability, Cmax, Tmax, t1/2 and distribution volume were significantly improved, while clearance were decreased. PEG presence in nanoparticles didn't influence physicochemical and biological parameters evaluated. PLA and PLA-PEG nanoparticles can be potential carriers for oral delivery of 5-FU. PMID:26775869

  12. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs.

    PubMed

    Elsabahy, Mahmoud; Samarajeewa, Sandani; Raymond, Jeffery E; Clark, Corrie; Wooley, Karen L

    2013-10-21

    The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)-block-poly(DL-lactide) (PAEA90-b-PDLLA40) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) (i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine. PMID:24187610

  13. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs

    PubMed Central

    Elsabahy, Mahmoud; Samarajeewa, Sandani; Raymond, Jeffery E.; Clark, Corrie; Wooley, Karen L.

    2013-01-01

    The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)-block-poly(DL-lactide) (PAEA90-b-PDLLA40) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) (i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine. PMID:24187610

  14. Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture.

    PubMed

    Cohen, Dror; Soroka, Yoram; Ma'or, Zeev; Oron, Miriam; Portugal-Cohen, Meital; Brggre, Franois Menahem; Berhanu, Deborah; Valsami-Jones, Eugenia; Hai, Noam; Milner, Yoram

    2013-02-01

    The increasing use of nano-sized materials in our environment, and in many consumer products, dictates new safety concerns. In particular, adequate experimental models are needed to evaluate skin toxicity of metal oxide ions, commonly found in cosmetic and dermatologic preparations. We have addressed the biological effects of topically applied copper oxide (CuO) nanoparticles in human skin organ cultures, using light and electron microscopy, and biochemical tests. Nanoparticles were more toxic than micro-sized particles, and their effects were stronger when supplied in growth medium than in topical application. Still topically applied CuO nanoparticles induced inflammatory cytokine secretion and necrosis, especially in epidermis deprived of its protective cornea. Since nanoparticle penetration was not seen, we propose that they may adhere to skin surface, react with the local acidic environment, and generate soluble ions that make their way to inner sites. This work illustrates the abilities of skin organ culture to evaluate the biological effects of topically-applied materials on skin in vitro. PMID:22954531

  15. Size-dependent cytotoxicity of europium doped NaYF ? nanoparticles in endothelial cells.

    PubMed

    Chen, Shizhu; Zhang, Cuimiao; Jia, Guang; Duan, Jianlei; Wang, Shuxiang; Zhang, Jinchao

    2014-10-01

    Lanthanide-doped sodium yttrium fluoride (NaYF4) nanoparticles exhibit novel optical properties which make them be widely used in various fields. The extensive applications increase the chance of human exposure to these nanoparticles and thus raise deep concerns regarding their riskiness. In the present study, we have synthesized europium doped NaYF4 (NaYF4:Eu(3+)) nanoparticles with three diameters and used endothelial cells (ECs) as a cell model to explore the potential toxic effect. The cell viability, cytomembrane integrity, cellular uptake, intracellular localization, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis detection, caspase-3 activity and expression of inflammatory gene were studied. The results indicated that these nanoparticles could be uptaken into ECs and decrease the cell viability, induce the intracellular lactate dehydrogenase (LDH) release, increase the ROS level, and decrease the cell MMP in a size-dependent manner. Besides that, the cells were suffered to apoptosis with the caspase-3 activation, and the inflammation specific gene expressions (ICAM1 and VCAM1) were also increased. Our results suggest that the damage pathway may be related to the ROS generation and mitochondrial damage. The results provide novel evidence to elucidate their toxicity mechanisms and may be helpful for more rational applications of these compounds in the future. PMID:25175221

  16. Diabetes exacerbates nanoparticles induced brain pathology.

    PubMed

    Lafuente, Jos Vicente; Sharma, Aruna; Patnaik, Ranjana; Muresanu, Dafin Fior; Sharma, Hari Shanker

    2012-02-01

    Long term exposure of nanoparticles e.g., silica dust (SiO2) from desert environments, or engineered nanoparticles from metals viz., Cu, Al or Ag from industry, ammunition, military equipment and related products may lead to adverse effects on mental health. However, it is unclear whether these nanoparticles may further adversely affect human health in cardiovascular or metabolic diseases e.g., hypertension or diabetes. It is quite likely that in diabetes or hypertension where the body immune system is already compromised there will be greater adverse effects following nanoparticles exposure on human health as compared to their exposure to healthy individuals. Previous experiments from our laboratory showed that diabetic or hypertensive animals are more susceptible to heat stress-induced neurotoxicity. Furthermore, traumatic injury to the spinal cord in SiO2 exposed rats resulted in exacerbation of cord pathology. However, whether nanoparticles such as Cu, Ag or SiO2 exposure will lead to enhanced neurotoxicity in diabetic animals are still not well investigated. Previous data from our laboratory showed that Cu or Ag intoxication (50 mg/kg, i.p. per day for 7 days) in streptozotocine induced diabetic rats exhibited enhanced neurotoxicity and exacerbation of sensory, motor and cognitive function as compared to normal animals under identical conditions. Thus the diabetic animals showed exacerbation of regional blood-brain barrier (BBB) disruption, edema formation and cell injuries along with greater reduction in the local cerebral blood flow (CBF) as compared to normal rats. These observations suggest that diabetic animals are more vulnerable to nanoparticles induced brain damage than healthy rats. The possible mechanisms and functional significance of these findings are discussed in this review largely based on our own investigations. PMID:22229323

  17. Cytotoxicity study of iron oxide nanoparticles, single-wall carbon nanotubes and their complexes applied to MCF7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mege, Karine

    Reactive Oxygen Species (ROS) are radicals of great concern to biologists. Their role in several diseases---such as neurodegenerative disease, diabetes, premature aging and cancer---has been intensively investigated during the last decade. Since a major focus in cancer research is to better understand how it is induced and therefore how it can be cured, the study of the cytotoxic effects of ROS production within cancer cells is vital. Nanotechnology is an emerging field of science that promises great improvements in a number of disciplines. Nano medicine is one of its daughter fields. Various nanomaterials are used for diagnosis and disease detection, therapy and medical imaging, and many are already being used in oncology medicine. The two most frequently used nanomaterials in cancer research are Carbon nanotubes (CNTs) and iron oxide nanoparticles (IONPs). They have been proven to play a significant role in the ROS production of various cancer cells. In this context, this thesis emphasizes the need to study the impact of nanoparticles, such as single-walled carbon nanotubes (SWCNTs), iron oxide nanoparticles (IONPs) and their complexes, on a human breast cancer cell line (MCF-7). To date, there have been very few studies assessing the effect on the oxidative stress activity of this cell line using these nanoparticles and their complexes.

  18. Cytotoxicity and cytokine release in rat hepatocytes, C3A cells and macrophages exposed to gold nanoparticles--effect of biological dispersion media or corona.

    PubMed

    Brown, David M; Johnston, Helinor; Gubbins, Eva; Stone, Vicki

    2014-11-01

    The study aim was to investigate how gold nanoparticles (NPs) of different sizes (20 and 100 nm) influence primary hepatocytes, the hepatocyte cell line C3A and macrophage cytokine responses when dispersed in lung or blood relevant fluids. Gold Au NPs induced cytotoxicity in primary hepatocytes at the highest dose of 66 ?g/cm2, this effect was modified by the dispersant, the effect was greater with lung lining fluid (LLF). Release of interleukin (IL)-6, Monocyte chemoattractant protein-1 (MCP-1) and IL-1? was enhanced by the Au NPs and the effects were influenced by the particle size and dispersant. In medium, the smallest particle size was most effective at inducing IL-6 release, while in LLF the largest particles were most effective at inducing IL-6 release. Both 20 nm and 100 nm particles enhanced MCP-1 and IL-1? in the presence of LLF. The Au particles had no cytotoxic effects nor did they stimulate the release of cytokines in the C3A hepatoma cell line. The Au NPs had no significant impact on macrophage viability. Particles induced IL-6 and TNF-? release. LLF and serum reduced the IL-6 response while albumin enhanced the TNF-? response compared to medium dispersed Au NPs. The Au NPs did not impact on MCP-1 release, but this cytokine was enhanced by albumin and serum, while it was depressed by LLF. The macrophage responses were lower than those evoked in primary hepatocytes. In conclusion, when assessing the cytotoxic and pro-inflammatory responses induced by Au NPs, the response is influenced by the dispersant, with different dispersants having different effects in different cell types. PMID:26000400

  19. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract

    PubMed Central

    Namvar, Farideh; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Baharara, Javad; Mahdavi, Mahnaz; Amini, Elaheh; Chartrand, Max Stanley; Yeap, Swee Keong

    2014-01-01

    Magnetic iron oxide nanoparticles (Fe3O4 MNPs) are among the most useful metal nanoparticles for multiple applications across a broad spectrum in the biomedical field, including the diagnosis and treatment of cancer. In previous work, we synthesized and characterized Fe3O4 MNPs using a simple, rapid, safe, efficient, one-step green method involving reduction of ferric chloride solution using brown seaweed (Sargassum muticum) aqueous extract containing hydroxyl, carboxyl, and amino functional groups mainly relevant to polysaccharides, which acts as a potential stabilizer and metal reductant agent. The aim of this study was to evaluate the in vitro cytotoxic activity and cellular effects of these Fe3O4 MNPs. Their in vitro anticancer activity was demonstrated in human cell lines for leukemia (Jurkat cells), breast cancer (MCF-7 cells), cervical cancer (HeLa cells), and liver cancer (HepG2 cells). The cancer cells were treated with different concentrations of Fe3O4 MNPs, and an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to test for cytotoxicity, resulting in an inhibitory concentration 50 (IC50) value of 23.831.1 ?g/mL (HepG2), 18.752.1 ?g/mL (MCF-7), 12.51.7 ?g/mL (HeLa), and 6.42.3 ?g/mL (Jurkat) 72 hours after treatment. Therefore, Jurkat cells were selected for further investigation. The representative dot plots from flow cytometric analysis of apoptosis showed that the percentages of cells in early apoptosis and late apoptosis were increased. Cell cycle analysis showed a significant increase in accumulation of Fe3O4 MNP-treated cells at sub-G1 phase, confirming induction of apoptosis by Fe3O4 MNPs. The Fe3O4 MNPs also activated caspase-3 and caspase-9 in a time-response fashion. The nature of the biosynthesis and therapeutic potential of Fe3O4 MNPs could pave the way for further research on the green synthesis of therapeutic agents, particularly in nanomedicine, to assist in the treatment of cancer. PMID:24899805

  20. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract.

    PubMed

    Namvar, Farideh; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Baharara, Javad; Mahdavi, Mahnaz; Amini, Elaheh; Chartrand, Max Stanley; Yeap, Swee Keong

    2014-01-01

    Magnetic iron oxide nanoparticles (Fe3O4 MNPs) are among the most useful metal nanoparticles for multiple applications across a broad spectrum in the biomedical field, including the diagnosis and treatment of cancer. In previous work, we synthesized and characterized Fe3O4 MNPs using a simple, rapid, safe, efficient, one-step green method involving reduction of ferric chloride solution using brown seaweed (Sargassum muticum) aqueous extract containing hydroxyl, carboxyl, and amino functional groups mainly relevant to polysaccharides, which acts as a potential stabilizer and metal reductant agent. The aim of this study was to evaluate the in vitro cytotoxic activity and cellular effects of these Fe3O4 MNPs. Their in vitro anticancer activity was demonstrated in human cell lines for leukemia (Jurkat cells), breast cancer (MCF-7 cells), cervical cancer (HeLa cells), and liver cancer (HepG2 cells). The cancer cells were treated with different concentrations of Fe3O4 MNPs, and an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to test for cytotoxicity, resulting in an inhibitory concentration 50 (IC50) value of 23.831.1 ?g/mL (HepG2), 18.752.1 ?g/mL (MCF-7), 12.51.7 ?g/mL (HeLa), and 6.42.3 ?g/mL (Jurkat) 72 hours after treatment. Therefore, Jurkat cells were selected for further investigation. The representative dot plots from flow cytometric analysis of apoptosis showed that the percentages of cells in early apoptosis and late apoptosis were increased. Cell cycle analysis showed a significant increase in accumulation of Fe3O4 MNP-treated cells at sub-G1 phase, confirming induction of apoptosis by Fe3O4 MNPs. The Fe3O4 MNPs also activated caspase-3 and caspase-9 in a time-response fashion. The nature of the biosynthesis and therapeutic potential of Fe3O4 MNPs could pave the way for further research on the green synthesis of therapeutic agents, particularly in nanomedicine, to assist in the treatment of cancer. PMID:24899805

  1. Cytotoxic cells induced after Chlamydia psittaci infection in mice.

    PubMed Central

    Lammert, J K

    1982-01-01

    The ability of spleen cells from Chlamydia psittaci-infected mice to lyse C. psittaci-infected and uninfected target cell monolayers was studied. The cytotoxicity assay used was a terminal label method in which the number of adherent target cells surviving the interaction with effector cells was determined by measuring the uptake of [3H]uridine by such cells. It was observed that in the first few days postinfection (3 to 5), spleens contained cells that lysed infected and uninfected targets with equal efficiency. Subsequently, infected targets were killed primarily. The activity of effector spleen cells for infected targets continued, although at a reduced level, beyond 21 days postinfection. Intact effector cells were required since a disruption by sonication resulted in a loss of cytotoxicity. The enhanced killing observed with infected targets was also observed when target cells were sensitized with heat- or UV-inactivated C. psittaci. This study suggests that the induction of cytotoxic cells after C. psittaci infection may contribute to the ability of the host to control multiplication of the microorganism. PMID:7068208

  2. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells

    PubMed Central

    Hanot, Camille C.; Choi, Young Suk; Anani, Tareq B.; Soundarrajan, Dharsan; David, Allan E.

    2015-01-01

    Superparamagnetic iron-oxide nanoparticles (SPIONs) show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells). We evaluated the effect of particle diameter (50 and 100 nm) and polyethylene glycol (PEG) chain length (2k, 5k and 20k Da) on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS). Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications. PMID:26729108

  3. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells.

    PubMed

    Hanot, Camille C; Choi, Young Suk; Anani, Tareq B; Soundarrajan, Dharsan; David, Allan E

    2016-01-01

    Superparamagnetic iron-oxide nanoparticles (SPIONs) show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells). We evaluated the effect of particle diameter (50 and 100 nm) and polyethylene glycol (PEG) chain length (2k, 5k and 20k Da) on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS). Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications. PMID:26729108

  4. Mechanisms of cell penetration and cytotoxicity of ultrasmall Au nanoparticles conjugated to doxorubicin and/or targeting peptides

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Poon, Wilson; Zhang, Xuan

    2015-03-01

    The goals of this work were to determine whether conjugation of any of four selected peptides to Au nanoparticles improved their delivery to B16 melanoma in vitro and in vivo. In in vitro cytotoxicity assays, peptides and conjugates were endocytosed but did not escape from endosomes. None of the peptides showed any cytotoxicity, with or without conjugation to the nanoparticles. The combination of peptides and doxorubicin did not improve upon the cytotoxicity of gold-doxorubicin alone. We then tested targeting in vivo using inductively coupled plasma mass spectrometry to quantify the concentration of Au in the organs of B16 tumor-bearing mice 4, 24, and 72 h after intravenous Au nanoparticle injection. These experiments showed that in some cases, peptide conjugation improved upon the enhanced permeability and retention (EPR) effect. A peptide based upon the myxoma virus and the cyclic RGD peptide were both effective at tumor targeting; myxoma was more effective with un-PEGylated particles, and cRGD with PEGylated particles. The FREG and melanocyte stimulating hormone (MSH) peptides did not improve targeting. These results suggest that these peptides may improve delivery of Au particles to tumors, but also may prevent entry of particles into cell nuclei.

  5. Investigation of the cytotoxicity of aluminum oxide nanoparticles and nanowires and their localization in L929 fibroblasts and RAW264 macrophages.

    PubMed

    Hashimoto, Masanori; Sasaki, Jun-Ichi; Imazato, Satoshi

    2016-02-01

    The biological responses of aluminum oxide (Al2 O3 ) nanoparticles (NPs) and nanowires (NWs) in cultured fibroblasts (L929) and macrophages (RAW264) were evaluated from their cytotoxicities and micromorphologic properties. Cultured cells were exposed to Al2 O3 NPs (13 nm diameter) and Al2 O3 NWs (2-6 200-400 nm). Cytotoxicity and genotoxicity were examined by immunostaining with fluorescence microscopy, and nanomaterial localization was studied by using scanning electron microscopy and transmission electron microscopy. The NPs were cytotoxic and genotoxic, whereas the NWs were not. The scanning electron microscopy images showed that the NPs aggregate more on the cell surface than do the NWs. The transmission electron microscopy images showed that the NPs were internalized into the vesicle and nuclei, for both cell types. In contrast, numerous solid NWs were observed as large aggregates in vesicles, but not in nuclei. Nuclear damage was confirmed by measuring cell viability and by immunostaining for NPs. The chemical changes induced by the NPs in the vesicles or cells may cause cell damage because of their large surface area per volume. The extent of NW entrapment was not sufficient to lower the viability of either cell type. 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 241-252, 2016. PMID:25715832

  6. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells

    PubMed Central

    Swanner, Jessica; Mims, Jade; Carroll, David L; Akman, Steven A; Furdui, Cristina M; Torti, Suzy V; Singh, Ravi N

    2015-01-01

    Identification of differential sensitivity of cancer cells as compared to normal cells has the potential to reveal a therapeutic window for the use of silver nanoparticles (AgNPs) as a therapeutic agent for cancer therapy. Exposure to AgNPs is known to cause dose-dependent toxicities, including induction of oxidative stress and DNA damage, which can lead to cell death. Triple-negative breast cancer (TNBC) subtypes are more vulnerable to agents that cause oxidative stress and DNA damage than are other breast cancer subtypes. We hypothesized that TNBC may be susceptible to AgNP cytotoxicity, a potential vulnerability that could be exploited for the development of new therapeutic agents. We show that AgNPs are highly cytotoxic toward TNBC cells at doses that have little effect on nontumorigenic breast cells or cells derived from liver, kidney, and monocyte lineages. AgNPs induced more DNA and oxidative damage in TNBC cells than in other breast cells. In vitro and in vivo studies showed that AgNPs reduce TNBC growth and improve radiation therapy. These studies show that unmodified AgNPs act as a self-therapeutic agent with a combination of selective cytotoxicity and radiation dose-enhancement effects in TNBC at doses that are nontoxic to noncancerous breast and other cells. PMID:26185437

  7. Biosensors based on inorganic nanoparticles with biomimetic properties: Biomedical applications and in vivo cytotoxicity measurements

    NASA Astrophysics Data System (ADS)

    Ispas, Cristina R.

    The rapid progress of nanotechnology and advanced nanomaterials production offer significant opportunities for designing powerful biosensing devices with enhanced performances. This thesis introduces ceria (CeO 2) nanoparticles and its congeners as a new class of materials with huge potential in bioanalytical and biosensing applications. Unique redox, catalytic and oxygen storage/release properties of ceria nanoparticles, originating from their dual oxidation state are used to design biomedical sensors with high sensitivity and low oxygen dependency. This thesis describes a new approach for fabrication of implantable microbiosensors designed for monitoring neurological activity in physiological conditions. Understanding the mechanisms involved in neurological signaling and functioning is of great physiological importance. In this respect, the development of effective methods that allow accurate detection and quantification of biological analytes (i.e. L-glutamate and glucose) associated with neurological processes is of paramount importance. The performance of most analytical techniques currently used to monitor L-glutamate and glucose is suboptimal and only a limited number of approaches address the problem of operation in oxygen-restricted conditions, such as ischemic brain injury. Over the past couple of years, enzyme based biosensors have been used to investigate processes related to L-glutamate release/uptake and the glucose cycle within the brain. However, most of these sensors, based on oxidoreductase enzymes, do not work in conditions of limited oxygen availability. This thesis presents the development of a novel sensing technology for the detection of L-glutamate and glucose in conditions of oxygen deprivation. This technology provides real-time assessment of the concentrations of these analytes with high sensitivity, wide linear range, and low oxygen dependence. The fabrication, characterization and optimization of enzyme microbiosensors are discussed. This work introduces a new generic approach of improving the sensitivity of oxidase-based enzymatic assays and indicates that ceria and its mixture with other metal oxide nanoparticles could be used to minimize the problems associated with variations of the oxygen. These materials have great potential in bioanalytical and biotechnological applications and offer great opportunities for development of implantable sensing devices for in vivo and in vitro monitoring of analytes of clinical relevance. Additionally, this thesis evaluates the toxicity of different metal and metal oxide nanoparticles by using zebrafish embryos as a toxicological target. Because of their similarities with other vertebrates, rapid development and low cost, zebrafish embryos are ideal animal models for probing toxicological effects of engineered nanomaterials. Among the nanomaterials tested, nickel nanoparticles were characterized by high toxicity and induced delayed development and morphological malformations, while metal oxides nanoparticles (i.e. ceria nanoparticles) had no toxic effects.

  8. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.

    PubMed

    Ghosh, Manosij; Bhadra, Sreetama; Adegoke, Aremu; Bandyopadhyay, Maumita; Mukherjee, Anita

    2015-04-01

    Advances in nanotechnology have led to the large-scale production of nanoparticles, which, in turn, increases the chances of environmental exposure. While humans (consumers/workers) are primarily at risk of being exposed to the adverse effect of nanoparticles, the effect on plants and other components of the environment cannot be ignored. The present work investigates the cytotoxic, genotoxic, and epigenetic (DNA methylation) effect of MWCNT on the plant system- Allium cepa. MWCNT uptake in root cells significantly altered cellular morphology. Membrane integrity and mitochondrial function were also compromised. The nanotubes induced significant DNA damage, micronucleus formation and chromosome aberration. DNA laddering assay revealed the formation of internucleosomal fragments, which is indicative of apoptotic cell death. This finding was confirmed by an accumulation of cells in the sub-G0 phase of the cell cycle. An increase in CpG methylation was observed using the isoschizomers MspI/HpaII. HPLC analysis of DNA samples revealed a significant increase in the levels of 5-methyl-deoxy-cytidine (5mdC). These results confirm the cyto-genotoxic effect of MWCNT in the plant system and simultaneously highlight the importance of this epigenetic study in nanoparticle toxicity. PMID:25829105

  9. Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity.

    PubMed

    García-Muñoz, Ricardo; López-Díaz-de-Cerio, Ascensión; Feliu, Jesus; Panizo, Angel; Giraldo, Pilar; Rodríguez-Calvillo, Mercedes; Grande, Carlos; Pena, Esther; Olave, Mayte; Panizo, Carlos; Inogés, Susana

    2016-04-01

    Follicular lymphoma (FL) is a disease of paradoxes-incurable but with a long natural history. We hypothesized that a combination of lymphokine-activated killer (LAK) cells and monoclonal antibodies might provide a robust synergistic treatment and tested this hypothesis in a phase II clinical trial (NCT01329354). In this trial, in addition to R-CHOP, we alternated the administration of only rituximab with rituximab and autologous LAK cells that were expanded ex vivo. Our objective was to determine the in vitro capability of LAK cells generated from FL patients to produce cytotoxicity against tumor cell lines and to determine rituximab- and obinutuzumab-induced cytotoxicity via antibody-dependent cellular cytotoxicity (ADCC) activity. We analyzed the LAK cell-induced cytotoxicity and rituximab (R)- and obinutuzumab (GA101)-induced ADCC activity. We show that LAK cells generated from FL patients induce cytotoxicity against tumor cell lines. R and GA101 enhance cytolysis through ADCC activity of LAK cells. Impaired LAK cell cytotoxicity and ADCC activity were detected in 50 % of patients. Percentage of NK cells in LAK infusions were correlated with the R- and GA101-induced ADCC. Our results indicate that the combination of R or GA101 and LAK cells should be an option as frontline maintenance therapy in patients with FL. PMID:26659089

  10. Natural chlorophyll but not chlorophyllin prevents heme-induced cytotoxic and hyperproliferative effects in rat colon.

    PubMed

    de Vogel, Johan; Jonker-Termont, Denise S M L; Katan, Martijn B; van der Meer, Roelof

    2005-08-01

    Diets high in red meat and low in green vegetables are associated with an increased risk of colon cancer. In rats, dietary heme, mimicking red meat, increases colonic cytotoxicity and proliferation of the colonocytes, whereas addition of chlorophyll from green vegetables inhibits these heme-induced effects. Chlorophyllin is a water-soluble hydrolysis product of chlorophyll that inhibits the toxicity of many planar aromatic compounds. The present study investigated whether chlorophyllins could inhibit the heme-induced luminal cytotoxicity and colonic hyperproliferation as natural chlorophyll does. Rats were fed a purified control diet, the control diet supplemented with heme, or a heme diet with 1.2 mmol/kg diet of chlorophyllin, copper chlorophyllin, or natural chlorophyll for 14 d (n = 8/group). The cytotoxicity of fecal water was determined with an erythrocyte bioassay and colonic epithelial cell proliferation was quantified in vivo by [methyl-(3)H]thymidine incorporation into newly synthesized DNA. Exfoliation of colonocytes was measured as the amount of rat DNA in feces using quantitative PCR analysis. Heme caused a >50-fold increase in the cytotoxicity of the fecal water, a nearly 100% increase in proliferation, and almost total inhibition of exfoliation of the colonocytes. Furthermore, the addition of heme increased TBARS in fecal water. Chlorophyll, but not the chlorophyllins, completely prevented these heme-induced effects. In conclusion, inhibition of the heme-induced colonic cytotoxicity and epithelial cell turnover is specific for natural chlorophyll and cannot be mimicked by water-soluble chlorophyllins. PMID:16046728

  11. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.

    PubMed

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5±1.1 nm. However, AgNPs at high concentrations (>10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. PMID:26117766

  12. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    PubMed Central

    MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria

    2014-01-01

    Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023

  13. Immobilized Silver Nanoparticles on Chitosan with Special Surface State-Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity.

    PubMed

    He, Miao; Lu, Liying; Zhang, Jinchi; Li, Danzhen

    2015-09-01

    Immobilized chitosan-Ag nanoparticles (CTS-Ag NPs) with special surface state have been synthesized successfully through immobilizing Ag NPs on the amino-enriched surface of CTS by reducing Ag (I) in situ. The antimicrobial efficiency and potency of CTS-Ag NPs against Escherichia coli and Staphylococcus aureus were studied. Our results reveal that surface-immobilized CTS-Ag NPs show better antimicrobial efficacy than several other reported monodisperse colloidal Ag NPs, because the unique surface state of our CTS-Ag NPs leads to both "contact killing" and "ion mediated killing" functions. Due to the synergetic effect of CTS and Ag NPs, the immobilized CTS-Ag NPs present a broader antimicrobial spectrum and a more effective antifungal activity against Monilia albican. In addition, CTS as an environment friendly dispersant can help to reduce the cytotoxicity of Ag NPs on higher organisms. The immobilized CTS-Ag NPs are stable and can maintain good disinfection potential after 6 months' shelf-time. PMID:26716197

  14. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    NASA Astrophysics Data System (ADS)

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-01

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  15. Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia

    NASA Astrophysics Data System (ADS)

    Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.

    2015-03-01

    CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.

  16. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Lakshmi Sundaram, R.; Narayanan, V.

    2014-08-01

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585 nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20 nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4- ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations.

  17. Structural dependence of in vitro cytotoxicity, oxidative stress and uptake mechanisms of poly(propylene imine) dendritic nanoparticles.

    PubMed

    Khalid, Humza; Mukherjee, Sourav Prasanna; O'Neill, Luke; Byrne, Hugh J

    2016-03-01

    The in vitro cytotoxic and intracellular oxidative stress responses to exposure to poly(propylene imine) (PPI) dendritic nanoparticles of increasing generation (number of repeated branching cycles) (G0-G4) were assessed in an immortal non-cancerous human keratinocyte cell line (HaCaT). Confocal fluorescence microscopy with organelle staining was used to explore the uptake and intracellular trafficking mechanisms. A generation- and dose-dependent cytotoxic response was observed, increasing according to generation and, therefore, number of surface amino groups. A comparison of the cytotoxic response of G4 PPI and the related G4 poly(amido amine) dendrimer indicates that the PPI with the same number of surface amino groups elicits a significantly higher cytotoxic response. The trend of cytotoxicity versus dendrimer generation and, therefore, size is discontinuous in the region of G2, however, indicating a difference in uptake mechanism for higher compared to lower generations. Whereas the higher generations elicit an oxidative stress response at short exposure times, the lower generations indicate an antioxidant response. Confocal microscopy indicates that, whereas they are prominent at early exposure times for the larger PPI dendrimers, no evidence of early stage endosomes was observed for lower generations of PPI. The results are consistent with an alternative uptake mechanism of physical diffusion across the semipermeable cell membrane for the lower generation dendrimers and are discussed in terms of their implications for predictive models for nanotoxicology and design strategies for nanomedical applications. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26671548

  18. Cytotoxicity, tumor targeting and PET imaging of sub-5 nm KGdF4 multifunctional rare earth nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Xinmin; Cao, Fengwen; Xiong, Liqin; Yang, Yang; Cao, Tianye; Cai, Xi; Hai, Wangxi; Li, Biao; Guo, Yixiao; Zhang, Yimin; Li, Fuyou

    2015-08-01

    Ultrasmall sub-5 nm KGdF4 rare earth nanoparticles were synthesized as multifunctional probes for fluorescent, magnetic, and radionuclide imaging. The cytotoxicity of these nanoparticles in human glioblastoma U87MG and human non-small cell lung carcinoma H1299 cells was evaluated, and their application for in vitro and in vivo tumor targeted imaging has also been demonstrated.Ultrasmall sub-5 nm KGdF4 rare earth nanoparticles were synthesized as multifunctional probes for fluorescent, magnetic, and radionuclide imaging. The cytotoxicity of these nanoparticles in human glioblastoma U87MG and human non-small cell lung carcinoma H1299 cells was evaluated, and their application for in vitro and in vivo tumor targeted imaging has also been demonstrated. Electronic supplementary information (ESI) available: Details of the experimental section as well as EDXA, XRD, zeta potential, FTIR, TGA, stability, TEM, Z scanning, ICP-MS, and MicroPET/CT images. See DOI: 10.1039/c5nr03374h

  19. Contribution of Ca^{2+} ions influx in Cu (II) or Cr (VI) induced hepatocyte cytotoxicity

    NASA Astrophysics Data System (ADS)

    Pourahmad, J.; O'Brien, P. J.

    2003-05-01

    Previously we showed that hepatocyte lysis induced by Cu (II) or Cr (VI) could be partly attributed to membrane lipid peroxidation induced by Cu (II) or Cr (VI) [1, 2]. Changes in Na^+ and Ca^{+2} homeostasis induced when Cu^{+2} or Cr VI were incubated with hepatocytes. Na^+ omission from the media or addition of the Na^+/H^+ exchange inhibitor 5-(N, N-dimethyl)-amiloride markedly increased Cu (II) or Cr (VI) cytotoxicity even though Cu (II) or Cr (VI) did not increase hepatocyte Na^+ when the media contained Na^+. The omission of CI^- from the media or addition of glycine, a CI^- channel blocker also enhanced Cu (II) or Cr (VI) induced cytotoxicity. Intracellular Ca^{+2} levels however were markedly increased when the hepatocytes were incubated with Cu^{+2} or Cr VI in a Na^+ free media and removing media Ca^{+2} with EGTA also prevented Cu (II) or Cr (VI) induced hepatocyte cytotoxicity. This suggests that intracellular Ca^{+2} accumulation contributes to Cu (II) or Cr (VI) induced cytotoxicity and a Na^+_- dependent Ca^{+2} transporter is involved in controlling excessive Ca^{+2} accumulation caused by Cu (II) or Cr (VI).

  20. Effects of cytochrome p450 inhibitors on itraconazole and fluconazole induced cytotoxicity in hepatocytes.

    PubMed

    Somchit, Nhareet; Ngee, Chong Sock; Yaakob, Azhar; Ahmad, Zuraini; Zakaria, Zainul Amiruddin

    2009-01-01

    Itraconazole and fluconazole have been reported to induce hepatotoxicity in patients. The present study was designed to investigate the role of cytochrome P450 inhibitors, SKF 525A, and curcumin pretreatment on the cytotoxicity of antifungal drugs fluconazole and itraconazole. For 3 consecutive days, female rats were administered daily SKF 525A or curcumin (5 and 25 mg/kg). Control rats received an equivalent amount of dosed vehicle. The animals were anaesthetized 24 hours after receiving the last dose for liver perfusion. Hepatocytes were then exposed to various concentrations of antifungal drugs. In vitro incubation of hepatocytes with itraconazole revealed significantly lower viability when compared to fluconazole as assessed by lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase activities. The cytotoxicity of itraconazole was enhanced when incubated with hepatocytes pretreated with SKF 525A. SKF 525A had no effects on the cytotoxicity of fluconazole. Curcumin failed to either increase or decrease the cytotoxicity of both antifungal drugs. ATP levels also showed significant decrease in both itraconazole and fluconazole incubated hepatocytes. However, SKF 525A pretreated hepatocytes had significantly lower ATP levels after itraconazole incubations. Collectively, these results confirm the involvement of cytochrome P450 in the cytoprotection in itraconazole induced hepatocyte toxicity. Differences of the effects of SKF 525A on the cytotoxicity induced by itraconazole and fluconazole may be due to the differences on the metabolism of each antifungal drug in vivo. PMID:20130764

  1. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC50 values in WST-1 assays. The IC50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  2. Secondary metabolites, cytotoxic response by neutral red retention and protective effect against H2O2 induced cytotoxicity of Sedum caespitosum.

    PubMed

    Shreto?lu, Didem; Sabuncuo?lu, Suna

    2012-01-01

    The EtOAc, n-BuOH and H20 subextracts of the crude MeOH extract of the aerial parts of Sedum caespitosum (cav.) Dc. were screened for cytotoxicity using the neutral red assay in Chinese hamster ovary cells as well as their protective effect against H2O2 induced cytotoxicity in human red blood cells. While the extracts did not show cytotoxicity, they displayed a protective effect compared to a blank and ascorbic acid. Gallic acid (1), kaempferol 3-O-alpha-rhamnopyranoside (2), quercetin 3-O-beta-glucopyranoside (3), quercetin 3-O-alpha-rhamnopyranoside (4) and myricetin 3-O-alpha-rhamnopyranoside (5) were isolated from the EtOAc extract and identified by 1D- and 2D-NMR. The protective effects of the isolated compounds against H2O2 induced cytotoxicity in human red blood cells were evaluated and 5 was the most active. PMID:22428239

  3. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, Andr E.; Mdler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e?/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (010 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  4. Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity.

    PubMed

    Bogdanovi?, Gordana; Koji?, Vesna; Dordevi?, Aleksandar; Canadanovi?-Brunet, Jasna; Vojinovi?-Miloradov, Mirjana; Balti?, Vladimir Vit

    2004-10-01

    Paper presents the effects of the newly synthesized fullerol C60(OH)22 on the growth of tumor cells in vitro and its modulating activity on doxorubicin (DOX)-induced cytotoxicity in human breast cancer cell lines. Cell growth inhibition was evaluated by tetrazolium colorimetric WST1 assay. Electron spin resonance (ESR) "trapping" method was used to investigate OH-radical scavenger activity of fullerol during Fenton's reaction. At a range of nanomolar concentrations fullerol induced cell growth inhibition, which was cell line, dose and time dependent. Fullerol also strongly suppressed DOX-induced cytotoxicity at all concentrations regardless the time of fullerol addition. Proanthocyanidins added as single agent to MCF-7 cell culture for 48 h induced low growth inhibition but in combination with DOX strongly decreased DOX cytotoxicity. Fullerol was found to be a potent hydroxyl radical scavenger: the relative intensity of ESR signals of DMPO-hydroxyl radical (DMPO-OH) spin adduct decreased by 88% in the presence of 0.5 microg/ml of fullerol. The obtained results suggest that antiproliferative effect of the fullerol and its protective effect on DOX-induced cytotoxicity might be mediated through hydroxyl-radical scavenger activity of C60(OH)22. PMID:15251181

  5. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells

    PubMed Central

    Gurunathan, Sangiliyandi; Raman, Jegadeesh; Malek, Sri Nurestri Abd; John, Priscilla A; Vikineswary, Sabaratnam

    2013-01-01

    Background Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (110 ?g/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers. PMID:24265551

  6. Use of a Rapid Cytotoxicity Screening Approach to Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping

    PubMed Central

    George, Saji; Pokhrel, Suman; Xia, Tian; Gilbert, Benjamin; Ji, Zhaoxia; Schowalter, Marco; Rosenauer, Andreas; Damoiseaux, Robert; Bradley, Kenneth A; Mädler, Lutz; Nel, André E

    2014-01-01

    The establishment of verifiably safe nanotechnology requires the development of assessment tools to identify hazardous nanomaterial properties that could be modified to improve nanomaterial safety. While there is a lot of debate of what constitutes appropriate safety screening methods, one approach is to use the assessment of cellular injury pathways to collect knowledge about hazardous material properties that could lead to harm to humans and the environment. We demonstrate the use of a multi-parameter cytotoxicity assay that evaluates toxic oxidative stress to compare the effects of titanium dioxide (TiO2), cerium oxide (CeO2) and zinc oxide (ZnO) nanoparticles in bronchial epithelial and macrophage cell lines. The nanoparticles were chosen based on their volume of production and likelihood of spread to the environment. Among the materials, dissolution of ZnO nanoparticles and Zn2+ release were capable of ROS generation and activation of an integrated cytotoxic pathway that includes intracellular calcium flux, mitochondrial depolarization, and plasma membrane leakage. These responses were chosen based on the compatibility of the fluorescent dyes that contemporaneously assess their response characteristics by a semi-automated epifluorescence procedure. Purposeful reduction of ZnO cytotoxicity was achieved by iron doping, which changed the material matrix to slow Zn2+ release. In summary, we demonstrate the utility of a rapid throughput, integrated biological oxidative stress response pathway to perform hazard ranking of a small batch of metal oxide nanoparticles, in addition to showing how this assay can be used to improve nanosafety by decreasing ZnO dissolution through Fe doping. PMID:20043640

  7. Urothelial cytotoxicity and regeneration induced by dimethylarsinic acid in rats.

    PubMed

    Cohen, S M; Yamamoto, S; Cano, M; Arnold, L L

    2001-01-01

    Inorganic arsenic is a known human carcinogen of the skin and respiratory tract. Epidemiologic evidence indicates that it is also carcinogenic to the urinary bladder and other internal organs. Lack of an animal model has limited progress on understanding the mechanism of arsenic carcinogenesis. It was recently reported that high doses of an organic arsenical, dimethylarsinic acid (DMA), increased urinary bladder tumors in rats when administered in the diet or in the drinking water for 2 years, with the female being more sensitive than the male. We previously showed that high doses of DMA (40 or 100 ppm of the diet) fed for 10 weeks increased urothelial cell proliferation in the rat. Treatment with DMA also increased renal calcification and increased urinary calcium concentration. In 2 experiments, we examined the urothelial proliferative effects of treatment with 100 ppm DMA in the diet in female F344 rats for 2 and 10 weeks and for 6 and 24 h, and 3, 7, and 14 days. Cytotoxic changes in the urothelium were evident by SEM as early as 6 h after treatment was begun. Foci of cellular necrosis were detected after 3 days of treatment, followed by widespread necrosis of the urothelium after 7 days of treatment. The bromodeoxyuridine (BrdU) labeling index was not increased until after 7 days of treatment, suggesting that administration of DMA results in cytotoxicity with necrosis, followed by regenerative hyperplasia of the bladder epithelium. Although the rat provides an animal model to study the urothelial effects of DMA, the relevance of this finding to inorganic arsenic carcinogenesis in humans must be extrapolated cautiously, due to the high doses of DMA necessary to produce these changes in the rat and the differences in metabolism of arsenicals in rodents, especially rats, compared to humans. PMID:11134545

  8. Cytotoxicity of Gold Nanoparticles with Varying Concentration and Under Low Dose Environmental Radiation on Human Embryonic Kidney 293 Cells (HEK-293)

    NASA Astrophysics Data System (ADS)

    Crudup, Shalana; Braender, Bruce; Iftode, Cristina; Dobbins, Tabbetha

    2013-03-01

    Nanomaterials are increasingly being used in medicine. Most research surrounding the health and safety effects of nanomaterials examine the cytotoxicity of nanoparticles alone. Few studies, as this one does, examines the combined effects of nanoparticle concentration and radiation exposure on cytotoxicity to human embryonic kidney 293 cells (HEK-293). Nanoparticles injected in the body are supposed to undergo biodegradation once they are done their specified task, however, some do not and accumulate in the cells (particularly at the liver and kidney) and this causes intracellular changes. Examples of intracellular changes are the disruption of organelle integrity or gene alterations. This will cause the cells to die because the cells are very sensitive to changes in their pH. The experiments reported here focus on the cytotoxicity of gold nanoparticles as a function of varying particle concentrations and also with and without exposure to UV radiation.

  9. Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles.

    PubMed

    Bao, Peng; Chen, Zheng; Tai, Ren-Zhong; Shen, Han-Ming; Martin, Francis L; Zhu, Yong-Guan

    2015-02-01

    Selenite has been a touted cancer chemopreventative agent but generates conflicting outcomes. Multiple mechanisms of selenite cytotoxicity in cancer cells are thought to be induced by metabolites of selenite. We observed that intracellular metabolism of selenite generates endogenous selenium nanoparticles (SeNPs) in cancer cells. Critical proteins that bind with high affinity to elemental selenium during SeNPs self-assembly were identified through proteomics analysis; these include glycolytic enzymes, insoluble tubulin, and heat shock proteins 90 (HSP90). Sequestration of glycolytic enzymes by SeNPs dramatically inhibits ATP generation, which leads to functional and structural disruption of mitochondria. Transcriptome sequencing showed tremendous down-regulation of mitochondrial respiratory NADH dehydrogenase (complex I), cytochrome c oxidase (complex IV), and ATP synthase (complex V) in response to glycolysis-dependent mitochondrial dysfunction. Sequestration of insoluble tubulin led to microtubule depolymerization, altering microtubule dynamics. HSP90 sequestration led to degradation of its downstream effectors via autophagy, ultimately resulting in a cell-signaling switch to apoptosis. Additionally, the surface effects of SeNPs generated oxidative stress, thus contributing to selenite cytotoxicity. Herein, we reveal that the multiple mechanisms of selenite-induced cytotoxicity are caused by endogenous protein-assisted self-assembly of SeNPs and suggest that endogenous SeNPs could potentially be the primary cause of selenite-induced cytotoxicity. PMID:25567070

  10. Assessment of Cr(VI)-Induced Cytotoxicity and Genotoxicity Using High Content Analysis

    PubMed Central

    Thompson, Chad M.; Fedorov, Yuriy; Brown, Daniel D.; Suh, Mina; Proctor, Deborah M.; Kuriakose, Liz; Haws, Laurie C.; Harris, Mark A.

    2012-01-01

    Oral exposure to high concentrations of hexavalent chromium [Cr(VI)] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI) in a cell model relevant to the intestine, undifferentiated (proliferating) and differentiated (confluent) Caco-2 cells were treated with Cr(VI), hydrogen peroxide or rotenone for 224 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylated histone variant H2AX (?-H2AX) measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and ?-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI) induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN) formation was assessed in CHO-K1 and A549 cell lines. Cr(VI) increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI) only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI) genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI) is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI) will be discussed. PMID:22905163

  11. NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio).

    PubMed

    SanJuan-Reyes, Nely; Gmez-Olivn, Leobardo Manuel; Galar-Martnez, Marcela; Garca-Medina, Sandra; Islas-Flores, Hariz; Gonzlez-Gonzlez, Edgar David; Cardoso-Vera, Jess Daniel; Jimnez-Vargas, Juan Manuel

    2015-10-15

    The pharmaceutical industry generates wastewater discharges of varying characteristics and contaminant concentrations depending on the nature of the production process. The main chemicals present in these effluents are solvents, detergents, disinfectants - such as sodium hypochlorite (NaClO) - and pharmaceutical products, all of which are potentially ecotoxic. Therefore, this study aimed to evaluate the geno- and cytotoxicity induced in the common carp Cyprinus carpio by the effluent emanating from a nonsteroidal anti-inflammatory drug (NSAID)-manufacturing plant. Carp were exposed to the lowest observed adverse effect level (LOAEL, 0.1173%) for 12, 24, 48, 72 and 96 h, and biomarkers of genotoxicity (comet assay and micronucleus test) and cytotoxicity (caspase-3 activity and TUNEL assay) were evaluated. A significant increase with respect to the control group (p<0.05) occurred with all biomarkers from 24h on. Significant positive correlations were found between NSAID concentrations and biomarkers of geno- and cytotoxicity, as well as among geno- and cytotoxicity biomarkers. In conclusion, exposure to this industrial effluent induces geno- and cytotoxicity in blood of C. carpio. PMID:26026403

  12. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells

    NASA Astrophysics Data System (ADS)

    Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2010-06-01

    We have synthesized and purified silver nanoparticles (Ag NPs) (11.3 +/- 2.3 nm) that are stable (non-aggregated) in cell culture medium and inside single living cells. We have developed new imaging methods to characterize sizes and number of single NPs in the medium and in single living cells in real-time and determine their stability (non-aggregation) in the medium and in single living cells at single NP resolution. These new approaches allow us to study toxic and therapeutic effects of single Ag NPs on tumor cells (L929, mouse fibroblast cells) with determined sizes and concentrations (doses) of NPs over time at single NP and single cell resolution. We found that Ag NPs inhibited the growth and division of tumor cells and their nuclei, in a dose and time dependent manner, showing significant inhibitory effects and abnormal cells with giant undivided nuclei or multiple nuclei beyond 12 h incubation. The results show that Ag NPs inhibited the segregation of chromosomes, but not their replication. Intracellular Ag NPs were well distributed in the cell population, and located in the nuclei and cytoplasm with higher numbers in the cytoplasm. This study demonstrates the possibility of using Ag NPs to inhibit the growth and division of tumor cells and using their cytotoxicity for potential therapeutic treatments. This study offers a new method to count the number of single NPs in the medium for characterization of their concentration and stability at single NP resolution over time.We have synthesized and purified silver nanoparticles (Ag NPs) (11.3 +/- 2.3 nm) that are stable (non-aggregated) in cell culture medium and inside single living cells. We have developed new imaging methods to characterize sizes and number of single NPs in the medium and in single living cells in real-time and determine their stability (non-aggregation) in the medium and in single living cells at single NP resolution. These new approaches allow us to study toxic and therapeutic effects of single Ag NPs on tumor cells (L929, mouse fibroblast cells) with determined sizes and concentrations (doses) of NPs over time at single NP and single cell resolution. We found that Ag NPs inhibited the growth and division of tumor cells and their nuclei, in a dose and time dependent manner, showing significant inhibitory effects and abnormal cells with giant undivided nuclei or multiple nuclei beyond 12 h incubation. The results show that Ag NPs inhibited the segregation of chromosomes, but not their replication. Intracellular Ag NPs were well distributed in the cell population, and located in the nuclei and cytoplasm with higher numbers in the cytoplasm. This study demonstrates the possibility of using Ag NPs to inhibit the growth and division of tumor cells and using their cytotoxicity for potential therapeutic treatments. This study offers a new method to count the number of single NPs in the medium for characterization of their concentration and stability at single NP resolution over time. Electronic supplementary information (ESI) available: Fig. S1: Study of Ag NPs dispersed in nanopure DI water and cell culture medium using an ensemble method, UV-vis spectroscopy. See DOI: 10.1039/c0nr00080a

  13. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    NASA Astrophysics Data System (ADS)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications. Electronic supplementary information (ESI) available: Synthetic procedures, 1H and 13C NMR spectra, TEM and DLS measurements, and absorption and emission spectra. See DOI: 10.1039/c3nr02563b

  14. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells

    PubMed Central

    Wang, Z; Shi, X; Li, Y; Fan, J; Zeng, X; Xian, Z; Wang, Z; Sun, Y; Wang, S; Song, P; Zhao, S; Hu, H; Ju, D

    2014-01-01

    Depletion of arginine by recombinant human arginase (rhArg) has proven to be an effective cancer therapeutic approach for a variety of malignant tumors. Triple-negative breast cancers (TNBCs) lack of specific therapeutic targets, resulting in poor prognosis and limited therapeutic efficacy. To explore new therapeutic approaches for TNBC we studied the cytotoxicity of rhArg in five TNBC cells. We found that rhArg could inhibit cell growth in these five TNBC cells. Intriguingly, accumulation of autophagosomes and autophagic flux was observed in rhArg-treated MDA-MB-231 cells. Inhibition of autophagy by chloroquine (CQ), 3-methyladenine (3-MA) and siRNA targeting Beclin1 significantly enhanced rhArg-induced cytotoxic effect, indicating the cytoprotective role of autophagy in rhArg-induced cell death. In addition, N-acetyl-l-cysteine (NAC), a common antioxidant, blocked autophagy induced by rhArg, suggesting that reactive oxygen species (ROS) had an essential role in the cytotoxicity of rhArg. This study provides new insights into the molecular mechanism of autophagy involved in rhArg-induced cytotoxicity in TNBC cells. Meanwhile, our results revealed that rhArg, either alone or in combination with autophagic inhibitors, might be a potential novel therapy for the treatment of TNBC. PMID:25501824

  15. Comprehensive Evaluation of microRNA Expression Profiling Reveals the Neural Signaling Specific Cytotoxicity of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) through N-Methyl-D-Aspartate Receptor

    PubMed Central

    Sun, Bo; Liu, Rui; Ye, Nan; Xiao, Zhong-Dang

    2015-01-01

    Though nanomaterials are considered as drug carriers or imaging reagents targeting the central nervous system their cytotoxicity effect on neuronal cells has not been well studied. In this study, we treated PC12 cells, a model neuronal cell line, with a nanomaterial that is widely accepted for medical use, superparamagnetic iron oxide nanoparticles (SPIONs). Our results suggest that, after treated with SPIONs, the expression pattern of the cellular miRNAs changed widely in PC12 cells. As potential miRNA targets, NMDAR, one of the candidate mRNAs that were selected using GO and KEGG pathway enrichment, was significantly down regulated by SPIONs treatment. We further illustrated that SPIONs may induce cell death through NMDAR suppression. This study revealed a NMDAR neurotoxic effect of SPIONs and provides a reliable approach for assessing the neurocytotoxic effects of nanomaterials based on the comprehensive annotation of miRNA profiling. PMID:25798908

  16. Hepatotoxicity and liver injury induced by hydroxyapatite nanoparticles.

    PubMed

    Chen, Qingqing; Xue, Yang; Sun, Jiao

    2014-11-01

    As hydroxyapatite nanoparticles (HA NPs) are increasingly used in biomedical and biotechnological fields, risk assessment of HA NPs has attracted extensive attention. Nevertheless, little is known about the potential adverse effects of HA NPs on normal hepatocytes and the liver. In the present study, we conducted an in vitro study in which 80-nm HA NPs were incubated with normal Buffalo rat liver (BRL) cells. By analyzing the changes in cell viability, apoptosis/necrosis and the mitogen-activated protein kinase (MAPK) signaling pathway, we investigated the cytotoxicity and potential mechanism of HA NPs in hepatocytes. Furthermore, we used the serum hematology and histopathology examinations to explore the in vivo effects of HA NPs on the structure and function of the liver. Our results showed that exposure to HA NPs at a concentration above 200?g?ml(-1) decreased cell viability, increased levels of lactate dehydrogenase (LDH) leakage, induced apoptosis and necrosis, and triggered the MAPK signaling pathway in BRL cells in a dose-dependent manner. Moreover, our in vivo study indicated that HA NPs increased the white blood cell count (WBC) and the levels of tumor necrosis factor-? (TNF-?), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum, caused inflammatory cell infiltration at the portal area in the liver, and induced hepatic oxidative stress with elevated levels of hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA). These data demonstrate that at certain concentrations, 80-nm HA NPs cause hepatotoxicity and liver injury. PMID:25225040

  17. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle

    PubMed Central

    Zhang, Kathy; Geddie, Melissa L; Kohli, Neeraj; Kornaga, Tad; Kirpotin, Dmitri B; Jiao, Yang; Rennard, Rachel; Drummond, Daryl C; Nielsen, Ulrik B; Xu, Lihui; Lugovskoy, Alexey A

    2015-01-01

    Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting. PMID:25484041

  18. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle.

    PubMed

    Zhang, Kathy; Geddie, Melissa L; Kohli, Neeraj; Kornaga, Tad; Kirpotin, Dmitri B; Jiao, Yang; Rennard, Rachel; Drummond, Daryl C; Nielsen, Ulrik B; Xu, Lihui; Lugovskoy, Alexey A

    2015-01-01

    Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting. PMID:25484041

  19. Synthesis-Dependent Surface Defects and Morphology of Hematite Nanoparticles and Their Effect on Cytotoxicity in Vitro.

    PubMed

    Cardillo, Dean; Tehei, Moeava; Hossain, Md Shahriar; Islam, Md Monirul; Bogusz, Kathrin; Shi, Dongqi; Mitchell, David; Lerch, Michael; Rosenfeld, Anatoly; Corde, Stéphanie; Konstantinov, Konstantin

    2016-03-01

    In this study, we investigate the toxicity of hematite (α-Fe2O3) nanoparticles on the Madin-Darby Canine Kidney (MDCK) cell line. The oxide particles have been synthesized through two different methods and annealing conditions. These two methods, spray precipitation and precipitation, resulted in particles with rod-like and spherical morphology and feature different particle sizes, surface features, and magnetic properties. Through flow cytometry it was found that particle morphology heavily influences the degree to which the nanomaterials are internalized into the cells. It was also found that the ability of the nanoparticles to generate free radicals species is hindered by the formation of tetrahedrally coordinated maghemite-like (γ-Fe2O3) spinel defects on the surfaces of the particles. The combination of these two factors resulted in variable cytotoxic effects of the hematite nanoparticles synthesized with different conditions. This article highlights the importance on the fabrication method, materials properties, and surface characteristics on the cytotoxicity of hematite nanomaterials. PMID:26881459

  20. Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Seabra, A. B.; Pelegrino, M. T.; Haddad, P. S.

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs), with appropriate surface coatings, are commonly used for biomedical applications, such as drug delivery. For the successful application of SPIONs, it is necessary that the nanoparticles have well-defined morphological, structural and magnetic characteristics, in addition to high stability and biocompatibility in biological environments. The present work is focused on the synthesis and characterization of SPIONs, which were prepared using the co-precipitation method and have great potential for drug delivery. The surfaces of the SPIONs were functionalized with the tripeptide glutathione (GSH) and poly(ethylene glycol) (PEG) to form GSH-SPIONs and PEG-GSH-SPIONs. The structural, morphological, magnetic properties and the cytotoxicity of the obtained nanoparticles were characterized using different techniques. The results showed that the nanoparticles have a mean diameter of 10 nm in the solid state and are superparamagnetic at room temperature. No cytotoxicity was observed for either nanoparticle (up to 500 μg L-1) on mouse normal fibroblasts (3T3 cell line) or acute T cell leukemia (Jurkat cell line) after 24 h of incubation. Free thiol groups (SH) on the surfaces of GSH-SPIONs and PEG-GSH-SPIONs were nitrosated, leading to the formation of S-nitrosated SPIONs, which act as a nitric oxide (NO) donor. The amounts of NO released from GSNO-SPIONs and PEG-GSNO-SPIONs were (124.0 ± 1.0) μmol and (33.2 ± 5.1) μmol of NO per gram, respectively. This study highlights the successful capping of the SPION surfaces with antioxidant GSH and biocompatible PEG, which improved the dispersion and biocompatibility of the NPs in aqueous/biological environments, thereby enhancing the potential uses of SPIONs as drug delivery systems, such as a NO donor vehicle, in biomedical applications.

  1. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, P.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Al-Dhabi, Naif Abdullah

    2015-02-01

    The application of microorganisms for the synthesis of nanoparticles as an eco-friendly and promising approach is welcome due to its non-toxicity and simplicity. The aim of this study was to synthesize silver nanoparticle using Streptomyces sp. (09 PBT 005). 09 PBT 005 was isolated from the soil sample of the agriculture field in Vengodu, Thiruvannamalai district, Tamil Nadu, India. 09 PBT 005 was subjected to molecular characterization by 16S rRNA sequence analysis. It was found that 09 PBT 005 belonged to Streptomyces sp. The isolate Streptomyces sp. 09 PBT 005 was inoculated in fermentation medium and incubated at 30 C for 12 days in different pH conditions. The 0.02 molar concentration showed good antibacterial activity against Gram-positive and Gram-negative bacteria at pH-7. The synthesis of silver nanoparticles was investigated by UV-Vis spectroscopy, scanning electron microscopy and Fourier Transform Infrared analysis. The synthesized AgNPs sizes were found to be in the dimensions ranging between 198 and 595 nm. The cytotoxicity of the synthesized nanoparticles was studied against A549 adenocarcinoma lung cancer cell line. It showed 83.23 % activity at 100 ?l with IC 50 value of 50 ?l. This method will be useful in the biosynthesis of nanoparticles.

  2. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A(2)-induced degranulation in mast cells.

    PubMed

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G(M1)), di-sialoganglioside (G(D1a)) and tri-sialoganglioside (G(T1b)). In contrast, honeybee venom-derived phospholipase A(2) induced the net degranulation directly without cytotoxicity, which was not inhibited by G(M1), G(D1a) and G(T1b). For analysis of distribution of Gα(q) and Gα(i) protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα(q) and Gα(i) at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A(2)-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A(2)-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting. PMID:21334356

  3. Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells.

    PubMed

    Fraga, Snia; Faria, Helena; Soares, Maria Elisa; Duarte, Jos Alberto; Soares, Leonor; Pereira, Eullia; Costa-Pereira, Cristiana; Teixeira, Joo Paulo; de Lourdes Bastos, Maria; Carmo, Helena

    2013-10-01

    The toxicological profile of gold nanoparticles (AuNPs) remains controversial. Significant efforts to develop surface coatings to improve biocompatibility have been carried out. In vivo biodistribution studies have shown that the liver is a target for AuNPs accumulation. Therefore, we investigated the effects induced by ~20?nm spherical AuNPs (0-200??M Au) with two surface coatings, citrate (Cit) compared with 11-mercaptoundecanoic acid (11-MUA), in human liver HepG2 cells. Cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release assays after 24 to 72?h of incubation. DNA damage was assessed by the comet assay, 24?h after incubation with the capped AuNPs. Uptake and subcellular distribution of the tested AuNPs was evaluated by quantifying the gold intracellular content by graphite furnace atomic absorption spectrometry (GFAAS) and transmission electron microscopy (TEM), respectively. The obtained results indicate that both differently coated AuNPs did not induce significant cytotoxicity. An inverse concentration-dependent increase in comet tail intensity and tail moment was observed in Cit-AuNPs- but not in MUA-AuNPs-exposed cells. Both AuNPs were internalized in a concentration-dependent manner. However, no differences were found in the extent of the internalization between the two types of NPs. Electron-dense deposits of agglomerates of Cit- and MUA-AuNPs were observed either inside endosomes or in the intercellular spaces. In spite of the absence of cytotoxicity, DNA damage was observed after exposure to the lower concentrations of Cit- but not to MUA-AuNPs. Thus, our data supports the importance of the surface properties to increase the biocompatibility and safety of AuNPs. PMID:23529830

  4. Effect of copper and iron ions on cytotoxicity induced by ascorbate, gallate and caffeate.

    PubMed

    Satoh, K; Sakagami, H

    1997-01-01

    Four antioxidants, sodium ascorbate, gallic acid, n-propyl gallate and caffeic acid, induced apoptotic cell death in human promyelocytic leukemic HL-60 cells. The effects of all these compounds were enhanced by CuCl2 or deferoxamine mesylate, an iron chelator, but were reduced by FeCl3. ESR spectroscopy showed that both CuCl2 and FeCl3 enhanced the ascorbyl radical intensity, but reduced the gallate and caffeate radical intensity. The present data demonstrate that copper and iron ions modify the cytotoxic activity of these antioxidants differently and their radical intensity is not the sole determinant of cytotoxic activity. PMID:9216684

  5. Layer by layer assembly of albumin nanoparticles with selective recognition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    PubMed

    Cui, Wei; Wang, Anhe; Zhao, Jie; Yang, Xiaoke; Cai, Peng; Li, Junbai

    2016-03-01

    Crosslinked albumin nanoparticles which loaded with doxorubicin (DOX) were fabricated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and biocompatible polysaccharide, alginate (ALG), using layer-by-layer technique. Albumin nanoparticles exhibited narrow size distribution and fluorescent property. The assembled core/shell structure of the nanoparticles can be internalized more easily with the cancer cells, which attributes to TRAIL binding with death receptors. TRAIL still hold bioactive properties after assembled onto the particles. In addition, after loaded into the albumin core nanoparticles, DOX (as the chemotherapeutics) display a synergistic cytotoxic effect on cytotoxicity in combination with TRAIL in vitro. The core/shell nanostructured nanoparticles realized in this study would be used as a promising candidate for novel drug carriers. PMID:26641559

  6. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.--a model approach.

    PubMed

    Taranath, T C; Patil, Bheemanagouda N; Santosh, T U; Sharath, B S

    2015-06-01

    Zinc nanoparticles were synthesized using aqueous leaf extract of Justicia adhatoda L. The characterization of nanoparticles was done by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HR-TEM). The characteristic absorption peak of the UV spectrum was recorded at 379 nm. The FTIR data revealed the possible biomolecules involved in bioreduction and capping of zinc nanoparticles for efficient stabilization. AFM and HR-TEM images have shown that the size of zinc nanoparticles ranges from 55 to 83 nm and they are spherical in shape. The biogenic zinc nanoparticles were evaluated for their toxic effect on mitotic chromosomes of Allium cepa as a model system. Experiments were conducted in triplicate to assay the effect of 25, 50, 75, and 100 % of zinc nanoparticles on mitotic chromosomes at an interval of 6 h duration for 24 h. The investigation revealed that the mitotic index (MI) was decreased with increased concentration of zinc nanoparticles and exposure duration. The results revealed that zinc nanoparticles have induced abnormalities like anaphase bridge formation, diagonal anaphase, C-metaphase, sticky metaphase, laggards, and sticky anaphase at different percentages and times of exposure. It is evident from the observation that mitotic cell division becomes abortive at 100 % treatment of zinc nanoparticles. PMID:25586613

  7. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity.

    PubMed

    You, Chuangang; Han, Chunmao; Wang, Xingang; Zheng, Yurong; Li, Qiyin; Hu, Xinlei; Sun, Huafeng

    2012-09-01

    Nanotechnology is a highly promising field, with nanoparticles produced and utilized in a wide range of commercial products. Silver nanoparticles (AgNPs) has been widely used in clothing, electronics, bio-sensing, the food industry, paints, sunscreens, cosmetics and medical devices, all of which increase human exposure and thus the potential risk related to their short- and long-term toxicity. Many studies indicate that AgNPs are toxic to human health. Interestingly, the majority of these studies focus on the interaction of the nano-silver particle with single cells, indicating that AgNPs have the potential to induce the genes associated with cell cycle progression, DNA damage and mitochondrial associated apoptosis. AgNPs administered through any method were subsequently detected in blood and were found to cause deposition in several organs. There are very few studies in rats and mice involving the in vivo bio-distribution and toxicity, organ accumulation and degradation, and the possible adverse effects and toxicity in vivo are only slowly being recognized. In the present review, we summarize the current data associated with the increased medical usage of nano-silver and its related nano-materials, compare the mechanism of antibiosis and discuss the proper application of nano-silver particles. PMID:22722996

  8. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells.

    PubMed

    Hideshima, Teru; Catley, Laurence; Raje, Noopur; Chauhan, Dharminder; Podar, Klaus; Mitsiades, Constantine; Tai, Yu-Tzu; Vallet, Sonia; Kiziltepe, Tanyel; Ocio, Enrique; Ikeda, Hiroshi; Okawa, Yutaka; Hideshima, Hiromasa; Munshi, Nikhil C; Yasui, Hiroshi; Richardson, Paul G; Anderson, Kenneth C

    2007-09-01

    Akt mediates growth and drug resistance in multiple myeloma (MM) cells in the bone marrow (BM) microenvironment. We have shown that a novel Akt inhibitor Perifosine induces significant cytotoxicity in MM cells in the BM milieu. This study further delineated molecular mechanisms whereby Perifosine triggered cytotoxicity in MM cells. Neither the intensity of Jun NH(2)-terminal kinase phosphorylation nor caspase/poly (ADP-ribose) polymerase cleavage correlated with Perifosine-induced cytotoxicity in MM.1S, INA6, OPM1 and OPM2 MM cells. However, survivin, which regulates caspase-3 activity, was markedly downregulated by Perifosine treatment, without changes in other anti-apoptotic proteins. Downregulation of survivin by siRNA significantly inhibited OPM1 MM cell growth, confirming that survivin mediates MM cell survival. Perifosine significantly downregulated both function and protein expression of beta-catenin. Co-culture with BM stromal cells (BMSCs) upregulated both beta-catenin and survivin expression in MM cells, which was blocked by Perifosine. Importantly, Perifosine treatment also downregulated survivin expression in human MM cells grown in vivo in a severe combined immunodeficient mouse xenograft model. Finally, Perifosine inhibited bortezomib-induced upregulation of survivin, associated with enhanced cytotoxicity of combined bortezomib and Perifosine treatment. These preclinical studies provide the framework for clinical trials of bortezomib with Perifosine to improve patient outcome in MM. PMID:17760810

  9. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  10. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated from Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas; Ahmed, Arham S.; Ahmed, Faheem; Ahmad, Ejaz; Sherwani, Asif; Owais, Mohammad; Azam, Ameer

    2013-01-01

    Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases. PMID:23555625

  11. Interferon-? gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    PubMed

    Rossi, rsula A; Gil-Cardeza, Mara L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-? (IFN?) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFN? gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFN?) to human cells. IFN? gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFN?-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFN? gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFN?-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFN?, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFN? expression could be related to the resistance displayed by one human melanoma cell line. As IFN? gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. PMID:26054674

  12. Role of methamphetamine on glioblastoma cytotoxicity induced by doxorubicin and methotrexate.

    PubMed

    Capela, Tnia; Caramelo, Francisco; Fontes-Ribeiro, Carlos; Gomes, Clia; Silva, Ana P

    2014-10-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor with a high mortality rate. Doxorubicin (DOX) and methotrexate (MTX) showed to be effective against a wide range of tumors, but its use in GBM treatment is limited in part due to the inability to cross the blood-brain barrier (BBB). Based on recent studies demonstrating that methamphetamine (METH) increases BBB permeability, we hypothesized that it could be used as a pharmacological tool to allow the entry of potential therapeutic drugs into the brain. Nevertheless, before attempting this approach it is crucial to understand the cytotoxicity of such drug combinations. Herein, we evaluated the effects of METH on cell viability, migration, chemotaxis, and cell cycle, as well as its modulator effects on DOX or MTX-induced cytotoxicity in a human U118 GBM cell line. Our results demonstrated that both chemotherapeutic drugs DOX and MTX induced a pronounced decrease in cell viability, migration, and chemotaxis, and led to a cell cycle arrest at G2 and S phases, respectively. Additionally, METH (1 ?M) neither interfered with U-118 cell viability, migration, or cell cycle nor modified DOX- or MTX-induced cytotoxicity. Noteworthy, METH by itself impaired cell chemotaxis with a similar effect to that induced by DOX or MTX alone. Overall, we can conclude that both DOX and MTX are highly cytotoxic against GBM cells and that METH, at a concentration previously shown to increase endothelial cell permeability without leading to cell death, does not interfere with the cytotoxicity of both chemotherapeutic drugs. PMID:24652521

  13. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro airblood barrier model

    PubMed Central

    Feiden, Lisa; Hermanns, Maria I; Bantz, Christoph; Maskos, Michael; Unger, Ronald E; Kirkpatrick, C James

    2015-01-01

    Summary The airblood barrier is a very thin membrane of about 2.2 m thickness and therefore represents an ideal portal of entry for nanoparticles to be used therapeutically in a regenerative medicine strategy. Until now, numerous studies using cellular airway models have been conducted in vitro in order to investigate the potential hazard of NPs. However, in most in vitro studies a crucial alveolar component has been neglected. Before aspirated NPs encounter the cellular airblood barrier, they impinge on the alveolar surfactant layer (1020 nm in thickness) that lines the entire alveolar surface. Thus, a prior interaction of NPs with pulmonary surfactant components will occur. In the present study we explored the impact of pulmonary surfactant on the cytotoxic potential of amorphous silica nanoparticles (aSNPs) using in vitro mono- and complex coculture models of the airblood barrier. Furthermore, different surface functionalisations (plain-unmodified, amino, carboxylate) of the aSNPs were compared in order to study the impact of chemical surface properties on aSNP cytotoxicity in combination with lung surfactant. The alveolar epithelial cell line A549 was used in mono- and in coculture with the microvascular cell line ISO-HAS-1 in the form of different cytotoxicity assays (viability, membrane integrity, inflammatory responses such as IL-8 release). At a distinct concentration (100 g/mL) aSNPplain displayed the highest cytotoxicity and IL-8 release in monocultures of A549. aSNPNH2 caused a slight toxic effect, whereas aSNPCOOH did not exhibit any cytotoxicity. In combination with lung surfactant, aSNPplain revealed an increased cytotoxicity in monocultures of A549, aSNPNH2 caused a slightly augmented toxic effect, whereas aSNPCOOH did not show any toxic alterations. A549 in coculture did not show any decreased toxicity (membrane integrity) for aSNPplain in combination with lung surfactant. However, a significant augmented IL-8 release was observed, but no alterations in combination with lung surfactant. The augmented aSNP toxicity with surfactant in monocultures appears to depend on the chemical surface properties of the aSNPs. Reactive silanol groups seem to play a crucial role for an augmented toxicity of aSNPs. The A549 cells in the coculture seem to be more robust towards aSNPs, which might be a result of a higher differentiation and polarization state due the longer culture period. PMID:25821694

  14. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated palmitate/ CsA induced toxicity. ► Palmitate sensitizes cells to the toxicity induced by CsA at therapeutic exposure. ► Elevated free fatty acids may predispose the patients to CsA-induced toxicity.

  15. Involvement of intracellular Na^+ accumulation in Hg^{+2} or Cd^{+2} induced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Pourahmad, J.; O'Brien, P. J.

    2003-05-01

    Previously we showed that hepatocyte lysis induced by Hg^{+2} or Cd^{+2} could be partly attributed to mitochondrial toxicity [1, 2]. Similar changes in Na^+ homeostasis induced when Cd^{+2} or Hg^{+2} was incubated with hepatocytes. Cd^{+2} or Hg^{+2} induced cytotoxicity were prevented by Na^+ omission from the media or by the addition of the Na^+/H^+ exchange inhibitor 5-(N, N-dimethyl)-amiloride. Furthermore the omission of CI^- from the media or 2 addition of glycine, a CI^- channel blocker also prevented Cd^{+2} or Hg^{+2} induced hepatocyte toxicity. A hypotonic media also increased Cd^{+2} or Hg^{+2} induced hepatocyte cytotoxicity. This suggests that Cd^{+2} or Hg^{+2} cytotoxicity could be partly attributed to disruption of cell volume regulation mechanisms. The increased osmotic load caused by the uncontrolled accumulation of intracellular Na^+ in Cd^{+2} or Hg^{+2} treated hepatocytes likely resulted from the activation of Na^+/H^+ exchanger and the Na^+/HCO3^- cotransporter by the acidosis and ATP depletion caused by mitochondrial toxicity.

  16. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity.

    PubMed

    Li, Jing; Du, Xiaotong; Zheng, Nan; Xu, Lu; Xu, Jinghua; Li, Sanming

    2016-05-01

    In this study, dual functionalized mesoporous silica nanoparticle (Dual-MSN) with functions of carboxyl modification and chirality was successfully developed and its special contribution in delivering doxorubicin hydrochloride (DOX) in vitro was mainly studied. Characteristics of Dual-MSN and its application as DOX carrier were intensively explored by comparing with naked non-functionalized MSN (Naked MSN). The results indicated that both Naked MSN and Dual-MSN significantly controlled DOX release due to the release hindrance caused by mesopores. As expected, Dual-MSN exhibited obvious enhanced pH-response because of its negative charges of carboxyl groups. DOX loaded Naked MSN and DOX loaded Dual-MSN presented better cytotoxicity than DOX due to carrier-mediated endocytosis and the favorable intercalation of DOX into DNA in the nuclei. The cytotoxicity of DOX loaded Dual-MSN was better than DOX loaded Naked MSN owing to its enhanced cellular uptake induced by chirality of Dual-MSN, demonstrating that double functions of Dual-MSN had unique advantages in improving antitumor effect of DOX towards MCF-7 cells and thus confirming its special contribution in DOX delivery. PMID:26878288

  17. Induction of Potent Antigen-specific Cytotoxic T Cell Response by PLGA-nanoparticles Containing Antigen and TLR Agonist

    PubMed Central

    Lee, Young-Ran; Lee, Young-Hee; Kim, Ki-Hyang; Im, Sun-A

    2013-01-01

    Previously we showed that biodegradable nanoparticles containing poly-IC or CpG oligodeoxynucleotide (ODN) together with ovalbumin (OVA) were efficient at inducing MHC-restricted presentation of OVA peptides in dendritic cells. The CTL-inducing activities of the nanoparticles were examined in the present study. Nanoparticles containing poly-IC or CpG ODN together with OVA were prepared using biodegradable polymer poly(D,L-lactic acid-co-glycolic acid), and then were opsonized with mouse IgG. The nanoparticles were injected into the tail vein of mice, and 7 days later the OVA-specific CTL activities were measured using an in vivo CTL assay. Immunization of mice with the nanoparticles containing poly-IC or CpG ODN together with OVA elicited potent OVA-specific CTL activity compared to those containing OVA only. In accordance with these results, nanoparticles containing poly-IC or CpG ODN together with OVA exerted potent antitumor activity in mice that were subcutaneously implanted with EG7.OVA tumor cells. These results show that encapsulation of poly-IC or CpG ODN together with antigen in biodegradable nanoparticles is an effective approach for the induction of potent antigen-specific CTL responses in vivo. PMID:23559898

  18. Cytotoxicity of magnetic nanoparticles derived from green chemistry against human cells

    NASA Astrophysics Data System (ADS)

    Hanumandla, Pranitha

    The core-shelled Fe3O4 magnetic nanoparticles (MNPs) have been extensively investigated by the researchers due to their diversified applications. Recently, the study on the toxicity of nanomaterials has been drawn increasing attention to reduce or mitigate the environmental hazards and health risk. The objectives of this thesis are three fold: 1) prepare series functionalized Fe3O4 MNPs and optimize the synthesis variables of; 2) characterize their nanostructures using the state-of-the-art instrumental techniques; and 3) evaluate their cytotoxicity by measurement of nitrogen monoxide (NO) release, reactive oxygen species (ROS) and single oxygen species (SOS) generation. In order to prepare the crystalline Fe3O4 MNPs, a cost-effective and user-friendly wet chemistry (Sol-Gel) method was used. Two Indian medicinal plants were extracted to derive the active chemicals, which were used to functionalize the Fe3O 4 MNPs. The results indicated that the Fe3O4 MNPs were well-indexed with the standard inverse spinel structure (PDF 65-3107, a=8.3905A, α = 90°). The particle's sizes varied from 6-10 nm with the Fe3O 4 MNPs acting as cores and medicinal extracts as shell. The active chemical components extracted from two Hygrophila auriculata/ Chlorophytum borivilianum are fatty acid, Saponins, sterols, carbohydrates and amino acids, which are in agreement with the reported data. Toxicological evaluations of MNPs indicated that the Fe3O4 MNPs functionalized with Hygrophila auriculata/ Chlorophytum borivilianum extract prepared at room temperature were toxic to the cells when compared to the control, and act in a mechanism similar to the actions of hydrogen peroxide (H2O2). These functionalized MNPs, which were prepared at 100 ° C, displayed similar mechanism of action to the anticancer drug (SN-38). It was also found that the MNPs prepared at lower temperatures are less toxic and showed similar mechanism of action as the sodium nitrite (NaNO 2).

  19. Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles

    PubMed Central

    Shareena Dasari, TP; Zhang, Y; Yu, H

    2016-01-01

    Gold nanoparticles (AuNPs) and gold ion complexes have been investigated for their antibacterial activities. However, the majority of the reports failed to disclose the concentration of free Au(I) or Au(III) present in solutions of AuNPs or gold ion complexes. The inconsistency of antibacterial activity of AuNPs may be due to the effect of the presence of Au(III). Here we report the antibacterial activity of Au(I) and Au(III) to four different bacteria: one nonpathogenic bacterium: E. coli and three multidrug-resistant bacteria: E. coli, S. typhimurium DT104, and S. aureus. Au(I) and Au(III) as chloride are highly toxic to all the four bacteria, with IC50 of 0.35 – 0.49 µM for Au(III) and 0.27–0.52 µM for Au(I).The bacterial growth inhibition by both Au(I) and Au(III) increases with exposure time and is strongly affected by the use of buffers. The IC50 values for Au(I) and Au(III) in different buffers are HEPES (0.48 and 1.55 µM) > Trizma (0.41 and 0.57 µM) > PBS (0.14 and 0.06 µM). Bacterial growth inhibition by AuNPs is gradually reduced by centrifugation-resuspension to remove residual Au(III) ion present in the crude synthetic AuNPs. After 4 centrifugations-resuspensions, AuNPs become non-toxic. In addition, both Au(I) and Au(III) are cytotoxic to skin keratinocyte and blood lymphocyte cells. These results suggest that Au(I) and Au(III) in pure or complex forms may be explored as a method to treat drug-resistant bacteria, and the test of AuNPs toxicity must consider residual Au(III), exposure time, and the use of buffers.

  20. Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro.

    PubMed

    Mata, Rani; Nakkala, Jayachandra Reddy; Sadras, Sudha Rani

    2015-04-01

    Green synthesis of silver nanoparticles using biological entities is gaining interest because of their potential applications in nano-medicine. Herein, we report the biological synthesis of Abutilon indicum silver nanoparticles (AIAgNPs) using aqueous Abutilon indicum leaf extract (AILE) and evaluation of their biological applications. TEM analysis revealed that the spherical biogenic AIAgNPs were found to be between 5 and 25 nm in size. The bioactive phyto-constituents such are condensed tannins of AILE were found to play a key role in the reduction and capping of AIAgNPs. The biological properties of AIAgNPs were premeditated as free radical scavenging activity, antibacterial effect and anti-proliferative activity. AIAgNPs were found to exhibit good free radical scavenging activities and the intense zone of inhibition displayed by them in six different pathogenic species indicate the potential antibacterial effect. Further, AIAgNPs showed a dose dependant anti-proliferative effect against COLO 205 (human colon cancer) and MDCK (normal) cells with an IC50 of 3 and 4 ?g/mL and 100 and 75 ?g/mL, respectively after 24 and 48 h. The morphological changes, chromatin condensation and membrane potential loss induced by AIAgNPs were evidenced by AO/EB and AnnexinV-Cy3 staining. The mitochondrial membrane potential (MMP) loss and G1/S transition cell cycle arrest in COLO 205 cells was evidenced in rhodamine123 staining and FACS analysis. The high levels of ROS as shown in DCF-DA staining could have played a major role in DNA fragmentation and eventually lead to apoptosis. The mode of action through the induction apoptosis by AIAgNPs in COLO 205 cells is exciting with promising application of nano-materials in biomedical research. PMID:25701118

  1. Flutamide-Induced Cytotoxicity and Oxidative Stress in an In Vitro Rat Hepatocyte System

    PubMed Central

    Maruf, Abdullah Al; O'Brien, Peter

    2014-01-01

    Flutamide (FLU) is a competitive antagonist of the androgen receptor which has been reported to induce severe liver injury in some patients. Several experimental models suggested that an episode of inflammation during drug treatment predisposes animals to tissue injury. The molecular cytotoxic mechanisms of FLU in isolated rat hepatocytes using an in vitro oxidative stress inflammation system were investigated in this study. When a nontoxic hydrogen peroxide (H2O2) generating system (glucose/glucose oxidase) with peroxidase or iron(II) [Fe(II)] (to partly simulate in vivo inflammation) was added to the hepatocytes prior to the addition of FLU, increases in FLU-induced cytotoxicity and lipid peroxidation (LPO) were observed that were decreased by 6-N-propyl-2-thiouracil or deferoxamine, respectively. N-Acetylcysteine decreased FLU-induced cytotoxicity in this system. Potent antioxidants, for example, Trolox ((±)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), resveratrol (3,5,4′-trihydroxy-trans-stilbene), and DPPD (N,N′-diphenyl-1,4-phenylenediamine) also significantly decreased FLU-induced cytotoxicity and LPO and increased mitochondrial membrane potential (MMP) and glutathione (GSH) levels in the H2O2 generating system with peroxidase. TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl), a known reactive oxygen species (ROS) scavenger and superoxide dismutase mimetic, also significantly decreased toxicity caused by FLU in this system. These results raise the possibility that the presence or absence of inflammation may be another susceptibility factor for drug-induced hepatotoxicity. PMID:25371773

  2. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    NASA Astrophysics Data System (ADS)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  3. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    PubMed

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments. PMID:26577392

  4. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.

    PubMed

    Skrzypski, M; Sassek, M; Abdelmessih, S; Mergler, S; Grtzinger, C; Metzke, D; Wojciechowicz, T; Nowak, K W; Strowski, M Z

    2014-01-01

    Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo. PMID:24075930

  5. Folate-modified Chitosan Nanoparticles Containing the IP-10 Gene Enhance Melanoma-specific Cytotoxic CD8+CD28+ T Lymphocyte Responses

    PubMed Central

    He, Jian; Duan, Siliang; Yu, Xia; Qian, Zhiyong; Zhou, Sufang; Zhang, Zhiyong; Huang, Xianing; Huang, Yong; Su, Jing; Lai, Chunhui; Meng, Jinyu; Zhou, Nuo; Lu, Xiaoling; Zhao, Yongxiang

    2016-01-01

    Background: Adoptive immunotherapy with cytotoxic T lymphocytes (CTLs) has great potential for the treatment of some malignant cancers. Therefore, augmenting the responses of tumor-specific CTLs is significant for the adoptive immunotherapy of melanoma. This study aimed to investigate the anti-tumor response of a combination therapy employing folate-modified chitosan nanoparticles containing IP-10 (interferon-γ-inducible protein-10) plus melanoma TRP2-specific CD8+CD28+ T cells. Methods: We prepared folate-modified chitosan nanoparticles containing the mouse IP-10 gene (FA-CS-mIP-10), and induced melanoma TRP2-specific CD8+CD28+ T cells by co-culturing them with artificial antigen-presenting cells. B16-bearing mice were treated with FA-CS-mIP-10, melanoma TRP2-specific CD8+CD28+ T cells, a combination of both, and the saline control. Tumor volumes and the survival time of mice were recorded. The proportion of myeloid-derived suppressor cells (MDSCs) infiltrating the tumor microenvironment and regulatory T cells (Tregs) in the spleen was analyzed by flow cytometry. We also detected the proliferation and angiogenesis of tumors by immunohistochemistry and apoptosis by TUNEL. Results: The combination therapy inhibited the progression of melanoma in vivo. Compared with other treatments, it more efficiently inhibited tumor growth and increased the survival time of mice. After treatment with combination therapy, the proportion of MDSCs and Tregs decreased, while the percentage of CXCR3+CD8+ T cells increased. Furthermore, combination therapy inhibited proliferation and promoted apoptosis of tumor cells and significantly inhibited tumor angiogenesis in vivo. Conclusion: We describe a novel strategy for improving the anti-tumor response of CD8+CD28+ CTLs by combining them with FA-CS-mIP-10 nanoparticles.

  6. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  7. Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2).

    PubMed

    Roopan, Selvaraj Mohana; Kumar, Subramanian Hari Subbish; Madhumitha, Gunabalan; Suthindhiran, Krishnamurthy

    2015-02-01

    In this paper, we have established for the first time, the terrific efficiency of aqueous extract of agricultural waste dried peel of sugar apple (Annona squamosa) in the rapid synthesis of stable SnO2 nanoparticles. In topical years, the deployment of secondary metabolites from plant extract has emerged as a novel technology for the synthesis of various nanoparticles. In this paper, we have studied the potential of SnO2 nanoparticles assembly using agricultural waste source for the first time. The synthesized nanoparticles were characterized and confirmed as SnO2 nanoparticles by using UV-visible spectroscopy, XRD, and TEM analysis. The motivation of this study was to examine cytotoxicity study of SnO2 nanoparticles against hepatocellular carcinoma cell line (HepG2). SnO2 nanoparticles inhibited the cell proliferation in a dose- and time-dependent manner with an IC50 value of 148 μg/mL. The treated cells showed an altered morphology with increasing concentrations of SnO2 nanoparticles. Our result shows that the SnO2 nanoparticles exhibit moderate cytotoxicity towards the hepatocellular carcinoma (HepG2) at tested concentrations. PMID:25410804

  8. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam.

    PubMed

    Rathi Sre, P R; Reka, M; Poovazhagi, R; Arul Kumar, M; Murugesan, K

    2015-01-25

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines. PMID:25189525

  9. Cytotoxicity of solid lipid nanoparticles and nanostructured lipid carriers containing the local anesthetic dibucaine designed for topical application

    NASA Astrophysics Data System (ADS)

    Barbosa, R. M.; da Silva, C. M. G.; Bella, T. S.; de Arajo, D. R.; Marcato, P. D.; Durn, N.; de Paula, E.

    2013-04-01

    Dibucaine (DBC) is powerful long-lasting local anesthetic, but it is also considered fairly toxic to the CNS. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have attracted attention as carriers for drug delivery. The aim of this study was to develop and to evaluate the cytotoxic activity of DBC-loaded SLN and NLC against 3T3 fibroblast and HaCat keratinocyte cells. The SLN and NLC had myristyl myristate and LiponateGC as their lipid matrices, respectively, plus a surfactant. SLN and NLC were characterized in terms in their diameter, size distribution, surface charge and DBC encapsulation efficiency. The particle size of SLN and NLC were around 234.33 and 166.62 nm, respectively. The polydispersity index was kept below 0.2 for both nanomaterials. Negative surface charges were observed for both nanoparticles, which decreased in the presence of the anesthetic. Encapsulation efficiency reached 76% and 90%, respectively, in SLN and NLC. DBC alone was found to be toxic to 3T3 and HaCat cells in culture. However, NLC and SLN loaded DBC decreased its intrinsic cytotoxic effect against 3T3 and HaCat cells. In conclusion, encapsulation of DBC in SLN and NLC decreased the in vitro toxicity of the local anesthetic, indicating the potential of these nanocarriers for clinical applications.

  10. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam

    NASA Astrophysics Data System (ADS)

    Rathi Sre, P. R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K.

    2015-01-01

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines.

  11. Docetaxel Loaded PEG-PLGA Nanoparticles: Optimized Drug Loading, In-vitro Cytotoxicity and In-vivo Antitumor Effect

    PubMed Central

    Noori Koopaei, Mona; Khoshayand, Mohammad Reza; Mostafavi, Seyed Hossein; Amini, Mohsen; Khorramizadeh, Mohammad Reza; Jeddi Tehrani, Mahmood; Atyabi, Fatemeh; Dinarvand, Rassoul

    2014-01-01

    In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) Nanoparticles (NPs) with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cytotoxicity of optimized DTX loaded PEG-PLGA NPs was studied in SKOV3 tumor cell lines by standard MTT assay. The in-vivo antitumor efficacy of DTX loaded PLGA-PEG NPs was assessed in tumor bearing female BALB/c mice. The optimum level of Y1, Y2 and Y3 predicted by the model were 188 nm, 0.16 and 9% respectively with perfect agreement with the experimental data. The in-vitro release profile of optimum formulation showed a burst release of approximately 20% (w/w) followed by a sustained release profile of the loaded drug over 288 h. The DTX loaded optimized nanoparticles showed a greater cytotoxicity against SKOV3 cancer cells than free DTX. Enhanced tumor-suppression effects were achieved with DTX-loaded PEG-PLGA NPs. These results demonstrated that optimized NPs could be a potentially useful delivery system for DTX as an anticancer agent. PMID:25276182

  12. Effect of PEG Molecular Weight on Stability, T2 contrast, Cytotoxicity, and Cellular Uptake of Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

    PubMed Central

    Park, Yoonjee C.; Smith, Jared B.; Pham, Tuan; Whitaker, Ragnhild D.; Sucato, Christopher A.; Hamilton, James A.; Bartolak-Suki, Elizabeth

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are currently unavailable as MRI contrast agents for detecting atherosclerosis in the clinical setting because of either low signal enhancement or safety concerns. Therefore, a new generation of SPIONs with increased circulation time, enhanced image contrast, and less cytotoxicity is essential. In this study, monodisperse SPIONs were synthesized and coated with polyethylene glycol (PEG) of varying molecular weights. The resulting PEGylated SPIONs were characterized, and their interactions with vascular smooth muscle cells (VSMCs) were examined. SPIONs were tested at different concentrations (100 and 500 ppm Fe) for stability, T2 contrast, cytotoxicity, and cellular uptake to determine an optimal formulation for in vivo use. We found that at 100 ppm Fe, the PEG 2K SPIONs showed adequate stability and magnetic contrast, and exhibited the least cytotoxicity and nonspecific cellular uptake. An increase in cell viability was observed when the SPION-treated cells were washed with PBS after one hour incubation compared to 5 and 24 hour incubation without washing. Our investigation provides insight into the potential safe application of SPIONs in the clinic. PMID:24877593

  13. Functionalized nanoparticles for AMF-induced gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the non-toxic magnetoplexes (magnetic nanoparticle + pDNA complex) derived from dMLP deliver pDNA into mammalian cells even without external magnetic assistance. To date, dMLP is the only polymer-free magnetic gene delivery system that can deliver pDNA without any magnetic assistance. Chapter 3 of this thesis outlines the synthesis and characterization of other oxime ether lipids and details studies using derived-lipoplexes. These lipids were evaluated in pDNA and siRNA transfection studies in various mammalian cell lines. This work constitutes the first use of an oxime ether as the linking domain in cationic transfection lipids. These biocompatible oxime ether lipids can be readily assembled by click chemistry through ligation of hydrophobic aldehydes with quaternary ammonium aminooxy salts. Our studies showed that the oxime ether lipids transfected pDNA and siRNA efficiently in MCF-7, H 1792, and in PAR C10 cells comparable to and in some cases better than commercial transfection lipids. Chapter 4 describes the design and characterization of a nano-magnetic delivery system for AMF-induced drug (doxorubicin) release. In efforts to develop a magnetic formulation free from thermosensitive materials, such as hydrogels, we synthesized three nanoparticle-based doxorubicin formulations using charge interactions as the key associative force. To do so, we synthesized and characterized a novel cationic oxime ether conjugate at C-13 of doxorubicin. Our investigation indicated that the positive charge of the oxime ether drug conjugate tended to bind better to the negatively charged nanoparticle than did the other formulations prepared in stepwise manner. Our findings show that the nano-magnetic formulations remained essestially inactive at body temperature (37.5 °C) and released a majority of the cargo only when exposed to an external AMF. Our designed magnetic drug delivery platform is the first example of an AMF-inducible system that does not depend on the inclusion of thermosensitive materials. Finally, we have developed a bioanalytical application of the highly chemoselective oximation chemistry using aminooxy reagent 2.1. Chapter 5 describes a silica microchip containing micropillars coated with cationic aminooxy reagent 2.1. The microchip captures gaseous ketones and aldehydes from exhaled human breath. A brief description of microchip fabricated breath analyzer and breath analysis is described in Chapter 5. Our studies showed that the acetone capture efficiency of the aminooxy-loaded microchip was 98%.

  14. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity

    PubMed Central

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W.; Wileman, Thomas; Roberts, Alexandra A.; Hamilton, Chris J.; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy. PMID:26402917

  15. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    PubMed

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W; Wileman, Thomas; Roberts, Alexandra A; Hamilton, Chris J; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 ?M. Pre-treatment with SFN (5 ?M) increased cell viability in response to CdSe QDs (20 ?M) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy. PMID:26402917

  16. Sonodynamically-induced cytotoxicity by rose bengal derivative and microbubbles in isolated sarcoma 180 cells

    NASA Astrophysics Data System (ADS)

    Sugita, Nami; Hosokawa, Mami; Sunaga, Naoki; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko; Umemura, Shin-ichiro

    2015-07-01

    It is known that the combination of ultrasound and sonodynamic sensitizer (SDS) is effective in noninvasive tumor treatment, referred to as sonodynamic therapy (SDT). Microbubbles have been used in ultrasound therapy as well. The purpose of this paper is to clarify the effect of microbubbles on SDT. Sarcoma 180 cells were suspended in air-saturated phosphate-buffered saline and exposed to ultrasound with the SDS rose bengal derivative (RBD) in standing wave mode in the presence and absence of microbubbles [sonazoid (SZ)]. The ultrasonically induced cytotoxicity with RBD and SZ was about 20 times higher than without either, and about 80% of the SZ microbubbles were destructed by ultrasonic exposure in as short as five seconds. Since microbubbles induce significant cytotoxicity even with short duration, low intensity ultrasound, the application of microbubbles in SDT shows promise in anti-tumor treatment.

  17. Comparison of aza-anthracenedione-induced DNA damage and cytotoxicity in experimental tumor cells.

    PubMed

    Hazlehurst, L A; Krapcho, A P; Hacker, M P

    1995-09-28

    Aza-anthracenediones are a new class of anti-cancer drugs, which demonstrate promising in vitro and in vivo activity. Our laboratory has synthesized a variety of structural analogs in which we determined previously that the positioning of the nitrogen within the backbone, as well as sidearm modification, results in dramatic differences in the potency of cytotoxicity. We reported previously that although DNA reactivity appears to be a necessary component for mediating cell death, it is not sufficient for predicting cytotoxicity of the aza-anthracenediones. We have chosen three aza-anthracenediones (BBR 2828, BBR 2778 and BBR 2378) to investigate the importance of DNA strand breaks and/or protein-concealed DNA breaks induced by aza-anthracenediones. We determined in the present study that, while all three drugs cause DNA breaks as determined by alkaline and neutral elution, as well as KCl-SDS precipitation, these breaks do not correlate directly with their potency as cytotoxic compounds. Further, we found significant differences in the types of DNA breaks induced by these drugs. Finally, we report that the persistence of protein-DNA complexes induced by all three drugs was similar and, therefore, cannot account for differences in the potency of cytotoxicity of the aza-anthracenediones. Thus, we postulate that, while the total number of drug-induced protein-concealed DNA breaks is an important indicator of drug toxicity, it is possible that the actual nature of the breaks may differ among the aza-anthracenedione congeners, and it is these differences in the actual proteins present in the DNA breaks that differentiate between aza-anthracenediones. PMID:7575665

  18. Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway.

    PubMed

    Fu, Ying-Zi; Yan, Yuan-Yuan; He, Miao; Xiao, Qing-Huan; Yao, Wei-Fan; Zhao, Lin; Wu, Hui-Zhe; Yu, Zhao-Jin; Zhou, Ming-Yi; Lv, Mu-Tian; Zhang, Shan-Shan; Chen, Jian-Jun; Wei, Min-Jie

    2016-02-01

    Breast cancer stem cells (BCSCs) are believed to be responsible for tumor chemoresistance, recurrence, and metastasis formation. Salinomycin (SAL), a carboxylic polyether ionophore, has been reported to act as a selective breast CSC inhibitor. However, the molecular mechanisms underlying SAL-induced cytotoxicity on BCSCs remain unclear. The Hedgehog (Hh) signaling pathway plays an important role in CSC maintenance and carcinogenesis. Here, we investigated whether SAL induces cytotoxicity on BCSCs through targeting Hh pathway. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain breast CSC-enriched MCF-7 mammospheres (MCF-7 MS). MCF-7 MS cells possessed typical BCSC properties, such as CD44+CD24-/low phenotype, high expression of OCT4 (a stem cell marker), increased colony-forming ability, strong migration and invasion capabilities, differentiation potential, and strong tumorigenicity in xenografted mice. SAL exhibited selective cytotoxicity to MCF-7 MS cells relative to MCF-7 cells. The Hh pathway was highly activated in BCSC-enriched MCF-7 MS cells and SAL inhibited Hh signaling activation by downregulating the expression of critical components of the Hh pathway such as PTCH, SMO, Gli1, and Gli2, and subsequently repressing the expression of their essential downstream targets including C-myc, Bcl-2, and Snail (but not cyclin D1). Conversely, Shh-induced Hh signaling activation could largely reverse SAL-mediated inhibitory effects. These findings suggest that SAL-induced selective cytotoxicity against MCF-7 MS cells is associated with the inhibition of Hh signaling activation and the expression of downstream targets and the Hh pathway is an important player and a possible drug target in the pathogenesis of BCSCs. PMID:26718029

  19. Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines

    NASA Astrophysics Data System (ADS)

    Dhar, Sheetal; Reddy, E. Maheswara; Prabhune, Asmita; Pokharkar, Varsha; Shiras, Anjali; Prasad, B. L. V.

    2011-02-01

    Biocompatible gold nanoparticles were synthesized by using a naturally occurring gum-Gellan Gum-as a capping and reducing agent. These were further conjugated with sophorolipids which again were accessed through a biochemical transformation of a fatty acid. The cellular uptake of sophorolipid-conjugated gellan gum reduced gold nanoparticles and their cytotoxicity on human glioma cell line LN-229 and human glioma stem cell line HNGC-2 were investigated. Quite surprisingly even the simple sophorolipid-conjugated gellan gum reduced/capped gold nanoparticles showed greater efficacy in killing the glioma cell lines and, gratifyingly, the glioma stem cell lines also. The cytotoxic effects became more prominent once the anti cancer drug doxorubicin hydrochloride was also conjugated to these gold nanoparticles.Biocompatible gold nanoparticles were synthesized by using a naturally occurring gum-Gellan Gum-as a capping and reducing agent. These were further conjugated with sophorolipids which again were accessed through a biochemical transformation of a fatty acid. The cellular uptake of sophorolipid-conjugated gellan gum reduced gold nanoparticles and their cytotoxicity on human glioma cell line LN-229 and human glioma stem cell line HNGC-2 were investigated. Quite surprisingly even the simple sophorolipid-conjugated gellan gum reduced/capped gold nanoparticles showed greater efficacy in killing the glioma cell lines and, gratifyingly, the glioma stem cell lines also. The cytotoxic effects became more prominent once the anti cancer drug doxorubicin hydrochloride was also conjugated to these gold nanoparticles. Electronic supplementary information (ESI) available: Confocal Z-stacking images of Texas Red Conjugated SL-GG-Au NPs, thermogravimetic analysis of DOX-SL-GG-Au-NPs and SL-GG-AuNPs, and time-dependent fluorescence spectra of DOX-SL-GG-Au NPs. See DOI: 10.1039/c0nr00598c

  20. Vitamin C effect on mitoxantrone-induced cytotoxicity in human breast cancer cell lines.

    PubMed

    Guerriero, Eliana; Sorice, Angela; Capone, Francesca; Napolitano, Virginia; Colonna, Giovanni; Storti, Gabriella; Castello, Giuseppe; Costantini, Susan

    2014-01-01

    In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments. PMID:25531443

  1. Vitamin C Effect on Mitoxantrone-Induced Cytotoxicity in Human Breast Cancer Cell Lines

    PubMed Central

    Capone, Francesca; Napolitano, Virginia; Colonna, Giovanni; Storti, Gabriella; Castello, Giuseppe; Costantini, Susan

    2014-01-01

    In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments. PMID:25531443

  2. Carnosine's Effect on Amyloid Fibril Formation and Induced Cytotoxicity of Lysozyme

    PubMed Central

    Wu, Josephine W.; Liu, Kuan-Nan; How, Su-Chun; Chen, Wei-An; Lai, Chia-Min; Liu, Hwai-Shen; Hu, Chaur-Jong; Wang, Steven S. -S.

    2013-01-01

    Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases. PMID:24349167

  3. UVA-induced phenoxyl radical formation: A new cytotoxic principle in photodynamic therapy.

    PubMed

    Volkmar, Christine M; Vukadinović-Walter, Britta; Opländer, Christian; Bozkurt, Ahmet; Korth, Hans-Gert; Kirsch, Michael; Mahotka, Csaba; Pallua, Norbert; Suschek, Christoph V

    2010-09-15

    Psoralens are regularly used in therapy in combination with ultraviolet A light irradiation (PUVA) to treat skin diseases such as psoriasis, vitiligo, and mycosis fungoides. PUVA therapy is also used within the scope of extracorporeal photopheresis to treat a variety of diseases that have a suspected involvement of pathogenic T cells, including rejection of organ transplants, graft-vs-host disease, cutaneous T cell lymphoma, and autoimmune disorders. Because psoralens are the only photosensitizers used in PUVA therapies and are considered to be responsible for a number of side effects, the identification of alternative drugs is of practical interest. Here we investigated the impact of activated Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a hydrophilic vitamin E analog lacking the phytyl tail, as an alternative photoactivatable agent with T cell cytotoxic properties. Despite the well-known antioxidative capacity of Trolox, we found that at low UVA doses and in the presence of supraphysiological concentration of nitrite, a natural constituent of human skin, this compound selectively enhances radical-mediated cytotoxicity toward T cells but not toward human skin fibroblasts, keratinocytes, or endothelial cells. The cytotoxic mechanism comprises a reaction of Trolox with photo-decomposition products of nitrite, which leads to increased Trolox phenoxyl radical formation, increased intracellular oxidative stress, and a consecutive induction of apoptosis and necrosis in fast proliferating T cells. Thus, the identified UVA/nitrite-induced phenoxyl radical formation provides an opportunity for a new cytotoxic photodynamic therapy. PMID:20619338

  4. Cytotoxic and DNA damage-inducing activities of low molecular weight phenols from rhubarb.

    PubMed

    Shi, Y Q; Fukai, T; Sakagami, H; Kuroda, J; Miyaoka, R; Tamura, M; Yoshida, N; Nomura, T

    2001-01-01

    Six new phenol (anthraquinone or stilbene) glycosides with an acyl group at 6-position of the glucopyranose moiety were isolated from rhubarb (the roots of Rheum palmatum) cultivated in Japan, together with 22 known compounds. Most of these compounds were evaluated for cytotoxic activity against tumor and normal cells and for induction of DNA damage by spore rec-assay. Among them, emodin and aloe-emodin showed higher cytotoxic activities against human oral squamous cell carcinoma (HSC-2) and salivary gland tumor (HSG) cell lines than against normal human gingival fibroblasts (HGF). Chrysophanol 8-O-beta-(6'-acetyl)glucopyranoside, 4-(4'-hydroxyphenyl)-2-butanone 4'-O-beta-D-(2"-O-galloyl-6"-O-cinnamoyl) glucopyranoside, and 6"-O-(4'''-hydroxybenzoyl) resveratroloside exhibited relatively higher cytotoxic activities against all these cells. The other glycosides of anthraquinone or stilbene showed weaker cytotoxic activity against these tumor cell lines, but may be considered as cancer chemopreventive agents. Spore rec-assay with a recombination deficient mutant of Bacillus subtilis M45 demonstrated the DNA damage-inducing activity of emodin and aloe-emodin 15-O-beta-D-glucopyranoside among, rhubarb phenols. PMID:11724365

  5. T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells.

    PubMed

    Yuan, Zhihang; Matias, Froilan Bernard; Yi, Jin-E; Wu, Jing

    2016-01-01

    T-2 toxin is a highly toxic mycotoxin produced by various Fusarium species, mainly, Fusarium sporotrichoides, and has been reported to have toxic effects on reproductive system of adult male animals. This study investigated the dose-dependent cytotoxicity of T-2 toxin on reproductive cells using TM3 Leydig cells. Specifically, the cytotoxic effect of T-2 toxin was assessed by measuring cell viability; lactate dehydrogenase (LDH); malondialdehyde (MDA); antioxidant activity by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and DNA damage; and cell apoptosis. Results showed that T-2 toxin is highly cytotoxic on TM3 Leydig cells. However, Trolox-treated TM3 Leydig cells showed significantly reduced oxidative damage, DNA damage, and apoptosis induced by T-2 toxin. This study proves that T-2 toxin can damage the testes and thus affects the reproductive capacity of animals and humans. Furthermore, oxidative stress plays an important role in the cytotoxic effect of T-2 toxin. PMID:26707243

  6. Evaluation of pulsed laser ablation in liquids generated gold nanoparticles as novel transfection tools: efficiency and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Willenbrock, Saskia; Durán, María. Carolina; Barchanski, Annette; Barcikowski, Stephan; Feige, Karsten; Nolte, Ingo; Murua Escobar, Hugo

    2014-03-01

    Varying transfection efficiencies and cytotoxicity are crucial aspects in cell manipulation. The utilization of gold nanoparticles (AuNP) has lately attracted special interest to enhance transfection efficiency. Conventional AuNP are usually generated by chemical reactions or gas pyrolysis requiring often cell-toxic stabilizers or coatings to conserve their characteristics. Alternatively, stabilizer- and coating-free, highly pure, colloidal AuNP can be generated by pulsed laser ablation in liquids (PLAL). Mammalian cells were transfected efficiently by addition of PLAL-AuNP, but data systematically evaluating the cell-toxic potential are lacking. Herein, the transfection efficiency and cytotoxicity of PLAL AuNP was evaluated by transfection of a mammalian cell line with a recombinant HMGB1/GFP DNA expression vector. Different methods were compared using two sizes of PLAL-AuNP, commercialized AuNP, two magnetic NP-based protocols and a conventional transfection reagent (FuGENE HD; FHD). PLAL-AuNP were generated using a Spitfire Pro femtosecond laser system delivering 120 fs laser pulses at a wavelength of 800 nm focusing the fs-laser beam on a 99.99% pure gold target placed in ddH2O. Transfection efficiencies were analyzed after 24h using fluorescence microscopy and flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of necrotic, propidium iodide positive cells (PI %). The addition of PLAL-AuNP significantly enhanced transfection efficiencies (FHD: 31 %; PLAL-AuNP size-1: 46 %; size-2: 50 %) with increased PI% but no reduced cell proliferation. Commercial AuNP-transfection showed significantly lower efficiency (23 %), slightly increased PI % and reduced cell proliferation. Magnetic NP based methods were less effective but showing also lowest cytotoxicity. In conclusion, addition of PLAL-AuNP provides a novel tool for transfection efficiency enhancement with acceptable cytotoxic side-effects.

  7. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    SciTech Connect

    Zheng, H.; Crowley, J.J.; Chan, J.C.; Hoffmann, H.; Hatherill, J.R.; Ishizaka, A.; Raffin, T.A. )

    1990-11-01

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents that attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.

  8. Can ultrasounds induce cytotoxicity in presence of hematoporphyrin derivative as photodynamic therapy?

    NASA Astrophysics Data System (ADS)

    Meunier, Anne; Guillemin, Francois H.; Merlin, Jean-Louis; Eikermann, Karine; Schmitt, Sabine; Stoss, Markus; Hopfel, Dieter; Barth, Gerhard; Bolotina-Bezdetnaya, Lina

    1996-01-01

    Ultrasounds were described by a few authors as possibly inducing sonodynamic reaction, with singlet oxygen production, as photodynamic therapy. The aim of this project was to evidence this effect and to try to explain its different mechanisms. A specific device was developed with a strict control of temperature to avoid hyperthermia and of acoustical intensity: the characteristics of the US beam and the reproducibility of treatment conditions were strictly evaluated. We studied the frequency of 2.21 MHz using an antiresonance frequency of a transducer. US treatment was applied continuously or in pulsed mode. Human colorectal adenocarcinoma cells (HT-29) were used to test the cytotoxicity using trypan blue exclusion test. Analyses were performed using cell suspensions. Different intensities were studied ranging from 0 to 3.7 W/cm2. Moreover, fluorescence emission spectra of hematoporphyrine derivative (HpD) were recorded before and after US treatment. Results of viability showed a higher cytotoxicity with US alone or with HpD in cell suspensions from 3.7 W/cm2 (20% survival). These results show that cavitation alone can account for the cytotoxic effects of sonotherapy. In fact, cavitation is higher with continuous than with pulsed US treatment. No significant difference was found with or without HpD. HpD fluorescence spectra did not differ before and after US treatment suggesting that no modification of HpD structure was induced by US. Fluorescence spectra showed a very slow and small decrease in fluorescence intensity with time probably caused by the low interfering light used for the experiment. In conclusion, in our experiments, ultrasounds do not seem to induce any chemical reaction with photosensitizers, conversely to what was already reported. However, other photosensitizers, molecules and different cell lines (less resistant) must be studied in order to conclude about the absence of cytotoxicity of this technique.

  9. The role of transferrin in natural killer cell and IL-2-induced cytotoxic cell function.

    PubMed

    Shau, H Y; Shen, D; Golub, S H

    1986-01-01

    The growth factor transferrin (Tf) enhanced natural killer (NK) cell cytotoxicity. This enhancement was due to direct effects on NK cell function, and Tf treatment of the K562 target cell had no effect on their sensitivity. NK cells were highly enriched in the low-density large granular lymphocyte population (LGL) by Percoll gradient centrifugation. Despite the direct effect of Tf on NK cells, the number of cells expressing receptors for Tf (TfR) in NK-enriched LGL was the same as the NK-cell-depleted high-density small lymphocyte population (SL). All populations, tested without stimulation, had very few TfR+ cells. Interleukin 2 (IL-2) could induce very high NK-like activity in the LGL but not in SL. Similarly, only LGL could be induced by IL-2 to express TfR. In serum-free cultures, only limited NK-like activity could be developed which was greatly enhanced by supplementing with Tf in the cultures. The importance of Tf in NK-like development was confirmed by modulating the expression of TfR in IL-2 containing cultures with mouse monoclonal antibody OKT9 specific for TfR. OKT9 totally abrogated the induction of cytotoxic activity by IL-2 against K562 and NK-resistant target. OKT9 inhibited the induction of cytotoxicity in both lymphocytes containing active NK cells and in those predepleted of active NK cells, indicating that the development of NK-like activity from both precursor populations requires Tf. The inhibition by OKT9 was only during the induction phase. The same antibody had no effect on the cytotoxicity of fresh NK cells or the mature IL-2-induced NK-like cells. Our data therefore do not support the hypothesis of TfR as the NK recognition structure. Instead, these results indicate that Tf is important for the development of NK and NK-like activities. PMID:3017575

  10. Topographical extracellular matrix cues on anticancer drug-induced cytotoxicity in stem cells.

    PubMed

    Kim, Jangho; Kim, Yeon Ju; Bae, Won-Gyu; Jang, Kyung-Jin; Lim, Ki Taek; Choung, Pill-Hoon; Choung, Yun-Hoon; Chung, Jong Hoon

    2015-08-01

    In recent years, cell chip-based platforms have begun to show promise as a means of corroborating the findings of in vivo animal tests for cytotoxicity, and perhaps in the future partially replacing the need for such animal models. In contrast to the conventional culture methods, micro- and nanofabrication techniques can be utilized to provide a set of mechanostimulatory signals to the cells that mimic the context of extracellular matrix (ECM) of the tissue in which a particular cell line resides. Here, we report periodic lateral topographic striations, with a pitch ranging approximately from 200 to 800 nm with an intention to mimic a common geometry of fibrils in the ECM such as collagen or elastin, as a platform for investigating anticancer drug-induced cytotoxicity in stem cells. The ECM cues could facilitate perimeter, elongation, and gap junction formation of mesenchymal stem cells (MSCs), which eventually influenced the fate of cells in terms of death and survival against the common chemotherapeutic agent cisplatin. Interestingly, the appropriate inhibition of gap junctions of MSCs on the ECM mimicking substrates could prevent the cisplatin-induced cytotoxicity through the inhibition of the cisplatin-induced 'death signal communication' as compared to that on the flat substrates. Our results imply that nanoscale topography is an important consideration for chip-based cytotoxicity assays, which uniquely enable the consideration and rational design of ECM-like topographic features, and furthermore, that the natural topography of the ECM in the context of stem cell niches may serve as an important indicator for chemotherapeutic agent sensitivity. PMID:25377936

  11. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    SciTech Connect

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade. • Autophagy is involved in idarubicin-induced apoptotic death of leukemic cells. • Idarubicin does not induce cytotoxic autophagy in normal human leukocytes.

  12. Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos.

    PubMed

    Kikuchi, Takashi; Uchiyama, Emiko; Ukiya, Motohiko; Tabata, Keiichi; Kimura, Yumiko; Suzuki, Takashi; Akihisa, Toshihiro

    2011-02-25

    Six lanostane-type triterpene acids (1a-6a), isolated from Poria cocos , and their methyl ester (1b-6b) and hydroxy derivatives (1c-6c) were prepared. Upon evaluation of the cytotoxic activity of these compounds against leukemia (HL60), lung (A549), melanoma (CRL1579), ovary (NIH:OVCAR-3), breast (SK-BR-3), prostate (DU145), stomach (AZ521), and pancreas (PANC-1) cancer cell lines, 11 compounds (5a, 6a, 2b-5b, 1c, and 3c-6c) exhibited activity with single-digit micromolar IC(50) values against one or more cell lines. Poricotriol A (1c), a hydroxy derivative of poricoic acid A (1a), exhibited potent cytotoxicities against six cell lines with IC(50) values of 1.2-5.5 ?M. Poricotriol A induced typical apoptotic cell death in HL60 and A549 cells on evaluation of the apoptosis-inducing activity by flow cytometric analysis. Western blot analysis in HL60 cells showed that poricotriol A activated caspases-3, -8, and -9, while increasing the ratio of Bax/Bcl-2. This suggested that poricotriol A induced apoptosis via both mitochondrial and death receptor pathways in HL60. On the other hand, poricotriol A did not activate caspases-3, -8, and -9, but induced translocation of apoptosis-inducing factor (AIF) from mitochondria and increased the ratio of Bax/Bcl-2 in A549. This suggested that poricotriol A induced apoptosis via the mitochondrial pathway mostly by translocation of AIF, independent from the caspase pathway in A549. Furthermore, poricotriol A was shown to possess high selective toxicity in lung cancer cells since it exhibited only weak cytotoxicity against a normal lung cell line (WI-38). PMID:21250700

  13. Photoexpulsion of Surface-Grafted Ruthenium Complexes and Subsequent Release of Cytotoxic Cargos to Cancer Cells from Mesoporous Silica Nanoparticles

    PubMed Central

    Frasconi, Marco; Liu, Zhichang; Lei, Juying; Wu, Yilei; Strekalova, Elena; Malin, Dmitry; Ambrogio, Michael W.; Chen, Xinqi; Botros, Youssry Y.; Cryns, Vincent L.; Sauvage, Jean-Pierre; Stoddart, J. Fraser

    2014-01-01

    Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions. PMID:23815127

  14. The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro

    NASA Astrophysics Data System (ADS)

    Zavisova, Vlasta; Koneracka, Martina; Kovac, Jozef; Kubovcikova, Martina; Antal, Iryna; Kopcansky, Peter; Bednarikova, Monika; Muckova, Marta

    2015-04-01

    The toxicity of magnetite nanoparticles modified with bioavailable materials such as dextran, bovine serum albumin, polyethylene glycol, and polyvinylpyrrolidone was studied in normal and cancer cells. The size distribution and magnetic properties of the modified magnetic nanoparticles were characterized by different techniques. Transmission electron microscopy showed a nearly spherical shape of the magnetite core with diameters ranging from 4 to 11 nm. Dynamic light scattering was employed to monitor the hydrodynamic size and colloidal stability of the magnetic nanoparticles: Z-average hydrodynamic diameter was between 53 and 69 nm and zeta potential in the range from -35 to -48 mV. Saturation magnetization of the modified nanoparticles was 55-64 emu/gFe3O4. Prepared biocompatible nanoparticles had no significant toxic effect on Chinese hamster lung fibroblast cell line V79, but they substantially affected mouse melanoma B16 cell line.

  15. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.

    PubMed

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6±0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC50) of 4.9±0.9, 7.4±0.5 and 32.8±3.8nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. PMID:26952466

  16. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    SciTech Connect

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-11-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure.

  17. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells.

    PubMed

    Hideshima, Teru; Podar, Klaus; Chauhan, Dharminder; Ishitsuka, Kenji; Mitsiades, Constantine; Tai, Yu-Tzu; Hamasaki, Makoto; Raje, Noopur; Hideshima, Hiromasa; Schreiner, George; Nguyen, Aaron N; Navas, Tony; Munshi, Nikhil C; Richardson, Paul G; Higgins, Linda S; Anderson, Kenneth C

    2004-11-18

    Although PS-341 (bortezomib) is a promising agent to improve multiple myeloma (MM) patient outcome, 65% of patients with relapsed and refractory disease do not respond. We have previously shown that heat shock protein (Hsp)27 is upregulated after PS-341 treatment, that overexpression of Hsp27 confers PS-341 resistance, and that inhibition of Hsp27 overcomes PS-341 resistance. Since Hsp27 is a downstream target of p38 mitogen-activated protein kinase (MAPK)/MAPK-mitogen-activated protein kinase-2 (MAPKAPK2), we hypothesized that inhibition of p38 MAPK activity could augment PS-341 cytotoxicity by downregulating Hsp27. Although p38 MAPK inhibitor SCIO-469 (Scios Inc, CA, USA) alone did not induce significant growth inhibition, it blocked baseline and PS-341-triggered phosphorylation of p38 MAPK as well as upregulation of Hsp27, associated with enhanced cytotoxicity in MM.1S cells. Importantly, SCIO-469 enhanced phosphorylation of c-Jun NH2-terminal kinase (JNK) and augmented cleavage of caspase-8 and poly(ADP)-ribose polymerase. Moreover, SCIO-469 downregulated PS-341-induced increases in G2/M-phase cells, associated with downregulation of p21Cip1 expression. Importantly, SCIO-469 treatment augmented cytotoxicity of PS-341 even against PS-341-resistant cell lines and patient MM cells. These studies therefore provide the framework for clinical trials of SCIO-469 to enhance sensitivity and overcome resistance to PS-341, thereby improving patient outcome in MM. PMID:15480425

  18. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells.

    PubMed

    Liu, Gang; Li, Zifa; Wang, Jinqiu; Wang, Hong; Wang, Zhenyong; Wang, Lin

    2014-10-01

    Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 M Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (??) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 M) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells. PMID:24505050

  19. Contribution of lymphocytes bearing Fcgamma receptors to PHA-induced cytotoxicity.

    PubMed Central

    Cordier, G; Samarut, C; Revillard, J P

    1978-01-01

    Lymphocytes participating in PHA-induced lysis of chicken erythrocytes were characterized by means of cell fractionation methods. Selective depletion of, or enrichment in, E-rosetting cells indicated that the effector cell population was heterogenous, consisting of both T and non-T lymphocytes. Most effector cells, however, were shown to bear Fcgamma receptors detected by the formation of erythrocyte-antibody (EA) rosettes, but to lack C3 receptors. This distribution of effector cells among tonsils, peripheral blood and thoracic duct lymph paralleled that of EA-rosette forming cells but not that of T or B cells. Addition of aggregated IgG resulted in a moderate decrease of PHA cytotoxicity. However, almost complete inhibition was achieved within a few hours of contact between effectors cells and insoluble immune complexes. The results support the hypothesis that cytotoxic capacity is associated with the presence of Fcgamma receptors on the cell surface. PMID:308041

  20. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts.

    PubMed

    Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng

    2007-09-01

    Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile. PMID:17512694

  1. Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    NASA Astrophysics Data System (ADS)

    Nabeshi, Hiromi; Yoshikawa, Tomoaki; Akase, Takanori; Yoshida, Tokuyuki; Tochigi, Saeko; Hirai, Toshiro; Uji, Miyuki; Ichihashi, Ko-Ichi; Yamashita, Takuya; Higashisaka, Kazuma; Morishita, Yuki; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2011-07-01

    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor ?B ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed.

  2. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan-spermine magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi

    2016-03-01

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan-spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan-spermine was deposited on the magnetite nanoparticles in the form of pullulan-spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan-spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 μg/μl of the plasmid-carrying PSCFO, with an IC50 value of 189 μg/μl.

  3. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier

    SciTech Connect

    Kanipandian, Nagarajan; Ramesh, Ramar; Subramanian, Periyasamy

    2014-01-01

    Graphical abstract: The figure is the TEM image of green synthesized silver nanoparticles from Cleistanthus collinus. In this investigation we have used the poisonous plant as a reducing and capping agent. This is a first time data to synthesis the metal nanoparticles using poisonous plant. - Highlights: • A hitherto unreported venomous plant mediated AgNPs synthesis. • The particle size is observed in the range of 20–40 nm. • Surface morphology of the well-dispersed silver nanoparticles is studied using SEM and TEM. • Crystalline nature of AgNPs is confirmed by X-ray diffraction analysis. • Antioxidant activities of green synthesized AgNPs are tested in vitro. - Abstract: We report, here a simple green method for the preparation of silver nanoparticles (AgNPs) using the plant extract of Cleistanthus collinus as potential phyto reducer. The synthesized AgNPs were characterized by UV–vis spectra, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results confirmed that the AgNPs were crystalline in nature and the morphological studies reveal the spherical shape of AgNPs with size ranging from 20 to 40 nm. The in vitro antioxidant activity of AgNPs showed a significant effect on scavenging of free radicals. The cytotoxicity study exhibited a dose-dependent effect against human lung cancer cells (A549) and normal cells (HBL-100), the inhibitory concentration (IC{sub 50}) were found to be 30 μg/mL and 60 μg/mL respectively. The in vivo histopathology of mouse organs proved that AgNPs does not possess toxic effect and can be extensively applied in biomedical sciences.

  4. Dexamethasone induces apoptosis in mouse natural killer cells and cytotoxic T lymphocytes.

    PubMed Central

    Migliorati, G; Nicoletti, I; D'Adamio, F; Spreca, A; Pagliacci, C; Riccardi, C

    1994-01-01

    Glucocorticoid hormones (GCH) induce apoptotic cell death in immature thymocytes through an active mechanism, characterized by extensive DNA fragmentation into oligonucleosomal subunits. This requires macromolecular synthesis and is inhibited by protein kinase C (PKC) inhibitors, interleukin-4 (IL-4) and heat shock (hs). We performed experiments to analyse the possible effect of GCH on more differentiated lymphocytes, i.e. mouse natural killer (NK) cells and CD8+ alloreactive cytotoxic T lymphocytes (CTL). The results show that dexamethasone (DEX) induces DNA fragmentation and cell death in NK cells and CTL in vitro. In both NK cells and CTL, DEX-induced apoptosis is inhibited by IL-2 and IL-4 but, unlike that induced in thymocytes, is augmented by mRNA and protein synthesis inhibitors, PKC inhibitors and HS. Images Figure 2 Figure 3 PMID:8132215

  5. MPP+-induced cytotoxicity in neuroblastoma cells: Antagonism and reversal by guanosine

    PubMed Central

    Pettifer, Kathleen M.; Jiang, Shucui; Bau, Christian; Ballerini, Patrizia; D’Alimonte, Iolanda; Werstiuk, Eva S.

    2007-01-01

    Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson’s disease (PD). MPP+, a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson’s disease. We investigated if extracellular guanosine affected MPP+-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP+ (10 μM–5 mM for 24–72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 μM) before, concomitantly with or, importantly, after the addition of MPP+ abolished MPP+-induced DNA fragmentation. Addition of MPP+ (500 μM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP+ eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP+ nor guanosine had any significant effect on α-synuclein expression. Thus, guanosine antagonizes and reverses MPP+-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD. PMID:18404453

  6. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    NASA Astrophysics Data System (ADS)

    Parab, Harshala J.; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S.

    2011-09-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  7. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study

    PubMed Central

    Arokiyaraj, Selvaraj; Arasu, Mariadhas Valan; Vincent, Savariar; Prakash, Nyayirukannaian Udaya; Choi, Seong Ho; Oh, Young-Kyoon; Choi, Ki Choon; Kim, Kyoung Hoon

    2014-01-01

    The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using Chrysanthemum indicum and its antibacterial and cytotoxic effects. The formation of AgNPs was confirmed by color change, and it was further characterized by ultraviolet–visible spectroscopy (435 nm). The phytochemical screening of C. indicum revealed the presence of flavonoids, terpenoids, and glycosides, suggesting that these compounds act as reducing and stabilizing agents. The crystalline nature of the synthesized particles was confirmed by X-ray diffraction, as they exhibited face-centered cubic symmetry. The size and morphology of the particles were characterized by transmission electron microscopy, which showed spherical shapes and sizes that ranged between 37.71–71.99 nm. Energy-dispersive X-ray spectroscopy documented the presence of silver. The antimicrobial effect of the synthesized AgNPs revealed a significant effect against the bacteria Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Additionally, cytotoxic assays showed no toxicity of AgNPs toward 3T3 mouse embryo fibroblast cells (25 μg/mL); hence, these particles were safe to use. PMID:24426782

  8. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles.

    PubMed

    Chanthini, Abdhul Basheer; Balasubramani, Govindasamy; Ramkumar, Rajendiran; Sowmiya, Rajamani; Balakumaran, Manickam Dakshinamoorthi; Kalaichelvan, Pudhupalayam Thangavelu; Perumal, Pachiappan

    2015-12-01

    The present study pertains to the synthesis, structural elucidation, antioxidant and in vitro cytotoxic properties of silver nanoparticles (AgNPs) from marine angiosperm, Cymodocea serrulata aqueous extract (CSAE). The characterization was made through UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential and dynamic light scanning (DLS) analyses. The UV-Vis spectrum resulted in a strong surface plasmon resonance (SPR) at 430nm. The average crystalline size of the AgNPs was predicted through XRD peaks that indicated the 2 theta values of 37.84°, 44.06°, 64.42° and 77.74° for Bragg's refraction index. The functional groups responsible for the bio-reduction of Ag(+) into Ag(0) were focused through FTIR spectrum. The FESEM images showed that the C. serrulata mediated AgNPs (CS-AgNPs) were spherical in shape. DPPH assay revealed the higher free radical scavenging activity in CS-AgNPs, when compared to CSAE. The cytotoxicity assay on the cervical cancer (HeLa) and African green monkey kidney (Vero) cells upon treatment with CSAE: 107.7 & 124.3μgml(-1) and CS-AgNPs: 34.5 & 61.24μgml(-1), respectively showed good inhibition rate. These findings highlight the fact that C. serrulata could be a potential source for developing potent drugs and further studies are needed. PMID:26409094

  9. Phosphorylation-induced activation of tilapia nonspecific cytotoxic cells by serum cytokines.

    PubMed

    Ruiz, J; Leary, J H; Jaso-Friedmann, L

    2001-09-12

    Cytokines as soluble mediators of immunity are important in understanding immunological mechanisms against infectious organisms and during stress conditions. In the present study, the role of protein tyrosine phosphorylation is assessed in the activation of nonspecific cytotoxic cells (NCC) from tilapia Oreochromis niloticus by cytokine-like serum factors. NCC are the teleost equivalent of mammalian natural killer (NK) cells. In teleost fish, NCC are important mediators of innate immunity against bacterial and parasite insult and tumor growth. We have previously shown that exposure of tilapia (a tropical fish) to cold water temperatures (3 to 5 min at 5 to 10 degrees C) produces physiological stress responses characterized by immediate phenotypic and immunological changes. The serum obtained from stressed tilapia contains a 'stress activating serum factor' (SASF) which passively increases in vitro naive NCC cytotoxicity 2- to 4-fold over control levels. In an effort to identify the mechanisms of activation of cytotoxicity by SASF, the phosphorylation status of tyrosine residues in proteins from treated NCC was determined. NCC were incubated with heat-inactivated or untreated stress serum and Western blots of the cell lysates were probed with anti-phosphotyrosine monoclonal antibodies (mabs). The levels of tyrosine phosphorylation in several proteins of the SASF-activated NCC were higher than in control cells. Increased tyrosine phosphorylation was also induced by incubation of NCC in the presence of the tyrosine phosphatase inhibitor Na orthovanadate (vanadate). In every case, an increase in phosphorylation status shown by Western blotting was correlated with increases in cytotoxic activity of NCC against HL-60 target cells. The enzyme inhibitor Herbimycin A (HA) has been previously used to inhibit the activity of the src-family of tyrosine kinases. In the present study, a 4 h pretreatment of NCC with HA (2 microM), followed by treatment with SASF blocked the activation of cytotoxicity produced by SASF. These results suggested that activation of NCC by cytokine-like factors is mediated through activation of the src family of protein tyrosine kinases. Activation was associated with increased phosphorylation and higher cytotoxic effector functions. PMID:11678228

  10. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  11. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity.

    PubMed

    LaFrance, Michelle E; Farrow, Melissa A; Chandrasekaran, Ramyavardhanee; Sheng, Jinsong; Rubin, Donald H; Lacy, D Borden

    2015-06-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea in the United States. The two main virulence factors of C. difficile are the large toxins, TcdA and TcdB, which enter colonic epithelial cells and cause fluid secretion, inflammation, and cell death. Using a gene-trap insertional mutagenesis screen, we identified poliovirus receptor-like 3 (PVRL3) as a cellular factor necessary for TcdB-mediated cytotoxicity. Disruption of PVRL3 expression by gene-trap mutagenesis, shRNA, or CRISPR/Cas9 mutagenesis resulted in resistance of cells to TcdB. Complementation of the gene-trap or CRISPR mutants with PVRL3 resulted in restoration of TcdB-mediated cell death. Purified PVRL3 ectodomain bound to TcdB by pull-down. Pretreatment of cells with a monoclonal antibody against PVRL3 or prebinding TcdB to PVRL3 ectodomain also inhibited cytotoxicity in cell culture. The receptor is highly expressed on the surface epithelium of the human colon and was observed to colocalize with TcdB in both an explant model and in tissue from a patient with pseudomembranous colitis. These data suggest PVRL3 is a physiologically relevant binding partner that can serve as a target for the prevention of TcdB-induced cytotoxicity in C. difficile infection. PMID:26038560

  12. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity

    PubMed Central

    LaFrance, Michelle E.; Farrow, Melissa A.; Chandrasekaran, Ramyavardhanee; Sheng, Jinsong; Rubin, Donald H.; Lacy, D. Borden

    2015-01-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea in the United States. The two main virulence factors of C. difficile are the large toxins, TcdA and TcdB, which enter colonic epithelial cells and cause fluid secretion, inflammation, and cell death. Using a gene-trap insertional mutagenesis screen, we identified poliovirus receptor-like 3 (PVRL3) as a cellular factor necessary for TcdB-mediated cytotoxicity. Disruption of PVRL3 expression by gene-trap mutagenesis, shRNA, or CRISPR/Cas9 mutagenesis resulted in resistance of cells to TcdB. Complementation of the gene-trap or CRISPR mutants with PVRL3 resulted in restoration of TcdB-mediated cell death. Purified PVRL3 ectodomain bound to TcdB by pull-down. Pretreatment of cells with a monoclonal antibody against PVRL3 or prebinding TcdB to PVRL3 ectodomain also inhibited cytotoxicity in cell culture. The receptor is highly expressed on the surface epithelium of the human colon and was observed to colocalize with TcdB in both an explant model and in tissue from a patient with pseudomembranous colitis. These data suggest PVRL3 is a physiologically relevant binding partner that can serve as a target for the prevention of TcdB-induced cytotoxicity in C. difficile infection. PMID:26038560

  13. Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Kandefer-Szerszeń, Martyna

    2005-01-01

    Plant triterpenes, such as oleanolic acid and betulin were described as hepatoprotectants active against cytotoxicity of acetaminophen or cadmium. The aim of this paper is to compare the cytoprotective activity of betulin, betulinic acid and oleanolic acid against ethanol-induced cytotoxicity in HepG2 cells. The influence of three triterpenes on ethanol-induced production of superoxide anion and hydrogen peroxide was also examined. Among the examined triterpenes, betulin was the most active protectant of HepG2 cells against ethanol-induced cytotoxicity. Betulin and betulinic acid significantly decreased ethanol-induced production of superoxide anion. Oleanolic acid inhibited only ethanol- and phorbol ester-induced production of hydrogen peroxide. The results indicate that cytoprotective or antioxidative activity of triterpenes depends on their chemical structure. PMID:16227641

  14. Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells

    PubMed Central

    Zhang, Ming-jun; Liu, Sheng-nan; Xu, Ge; Guo, Ya-nan; Fu, Jian-nan; Zhang, De-chun

    2014-01-01

    Background The existing evidence that nanobacteria (NB) are closely associated with human disease is overwhelming. However, their potential toxicity against cancer cells has not yet been reported. The objective of this study was to investigate the cytotoxic effects of NB and nanohydroxyapatites (nHAPs) against human breast cancer cells and to elucidate the mechanisms of action underlying their cytotoxicity. Methodology/principal findings NB were isolated from calcified placental tissue, and nHAPs were artificially synthesized. The viability of the MDA-MB-231 human breast cancer cell line was tested by using the Kit-8 cell counting kit assay. Apoptosis was examined by transmission electron microscopy and flow cytometry. The endocytosis of NB and nHAPs by MDA-MB-231 cells was initially confirmed by microscopy. Although both NB and nHAPs significantly decreased MDA-MB-231 cell viability and increased the population of apoptotic cells, NB were more potent than nHAPs. After 72 hours, NB also caused ultrastructural changes typical of apoptosis, such as chromatin condensation, nuclear fragmentation, nuclear dissolution, mitochondrial swelling, and the formation of apoptotic bodies. Conclusion/significance In MDA-MB-231 human breast cancer cells, NB and nHAPs exerted cytotoxic effects that were associated with the induction of apoptosis. The effects exerted by NB were more potent than those induced by nHAPs. NB cytotoxicity probably emerged from toxic metabolites or protein components, rather than merely the hydroxyapatite shells. NB divided during culturing, and similar to cells undergoing binary fission, many NB particles were observed in culture by transmission electron microscopy, suggesting they are live microorganisms. PMID:24403832

  15. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration.

    PubMed

    Pang, Chengfang; Brunelli, Andrea; Zhu, Conghui; Hristozov, Danail; Liu, Ying; Semenzin, Elena; Wang, Wenwen; Tao, Wuqun; Liang, Jingnan; Marcomini, Antonio; Chen, Chunying; Zhao, Bin

    2016-03-01

    With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs (ζ potential = +46.5 mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs (ζ potential = -16.2 mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 µg/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs > Citrate AgNPs = PVP AgNPs > PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications. PMID:25962681

  16. PAHs, PAH-induced carcinogenic potency, and particle-extract-Induced cytotoxicity of traffic-related nano/ultrafine particles.

    PubMed

    Lin, Chih-Chung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Lin, Wen-Yinn; Tsai, Jen-Hsiung; Chaung, Hso-Chi

    2008-06-01

    Polycyclic aromatic hydrocarbons (PAHs) bound in nano/ ultrafine particles from vehicle emissions may cause adverse health effects. However, little is known about the characteristics of the nanoparticle-bound PAHs and the PAH-associated carcinogenic potency/cytotoxicity; therefore, traffic-related nano/ultrafine particles were collected in this study using a microorifice uniform deposition impactor(MOUDI) and a nano-MOUDI. For PM0.056--18, the difference in size-distribution of particulate total-PAHs between non-after-rain and after-rain samples was statistically significant at alpha = 0.05; however, this difference was not significant for PM0.01--0.056. The PAH correlation between PM0.01--0.1 and PM0.1--1.8 was lower for the after-rain samples than forthe non-after-rain samples. The average particulate total-PAHs in five samplings displayed a trimodal distribution with a major peak in the Aitken mode (0.032--0.056 microm). About half of the particulate total-PAHs were in the ultrafine size range. The BaPeq sums of BaP, IND, and DBA (with toxic equivalence factors > or = 0.1) accounted for approximately 90% of the total-BaPeq in the nano/ultrafine particles, although these three compounds contributed little to the mass of the sampled particles. The mean content of the particle-bound total-PAHs/-BaPeqs and the PAH/BaPeq-derived carcinogenic potency followed the order nano > ultrafine > fine > coarse. For a sunny day sample, the cytotoxicity of particle extracts (using 1:1 (v/v) n-hexane/dichloromethane) was significantly higher (p < 0.05) for the nano (particularly the 10-18 nm)/ultrafine particles than for the coarser particles and bleomycin. Therefore, traffic-related nano and ultrafine particles are possibly cytotoxic. PMID:18589992

  17. Metformin Synergistically Enhances Cisplatin-Induced Cytotoxicity in Esophageal Squamous Cancer Cells under Glucose-Deprivation Conditions

    PubMed Central

    Yu, Hongliang; Bian, Xiuhua; Gu, Dayong; He, Xia

    2016-01-01

    Previous studies suggest that metformin may exert a protective effect on cisplatin-induced cytotoxicity in cancer cells, and this finding has led to a caution for considering metformin use in the treatment of cancer patients. However, in this paper we provide the first demonstration that metformin synergistically augments cisplatin cytotoxicity in the esophageal squamous cancer cell line, ECA109, under glucose-deprivation conditions, which may be more representative of the microenvironment within solid tumors; this effect is very different from the previously reported cytoprotective effect of metformin against cisplatin in commonly used high glucose incubation medium. The potential mechanisms underlying the synergistic effect of metformin on cisplatin-induced cytotoxicity under glucose-deprivation conditions may include enhancement of metformin-associated cytotoxicity, marked reduction in the cellular ATP levels, deregulation of the AKT and AMPK signaling pathways, and impaired DNA repair function. PMID:26904687

  18. Neuroprotective effects of porphyran derivatives against 6-hydroxydopamine-induced cytotoxicity is independent on mitochondria restoration

    PubMed Central

    Wang, Weiwei; Song, Ning; Jia, Fengjv; Xie, Junxia; Zhang, Quanbin

    2015-01-01

    We previously reported that acetylated and phosphorylated derivatives of porphyran extracted from Porphyra haitanensis exhibit antioxidant activity in cell-free system. The aim of the present study was to investigate the neuroprotective effects of porphyran and its derivatives on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure cell viability. Changes in the mitochondrial transmembrane potential (??m) were measured by rhodamine123 using flow cytometry. The results showed that porphyran and its two derivatives, acetylated porphyran (AP) and phosphorylated porphyran (PP) (<1 mg/mL) alone did not have any toxic effects on MES23.5 cells. The cell viability decreased when cells were treated with 25 mol/L 6-OHDA. Both AP and PP, rather than porphyran, significantly antagonized 25 mol/L 6-OHDA-induced cytotoxicity. However, neither AP nor PP could antagonize 6-OHDA-induced mitochondrial transmembrane potential (??m) collapse. None of the three materials were effective on cell survival when cells were cotreated with 75 mol/L 6-OHDA. These results suggest that two derivatives of porphyran, AP and PP, could antagonize the weak toxicity of 6-OHDA on MES23.5 dopaminergic cells, possessing minor neuroprotective effects independent of mitochondria restoration. PMID:25815300

  19. Novel epitopes identified from efflux pumps of Mycobacterium tuberculosis could induce cytotoxic T lymphocyte response

    PubMed Central

    Zhai, Ming-xia; Chen, Fei; Zhao, Yuan-yuan; Wu, Ya-hong; Li, Guo-dong; Qi, Yuan-ming

    2015-01-01

    Overcoming drug-resistance is one of the major challenges to control tuberculosis (TB). The up-regulation of efflux pumps is one common mechanism that leads to drug-resistance. Therefore, immunotherapy targeting these efflux pump antigens could be promising strategy to be combined with current chemotherapy. Considering that CD8+ cytotoxic T lymphocytes (CTLs) induced by antigenic peptides (epitopes) could elicit HLA-restricted anti-TB immune response, efflux pumps from classical ABC family (Mycobacterium tuberculosis, Mtb) were chosen as target antigens to identify CTL epitopes. HLA-A2 restricted candidate peptides from Rv2937, Rv2686c and Rv2687c of Mycobacterium tuberculosis were predicted, synthesized and tested. Five peptides could induce IFN-? release and cytotoxic activity in PBMCs from HLA-A2+ PPD+ donors. Results from HLA-A2/Kb transgenic mice immunization assay suggested that four peptides Rv2937-p168, Rv2937-p266, Rv2686c-p151, and Rv2686c-p181 could induce significant CTL response in vivo. These results suggested that these novel epitopes could be used as immunotherapy candidates to TB drug-resistance. PMID:26417538

  20. Cytotoxicity induced by cypermethrin in Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Raszewski, Grzegorz; Lemieszek, Marta Kinga; Łukawski, Krzysztof

    2016-03-01

    The purpose of this study was to evaluate the cytotoxic potential of Cypermethrin (CM) on cultured human Neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with CM at 0-200µM for 24, 48, and 72 h, in vitro. It was found that CM induced the cell death of Neuroblastoma cells in a dose- and time-dependent manner, as shown by LDH assays. Next, some aspects of the process of cell death triggered by CM in the human SH-SY5Y cell line were investigated. It was revealed that the pan-caspase inhibitor Q-VD-OPh, sensitizes SH-SY5Y cells to necroptosis caused by CM. Furthermore, signal transduction inhibitors PD98059, SL-327, SB202190, SP600125 failed to attenuate the effect of the pesticide. Finally, it was shown that inhibition of TNF-a by Pomalidomide (PLD) caused statistically significant reduction in CM-induced cytotoxicity. Overall, the data obtained suggest that CM induces neurotoxicity in SH-SY5Y cells by necroptosis. PMID:27007526

  1. Cytotoxic and aryl hydrocarbon hydroxylase-inducing effects of laboratory rodent diets. A cell culture study

    SciTech Connect

    Toerroenen, R.; Pelkonen, K.; Kaerenlampi, S. )

    1991-01-01

    Extracts of several rodent diets were studied for their cytotoxic and aryl hydrocarbon hydroxylase-inducing properties by an in vitro method. The cell culture system based on a mouse hepatoma cell line (Hepa-1) was shown to be convenient and sensitive method for screening of diets for these parameters implying the presence of compounds potentially harmful in vivo. Considerable differences among diets and batches were detected. Smallest effects were observed with a semipurified diet and with the unrefined diet which - contrary to other four unrefined diets - contained no fish.

  2. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity.

    PubMed

    Wang, Wen; Sun, Fangling; An, Yi; Ai, Houxi; Zhang, Li; Huang, Wenting; Li, Lin

    2009-06-24

    Oxidative stress-induced cell damage has been implicated in a variety of neurodegenerative disorders. Morroniside, an iridorid glycoside isolated from Cornus officinalis Sieb. Et Zucc., has shown potent antioxidant properties. The present study investigated the protective actions of morroniside against the cytotoxicity produced by exposure to H(2)O(2) (300-500 microM) in SH-SY5Y cells. Intracellular accumulation of Ca(2+), and decreases in mitochondrial membrane potential (MMP) caused by added H(2)O(2) were reduced by morroniside. Incubation of cells with H(2)O(2) caused a marked decrease in superoxide dismutase (SOD) activity; this decrease was significantly inhibited by morroniside. In addition, the percentage of cells undergoing H(2)O(2)-induced apoptosis was decreased, dose dependently, in the presence of morroniside. These results suggest that morroniside has protective effects against oxidative stress-induced neurotoxic processes. PMID:19379729

  3. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity.

    PubMed

    Ramalingam, V; Rajaram, R; PremKumar, C; Santhanam, P; Dhinesh, P; Vinothkumar, S; Kaleshkumar, K

    2014-09-01

    Pseudomonas aeruginosa (JQ989348) was isolated from deep sea water sample and used for synthesis of silver nanoparticles (AgNPs). AgNPs were confirmed by analyzing surface plasmon resonance using UV-visible spectrophotometer at 420?nm. Further scanning electron microscope analysis confirmed the range of particle size between 13 and 76?nm and XRD pattern authorizes the anisotropic crystalline nature of AgNPs. Fourier transform infrared spectrum endorsed the presence of high amount of proteins and other secondary metabolites in synthesized AgNPs influence the reduction process and stabilization of nanoparticles. The inhibitory activity of AgNPs was tested against human pathogens showed high activity against Eschericia coli, Vibrio cholerae, Aeromonas sp., and Cornebacterium sp. demonstrating its antimicrobial value against pathogenic diseases. Additionally, biologically synthesized AgNPs have notable anti-biofilm activity against primary biofilm forming bacteria P. aeruginosa and Staphylococcus aureus. The MTT assay method was evaluated using human cervical cancer cells exposed the AgNPs have excellent cytotoxic activity. PMID:24136453

  4. The cytotoxicity and cellular stress by temperature-fabricated polyshaped gold nanoparticles using marine macroalgae, Padina gymnospora.

    PubMed

    Singh, Manoj; Saurav, Kumar; Majouga, Alexander; Kumari, Mamta; Kumar, Manish; Manikandan, S; Kumaraguru, A K

    2015-01-01

    Bioreduction of metal ions for the synthesis of stable nanoparticles (NPs) in physiological environment has been a great challenge in the field of nanotechnology and its application. In the present study, well-defined biofunctionalized gold nanoparticles (AuNPs) were developed following a biomimetic approach for an enhanced anticancer activity. The fucoxanthins-capped crystalline AuNPs showed a particle size of 14 nm. The temperature-mediated biosynthesized NPs were characterized by UV-vis, dynamic light scattering, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The cytotoxicity of the NPs was analyzed on liver (HepG2) and lung (A549) cancerous cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay infers that the biofunctionalized polyshaped AuNPs synthesized with an aqueous macroalgae extract showed a satisfactory anticancer effect on the cell lines, as evaluated by changes in cell morphology, cell viability, and metabolic activity. An altered cellular function and the morphology of cancer cell lines suggest a potential for in vivo application of AuNPs and the need to understand the interactions between nanomaterials, biomolecules, and cellular components. With continued improvements, these NPs may prove to be potential drug delivery vehicles for cancer therapy. PMID:25041078

  5. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells

    NASA Astrophysics Data System (ADS)

    Löw, Karin; Knobloch, Thomas; Wagner, Sylvia; Wiehe, Arno; Engel, Andrea; Langer, Klaus; von Briesen, Hagen

    2011-06-01

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  6. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles.

    PubMed

    Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia

    2014-01-01

    Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models. PMID:24855356

  7. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles

    PubMed Central

    Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia

    2014-01-01

    Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models. PMID:24855356

  8. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging.

    PubMed

    Cao, Jun; Liu, Yong; Jia, Li; Jiang, Li-Ping; Geng, Cheng-Yan; Yao, Xiao-Feng; Kong, Ying; Jiang, Bao-Na; Zhong, Lai-Fu

    2008-12-24

    Acrylamide (AA), a proven rodent carcinogen, has recently been discovered in foods heated at high temperatures. This finding raises public health concerns. In our previous study, we found that AA caused DNA fragments and increase of reactive oxygen species (ROS) formation and induced genotoxicity and weak cytotoxicity in HepG2 cells. Presently, curcumin, a natural antioxidant compound present in turmeric was evaluated for its protective effects. The results showed that curcumin at the concentration of 2.5 microg/mL significantly reduced AA-induced ROS production, DNA fragments, micronuclei formation, and cytotoxicity in HepG2 cells. The effect of PEG-catalase on protecting against AA-induced cytotoxicity suggests that AA-induced cytotoxicity is directly dependent on hydrogen peroxide production. These data suggest that curcumin could attenuate the cytotoxicity and genotoxicity induced by AA in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of curcumin may be a plausible way to prevent AA-mediated genotoxicity. PMID:19012407

  9. Influence of immunomodulatory drugs on the cytotoxicity induced by monoclonal antibody 17-1A and interleukin-2.

    PubMed

    Flieger, Dimitri; Varvenne, Michael; Kleinschmidt, Rolf; Schmidt-Wolf, Ingo G H

    2007-03-01

    Patients treated with monoclonal antibodies and cytokines for cancer receive often co-medication, which may influence treatment efficacy. Therefore, we investigated with a flowcytometric cytotoxicity assay the effect of several immunomodulatory drugs on antibody dependent cellular cytotoxicity (ADCC), interleukin-2 (IL-2) induced cytotoxicity and IL-2-induced-ADCC. We found that dexamethasone markedly inhibited the IL-2 induced cytotoxicity and the IL-2-induced-ADCC. Ondansetron, a 5-HT-3 serotonin receptor antagonist augmented significantly ADCC. Clemastine, a histamine type-2 receptor antagonist augmented the IL-2-induced-ADCC. The TNF antagonist thalidomide suppressed ADCC whereas pentoxifylline proved to be ineffective. Other tested drugs namely ibuprofen and indomethacin, both prostaglandin E2 antagonists, cimetidine a histamine type-2 receptor antagonist, the opioid pethidine, prostaglandin E2 and histamine exerted minor effects or had no influence on the tested parameters. We conclude that glucocorticosteroids should be avoided with monoclonal antibody and cytokine treatment. According to our in vitro data the other drugs tested did not have a negative impact on cellular cytotoxicity and ADCC. PMID:17562330

  10. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3ml of 0.02% lignin and 1mM silver nitrate incubated for 30min at 80C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500?g/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles. PMID:26434518

  11. Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity.

    PubMed

    Ghosh, Pooja; Singha Roy, Atanu; Chaudhury, Susmitnarayan; Jana, Saikat Kumar; Chaudhury, Koel; Dasgupta, Swagata

    2016-05-01

    Fisetin is a well known flavonoid that shows several properties such as antioxidant, antiviral and anticancer activities. Its use in the pharmaceutical field is limited due to its poor aqueous solubility which results in poor bioavailability and poor permeability. The aim of our present study is to prepare fisetin loaded human serum albumin nanoparticles to improve its bioavailability. The nanoparticles were prepared by a desolvation method and characterized by spectroscopic and microscopic techniques. The particles were smooth and spherical in nature with an average size of 220±8nm. The encapsulation efficiency was found to be 84%. The in vitro release profile showed a biphasic pattern and the release rate increases with increase in ionic strength of solution. We have also confirmed the antioxidant activity of the prepared nanoparticles by a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Further its anticancer activity was evaluated using MCF-7 breast cancer cell lines. Our findings suggest that fisetin loaded HSA nanoparticles could be used to transfer fisetin to target areas under specific conditions and thus may find use as a delivery vehicle for the flavonoid. PMID:26820351

  12. Impact of inflammation on chlorpromazine-induced cytotoxicity and cholestatic features in HepaRG cells.

    PubMed

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Abdel-Razzak, Ziad; Antherieu, Sebastien; Al-Attrache, Houssein; Savary, Camille C; Lepage, Sylvie; Morel, Isabelle; Labbe, Gilles; Guguen-Guillouzo, Christiane; Guillouzo, Andr

    2014-09-01

    Several factors are thought to be implicated in the occurrence of idiosyncratic adverse drug reactions. The present work aimed to question as to whether inflammation is a determinant factor in hepatic lesions induced by chlorpromazine (CPZ) using the human HepaRG cell line. An inflammation state was induced by a 24-hour exposure to proinflammatory cytokines interleukin-6 (IL-6) and IL-1?; then the cells were simultaneously treated with CPZ and/or cytokine for 24 hours or daily for 5 days. The inflammatory response was assessed by induction of C-reactive protein and IL-8 transcripts and proteins as well as inhibition of CPZ metabolism and down-regulation of cytochrome 3A4 (CYP3A4) and CYP1A2 transcripts, two major cytochrome P450 (P450) enzymes involved in its metabolism. Most effects of cotreatments with cytokines and CPZ were amplified or only observed after five daily treatments; they mainly included increased cytotoxicity and overexpression of oxidative stress-related genes, decreased Na(+)-taurocholate cotransporting polypeptide mRNA levels and activity, a key transporter involved in bile acids uptake, and deregulation of several other transporters. However, CPZ-induced inhibition of taurocholic acid efflux and pericanalicular F-actin distribution were not affected. In addition, a time-dependent induction of phospholipidosis was noticed in CPZ-treated cells, without obvious influence of the inflammatory stress. In summary, our results show that an inflammatory state induced by proinflammatory cytokines increased cytotoxicity and enhanced some cholestatic features induced by the idiosyncratic drug CPZ in HepaRG cells. These changes, together with inhibition of P450 activities, could have important consequences if extrapolated to the in vivo situation. PMID:25002748

  13. Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma.

    PubMed

    Mamede, A C; Guerra, S; Laranjo, M; Carvalho, M J; Oliveira, R C; Gonalves, A C; Alves, R; Prado Castro, L; Sarmento-Ribeiro, A B; Moura, P; Abrantes, A M; Maia, C J; Botelho, M F

    2015-12-01

    Hepatocellular carcinoma (HCC) has a worldwide high incidence and mortality. For this reason, it is essential to invest in new therapies for this type of cancer. Our team already proved that human amniotic membrane (hAM) is able to inhibit the metabolic activity of several human cancer cell lines, including HCC cell lines. Taking into account the previously performed work, this experimental study aimed to investigate the pathways by which hAM protein extracts (hAMPEs) act on HCC. Our results showed that hAMPE reduce the metabolic activity, protein content and DNA content in a dose- and time-dependent manner in all HCC cell lines. This therapy presents selective cytotoxicity, since it was not able to inhibit a non-tumorigenic human cell line. In addition, hAMPE induced cell morphology alterations in all HCC cell lines, but death type is cell line dependent, as proved by in vitro and in vivo studies. In conclusion, hAMPE have a promising role in HCC therapy, since it is capable of inducing HCC cytotoxicity and cell death. PMID:26507652

  14. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons.

    PubMed

    Nakatani, Yoshihiko; Tsuji, Minoru; Amano, Taku; Miyagawa, Kazuya; Miyagishi, Hiroko; Saito, Atsumi; Imai, Taro; Takeda, Kotaro; Ishii, Daisuke; Takeda, Hiroshi

    2014-09-25

    Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 ?M corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 ?g/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 ?M corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 ?g/ml) suppressed the LDH concentration induced by treatment with both 30 ?M and 100 ?M corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons. PMID:25022209

  15. Transmission electron microscopic analysis of malathion-induced cytotoxicity in granulosa cells of caprine antral follicles.

    PubMed

    Bhardwaj, Jitender Kumar; Saraf, Priyanka

    2016-01-01

    Malathion, one of the most abundantly used organophosphate pesticides, has immoderate potency as a cytotoxic and genotoxic compound that induces toxicity in granulosa cells, resulting in its apoptosis. Thus, the present study aims to employ ultrastructural analysis for assessing the cytotoxicity of malathion at nanomolar concentrations (1 nM and 10 nM) in granulosa cells of caprine antral follicles at different exposure durations. Transmission electron microscopy revealed diminished cell-cell contact and cellular integrity, presence of crescent-shaped nucleus, chromatin condensation, and pyknosis with nuclear membrane folding, accumulation of lipid droplets with occurrence of cytoplasmic protrusions in granulosa cells treated with 1 nM malathion, whereas at 10 nM concentration, along with apoptotic attributes, prominent association of nucleus, endoplasmic reticulum, mitochondria and lipid droplets, nucleus invagination into lipid droplets, apical localization of lipid bodies, and occurrence of autophagic body were observed as compared to healthy granulosa cells in control with normal intact cellular integrity, well-developed cellular association, and doubled membrane nuclear lamina with homogenously dispersed chromatin surrounded by intact mitochondria with well-developed cristae. Thus, the results of ultrastructural analysis clearly suggest that nanomolar concentration of malathion induces apoptotic hallmarks within the granulosa cells of antral follicles that play a consequential role in increasing the incidence of follicular atresia, thereby affecting the overall fertility. PMID:26513701

  16. Cytotoxic effects induced by hexachlorobenzene in Squilla mantis (L.) (Crustacea, Stomatopoda).

    PubMed

    Dell'Anno, Antonio; Raffaelli, Francesca; Danovaro, Roberto; Nanetti, Laura; Vignini, Arianna; Moroni, Cinzia; Mazzanti, Laura

    2008-02-01

    Contamination of marine environments by hexachlorobenzene (HCB) represents a serious concern for potential consequences on ecosystem and human health. Despite this, information on cytotoxic effects on marine organisms is still largely lacking. In this study, we investigated cytotoxic effects induced by HCB on gonads and muscular tissue of Squilla mantis by analysing Na(+)/K(+)-ATPase activity and plasma membrane fluidity. This crustacean species was selected as a model for its habitat, trophic level, feeding behavior, and commercial exploitation for human consumption. Time course experiments revealed that low concentrations of HCB (i.e. 50 nM) determine an exponentially decrease of Na(+)/K(+)-ATPase activity and a significant modification of cellular membrane fluidity. Significant negative relationships between Na(+)/K(+)-ATPase activity and membrane fluidity were observed, suggesting that changes in the structure and packing of cellular membranes induced by HCB may be the primary factor affecting the activity of essential bilayer-associated enzymes. Overall these findings suggest that even small concentrations of HCB may determine important changes on cell metabolism with potential cascade effects on recruitment of this commercial species. PMID:18214936

  17. Antioxidants protect primary rat hepatocyte cultures against acetaminophen-induced DNA strand breaks but not against acetaminophen-induced cytotoxicity.

    PubMed

    Lewerenz, Virginia; Hanelt, Sabine; Nastevska, Cathrin; El-Bahay, Claudia; Rhrdanz, Elke; Kahl, Regine

    2003-09-30

    Acetaminophen, a safe analgesic when dosed properly but hepatotoxic at overdoses, has been reported to induce DNA strand breaks but it is unclear whether this event preceeds hepatocyte toxicity or is only obvious in case of overt cytotoxicity. Moreover, it is not known whether the formation of reactive oxygen species (ROS) is involved in the formation of the DNA strand breaks. In the present study, the dose-response curves for cytotoxicity and DNA strand breaks and the response to antioxidant protection have been compared. In primary hepatocytes from untreated male rats, cytotoxicity as measured by the MTT test and by Neutral Red accumulation was obvious at 10 mM acetaminophen but DNA strand breaks as measured by the comet assay were only found at 25-30 mM acetaminophen. Non-cytotoxic concentrations of three compounds with antioxidant activity, the glutathione precursor N-acetylcysteine (100 micro M), the plant polyphenol silibin (25 micro M) and the antioxidant vitamin alpha-tocopherol (50 micro M), were not able to inhibit acetaminophen toxicity at any acetaminophen concentration, while they completely prevented the formation of DNA strand breaks at 25-30 mM acetaminophen. The occurrence of oxidative stress in our experiments was indicated by a slight increase of malondialdehyde formation at 40 mM acetaminophen and by an adaptive increase in catalase mRNA concentration. We conclude that in acetaminophen-treated hepatocytes ROS-independent cell death and ROS-dependent DNA strand breaks occur which appear not to be causally related as judged from their dose dependency and their response to antioxidants. PMID:12965121

  18. Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro.

    PubMed

    Best, M; Phillips, G; Fowler, C; Rowland, J; Elsom, J

    2015-12-25

    Nanoparticles are increasingly being utilised in the innovation of consumer product formulations to improve their characteristics; however, established links between their properties, dose and cytotoxicity are not well defined. The purpose of this study was to screen four different nanomaterials of interest to oral care product development in the absence of stabilisers, alongside their respective bulk equivalents, within a non-keratinised oral epithelial cell model (H376). Particle morphology and size were characterised using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The H376 model showed that zinc oxide (ZnO) was the most cytotoxic material at concentrations exceeding 0.031% w/v, as assessed using the lactate dehydrogenase (LDH) and dimethylthiazolyl-diphenyl-tetrazolium-bromide (MTT) assays. ZnO cytotoxicity does not appear to be dependent upon size of the particle; a result supported by SEM of cell-particle interactions. Differences in cytotoxicity were observed between the bulk and nanomaterial forms of hydroxyapatite and silica (SiO2); titanium dioxide (TiO2) was well tolerated in both forms at the doses tested. Overall, nano-size effects have some impact on the cytotoxicity of a material; however, these may not be as significant as chemical composition or surface properties. Our data highlights the complexities involved at the nano-scale, in both the characterisation of materials and in relation to cytotoxic properties exerted on oral epithelial cells. PMID:26432707

  19. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells

    SciTech Connect

    Hiraishi, H.; Terano, A.; Ota, S.; Ivey, K.J.; Sugimoto, T.

    1987-07-01

    Reactive oxygen metabolites have been reported to be responsible for the pathogenesis of ischemia-induced gastric mucosal lesion. The authors have investigated the possible protective effect of specific enzymes and oxygen radical scavenging agents on oxygen metabolite-induced injury to cultured gastric mucosal cells. Oxygen-reactive metabolites were generated by 1 mM xanthine and 10-100 mU/ml xanthine oxidase. Cytotoxicity was quantified by measuring /sup 51/Cr release from prelabeled cells. Xanthine oxidase caused a dose-dependent increase of /sup 51/Cr release in the presence of 1 mM xanthine. Catalase diminished xanthine-xanthine oxidase-induced /sup 51/Cr release in a dose-dependent manner. Superoxide dismutase failed to affect the amounts of /sup 51/Cr release induced by xanthine plus xanthine oxidase. Pretreatment with diethyl maleate potentiated oxygen radical-mediated /sup 51/Cr release dose dependently. The presence of ferrous ion or ethylenediaminetetraacetic acid-chelated iron did not alter xanthine-xanthine oxidase-induced cellular injury. They conclude that in vitro (1) oxygen metabolites, extracellularly generated, have a direct toxic effect on gastric mucosal cells; (2) hydrogen peroxide is a major mediator of oxygen metabolite-induced gastric cell injury; (3) the oxygen-derived superoxide and hydroxyl radicals are less toxic to gastric mucosal cells than hydrogen peroxide; and (4) intracellular glutathione, which detoxifies hydrogen peroxide, may be involved in antioxidant defense mechanisms.

  20. Femtosecond laser induced desorption of water from silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kwiet, S.; Starr, D. E.; Grujic, A.; Wolf, M.; Hotzel, A.

    2005-01-01

    The photodesorption mechanism of H2O from quartz-supported silver nanoparticles has been studied by femtosecond laser two-pulse correlation and fluence dependence measurements. With the laser wavelength close to the maximum of the (1,1) plasmon resonance of the nanoparticles, the desorption was found to be purely thermal, i.e., induced by coupling of the desorption coordinate to the nanoparticle lattice temperature, both in the low- and the high-coverage regimes. The lattice cooling times of the nanoparticles are in the range of several hundred ps, in accordance with recent time-resolved X-ray measurements. Also observed is a reversible red-shift of the nanoparticle plasmon modes with increasing H2O coverage which is attributed to dielectric screening.

  1. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  2. Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells.

    PubMed

    Kanno, Syu-Ichi; Shouji, Ai; Hirata, Riki; Asou, Keiko; Ishikawa, Masaaki

    2004-06-01

    Naringin (NG), a flavonoid in grapefruit and citrus, has been reported to exhibit antioxidant effects and pharmacological actions. Recently, we have reported that NG suppressed the cytotoxicity and apoptosis induced by H(2)O(2), a typical pro-oxidant, in mouse leukemia P388 cells. Cytosine arabinoside (1-beta-d-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite chemotherapeutic drug used for acute leukemia. It has been suggested that Ara-C-induced cytotoxicity is caused by apoptosis, which is mediated by reactive oxygen species (ROS). In this study, we examined the effect of NG on the cytotoxicity and apoptosis in mouse leukemia P388 cells treated with Ara-C. Ara-C caused cytotoxicity in a concentration and time-dependent manner in the cells. N-Acetyl-L-cysteine (NAC), cystamine (CysA) or a reduced form of glutathione (GSH), typical antioxidants significantly blocked Ara-C-induced cytotoxicity. Similarly, Ara-C-induced cell death was completely prevented by NG. NG strongly reduced ROS production caused by Ara-C in the cells. NG slightly increased the activities of antioxidant enzymes, catalase and glutathione peroxidase. Ara-C caused apoptosis with nuclear morphological change and DNA fragmentation. NG remarkably attenuated the Ara-C-induced apoptosis. NG completely blocked the DNA damage caused by Ara-C treatment at 6 h using the Comet assay. Our data suggest that NG reduces Ara-C-induced oxidative stress through both an inhibition of the generation of ROS production and an increase in antioxidant enzyme activities. Consequently, NG blocked apoptosis caused by Ara-C-induced oxidative stress, resulting in the inhibition of the cytotoxicity of Ara-C. PMID:15135655

  3. PMA synergistically enhances apicularen A-induced cytotoxicity by disrupting microtubule networks in HeLa cells

    PubMed Central

    2014-01-01

    Background Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells. Methods Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and ?-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, ?-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-?-tubulin antibody and PI, respectively. Results We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKC?, but not PKC? and PKC?, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing ?- and ?-tubulin protein levels in a PKC-dependent manner. Conclusions These results suggest that the synergy between PMA and apicularen A is involved by PKC? activation and microtubule disruption, and that may inform the development of novel approaches to treat cancer. PMID:24447339

  4. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    PubMed Central

    Bjrkblom, Benny; Adilbayeva, Altynai; Maple-Grdem, Jodi; Piston, Dominik; kvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Mller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  5. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    SciTech Connect

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  6. Cytoprotective activity against peroxide-induced oxidative damage and cytotoxicity of flavonoids in C6 rat glioma cells.

    PubMed

    Seibert, Hasso; Maser, Edmund; Schweda, Kathrin; Seibert, Sabine; Glden, Michael

    2011-09-01

    The aim of this study was to investigate the relationship between cytoprotective and cytotoxic activities of selected plant flavonoids in C6 glioma cells. Apigenin, kaempferol, luteolin, and quercetin were cytotoxic at low ?M concentrations (LOECs: 5-20 ?M), whereas myricetin was less toxic (LOEC>20 ?M). Cytotoxicity was not due to H(2)O(2) generation from flavonoids in culture medium. Quercetin, luteolin, and kaempferol protected the cells from peroxide-induced cytotoxicity. Concentration-effect curves for cytoprotection had a biphasic shape. In contrast, apigenin and myricetin did not exhibit any cytoprotective activity. The first three compounds also inhibited cellular lipid peroxidation induced by CHP, while the latter were ineffective. Importantly, concentrations of luteolin and kaempferol protecting cells under oxidative stress were identical to those causing cell damage under normal conditions. Only in case of quercetin there was a narrow range of concentrations protecting cells without being cytotoxic to non-stressed cells. Thus, even for flavonoids with a high antioxidant capacity in cell-free systems the cytoprotective selectivity (LOEC(cytotox)/LOEC(cytoprot)) was very low or even absent. These results should be taken into account when the prophylactic or therapeutic application of flavonoids as antioxidants is discussed. PMID:21723910

  7. Effects of soyasaponin I and soyasaponins-rich extract on the alternariol-induced cytotoxicity on Caco-2 cells.

    PubMed

    Vila-Donat, Pilar; Fernández-Blanco, Celia; Sagratini, Gianni; Font, Guillermina; Ruiz, María-José

    2015-03-01

    Alternariol (AOH) is a mycotoxin produced by Alternaria spp. Soyasaponin I (Ss-I) is present naturally in legumes, and it has antioxidant properties. Cytotoxic and genotoxic effects of AOH have been demonstrated previously in vitro. In the present study, the cytotoxicity of AOH, Ss-I, and soyasaponins-rich extract from lentils was investigated; as well as, the cytoprotective effects of Ss-I and lentil extracts against AOH induced-cytotoxicity on Caco-2 cells. Cytotoxicity was carried out using MTT and PC assays (AOH: 3.125-100 µM, Ss-I: 3.125-50 µM, and lentil extracts: 1:0-1:32) during 24 h of exposure. Only AOH showed cytotoxic effect. The reduction in cell proliferation ranged from 25% to 47%. Simultaneous combination of Ss-I with AOH (1:1) increased cell proliferation (35%) compared to AOH tested alone. The Ss-I and extracts showed synergistic cytoprotective effects against cytotoxicity induced by AOH on Caco-2 cells. Food commodities containing Ss-I could contribute to diminish the toxicological risk that natural contaminant as AOH in diet can produce to humans. PMID:25542527

  8. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.

    PubMed

    Gajewicz, Agnieszka; Schaeublin, Nicole; Rasulev, Bakhtiyor; Hussain, Saber; Leszczynska, Danuta; Puzyn, Tomasz; Leszczynski, Jerzy

    2015-05-01

    The production of nanomaterials increases every year exponentially and therefore the probability these novel materials that they could cause adverse outcomes for human health and the environment also expands rapidly. We proposed two types of mechanisms of toxic action that are collectively applied in a nano-QSAR model, which provides governance over the toxicity of metal oxide nanoparticles to the human keratinocyte cell line (HaCaT). The combined experimental-theoretical studies allowed the development of an interpretative nano-QSAR model describing the toxicity of 18 nano-metal oxides to the HaCaT cell line, which is a common in vitro model for keratinocyte response during toxic dermal exposure. The comparison of the toxicity of metal oxide nanoparticles to bacteria Escherichia coli (prokaryotic system) and a human keratinocyte cell line (eukaryotic system), resulted in the hypothesis that different modes of toxic action occur between prokaryotic and eukaryotic systems. PMID:24983896

  9. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    PubMed Central

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018

  10. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2014-09-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  11. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2015-06-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  12. Cytotoxicity of gold nanoparticles in human neural precursor cells and rat cerebral cortex.

    PubMed

    Lee, Uhn; Yoo, Chan-Jong; Kim, Yong-Jung; Yoo, Young-Mi

    2016-03-01

    Nanoparticles are promising tools for the advancement of drug delivery, medical imaging, and as diagnostic sensor. Medical nanodevices should develop miniaturization, because it would be injected into a human body. Gold nanoparticles (GNPs) with different sizes and shapes have therapeutic potential as a result of their small size, robust nature, excellent biocompatibility and optical properties. However, the application of GNPs as medical nanodevices it is necessary to know the biodegradation, biocompatibility, and development of surface coating which avoid the accumulation of nanoparticles. In this study, we carry out an invitro toxicity and invivo gene expression study using two kinds of GNPs. We found that GNPs toxicity is dependent on the dose or size administrated after the injected GNPs into the brain, and small particle size GNPs appeared more nestin expression compared to large particle size at short term implantation. These findings of toxicity of GNPs may play an important role in development of invivo tools for the safety of GNPs. PMID:26277219

  13. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line.

    PubMed

    Tabatabaei Mirakabad, Fatemeh Sadat; Akbarzadeh, Abolfazl; Milani, Morteza; Zarghami, Nosratollah; Taheri-Anganeh, Mortaza; Zeighamian, Vahideh; Badrzadeh, Fariba; Rahmati-Yamchi, Mohammad

    2016-02-01

    Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among women worldwide. Herbal medicines have tremendous potential as promising agents for the treatment of cancer. Curcumin is a natural polyphenol which has many anticancer effects. Because of its low aqueous solubility, low bioavailability, and quick degradation and metabolism, curcumin was released using PLGA-PEG nanoparticles. Herein, the efficiency of pure curcumin and curcumin-loaded PLGA-PEG in MCF-7 human breast cancer cell lines was studied. (1)H NMR, FT-IR and SEM demonstrated PLGA-PEG structure and curcumin loaded on nanoparticles. Subsequently, the cytotoxic effects of free curcumin and curcumin-loaded PLGA-PEG were determined via an MTT assay. Our study confirmed that curcumin-loaded PLGA-PEG has more cytotoxic effects on the MCF-7 breast cancer cell line and could be exploited as a potential source for developing novel drugs against breast cancer. PMID:25229832

  14. NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement.

    PubMed

    Haruki, Hiroyo; Sano, Yasuteru; Shimizu, Fumitaka; Omoto, Masatoshi; Tasaki, Ayako; Oishi, Mariko; Koga, Michiaki; Saito, Kazuyuki; Takahashi, Toshiyuki; Nakada, Tsutomu; Kanda, Takashi

    2013-08-15

    Autoantibodies against astrocyte water channel aquaporin-4 (AQP4) are highly specific for neuromyelitis optica (NMO). However, the molecular mechanism of NMO still remains unclear. The purpose of this study was to identify the possible humoral mechanisms responsible for the occurrence of astrocytic damage. Human primary astrocytes (AST) were immortalized by retroviral vectors harboring temperature-sensitive SV40 T antigen gene and AQP4 cDNA (M23), designated as hAST-AQP4. The effects of NMO sera on the content and localization of AQP4, including cytotoxicity and astrocytic morphology, were evaluated. In addition, this study examined whether the amount and localization of AQP4 protein in astrocytes were influenced by direct contact with the immortalized human brain microvascular endothelial cell line, TY09. NMO sera alone induced cytotoxicity and addition of complement had a more harmful effect on hAST-AQP4. NMO sera also decreased AQP4 mRNA and protein. NMO sera alone up-regulated TNF? and IL-6 in astrocytes and co-incubation with anti-TNF? and anti-IL-6 neutralizing antibodies blocked both the cytotoxicity and reduction of AQP4 in astrocytes. In the experiment using the in vitro BBB models, AQP4 protein mainly localized at the astrocytic membrane after co-culture with TY09, in contact with TY09. The future elucidation of factors that up-regulate AQP4 in astrocytes presumably released by blood brain barrier forming endothelial cells and that block the production of inflammatory cytokines may therefore lead to the development of a novel therapeutic strategy. PMID:23809190

  15. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures

    PubMed Central

    2011-01-01

    Background To date silica nanoparticles (SNPs) play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities). They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs) of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures. Methods Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release), and TER (Transepithelial Electrical Resistance) measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release) and apoptosis markers were investigated. Results Regarding toxic effects (viability, membrane integrity, TER) the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the in vitro coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number of apoptosis markers belonging to the intrinsic pathway were upregulated in the coculture following aSNP treatment. Analysis of the individual markers indicated that the cells suffered from DNA damage, hypoxia and ER-stress. Conclusion We present evidence that our in vitro coculture model of the alveolar-capillary barrier is clearly advantageous compared to conventional monocultures in evaluating the extent of damage caused by hazardous material encountering the principle biological barrier in the lower respiratory tract. PMID:21272353

  16. Surface Induced Magnetic Switching in Nanoparticles

    NASA Astrophysics Data System (ADS)

    Horrel, Nathan; Sabirianov, Renat

    2010-03-01

    We show that the magnetic structure of nanoparticles with competing exchange interactions, i.e. having ferromagnetic exchange coupling between nearest neighbors, J01, and antiferromagnetic one between second nearest neighbors, J02, is very sensitive to the ratio of these exchanges, R=-J02/J01. The magnetic structurein ground state changes as a function of R from ferromagnetic to non-collinear, and to antiferromagnetic. This change occurs in a very narrow window of R. The moderate modification of the surface exchange parameters of such nanoparticle may lead to a substantial change in the temperature dependence of its total magnetic moment. Using Monte Carlo simulations we show that the ``ordering'' temperature of nanoparticles of 3-4nm in diameter can be varied by about 25% with the change of nearest neighbor exchange by only 25%. Thus, if the surface exchange is modified by the external stimuli in core shell nanoparticles, the magnetic moment of the nanoparticle can be switched from nearly zero to about half of its maximum value. We discuss the modification of surface exchange in core-shell nanoparticles with core of iron oxide and shell made of photochromic materials as azobenzene.

  17. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions.

    PubMed

    Sun, Cheng; Yin, Nuoya; Wen, Ruoxi; Liu, Wei; Jia, Yanxia; Hu, Ligang; Zhou, Qunfang; Jiang, Guibin

    2016-01-01

    The rapid development of silver nanoparticles (AgNPs) based products has raised increasing concerns in view of their potential hazardous risks to the environment and human health. The roles of the released silver ions in AgNPs induced cytotoxicities are being hotly debated. Using rat cerebral astrocytes, the neurotoxicological effects of AgNPs and silver ions were investigated. Acute toxicity based on Alamar Blue assay showed that silver ions were considerably more toxic than AgNPs. Comparative studies indicated that AgNPs increased caspase activities and induced cell apoptosis under cytotoxic level of exposures, while silver ions compromised cell membrane integrity and dominantly caused cell necrosis. Cellular internalization of silver provided the basis for the cytotoxicities of these two silver species. In contrast to silver ions, intracellular reactive oxygen species (ROS) generation occurred in time- and concentration-dependent manners in astrocytes upon AgNPs stimulation, which caused subsequent c-Jun N-terminal kinases (JNK) phosphorylation and promoted the programmed cell death. Non-cytotoxic level of AgNPs exposure increased multiple cytokines secretion from the astrocytes, indicating that AgNPs were potentially involved in neuroinflammation. This effect was independent of silver ions as well. The distinct toxicological effects caused by AgNPs and silver ions provided the solid proofs for the particle-specific effects which should be concerned regarding the accurate assessment of AgNPs exposure risks. PMID:26702581

  18. Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines

    PubMed Central

    Namvar, Farideh; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Azizi, Susan; Tahir, Paridah Mohd; Chartrand, Max Stanley

    2015-01-01

    The aim of this study is to evaluate the in vitro cytotoxic activity and cellular effects of previously prepared ZnO-NPs on murine cancer cell lines using brown seaweed (Sargassum muticum) aqueous extract. Treated cancer cells with ZnO-NPs for 72 hours demonstrated various levels of cytotoxicity based on calculated IC50 values using MTT assay as follows: 21.7??1.3??g/mL (4T1), 17.45??1.1??g/mL (CRL-1451), 11.75??0.8??g/mL (CT-26), and 5.6??0.55??g/mL (WEHI-3B), respectively. On the other hand, ZnO-NPs treatments for 72 hours showed no toxicity against normal mouse fibroblast (3T3) cell line. On the other hand, paclitaxel, which imposed an inhibitory effect on WEHI-3B cells with IC50 of 2.25??0.4, 1.17??0.5, and 1.6??0.09??g/mL after 24, 48, and 72 hours treatment, respectively, was used as positive control. Furthermore, distinct morphological changes were found by utilizing fluorescent dyes; apoptotic population was increased via flowcytometry, while a cell cycle block and stimulation of apoptotic proteins were also observed. Additionally, the present study showed that the caspase activations contributed to ZnO-NPs triggered apoptotic death in WEHI-3 cells. Thus, the nature of biosynthesis and the therapeutic potential of ZnO-NPs could prepare the way for further research on the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer. PMID:25784947

  19. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines.

    PubMed

    Namvar, Farideh; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Azizi, Susan; Tahir, Paridah Mohd; Chartrand, Max Stanley; Yeap, Swee Keong

    2015-01-01

    The aim of this study is to evaluate the in vitro cytotoxic activity and cellular effects of previously prepared ZnO-NPs on murine cancer cell lines using brown seaweed (Sargassum muticum) aqueous extract. Treated cancer cells with ZnO-NPs for 72 hours demonstrated various levels of cytotoxicity based on calculated IC50 values using MTT assay as follows: 21.7??1.3??g/mL (4T1), 17.45??1.1??g/mL (CRL-1451), 11.75??0.8??g/mL (CT-26), and 5.6??0.55??g/mL (WEHI-3B), respectively. On the other hand, ZnO-NPs treatments for 72 hours showed no toxicity against normal mouse fibroblast (3T3) cell line. On the other hand, paclitaxel, which imposed an inhibitory effect on WEHI-3B cells with IC50 of 2.25??0.4, 1.17??0.5, and 1.6??0.09??g/mL after 24, 48, and 72 hours treatment, respectively, was used as positive control. Furthermore, distinct morphological changes were found by utilizing fluorescent dyes; apoptotic population was increased via flowcytometry, while a cell cycle block and stimulation of apoptotic proteins were also observed. Additionally, the present study showed that the caspase activations contributed to ZnO-NPs triggered apoptotic death in WEHI-3 cells. Thus, the nature of biosynthesis and the therapeutic potential of ZnO-NPs could prepare the way for further research on the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer. PMID:25784947

  20. Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells

    PubMed Central

    Siddiqui, Maqsood A.; Alhadlaq, Hisham A.; Ahmad, Javed; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed; Ahamed, Maqusood

    2013-01-01

    Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 250 g/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level. PMID:23940521

  1. Houttuynia cordata Thunb extract induces cytotoxicity in human nasopharyngeal carcinoma cells: Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Li, Zuanfang; Yu, Yun; Lin, Duo; Huang, Hao; Shi, Hong

    2016-01-01

    The molecular mechanisms of cytotoxicity induced by Houttuynia cordata Thunb (HCT) in nasopharyngeal carcinoma (NPC) cells was investigated by Raman spectroscopy (RS). The average Raman spectra of cell groups treated with HCT (0, 62.5, 125, 250, and 500 μg ml‑1) for 24 h were measured separately. Compared to the control group, the intensities of the selected bands (1002, 1338, and 1448 cm‑1) related to protein, DNA, and lipid in the treatment groups decreased obviously as the concentration of HCT increased. Both cell groups treated with 250 and 500 μg ml‑1 of HCT could be differentiated from the control group by principal component analysis (PCA) combined with linear discriminate analysis (LDA) with a diagnostic accuracy of 100%, suggesting that cytotoxicity occurred and that 250 μg ml‑1 was the proper dose for treatment. Simultaneously, the Raman spectra of cells treated with different treatment times with 250 μg ml‑1 of HCT were obtained. We can get that treatment with HCT decreased cell viability in a dose and time-dependent fashion. The results indicated that the RS combined with PCA–LDA can be used for pharmacokinetics studies of HCT in NPC cells, which could also provide useful data for clinical dosage optimization for HCT.

  2. Involvement of enniatins-induced cytotoxicity in human HepG2 cells.

    PubMed

    Juan-Garca, Ana; Manyes, Lara; Ruiz, Mara-Jos; Font, Guillermina

    2013-04-12

    Enniatins (ENNs) are mycotoxins found in Fusarium fungi and they appear in nature as mixtures of cyclic depsipeptides. The ability to form ionophores in the cell membrane is related to their cytotoxicity. Changes in ion distribution between inner and outer phases of the mitochondria affect to their metabolism, proton gradient, and chemiosmotic coupling, so a mitochondrial toxicity analysis of enniatins is highly recommended because they host the homeostasis required for cellular survival. Two ENNs, ENN A and ENN B on hepatocarcinoma cells (HepG2) at 1.5 and 3 ?M and three exposure times (24, 48 and 72 h) were studied. Flow cytometry was used to examine their effects on cell proliferation, to characterize at which phase of the cell cycle progression the cells were blocked and to study the role of the mitochondrial in ENNs-induced apoptosis. In conclusion, apoptosis induction on HepG2 cells allowed to compare cytotoxic effects caused by both ENNs, A and B. It is reported the possible mechanism observed in MMP changes, cell cycle analysis and apoptosis/necrosis, identifying ENN B more toxic than ENN A. PMID:23370383

  3. Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines.

    PubMed

    Pacifico, Severina; Gallicchio, Marialuisa; Lorenz, Peter; Potenza, Nicoletta; Galasso, Silvia; Marciano, Sabina; Fiorentino, Antonio; Stintzing, Florian C; Monaco, Pietro

    2013-12-01

    In the course of a bioactivity screening of Mediterranean plants, the assessment of neuroprotective properties of Laurus nobilis L. was of interest. Dried leaves were extracted by sonication using CHCl3 as solvent. The CHCl3 parental extract (CHCl3-pe) was fractionated to yield CHCl3 (LnC-1), EtOAc (LnC-2), MeOH (LnC-3) fractions. Each fraction underwent an extensive screening towards human neuroblastoma (SK-N-BE(2)-C, and SH-SY5Y) and rat glioma (C6) cell lines. MTT and SRB cytotoxicity tests were performed. The effect on the plasma membrane integrity was evaluated by assessment of LDH release. The caspase-3 activation enzyme and DNA fragmentation were also evaluated. The oxidant/antioxidant ability of all the extracts were evaluated using different methods. Furthermore, a metabolite profiling of the investigated extracts was carried out by GC-EI-MS. CHCl3-pe contained terpenes, allylphenols, and α-tocopherol. Dehydrocostus lactone was the main constituent. As result of the fractionation technique, the LnC-1 extract was mainly composed of α-tocopherol, whereas the LnC-2 fraction was enriched in guaiane and eudesmane terpenes. The most cytotoxic LnC-2 fraction induced apoptosis; it was ineffective in preventing in vitro free radicals production. Overall, the experimental results support a possible role of LnC-2 preparation as a chemopreventive agent for neuronal cells or other cells of the CNS. PMID:24095960

  4. Effect of alpha-tocopherol on cytotoxicity induced by UV irradiation and antioxidants.

    PubMed

    Sakagami, H; Satoh, K; Makino, Y; Kojima, T; Takeda, M

    1997-01-01

    The addition of DL-alpha-tocopherol (vitamin E) at the time of UV irradiation only marginally protects cells from UV-induced cytotoxicity. However, a protective effect of alpha-tocopherol emerged when it was added to the cells before UV irradiation, alpha-Tocopherol was progressively and dose-dependently incorporated into the cells. Washout experiments showed that the intracellular concentration of alpha-tocopherol decreased with an approximate half-life of 14-20 hours, due to the release from the cells and dilution by cell proliferation. Pretreatment of the cells with alpha-tocopherol significantly increased the resistancy against the cytotoxic action of UV irradiation and antioxidants such as sodium ascorbate, gallic acid, n-propyl gallate and caffeic acid. ESR spectroscopy showed that alpha-tocopherol enhanced the ascorbyl radical intensity, whereas it reduced caffeic acid radical intensity, without affecting the radical intensity of gallic acid and n-propyl gallate. Both control and treated cell lysates scavenged superoxide anion (generated by xanthine-xanthine oxidase reaction) and hydroxyl radical (generated by Fenton reaction) to a comparable extent. The present study suggests that the protective effect of alpha-tocopherol might be derived from its incorporation into the cell membranes rather than its scavenging activity. PMID:9216667

  5. Ameliorative Effects of Taurine Against Methimazole-Induced Cytotoxicity in Isolated Rat Hepatocytes

    PubMed Central

    Heidari, Reza; Babaei, Hossein; Eghbal, Mohammad Ali

    2012-01-01

    Methimazole is used as an antithyroid drug to control the symptoms of hyperthyroidism and maintain patients in a euthyroid state. Administration of this drug is associated with agranulocytosis and hepatotoxicity, which are the two most significant adverse effects. The present investigation was conducted to study the protective role of taurine against cytotoxicity induced by methimazole and its proposed reactive intermediary metabolite, N-methylthiourea, in an in vitro model of isolated rat hepatocytes. At different points in time, markers such as cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial membrane potential, and hepatocyte glutathione content were evaluated. Treating hepatocytes with methimazole resulted in cytotoxicity characterized by the reduction in cell viability, an increase in ROS formation and lipid peroxidation, mitochondrial membrane potential collapse, and a reduction in cellular glutathione content. Furthermore, a significant amount of oxidized glutathione (GSSG) was formed when rat hepatocytes were treated with methimazole. N-methylthiourea toxicity was accompanied by a reduction in cellular GSH content, but no significant changes in lipid peroxidation, ROS formation, GSSG production, or changes in mitochondrial membrane potential were detected. Administration of taurine (200 μM) effectively reduced the toxic effects of methimazole or its metabolite in isolated rat hepatocytes. PMID:23264945

  6. Amyloid-? suppresses AMP-activated protein kinase (AMPK) signaling and contributes to ?-synuclein-induced cytotoxicity.

    PubMed

    Lin, Chih-Li; Cheng, Yu-Shih; Li, Hsin-Hua; Chiu, Pai-Yi; Chang, Yen-Ting; Ho, Ying-Jui; Lai, Te-Jen

    2016-01-01

    Dementia with Lewy bodies (DLB) is a neurodegenerative disorder caused by abnormal accumulation of Lewy bodies, which are intracellular deposits composed primarily of aggregated ?-synuclein (?Syn). Although ?Syn has been strongly implicated to induce neurotoxicity, overexpression of wild-type ?Syn is shown to be insufficient to trigger formation of protein aggregates by itself. Therefore, investigating the possible mechanism underlying ?Syn aggregation is essential to understand the pathogenesis of DLB. Previous studies have demonstrated that amyloid ? (A?), the primary cause of Alzheimer's disease (AD), may promote the formation of ?Syn inclusion bodies. However, it remains unclear how A? contributes to the deposition and neurotoxicity of ?Syn. In the present study, we investigated the cytotoxic effects of A? in ?Syn-overexpressed neuronal cells. Our results showed that A? inhibits autophagy and enhances ?Syn aggregation in ?Syn-overexpressed cells. Moreover, A? also reduced sirtuin 1 (Sirt1) and its downstream signaling, resulting in increased intracellular ROS accumulation and mitochondrial dysfunction. Our in vitro and in vivo studies support that A?-inhibition of AMP-activated protein kinase (AMPK) signaling is involved in the neurotoxic effects of ?Syn. Taken together, our findings suggest that A? plays a synergistic role in ?Syn aggregation and cytotoxicity, which may provide a novel understanding for exploring the underlying molecular mechanism of DLB. PMID:26515689

  7. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    PubMed

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). PMID:25483368

  8. Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

    NASA Astrophysics Data System (ADS)

    Elsabahy, Mahmoud; Zhang, Shiyi; Zhang, Fuwu; Deng, Zhou J.; Lim, Young H.; Wang, Hai; Parsamian, Perouza; Hammond, Paula T.; Wooley, Karen L.

    2013-11-01

    The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications.

  9. Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

    PubMed Central

    Elsabahy, Mahmoud; Zhang, Shiyi; Zhang, Fuwu; Deng, Zhou J.; Lim, Young H.; Wang, Hai; Parsamian, Perouza; Hammond, Paula T.; Wooley, Karen L.

    2013-01-01

    The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications. PMID:24264796

  10. Surface charges and shell crosslinks each play significant roles in mediating degradation, biofouling, cytotoxicity and immunotoxicity for polyphosphoester-based nanoparticles.

    PubMed

    Elsabahy, Mahmoud; Zhang, Shiyi; Zhang, Fuwu; Deng, Zhou J; Lim, Young H; Wang, Hai; Parsamian, Perouza; Hammond, Paula T; Wooley, Karen L

    2013-01-01

    The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications. PMID:24264796

  11. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles.

    PubMed

    Manju, Sivalingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Shanthi, Sathappan; Jaishabanu, Ameeramja; Ekambaram, Perumal; Vaseeharan, Baskaralingam

    2016-02-01

    This study reports the biological synthesis of gold nanoparticles using essential oil of Nigella sativa (NsEO-AuNPs). The synthesized NsEO-AuNPs were characterized by UV-visible spectra, X-ray diffraction (XRD), FTIR and Transmission electron microscopy (TEM). UV-vis spectra of NsEO-AuNPs showed strong absorption peak at 540 nm. The X-ray diffraction analysis revealed crystalline nature of nanoparticle with distinctive facets (111, 200, 220 and 311 planes) of NsEO-AuNPs. The FTIR spectra recorded peaks at 3388, 2842, 1685, 1607, 1391 and 1018 cm(-1). TEM studies showed the spherical shape of nanoparticles and the particle size ranges between 15.6 and 28.4 nm. The antibacterial activity of NsEO-AuNPs was greater against Gram positive Staphylococcus aureus MTCC 9542 (16 mm) than Gram negative Vibrio harveyi MTCC 7771 (5 mm) at the concentration of 10 μg ml(-1). NsEO-AuNPs effectively inhibited the biofilm formation of S. aureus and V. harveyi by decreasing the hydrophobicity index (78% and 46% respectively). The in-vitro anti-lung cancer activity confirmed by MTT assay on the cell line of A549 carcinoma cells showed IC50 values of bulk Au at 87.2 μg ml(-1), N. sativa essential oil at 64.15 μg ml(-1) and NsEO-AuNPs at 28.37 μg ml(-1). The IC50 value showed that NsEO-AuNPs was highly effective in inhibiting the A549 lung cancer cells compared to bulk Au and N. sativa essential oil. PMID:26703114

  12. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    SciTech Connect

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei; Ma, Xiao-Ni; Li, Qing-Fang; Yan, Jun; Wang, Hua; Wang, Li-Sheng

    2010-03-19

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  13. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-01

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  14. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    SciTech Connect

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  15. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy.

    PubMed

    Nemani, Krishnamurthy V; Ennis, Riley C; Griswold, Karl E; Gimi, Barjor

    2015-06-10

    Engineered bacterial cells that are designed to express therapeutic enzymes under the transcriptional control of remotely inducible promoters can mediate the de novo conversion of non-toxic prodrugs to their cytotoxic forms. In situ cellular expression of enzymes provides increased stability and control of enzyme activity as compared to isolated enzymes. We have engineered Escherichia coli (E. coli), designed to express cytosine deaminase at elevated temperatures, under the transcriptional control of thermo-regulatory λpL-cI857 promoter cassette which provides a thermal switch to trigger enzyme synthesis. Enhanced cytosine deaminase expression was observed in cultures incubated at 42°C as compared to 30°C, and enzyme expression was further substantiated by spectrophotometric assays indicating enhanced conversion of 5-fluorocytosine to 5-fluorouracil. The engineered cells were subsequently co-encapsulated with magnetic iron oxide nanoparticles in immunoprotective alginate microcapsules, and cytosine deaminase expression was triggered remotely by alternating magnetic field-induced hyperthermia. The combination of 5-fluorocytosine with AMF-activated microcapsules demonstrated tumor cell cytotoxicity comparable to direct treatment with 5-fluorouracil chemotherapy. Such enzyme-prodrug therapy, based on engineered and immunoisolated E. coli, may ultimately yield an improved therapeutic index relative to monotherapy, as AMF mediated hyperthermia might be expected to pre-sensitize tumors to chemotherapy under appropriate conditions. PMID:25820125

  16. The mining chemical Polydadmac is cytotoxic but does not interfere with Cu-induced toxicity in Atlantic salmon hepatocytes.

    PubMed

    Olsvik, Pl A; Berntssen, Marc H G; Waagb, Rune; Hevry, Ernst; Sfteland, Liv

    2015-12-25

    To speed up sedimentation of suspended solids the mining industry often uses flocculent chemicals. In this work we evaluated the cytotoxic and mechanistic effects of Polydadmac, and its basic component Dadmac, on fish cells. Dose-response effects, temperature-dependent effects and impact of Dadmac and Polydadmac on Cu toxicity were studied in Atlantic salmon hepatocytes. We used the xCELLigence system and the MTT test for cytotoxicity assessments, and real-time RT-qPCR to evaluate molecular effects. The results showed a cytotoxic response for Polydadmac but not for Dadmac. Elevated levels of Cu were cytotoxic. Moderately cytotoxic concentrations of Cu (100-1000?M) induced significant responses on the transcription of a number of genes in the cells, i.e. cuznsod (sod1), cat, mnsod (sod2), nfe2l2, hmox1, mta, casp3b, casp6, bclx, cyp1a, ccs, atp7a, app, mmp13, esr1, ppara, fads2 and ptgs2. A factorial PLS regression model for mnsod transcription showed a synergistic effect between Dadmac and Cu exposure in the cells, indicating an interaction effect between Dadmac and Cu on mitochondrial ROS scavenging. No interaction effects were seen for Polydadmac on Cu toxicity. In conclusion, Polydadmac is cytotoxic at elevated concentrations but appears to have low ability to interfere with Cu toxicity in Atlantic salmon liver cells. PMID:26368670

  17. Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Yang, Haitao; Ji, Xiaohui; Wang, Qin

    2016-02-01

    The chemical compositions, sizes and fluorescent properties of synthesized carbon nanoparticles (CNPs) were characterized. Escherichia coli (E. coli) cells were used as a model to study the cytotoxicity of CNPs, and the results of the cellular uptake of CNPs yielded excellent results: the CNPs demonstrated good biocompatibility and were non-toxic to the growth of the E. coli cells. Moreover, to assess the potential toxicity of CNPs to human health, the binding behavior of CNPs with human immunoglobulin G (HIgG) was examined by fluorescence quenching spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy under physiological conditions. The fluorescence quenching constants and parameters for the interaction at different temperatures had been calculated according to Scatchard. The thermodynamic parameters, such as enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG), were calculated, and the results indicated strong static quenching and showed that van der Waals forces, hydrogen bonds and hydrophobic interactions were the predominant intermolecular forces stabilizing the CNP-HIgG complex. Synchronous fluorescence and circular dichroism spectra provided information regarding the conformational alteration of HIgG in the presence of CNPs. These findings help to characterize the interactions between CNPs and HIgG, which may clarify the potential risks and undesirable health effects of CNPs, as well as the related cellular trafficking and systemic translocation.

  18. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects

    PubMed Central

    Aravinthan, Adithan; Govarthanan, Muthusamy; Selvam, Kandasamy; Praburaman, Loganathan; Selvankumar, Thangasamy; Balamurugan, Rangachari; Kamala-Kannan, Seralathan; Kim, Jong-Hoon

    2015-01-01

    A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2–4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1–4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 μg/mL. PMID:25792831

  19. Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations.

    PubMed

    Zhang, Shengrui; Yang, Haitao; Ji, Xiaohui; Wang, Qin

    2016-02-01

    The chemical compositions, sizes and fluorescent properties of synthesized carbon nanoparticles (CNPs) were characterized. Escherichia coli (E. coli) cells were used as a model to study the cytotoxicity of CNPs, and the results of the cellular uptake of CNPs yielded excellent results: the CNPs demonstrated good biocompatibility and were non-toxic to the growth of the E. coli cells. Moreover, to assess the potential toxicity of CNPs to human health, the binding behavior of CNPs with human immunoglobulin G (HIgG) was examined by fluorescence quenching spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy under physiological conditions. The fluorescence quenching constants and parameters for the interaction at different temperatures had been calculated according to Scatchard. The thermodynamic parameters, such as enthalpy change (?H), entropy change (?S) and free energy change (?G), were calculated, and the results indicated strong static quenching and showed that van der Waals forces, hydrogen bonds and hydrophobic interactions were the predominant intermolecular forces stabilizing the CNP-HIgG complex. Synchronous fluorescence and circular dichroism spectra provided information regarding the conformational alteration of HIgG in the presence of CNPs. These findings help to characterize the interactions between CNPs and HIgG, which may clarify the potential risks and undesirable health effects of CNPs, as well as the related cellular trafficking and systemic translocation. PMID:26505286

  20. Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line.

    PubMed

    Yalcin, Serap; Unsoy, Gozde; Mutlu, Pelin; Khodadust, Rouhollah; Gunduz, Ufuk

    2014-01-01

    In this study, polyhydroxybutyrate (PHB)-coated magnetic nanoparticles (MNPs) were prepared by coprecipitation of iron salts (Fe and Fe) by ammonium hydroxide. Characterizations of PHB-coated MNPs were performed by Fourier transform infrared spectroscopy, x-ray diffraction, dynamic light scattering, thermal gravimetric analysis, vibrating sample magnetometry, and transmission electron microscopy analyses. Doxorubicin was loaded onto PHB-MNPs, and the release efficiencies at different pHs were studied under in vitro conditions. The most efficient drug loading concentration was found about 87% at room temperature in phosphate-buffered saline (pH 7.2). The drug-loaded MNPs were stable up to 2 months in neutral pH for mimicking physiological conditions. The drug release studies were performed with acetate buffer (pH 4.5) that mimics endosomal pH. Doxorubicin (60%) released from PHB-MNPs within 65 hours. Doxorubicin-loaded PHB-MNPs were about 2.5-fold more cytotoxic as compared with free drug on resistant Michigan Cancer Foundation-7 (human breast adenocarcinoma, MCF-7) cell line (1 ?M doxorubicin) in vitro. Therefore, doxorubicin-loaded PHB-MNPs lead to overcome the drug resistance. PMID:25137407

  1. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model.

    PubMed

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2013-11-01

    Glioblastomas (GBMs) are highly lethal primary brain tumours. Treatment of these malignant gliomas remains ineffective as these are extremely resistant to chemotherapeutic applications. Furthermore, combination therapy for cancer treatment is becoming more popular because it generates synergistic anticancer effects, by reducing individual drug-related toxicity and associated side effects. Currently, magnetic nanoparticles (MNPs) based drug delivery system has attracted much more attention owing to its intrinsic magnetic properties and drug loading capacity. In the present study, MNPs based drug delivery approach for co-delivering of potent chemotherapeutic drugs such as Curcumin (herbal drug) and Temozolomide (DNA methylating agent) has been implemented. The dual drug loaded MNPs formulations were evaluated in two-dimensional (2-D) monolayer culture and three-dimensional (3-D) tumour spheroid culture of T-98G cells for understanding the therapeutic discrepancy. The dual drug loaded MNPs formulations demonstrated higher cytotoxic effect than single drug loaded MNPs formulations as compared to their corresponding native drugs in 2-D and 3-D culture. The combination index (CI) analysis revealed synergistic mode of action of dual drug loaded MNPs formulations, which was further confirmed by cell death induction assay mediated by acridine orange (AO)/propidium iodide (PI) staining, illustrating higher efficacy of the formulation towards GBM therapy. PMID:23891772

  2. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles

    PubMed Central

    2012-01-01

    Traces of zinc oxide nanoparticles (ZnO NPs) used may be found in the liver and kidney. The aim of this study is to determine the optimal viability assay for using with ZnO NPs and to assess their toxicity to human hepatocyte (L02) and human embryonic kidney (HEK293) cells. Cellular morphology, mitochondrial function (MTT assay), and oxidative stress markers (malondialdehyde, glutathione (GSH) and superoxide dismutase (SOD)) were assessed under control and exposed to ZnO NPs conditions for 24 h. The results demonstrated that ZnO NPs lead to cellular morphological modifications, mitochondrial dysfunction, and cause reduction of SOD, depletion of GSH, and oxidative DNA damage. The exact mechanism behind ZnO NPs toxicity suggested that oxidative stress and lipid peroxidation played an important role in ZnO NPs-elicited cell membrane disruption, DNA damage, and subsequent cell death. Our preliminary data suggested that oxidative stress might contribute to ZnO NPs cytotoxicity. PMID:23110934

  3. Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect.

    PubMed

    Pan?ek, Ale; Smkalov, Monika; Kilianov, Martina; Prucek, Robert; Bogdanov, Kate?ina; Ve?e?ov, Renata; Kol?, Milan; Havrdov, Markta; P?aza, Gra?yna Anna; Chojniak, Joanna; Zbo?il, Radek; Kvtek, Libor

    2015-01-01

    The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels. PMID:26729075

  4. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions.

    PubMed

    Alili, Lirija; Sack, Maren; Karakoti, Ajay S; Teuber, Sarah; Puschmann, Katharina; Hirst, Suzanne M; Reilly, Christopher M; Zanger, Klaus; Stahl, Wilhelm; Das, Soumen; Seal, Sudipta; Brenneisen, Peter

    2011-04-01

    Tumor-stroma interaction plays an important role in tumor progression. Myofibroblasts, pivotal for tumor progression, populate the microecosystem of reactive stroma. The formation of myofibroblasts is mediated by tumor derived transforming growth factor β1 (TGFβ1) which initiates a reactive oxygen species cell type dependent expression of alpha-smooth muscle actin, a biomarker for myofibroblastic cells. Myofibroblasts express and secrete proinvasive factors significantly increasing the invasive capacity of tumor cells via paracrine mechanisms. Although antioxidants prevent myofibroblast formation, the same antioxidants increase the aggressive behavior of the tumor cells. In this study, the question was addressed of whether redox-active polymer-coated cerium oxide nanoparticles (CNP, nanoceria) affect myofibroblast formation, cell toxicity, and tumor invasion. Herein, nanoceria downregulate both the expression of alpha-smooth muscle actin positive myofibroblastic cells and the invasion of tumor cells. Furthermore, concentrations of nanoceria being non-toxic for normal (stromal) cells show a cytotoxic effect on squamous tumor cells. The treatment with redox-active CNP may form the basis for protection of stromal cells from the dominating influence of tumor cells in tumor-stroma interaction, thus being a promising strategy for chemoprevention of tumor invasion. PMID:21269688

  5. A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles.

    PubMed

    Shanmugasundaram, Thangavel; Radhakrishnan, Manikkam; Gopikrishnan, Venugopal; Pazhanimurugan, Raasaiyah; Balagurunathan, Ramasamy

    2013-11-01

    Actinobacteria- mediated synthesis of silver nanoparticles (AgNPs) is a reliable, eco-friendly and important aspect of nanobiotechnology. In this study, aqueous silver ions, which were exposed to an actinobacterial biomass of Streptomyces naganishii (MA7), were reduced to form stable AgNPs under optimised conditions. The microbially synthesised AgNPs were characterised by UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM) and high- resolution transmission electron microscopy (HR-TEM). The size (5-50 nm) and shape (spherical) of the AgNPs were determined. The biosynthesised AgNPs exhibited good bactericidal, anti-biofouling, antioxidant and cytotoxic effects with regards to the HeLa cell line. A single protein band with a molecular weight of 44 kDa was obtained after partial purification of the culture filtrate via polyacrylamide gel electrophoresis. The potent actinobacterial strain was identified by its molecular (16s rRNA sequencing), phenotypic and cultural characteristics. The current study demonstrated the potential use of the extremophilic actinobacterial strain of S. naganishii (MA7) as a novel source for AgNPs synthesis with improved biomedical applications. PMID:23911625

  6. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Guan, Rongfa; Kang, Tianshu; Lu, Fei; Zhang, Zhiguo; Shen, Haitao; Liu, Mingqi

    2012-10-01

    Traces of zinc oxide nanoparticles (ZnO NPs) used may be found in the liver and kidney. The aim of this study is to determine the optimal viability assay for using with ZnO NPs and to assess their toxicity to human hepatocyte (L02) and human embryonic kidney (HEK293) cells. Cellular morphology, mitochondrial function (MTT assay), and oxidative stress markers (malondialdehyde, glutathione (GSH) and superoxide dismutase (SOD)) were assessed under control and exposed to ZnO NPs conditions for 24 h. The results demonstrated that ZnO NPs lead to cellular morphological modifications, mitochondrial dysfunction, and cause reduction of SOD, depletion of GSH, and oxidative DNA damage. The exact mechanism behind ZnO NPs toxicity suggested that oxidative stress and lipid peroxidation played an important role in ZnO NPs-elicited cell membrane disruption, DNA damage, and subsequent cell death. Our preliminary data suggested that oxidative stress might contribute to ZnO NPs cytotoxicity.

  7. miR-634 Activates the Mitochondrial Apoptosis Pathway and Enhances Chemotherapy-Induced Cytotoxicity.

    PubMed

    Fujiwara, Naoto; Inoue, Jun; Kawano, Tatsuyuki; Tanimoto, Kousuke; Kozaki, Ken-Ichi; Inazawa, Johji

    2015-09-15

    Some tumor-suppressing miRNAs target multiple oncogenes concurrently and therefore may be useful as cancer therapeutic agents. Further, such miRNAs may be useful to address chemotherapeutic resistance in cancer, which remains a primary clinical challenge in need of solutions. Thus, cytoprotective processes upregulated in cancer cells that are resistant to chemotherapy are a logical target for investigation. Here, we report that overexpression of miR-634 activates the mitochondrial apoptotic pathway by direct concurrent targeting of genes associated with mitochondrial homeostasis, antiapoptosis, antioxidant ability, and autophagy. In particular, we show how enforced expression of miR-634 enhanced chemotherapy-induced cytotoxicity in a model of esophageal squamous cell carcinoma, where resistance to chemotherapy remains clinically problematic. Our findings illustrate how reversing miR-634-mediated cytoprotective processes may offer a broadly useful approach to improving cancer therapy. PMID:26216549

  8. Nanoparticles induce raft formation in phospholipid liposomes

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zhang, Liangfang; Granick, Steve

    2007-03-01

    Motivated by general interests in endocytosis, virus transfection and utilization of nanoparticles as cargo for drug delivery, this study focuses on the binding of nanoparticles to model lipid bilayers and the interactions between them. Exploring not only on the ensemble level, with the help of calorimetry, but also on the single-molecule level using fluorescence probes and single-molecule detection, we conclude the following. First, adsorbates capture and slave dynamically the lipids underneath, which results in lipid packing fluctuations, thereby producing rafts in the bilayers. Second, competition between neighboring particles causes further recomposition of heterogeneous lipid distribution. Bearing this insight in mind, we expect coupled motions of lipid and nanoparticles to occur, and confirm this with direct measurements. Going further, collective responses of lipid molecules cast light on the crucial role of support membranes in determining how membrane-based sensors respond to an external stimulus.

  9. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ?1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  10. Maackia amurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells.

    PubMed

    Chhetra Lalli, Rakhee; Kaur, Kiranjeet; Dadsena, Shashank; Chakraborti, Anuradha; Srinivasan, Radhika; Ghosh, Sujata

    2015-08-01

    Maackia amurensis agglutinin (MAA) is gaining recognition as the potential diagnostic agent for cancer. Previous studies from our laboratory have demonstrated that this lectin could interact specifically with the cells and biopsy samples of non-small cell lung cancer (NSCLC) origin but not with normal lung fibroblast cells. Moreover, this lectin was also found to induce apoptosis in NSCLC cells. Further, the biological activity of this lectin was shown to survive gastrointestinal proteolysis and inhibit malignant cell growth and tumorigenesis in mice model of melanoma thereby indicating the therapeutic potential of this lectin. Paclitaxel is one of the widely used traditional chemotherapeutic drugs for treatment of NSCLC but it exerts side-effects on normal healthy cells too. Studies have revealed that lectins have potential to act as an adjuvant chemotherapeutic agent in cancer of different origin. Thus, in the present study, an attempt was made to assess the chemo-adjuvant role of MAA in three types of NSCLC cell lines [adenocarcinoma cell line (A549), squamous cell carcinoma cell line (NCI-H520) and large cell carcinoma cell line (NCI-H460)]. We have observed that the non-cytotoxic concentration of this lectin was able to enhance the cytotoxic activity of Paclitaxel even at low dose by inducing apoptosis through intrinsic/mitochondrial pathway in all the three types of NSCLC cell lines, although the involvement of extrinsic pathway of apoptosis in case of NCI-H460 cell line could not be ruled out. Further, this lectin was also found to augment the chemo-preventive activity of this drug by arresting cells in G2-M phase of the cell cycle. Collectively, our results have suggested that Maackia amurensis agglutinin may have the potential to be used as adjuvant chemotherapeutic agent in case of NSCLC. PMID:25978938

  11. Cytotoxic?based assays in delayed drug hypersensitivity reactions induced by antiepileptic drugs.

    PubMed

    Por?bski, Grzegorz; Czarnobilska, Ewa; Bosak, Magdalena

    2015-11-27

    Introduction Cytotoxic mechanisms are present in the majority of delayed drug hypersensitivity reactions, but are not used as a diagnostic tool. Objectives The aim of the study was to compare cytotoxic?based assays with a proliferation assay and drug patch tests in patients with maculopapular eruptions induced by antiepileptic drugs. Patient s and methods Peripheral blood mononuclear cells of 23 patients and 24 controls exposed to the drugs were cultured under defined conditions. A drug?specific response was assessed by measuring granzyme B (GrB) release with an enzyme?linked immunospot assay, intracellular expression of granulysin (Grl) in CD3-NKp46+ cells with flow cytometry, perforin concentrations in cell culture supernatants with an enzyme?linked immunosorbent assay, and using the lymphocyte proliferation test. Patch tests with culprit drugs were done in all patients. Result s Lymphocyte proliferation, GrB release, and Grl expression were significantly higher in patients than in controls, while perforin concentrations were not elevated. The sensitivities were 30.4%, 55%, 39.1%, and 17.4% for proliferation, GrB, Grl, and perforin?based assays, respectively. A significantly higher rate of positive results was observed when assays were done within 2 years after a drug?induced reaction. The specificities of all assays remained in the range of 95.8% to 100%. The results of patch tests were positive only in 3 patients (sensitivity, 14.3%) and negative in all controls. Conclusions In vitro assays based on the detection of Grl, and in particular of GrB, are superior to routine diagnostic tests in patients with hypersensitivity to antiepileptic drugs. They can detect a low?level response that might be overlooked by standard techniques. In the remission phase, drug?specific cells are more easily detectable directly in the circulation than in the skin. PMID:26445768

  12. D-Glucose-Induced Cytotoxic, Genotoxic, and Apoptotic Effects on Human Breast Adenocarcinoma (MCF-7) Cells

    PubMed Central

    Tchounwou, Christine K; Yedjou, Clement G; Farah, Ibrahim; Tchounwou, Paul B

    2014-01-01

    Introduction Glucose is a simple sugar that plays an important role in energy production in biological systems. However, it has been linked to many long-term health problems including the risk of heart disease and stroke, erectile dysfunction in men and pregnancy complications in women, and damage to the kidneys, nerves, eye and vision. Also, the underlying mechanisms of diabetic complications are poorly understood. Methods In the present study, D-glucose-induced cytotoxic, genotoxic, and apoptotic effects were studied using MCF-7 cells as an in vitro test model. Cell viability was determined by MTT assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet) assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay). Results The results of MTT assay indicated that D-glucose significantly reduces the viability of MCF-7 cells in a dose and time-dependent manner. Similar trend was obtained with the trypan blue exclusion test. Data obtained from the Comet assay indicated that D-glucose causes DNA damage in MCF-7 cells in a dose-dependent manner. The flow cytometry assessment (Annexin V FITC/PI) showed a strong dose-response relationship between D-glucose exposure and annexin V positive MCF-7 cells undergoing early apoptosis. Conclusion Taking together, these data provide clear evidence that D-glucose induces cytotoxic, genotoxic, and apoptotic effects on MCF-7 cells. This finding represents the basis for further studies addressing the pathophysiological mechanisms of action of glucose overdose. PMID:25506409

  13. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells

    PubMed Central

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment. PMID:26609475

  14. Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Kathy C; Seligy, Vern L

    2013-01-01

    This study examines dose effects of cadmium telluride quantum dots (CdTe-QDs) from two commercial sources on model macrophages (J774A.1) and colonic epithelial cells (HT29). Effects on cellular immune signalling responses were measured following sequential exposure to QDs and Pseudomonas aeruginosa strain PA01. At CdTe-QD concentrations between 10-2 and 10 g/ml, cells exhibited changes in metabolism and morphology. Confocal imaging revealed QD internalisation and changes in cellcell contacts, shapes and internal organisations. QD doses below 10-2 g/ml caused no observed effects. When QD exposures at 10-7 to 10-3 g/ml preceded PA01 (107 bacteria/ml) challenges, there were elevated cytotoxicity (522%, p < 0.05) and reduced levels (two- to fivefold, p < 0.001) of nitric oxide (NO), TNF-?, KC/CXC?1 and IL-8, compared with PA01 exposures alone. These results demonstrate that exposures to sub-toxic levels of CdTe-QDs can depress cell immune-defence functions, which if occurred in vivo would likely interfere with normal neutrophil recruitment for defence against bacteria. PMID:22264036

  15. The significance of nanoparticles in particle-induced pulmonary fibrosis

    PubMed Central

    Byrne, James D; Baugh, John A

    2008-01-01

    Exposure to airborne nanoparticles contributes to many chronic pulmonary diseases. Nanoparticles, classified as anthropogenic and natural particles, and fibers of diameters less than 100 nm, have unrestricted access to most areas of the lung due to their size. Size relates to the deposition efficiency of the particle, with particles in the nano-range having the highest efficiencies. The deposition of nanoparticles in the lung can lead to chronic inflammation, epithelial injury, and further to pulmonary fibrosis. Cases of particle-induced pulmonary fibrosis, namely pneumoconiosis, are mostly occupationally influenced, and continue to be documented around the world. The tremendous growth of nanotechnology, however, has spurred fears of increased rates of pulmonary diseases, especially fibrosis. The severity of toxicological consequences warrants further examination of the effects of nanoparticles in humans, possible treatments and increased regulatory measures. PMID:18523535

  16. Nanoparticle Generation During Laser Ablation and Laser-Induced Liquefaction

    NASA Astrophysics Data System (ADS)

    Haustrup, N.; O'Connor, G. M.

    Recently short-pulse laser sources have been investigated as a potential method for nanoparticle synthesis. Deposited aluminium, nickel and gold nanoparticles generated during nano- and femto-second laser ablation were analyzed using SEM and AFM. As the environment in which laser ablation takes place is known to influence the size of generated nanoparticles, a novel gas ambient that generates a transient liquid phase was investigated. This ambient offers favorable properties to overcome some issues typically encountered with ablation in gases or liquids alone. The Laser-Induced Liquefaction (LIL) process most notably lead to a reduced mean radius of aluminium nanoparticles from 36.8 nm in air to 12.7 nm.

  17. Nanoparticle-Mediated, Light-Induced Phase Separations.

    PubMed

    Neumann, Oara; Neumann, Albert D; Silva, Edgar; Ayala-Orozco, Ciceron; Tian, Shu; Nordlander, Peter; Halas, Naomi J

    2015-12-01

    Nanoparticles that both absorb and scatter light, when dispersed in a liquid, absorb optical energy and heat a reduced fluid volume due to the combination of multiple scattering and optical absorption. This can induce a localized liquid-vapor phase change within the reduced volume without the requirement of heating the entire fluid. For binary liquid mixtures, this process results in vaporization of the more volatile component of the mixture. When subsequently condensed, these two steps of vaporization and condensation constitute a distillation process mediated by nanoparticles and driven by optical illumination. Because it does not require the heating of a large volume of fluid, this process requires substantially less energy than traditional distillation using thermal sources. We investigated nanoparticle-mediated, light-induced distillation of ethanol-H2O and 1-propanol-H2O mixtures, using Au-SiO2 nanoshells as the absorber-scatterer nanoparticle and nanoparticle-resonant laser irradiation to drive the process. For ethanol-H2O mixtures, the mole fraction of ethanol obtained in the light-induced process is substantially higher than that obtained by conventional thermal distillation, essentially removing the ethanol-H2O azeotrope that limits conventional distillation. In contrast, for 1-propanol-H2O mixtures the distillate properties resulting from light-induced distillation were very similar to those obtained by thermal distillation. In the 1-propanol-H2O system, a nanoparticle-mediated, light-induced liquid-liquid phase separation was also observed. PMID:26535465

  18. Deoxynivalenol-induced cytotoxicity, cytokines and related genes in unstimulated or lipopolysaccharide stimulated primary porcine macrophages.

    PubMed

    Dll, Susanne; Schrickx, Jan A; Dnicke, Sven; Fink-Gremmels, Johanna

    2009-01-30

    The cytotoxicity of deoxynivalenol (DON) as well as the induction of cytokines and related genes was investigated in porcine pulmonary alveolar macrophages (PAM) in absence or presence of lipopolysaccharides (LPS). IC(20) values were 1.1, 0.4 and 1.0microM DON in the MTT, neutral red and alamar blue assay, respectively, and did not differ significantly in the presence of LPS. The mRNA expression of tumour necrosis factor (TNF)-alpha peaked at 3h, whereas LPS and DON showed synergistic effects resulting in an approximately 20-fold increase at 500nM DON as compared to untreated controls. The supernatant concentrations of TNF-alpha showed similar synergistic effects. The expression of interleukin (IL)-1beta was significantly induced by DON (except for 12h) and LPS. An induction of the mRNA expression of IL-6 by DON was evident only at 3h, whereas the supernatant concentrations of LPS stimulated PAM incubated with 500nM DON were significantly decreased at most time points. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression did not seem to contribute to the effects of DON in porcine macrophages. The results of the present investigation suggest a contribution of cytokines, especially TNF-alpha and IL-1beta, induced by DON in porcine macrophages to the effects observed in vivo. PMID:19027837

  19. Curcumin inhibits PhIP induced cytotoxicity in breast epithelial cells through multiple molecular targets.

    PubMed

    Jain, Ashok; Samykutty, Abhilash; Jackson, Carissa; Browning, Darren; Bollag, Wendy B; Thangaraju, Muthusamy; Takahashi, Satoru; Singh, Shree Ram

    2015-08-28

    Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), found in cooked meat, is a known food carcinogen that causes several types of cancer, including breast cancer, as PhIP metabolites produce DNA adduct and DNA strand breaks. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity. To date, no study has examined the interaction of PhIP with curcumin in breast epithelial cells. The present study demonstrates the mechanisms by which curcumin inhibits PhIP-induced cytotoxicity in normal breast epithelial cells (MCF-10A). Curcumin significantly inhibited PhIP-induced DNA adduct formation and DNA double stand breaks with a concomitant decrease in reactive oxygen species (ROS) production. The expression of Nrf2, FOXO targets; DNA repair genes BRCA-1, H2AFX and PARP-1; and tumor suppressor P16 was studied to evaluate the influence on these core signaling pathways. PhIP induced the expression of various antioxidant and DNA repair genes. However, co-treatment with curcumin inhibited this expression. PhIP suppressed the expression of the tumor suppressor P16 gene, whereas curcumin co-treatment increased its expression. Caspase-3 and -9 were slightly suppressed by curcumin with a consequent inhibition of cell death. These results suggest that curcumin appears to be an effective anti-PhIP food additive likely acting through multiple molecular targets. PMID:26004342

  20. RTP801 regulates maneb- and mancozeb-induced cytotoxicity via NF-?B.

    PubMed

    Cheng, Shu-Yuan; Oh, Seon; Velasco, Marcela; Ta, Christine; Montalvo, Jessica; Calderone, Alyssa

    2014-07-01

    Environmental factors have been implicated in the pathogenesis of neurodegenerative diseases. Maneb (MB) and mancozeb (MZ) have been extensively used as pesticides. Exposure to MB lowers the threshold for dopaminergic damage triggered by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. MB and MZ potentiate 1-methyl-4-phenylpyridium (MPP(+))-induced cytotoxicity in rat pheochromocytoma (PC12) cells partially via nuclear factor kappa B (NF-?B) activation. RTP801 dramatically increased by oxidative stresses and DNA damage is the possible mechanism of neurotoxins-induced cell death in many studies. This study demonstrated that MB and MZ induced DNA damage as seen in comet assay. The expressions of RTP801 protein and mRNA were elevated after MB and MZ exposures. By knocking down RTP801 using shRNA, we demonstrated that NF-?B activation by MB and MZ was regulated by RTP801 and cell death triggered by MB and MZ was associated with RTP801 elevation. This revealed that the toxic mechanisms of dithiocarbamates are via the cross talk between RTP801 and NF-?B. PMID:24764117

  1. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC{sub 50}) test using WST-1 assay

    SciTech Connect

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-24

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  2. Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies.

    PubMed

    Ghasempour, Sarieh; Shokrgozar, Mohammad Ali; Ghasempour, Roghayeh; Alipour, Mohsen

    2015-10-01

    In recent years, iron oxide nanorods find a lot of applications including drug delivery, cell separation, hyperthermia and magnetic resonance imaging. In this study the cytotoxicity of iron oxide nanorods was evaluated based on mouse fibroblast cell behavior and wistar rat's liver and kidney function. At first for modification, nanorods were added to Dulbecco's modified Eagle's medium (DMEM) which contained a lot of sources of vitamins, amino acids, proteins in Fetal Bovine Serum (FBS). The MTT assay was employed for evaluating the toxic effects of 200 and 400 ?g/mL modified and non-modified iron oxide nanorods on L929 mouse fibroblast cells in a 24h period. Changes in cell granularity and size as well as cell cycle were investigated using flow cytometry. Moreover liver and kidney function test and serum iron level measurement were performed 24h after the injection of modified iron oxide nanorods via the tail peripheral vein of wistar rats. Results indicated that greater concentration of modified iron oxide nanorods had no significant effect on cell viability while greater concentration of non-modified iron oxide nanorods significantly decreased cell viability. Modified iron oxide nanorods did not have significant effects on cell cycle. The results of liver and kidney function tests did not differ significantly while a significant increase in serum iron level was observed. After H&E staining of slices, there were no changes on morphology of rat's kidney and liver cells. This study suggests that short-time use of 200 and 400 ?g/mL iron oxide nanorods are probably safe. Further studies are needed for investigation of toxic effects of different concentrations, coatings, and exposure time periods of iron oxide nanorods. PMID:26279467

  3. Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague.

    PubMed

    Zauberman, Ayelet; Tidhar, Avital; Levy, Yinon; Bar-Haim, Erez; Halperin, Gideon; Flashner, Yehuda; Cohen, Sara; Shafferman, Avigdor; Mamroud, Emanuelle

    2009-01-01

    An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica Oratio8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 10(7)-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD(50) of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature. PMID:19529770

  4. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts.

    PubMed

    Pérez-Díaz, M; Alvarado-Gomez, E; Magaña-Aquino, M; Sánchez-Sánchez, R; Velasquillo, C; Gonzalez, C; Ganem-Rondero, A; Martínez-Castañon, G; Zavala-Alonso, N; Martinez-Gutierrez, F

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and preventive strategies. PMID:26706536

  5. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A{sub 2}-induced degranulation in mast cells

    SciTech Connect

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of {beta}-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G{sub M1}), di-sialoganglioside (G{sub D1a}) and tri-sialoganglioside (G{sub T1b}). In contrast, honeybee venom-derived phospholipase A{sub 2} induced the net degranulation directly without cytotoxicity, which was not inhibited by G{sub M1}, G{sub D1a} and G{sub T1b}. For analysis of distribution of G{alpha}{sub q} and G{alpha}{sub i} protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of G{alpha}{sub q} and G{alpha}{sub i} at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A{sub 2}-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A{sub 2}-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  6. The effect of epidermal growth factor mouthwash on cytotoxic-induced oral ulceration. A phase I clinical trial.

    PubMed

    Girdler, N M; McGurk, M; Aqual, S; Prince, M

    1995-10-01

    A double-blind clinical trial was performed to study the effect of epidermal growth factor (EGF) mouthwash on the healing and recurrence of oral ulceration in 12 patients undergoing cancer chemotherapy. The oral distribution or cytotoxic-induced ulcers corresponded to the salivary gutters. There was no difference in the rate of healing of established ulcers between the experimental and placebo groups. However, there was a small delay in the onset and severity of recurrent ulceration. It was concluded that EGF mouthwash does not accelerate ulcer healing, but it may have the potential to protect the oral epithelium from cytotoxic damage. PMID:7572757

  7. Study on the visible-light-induced photokilling effect of nitrogen-doped TiO2 nanoparticles on cancer cells

    PubMed Central

    2011-01-01

    Nitrogen-doped TiO2 (N-TiO2) nanoparticles were prepared by calcining the anatase TiO2 nanoparticles under ammonia atmosphere. The N-TiO2 showed higher absorbance in the visible region than the pure TiO2. The cytotoxicity and visible-light-induced phototoxicity of the pure- and N-TiO2 were examined for three types of cancer cell lines. No significant cytotoxicity was detected. However, the visible-light-induced photokilling effects on cells were observed. The survival fraction of the cells decreased with the increased incubation concentration of the nanoparticles. The cancer cells incubated with N-TiO2 were killed more effectively than that with the pure TiO2. The reactive oxygen species was found to play an important role on the photokilling effect for cells. Furthermore, the intracellular distributions of N-TiO2 nanoparticles were examined by laser scanning confocal microscopy. The co-localization of N-TiO2 nanoparticles with nuclei or Golgi complexes was observed. The aberrant nuclear morphologies such as micronuclei were detected after the N-TiO2-treated cells were irradiated by the visible light. PMID:21711880

  8. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells. PMID:26121084

  9. Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonii.

    PubMed

    Rundle, Amanda; Robertson, Anne B; Blay, Alexandra M; Butler, Kathryn M A; Callaghan, Neal I; Dieni, Christopher A; MacCormack, Tyson J

    2016-01-01

    Metal oxide nanomaterials can cause oxidative, cardiorespiratory, and osmoregulatory stress in freshwater fish. In contrast, cerium oxide nanoparticles (nCeO2) can have antioxidant effects but their aquatic toxicity has not been fully characterized. Heart rate and heart rate variability were followed in white sucker (Catostomus commersonii) acutely exposed to 1.0mgL(-1) nCeO2 for 25h. Malondialdehyde (MDA) was measured to assess oxidative tissue damage, and plasma cortisol, glucose, lactate, and osmolality were assessed as indicators of physiological and osmoregulatory stress. There was no MDA accumulation in gill or heart of fish exposed to nCeO2 and heart function was unchanged over the 25h treatment. Plasma cortisol increased 6-fold but there was no change in plasma glucose or lactate. Cellular osmoregulatory toxicity was studied using an isolated red blood cell (RBC) model. In vitro exposure to 1.0mgL(-1) nCeO2 for 1h had no effect on cell morphological parameters and did not sensitize RBCs to hemolysis under hypotonic stress. Overall, there were no indications of oxidative, cardiorespiratory, or osmoregulatory stress following acute exposure to nCeO2. Elevated plasma cortisol levels suggest that nCeO2 may exert mild toxicity to tissues outside of the cardiorespiratory system. PMID:26743956

  10. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs. PMID:24835429

  11. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  12. Synergistic Cytotoxicity of Irinotecan and Cisplatin in Dual-Drug PSMA-Targeted Polymeric Nanoparticles

    PubMed Central

    Valencia, Pedro M.; Pridgen, Eric M.; Perea, Brian; Gadde, Suresh; Sweeney, Christopher; Kantoff, Philip W.; Lippard, Stephen J.; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C.

    2013-01-01

    Aim Two unexplored aspects for irinotecan and cisplatin (I&C) combination chemotherapy are (1) actively targeting both drugs to a specific diseased cell type and (2) delivering both drugs on the same vehicle to ensure their synchronized entry into the cell at a well-defined ratio. In this work we report the use of targeted polymeric nanoparticles (NPs) to co-encapsulate and deliver I&C to cancer cells expressing the Prostate Specific Membrane Antigen (PSMA). Method We prepared targeted NPs in a single-step by mixing four different precursors inside microfluidic devices. Results I&C were encapsulated in 55-nm NPs and showed an 8-fold increase in internalization by PSMA-expressing LNCaP cells compared to non-targeted NPs. NPs co-encapsulating both drugs exhibited strong synergism in LNCaP cells with a combination index of 0.2. Conclusion The strategy of co-encapsulating both irinotecan and cisplatin in a single NP targeted to a specific cell type could potentially be used to treat different types of cancer. PMID:23075285

  13. Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines

    NASA Astrophysics Data System (ADS)

    Lozano, T.; Rey, M.; Rojas, E.; Moya, S.; Fleddermann, J.; Estrela-Lopis, I.; Donath, E.; Wang, B.; Mao, Z.; Gao, C.; Gonzlez-Fernndez, frica

    2011-07-01

    Metallic and metal oxide nanoparticles (Nps) have a wide range of applications in various settings including household, cosmetics and chemical industries, as well as for coatings. Nevertheless, an in-depth study of the potential toxic effects of these Nps is still needed, in order to fulfill the mandatory requirement of ensuring the safety of workers, patients and the general public. In this study, Quick Cell colorimetric assays were used to evaluate the in vitro toxicity of different metal oxide Nps [Fe(II,III)Ox, TiOx, ZnO and CeO2] in several cell lines. The ZnO Nps were found to be highly toxic, with a lethal dose <=100 ?g/ml for all the cell lines studied. Western blot was also used to test the ability of the different Nps to activate the complement pathway. However, no activation of this cascade was observed when the Nps were added. In addition, the aggregation state and charge of the Nps in culture media was studied by dynamic light scattering (DLS) and measurement of zeta potential. Transmission Electron Microscopy was used to analyze Np uptake and localization at the cellular level.

  14. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis.

    PubMed

    Tian, Cheng-Lei; Wen, Qian; Fan, Ting-Jun

    2015-10-01

    Atropine is an anticholinergic drug for mydriasis in eye clinic, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of atropine to the cornea and its cellular and molecular mechanisms remain unknown. In this study, we investigated the cytotoxicity of atropine to corneal epithelium and its underlying mechanisms using an in vitro model of non-transfected human corneal epithelial (HCEP) cells. Our results showed that atropine, above the concentration of 0.3125g/l (1/32 of its therapeutic dosage in eye clinic), had a dose- and time-dependent toxicity to HCEP cells by inducing morphological abnormality, cytopathic effect, viability decline, and proliferation retardation. Moreover, the proliferation-retarding effect of atropine on the cells was achieved by inducing G1/S phase arrest and downregulation of E-cadherin and ?-catenin. Besides, atropine also had an apoptosis-inducing effect on the cells by inducing phosphatidylserine externalization, plasma membrane permeability elevation, DNA fragmentation and apoptotic body formation. Furthermore, atropine could also induce activations of caspase-2, -3 and -9, disruption of mitochondrial transmembrane potential, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor, implying a death receptor-mediated mitochondrion-dependent pathway is most probably involved in the apoptosis of HCEP cells induced by atropine. Taken together, our results suggest that atropine has remarkable cytotoxicity to HCEP cells by inducing cell cycle arrest and death receptor-mediated mitochondrion-dependent apoptosis. PMID:26296992

  15. Evaluation of Cytotoxicity and Cell Death Induced In Vitro by Saxitoxin in Mammalian Cells.

    PubMed

    Melegari, Silvia P; de Carvalho Pinto, Ctia R