Science.gov

Sample records for nanoparticles induced cytotoxicity

  1. Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells.

    PubMed

    Castiglioni, Sara; Cazzaniga, Alessandra; Perrotta, Cristiana; Maier, Jeanette A M

    2015-09-17

    Silver nanoparticles are toxic both in vitro and in vivo. We have investigated the possibility to exploit the cytotoxic potential of silver nanoparticles in T24 bladder carcinoma cells using both bare and PolyVinylPyrrolidone-coated silver nanoparticles. We show that the two types of silver nanoparticles promote morphological changes and cytoskeletal disorganization, are cytotoxic and induce cell death. These effects are due to the increased production of reactive oxygen species which are responsible, at least in part, for the sustained activation of ERK1/2. Indeed, both cytotoxicity and ERK1/2 activation are prevented by exposing the cells to the anti-oxidant N-acetylcysteine. Also blocking the ERK1/2 pathway with the MEK inhibitor PD98059 protects the cells from nanoparticles' cytotoxicity. Our findings suggest that ERK activation plays a role in silver nanoparticle-mediated cytotoxicity in T24 cells. PMID:26149761

  2. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells

    SciTech Connect

    De Berardis, Barbara; Civitelli, Gabriele; Condello, Maria; Lista, Pasquale; Pozzi, Roberta; Arancia, Giuseppe; Meschini, Stefania

    2010-08-01

    Engineered nanoparticles offer great promise in many industrial and biomedical applications, however little information is available about gastrointestinal toxicity. The purpose of this study was to assess the cytotoxicity, oxidative stress, apoptosis and proinflammatory mediator release induced by ZnO nanoparticles on human colon carcinoma LoVo cells. The biological activity of these particles was related to their physico-chemical characteristics. The physico-chemical characteristics were evaluated by analytical electron microscopy. The cytotoxicity was determined by growth curves and water-soluble tetrazolium assay. The reactive oxygen species production, cellular glutathione content, changes of mitochondrial membrane potential and apoptosis cell death were quantified by flow cytometry. The inflammatory cytokines were evaluated by enzyme-linked immunoadsorbent assay. Treatment with ZnO (5 {mu}g/cm{sup 2} corresponding to 11.5 {mu}g/ml) for 24 h induced on LoVo cells a significant decrease of cell viability, H{sub 2}O{sub 2}/OH{center_dot} increase, O2{sup -{center_dot}} and GSH decrease, depolarization of inner mitochondrial membranes, apoptosis and IL-8 release. Higher doses induced about 98% of cytotoxicity already after 24 h of treatment. The experimental data show that oxidative stress may be a key route in inducing the cytotoxicity of ZnO nanoparticles in colon carcinoma cells. Moreover, the study of the relationship between toxicological effects and physico-chemical characteristics of particles suggests that surface area does not play a primary role in the cytotoxicity.

  3. Silver nanoparticles increase cytotoxicity induced by intermediate frequency low voltages.

    PubMed

    Yadegari-Dehkordi, Sajedeh; Sadeghi, Hamid Reza; Attaran-Kakhki, Neda; Shokouhi, Mahin; Sazgarnia, Ameneh

    2015-12-01

    Electrical properties of the cells play a key role in biological processes. Intermediate frequencies of electrical fields influence the cells proliferation without heat generation and electrical stimulation. Silver nanoparticle (SNP) as a metallic agent can change the electrical characteristics of the cells. We study the effect of low voltages at an intermediate frequency (300 kHz) on a human breast adenocarcinoma cell line (MCF7) in the presence of SNPs. At first, cell toxicity of SNPs was determined at different concentrations. Then three different voltages were applied to the cells for 15?min, both in the presence and absence of SNPs. The treatments efficiency was evaluated by MTT assay. The results showed that the intermediate frequency-low voltages with SNPs not only provide an additive efficacy on cytotoxicity, but also a synergism was observed between these factors. By increasing the voltage from 3 to 9?V, a rising synergistic rate was observed. It seems that the synergistic effect between SNPs and the 300?kHz low voltages can inhibit cell proliferation and/or increases cell death of MCF-7, and hence increases treatment efficiency of SNPs, effectively. PMID:24901460

  4. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    PubMed Central

    2011-01-01

    Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS) usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial) and HK-2 (epithelial proximal) cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-?b was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential. PMID:21371295

  5. Copper Oxide Nanoparticles Induce Oxidative Stress and Cytotoxicity in Airway Epithelial Cells

    PubMed Central

    Fahmy, Baher; Cormier, Stephania A.

    2009-01-01

    Metal oxide nanoparticles are often used as industrial catalysts and elevated levels of these particles have been clearly demonstrated at sites surrounding factories. To date, limited toxicity data on metal oxide nanoparticles are available. To understand the impact of these airborne pollutants on the respiratory system, airway epithelial (HEp-2) cells were exposed to increasing doses of silicon oxide (SiO2), ferric oxide (Fe2O3) and copper oxide (CuO) nanoparticles, the leading metal oxides found in ambient air surrounding factories. CuO induced the greatest amount of cytotoxicity in a dose dependent manner; while even high doses (400 µg/cm2) of SiO2 and Fe2O3 were non-toxic to HEp-2 cells. Although all metal oxide nanoparticles were able to generate ROS in HEp-2 cells, CuO was better able to overwhelm antioxidant defenses (e.g. catalase and glutathione reductase). A significant increase in the level of 8-isoprostanes and in the ratio of GSSG to total glutathione in cells exposed to CuO suggested that ROS generated by CuO induced oxidative stress in HEp-2 cells. Co-treatment of cells with CuO and the antioxidant resveratrol increased cell viability suggesting that oxidative stress may be the cause of the cytotoxic effect of CuO. These studies demonstrated that there is a high degree of variability in the cytotoxic effects of metal oxides, that this variability is not due to the solubility of the transition metal, and that this variability appears to involve sustained oxidative stress possibly due to redox cycling. PMID:19699289

  6. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24?h. The cells started to detach and appear spherical at 6?h followed by loss of cellular contents resulting in the shrinking of the cells. At 24?h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. PMID:25875951

  7. A dual role of transient receptor potential melastatin 2 channel in cytotoxicity induced by silica nanoparticles

    PubMed Central

    Yu, Peilin; Li, Jin; Jiang, Jialin; Zhao, Zunquan; Hui, Zhaoyuan; Zhang, Jun; Zheng, Yifan; Ling, Daishun; Wang, Lie; Jiang, Lin-Hua; Luo, Jianhong; Zhu, Xinqiang; Yang, Wei

    2015-01-01

    Silica nanoparticles (NPs) have remarkable applications. However, accumulating evidence suggests NPs can cause cellular toxicity by inducing ROS production and increasing intracellular Ca2+ ([Ca2+]i), but the underlying molecular mechanism is largely unknown. Transient receptor potential melastatin 2 (TRPM2) channel is known to be a cellular redox potential sensor that provides an important pathway for increasing the [Ca2+]i under oxidative stress. In this study, we examined the role of TRPM2 channel in silica NPs-induced oxidative stress and cell death. By quantitation of cell viability, ROS production, [Ca2+]i, and protein identification, we showed that TRPM2 channel is required for ROS production and Ca2+ increase induced by silica NPs through regulating NADPH oxidase activity in HEK293 cells. Strikingly, HEK293 cells expressing low levels of TRPM2 were more susceptible to silica NPs than those expressing high levels of TRPM2. Macrophages from young mice showed significantly lower TRPM2 expression than those from senescent mice and had significantly lower viability after silica NPs exposure than those from senescent ones. Taken together, these findings demonstrate for the first time that TRPM2 channel acts as an oxidative stress sensor that plays a dual role in silica NPs-induced cytotoxicity by differentially regulating the NADPH oxidase activity and ROS generation. PMID:26656285

  8. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-07-01

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials. Electronic supplementary information (ESI) available: Nano-TiO2 characterization; changes in nucleus morphology; apoptosis assay; variations in Ca2+; schematic of the experiment to simulate ion exchange; TEM images; ion concentration change after being filtered through the nano-deposition films; theoretical simulation methods; ROS generation; intercellular communication; the movie shows the process of Na+ in the films. See DOI: 10.1039/c5nr03269e

  9. Real-time cell-microelectronic sensing of nanoparticle-induced cytotoxic effects.

    PubMed

    Moe, Birget; Gabos, Stephan; Li, Xing-Fang

    2013-07-30

    We report a real-time cell analysis (RTCA) sensing method of 96 electronic microwells for profiling the cytotoxicity of nanoparticles on different cell lines. The method consists of 96 microwells embedded with microelectrodes (96x E-plate) to measure impedance changes of adherent cell lines. When the testing cells change in population, adhesion, and/or morphology, the impedance at the cell-electrode interface changes to provide real-time monitoring of overall cell status. To demonstrate this technique, we used three cell lines as sensing probes: two human lung carcinoma cell lines, A549 and SK-MES-1, and a normal mammalian cell line, CHO-K1. We tested two well-characterized nanoparticles: nano-titanium dioxide (nTiO2) and nano-silver (nAg). The three cell lines were separately seeded into 96x E-plates and treated with varying concentrations of nanoparticles (0.078-160 ?g mL(-1)). This method provides dynamic cell response profiles and temporal IC50 histograms, showing concentration-, time-, particle-, and cell-dependent cytotoxicity. The 24 h and 48 h IC50 values of nAg obtained using both the RTCA and the neutral red uptake (NRU) assays were in good agreement, validating the RTCA technique. The RTCA assay does not suffer interference from nTiO2, whereas the NRU assay cannot be used due to severe interference from nTiO2. A cytostatic response was observed in CHO-K1 cells after 24 h exposure to 40 ?g mL(-1) nTiO2, which was correlated with S-phase cell cycle arrest based on cell cycle analysis using flow cytometry. This suggests that the shapes of the response curves provide indicative information, directing further studies into the mode of action of the toxicant. Advantages of the RTCA technique over traditional colorimetric assays for screening the cytotoxicity of nanoparticles include minimizing interference, qualitative and quantitative cytotoxicity data, and the capability of real-time and high-throughput measurements. PMID:23856233

  10. The Protective Effect of Bafilomycin A1 Against Cobalt Nanoparticle-Induced Cytotoxicity and Aseptic Inflammation in Macrophages In Vitro.

    PubMed

    Wang, Songhua; Liu, Fan; Zeng, Zhaoxun; Yang, Huilin; Jiang, Haitao

    2016-01-01

    Co ions released due to corrosion of Co nanoparticles (CoNPs) in the lysosomes of macrophages may be a factor in the particle-induced cytotoxicity and aseptic inflammation accompanying metal-on-metal (MOM) hip prosthesis failure. Here, we show that CoNPs are easily dissolved under a low pH, simulating the acidic lysosomal environment. We then used bafilomycin A1 to change the pH inside the lysosome to inhibit intracellular corrosion of CoNPs and then investigated its protective effects against CoNP-induced cytotoxicity and aseptic inflammation on murine macrophage RAW264.7 cells. XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} assays revealed that bafilomycin A1 can significantly decrease CoNP-induced cytotoxicity in RAW264.7 cells. Enzyme-linked immunosorbent assays showed that bafilomycin A1 can significantly decrease the subtoxic concentration of CoNP-induced levels of pro-inflammatory cytokines (tumor necrosis factor-?, interleukin-1?, and interleukin-6), but has no effect on anti-inflammatory cytokines (transforming growth factor-? and interleukin-10) in RAW264.7 cells. We studied the protective mechanism of bafilomycin A1 against CoNP-induced effects in RAW264.7 cells by measuring glutathione/oxidized glutathione (GSH/GSSG), superoxide dismutase, catalase, and glutathione peroxidase levels and employed scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer assays to observe the ultrastructural cellular changes. The changes associated with apoptosis were assessed by examining the pAKT and cleaved caspase-3 levels using Western blotting. These data strongly suggested that bafilomycin A1 can potentially suppress CoNP-induced cytotoxicity and aseptic inflammation by inhibiting intracellular corrosion of CoNPs and that the reduction in Co ions released from CoNPs may play an important role in downregulating oxidative stress in RAW264.7 cells. PMID:26054709

  11. Activation of Erk and p53 regulates copper oxide nanoparticle-induced cytotoxicity in keratinocytes and fibroblasts

    PubMed Central

    Luo, Cheng; Li, Yan; Yang, Liang; Zheng, Yan; Long, Jiangang; Jia, Jinjing; Xiao, Shengxiang; Liu, Jiankang

    2014-01-01

    Copper oxide nanoparticles (CuONP) have attracted increasing attention due to their unique properties and have been extensively utilized in industrial and commercial applications. For example, their antimicrobial capability endows CuONP with applications in dressings and textiles against bacterial infections. Along with the wide applications, concerns about the possible effects of CuONP on humans are also increasing. It is crucial to evaluate the safety and impact of CuONP on humans, and especially the skin, prior to their practical application. The potential toxicity of CuONP to skin keratinocytes has been reported recently. However, the underlying mechanism of toxicity in skin cells has remained unclear. In the present work, we explored the possible mechanism of the cytotoxicity of CuONP in HaCaT human keratinocytes and mouse embryonic fibroblasts (MEF). CuONP exposure induced viability loss, migration inhibition, and G2/M phase cycle arrest in both cell types. CuONP significantly induced mitogen-activated protein kinase (extracellular signal-regulated kinase [Erk], p38, and c-Jun N-terminal kinase [JNK]) activation in dose- and time-dependent manners. U0126 (an inhibitor of Erk), but not SB 239063 (an inhibitor of p38) or SP600125 (an inhibitor of JNK), enhanced CuONP-induced viability loss. CuONP also induced decreases in p53 and p-p53 levels in both cell types. Cyclic pifithrin-?, an inhibitor of p53 transcriptional activity, enhanced CuONP-induced viability loss. Nutlin-3?, a p53 stabilizer, prevented CuONP-induced viability loss in HaCaT cells, but not in MEF cells, due to the inherent toxicity of nutlin-3? to MEF. Moreover, the experiments on primary keratinocytes are in accordance with the conclusions acquired from HaCaT and MEF cells. These data demonstrate that the activation of Erk and p53 plays an important role in CuONP-induced cytotoxicity, and agents that preserve Erk or p53 activation may prevent CuONP-induced cytotoxicity. PMID:25336953

  12. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.

    PubMed

    Sayes, Christie; Ivanov, Ivan

    2010-11-01

    With the increasing use of nanomaterials incorporated into consumer products, there is a need for developing approaches to establish "quantitative structure-activity relationships" (QSARs). These relationships could be used to predict various biological responses after exposure to nanomaterials for the purposes of risk analysis. This risk analysis is applicable to manufacturers of nanomaterials in an effort to determine potential hazards. Because metal oxide materials are some of the most widely applicable and studied nanoparticle types for incorporation into cosmetics, food packaging, and paints and coatings, we focused on comparing different approaches for establishing QSARs for this class of materials. Metal oxide nanoparticles are believed, by some, to cause alterations in cellular function due to their size and/or surface area. Others have said that these nanomaterials, because of the oxidized state of the metal, do not induce stress in biological tests systems. This controversy highlights the need to systematically develop structure-activity relationships (i.e., the relationship between physicochemical features to the cellular responses) and tools for predicting potential biological effects after a metal oxide nanomaterial exposure. Here, we attempt to identify a set of properties of two specific metal oxide nanomaterials-TiO(2) and ZnO-that could be used to characterize and predict the induced cellular membrane damage of immortalized human lung epithelial cells. We adopt a mathematical modeling approach that uses the engineered nanomaterial size characterized as a dry nanopowder and the nanomaterial behavior in ultrapure water, phosphate buffer, and cell culture media to predict nanomaterial-induced cellular membrane damage (via lactate dehydrogenase release). Results of these studies provide insights on how engineered nanomaterial features influence cellular responses and thereby outline possible approaches for developing and applying predictive computational models for biological responses caused by exposure to nanomaterials. PMID:20561263

  13. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  14. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity.

    PubMed

    Hashimoto, M; Sasaki, J I; Yamaguchi, S; Kawai, K; Kawakami, H; Iwasaki, Y; Imazato, S

    2015-08-01

    Nanoparticles (NPs) are currently the focus of considerable attention for dental applications; however, their biological effects have not been fully elucidated. The long-term, slow release of matrix metalloproteases (MMPs) digests collagen fibrils within resin-dentin bonds. Therefore, MMP inhibitors can prolong the durability of resin-dentin bonds. However, there have been few reports evaluating the combined effect of MMP inhibition and the cytotoxic effects of NPs for dentin bonding. The aim of this study was to evaluate MMP inhibition and cytotoxic responses to gold (AuNPs) and platinum nanoparticles (PtNPs) stabilized by polyvinylpyrrolidone (PVP) in cultured murine macrophages (RAW264) by using MMP inhibition assays, measuring cell viability and inflammatory responses (quantitative reverse transcription polymerase chain reaction [RT-qPCR]), and conducting a micromorphological analysis by fluorescence and transmission electron microscopy. Cultured RAW264 cells were exposed to metal NPs at various concentrations (1, 10, 100, and 400 µg/mL). AuNPs and PtNPs markedly inhibited MMP-8 and MMP-9 activity. Although PtNPs were cytotoxic at high concentrations (100 and 400 µg/mL), no cytotoxic effects were observed for AuNPs at any concentration. Transmission electron microscopy images showed a significant nonrandom intercellular distribution for AuNPs and PtNPs, which were mostly observed to be localized in lysosomes but not in the nucleus. RT-qPCR analysis demonstrated inflammatory responses were not induced in RAW264 cells by AuNPs or PtNPs. The cytotoxicity of nanoparticles might depend on the core metal composition and arise from a "Trojan horse" effect; thus, MMP inhibition could be attributed to the surface charge of PVP, which forms the outer coating of NPs. The negative charge of the surface coating of PVP binds to Zn(2+) from the active center of MMPs by chelate binding and results in MMP inhibition. In summary, AuNPs are attractive NPs that effectively inhibit MMP activity without cytotoxicity or inflammatory responses. PMID:26040283

  15. Laser-induced modifications of gold nanoparticles and their cytotoxic effect

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Shimaa; Saleh, Hazem; Abdelhamid, Mahmoud; Gohar, Adel; Youssef, Tareq

    2012-06-01

    As nanotechnology continues to develop, an assessment of nanoparticles' toxicity becomes very crucial for biomedical applications. The current study examines the deleterious effects of pre-irradiated gold nanoparticles (GNPs) solutions on primary rat kidney cells (PRKCs). Spectroscopic and transmission electron microscopic studies demonstrated that exposure of 15 nm GNPs in size to pulsed laser caused a reduction both in optical density and mean particle diameter. GNPs showed an aggregation when added to the cell culture medium (DMEM). This aggregation was markedly decreased upon adding serum to the medium. Under our experimental conditions, trypan blue and MTT assays revealed no significant changes in cell viability when PRKCs were incubated with non-irradiated GNPs over a period of 72 h and up to 4 nM GNPs concentration. On the contrary, when cells were incubated with irradiated GNPs a significant reduction in PRKCs viability was revealed.

  16. Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells.

    PubMed

    Gohulkumar, M; Gurushankar, K; Rajendra Prasad, N; Krishnakumar, N

    2014-08-01

    Silibinin (SIL) is a plant derived flavonoid isolated from the fruits and seeds of the milk thistle (Silybum marianum). Silibinin possesses a wide variety of biological applications including anticancer activities but poor aqueous solubility and poor bioavailability limit its potential and efficacy at the tumor sites. In the present study, silibinin was encapsulated in Eudragit® E (EE) nanoparticles in the presence of stabilizing agent polyvinyl alcohol (PVA) and its anticancer efficacy in oral carcinoma (KB) cells was studied. Silibinin loaded nanoparticles (SILNPs) were prepared by nanoprecipitation technique and characterized in terms of size distribution, morphology, surface charge, encapsulation efficiency and in vitro drug release. MTT assay revealed higher cytotoxic efficacy of SILNPs than free SIL in KB cells. Meanwhile, reactive oxygen species (ROS) determination revealed the significantly higher intracellular ROS levels in SILNPs treated cells compared to free SIL treated cells. Therefore, the differential cytotoxicity between SILNPs and SIL may be mediated by the discrepancy of intracellular ROS levels. Moreover, acridine orange (AO) and ethidium bromide (EB) dual staining and reduced mitochondrial membrane potential (MMP) confirmed the induction of apoptosis with nanoparticle treatment. Further, the extent of DNA damage (evaluated by comet assay) was significantly increased in SILNPs than free SIL in KB cells. Taken together, the present study suggests that silibinin-loaded nanoparticles can be used as an effective drug delivery system to produce a better chemopreventive response for the treatment of cancer. PMID:24907761

  17. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

    PubMed Central

    Shafagh, Maryam; Rahmani, Fatemeh; Delirezh, Norouz

    2015-01-01

    Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity was evaluated using cell viability, oxidative stress and apoptosis detection. In addition, the expression levels of P53, Caspase 3, Bcl-2, and Bax genes in K562 cells were studied by reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: CuO NPs exerted distinct effects on cell viability via selective killing of cancer cells in a dose-dependent manner while not impacting normal cells in MTT assay. The dose-dependent cytotoxicity of CuO NPs against K562 cells was shown through reactive oxygen species (ROS) generation. The CuO NPs induced apoptosis was confirmed through acridine orange and propidium iodide double staining. Tumor suppressor gene P53 was up regulated due to CuO NPs exposure, and increase in Bax/Bcl-2 ratio suggested mitochondria-mediated pathway is involved in CuO NPs induced apoptosis. We also observed that Caspase 3 gene expression remained unchanged up to 24 hr exposure. Conclusion: These molecular alterations provide an insight into CuO NPs-caused inhibition of growth, generation of ROS, and apoptotic death of K562 cells.

  18. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 ?g/mL with no significant differences of response in 5 and 10 ?g/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 ?g/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 ?g/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  19. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells.

    PubMed

    Wang, Yurong; Cui, Haiyan; Zhou, Jiaping; Li, Fengjuan; Wang, Jinju; Chen, Mianhua; Liu, Qingdai

    2015-04-01

    Concerns about the risk of titanium dioxide nanoparticles (TiO2 NPs) to human health and environment are gradually increasing due to their wide range of applications. In this study, cytotoxicity, DNA damage, and apoptosis induced by TiO2 NPs (5 nm) in A549 cells were investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed the time- and concentration-dependent cytotoxic effects of TiO2 NPs in a concentration range of 50 to 200 ?g/mL. A statistically significant (p?induced by TiO2 NPs at the above concentrations were observed by scanning electron micrographs. Flow cytometric analysis demonstrated that the cells treated with TiO2 NPs at concentrations of 100 and 200 ?g/mL showed a significant G2/M phase arrest and a significant increased proportion of apoptotic cells. TiO2 NPs also disrupted the mitochondrial membrane potential evaluated by rhodamine 123 staining. Further analysis by quantitative real-time PCR (qRT-PCR) indicated that the expression of caspase-3 and caspase-9 messenger RNA (mRNA) was increased significantly at the concentrations of 100 and 200 ?g/mL TiO2 NPs for 48 h. Taken together, these findings suggest that TiO2 NPs can inhibit A549 cell proliferation, cause DNA damage, and induce apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data provide strong evidence that TiO2 NPs can induce cytotoxicity, significant DNA damage, and apoptosis of A549 cells, suggesting that exposure to TiO2 NPs could cause cell injury and be hazardous to health. PMID:25339530

  20. The cytotoxicity of gold nanoparticles is dispersity-dependent.

    PubMed

    Huang, Dengtong; Zhou, Hualu; Liu, Hanyu; Gao, Jinhao

    2015-11-01

    Nanoparticles are generally dispersed in electrolyte solutions for cell research. They may be aggregated and thus strongly influence the subsequent bio-effects. However, this has been often neglected in nanotoxicity research. In this paper, we selected gold nanoparticles as an example and investigated the role of dispersity in cytotoxicity. Our data indicated that the cytotoxicity of aggregated gold nanoparticles is significantly higher than well-dispersed ones. The dispersity-dependent cytotoxicity may be related to the increase of cellular endocytosis and reactive oxygen species. These results highlighted the importance of the dispersity of nanoparticles in nanotoxicity and nanobiotechnology fields. PMID:26291432

  1. Cytotoxicity of Phenol Red in Toxicity Assays for Carbon Nanoparticles

    PubMed Central

    Zhu, Ying; Zhang, Xiaoyong; Zhu, Jianhua; Zhao, Qunfen; Li, Yuguo; Li, Wenxin; Fan, Chunhai; Huang, Qing

    2012-01-01

    To explore the novel properties of carbon nanoparticles (CNPs) in nanotoxicity assays, the adsorption of phenol red (a pH indicator for culture medium) by multi-walled carbon nanotubes (MWNTs) and three kinds of carbon blacks (CBs) with nanosize, and its effects on cytotoxicity were studied. Results indicated that the phenol red adsorbed and delivered into cells by CBs was responsible for the toxicity to Hela cells in the medium without serum. The cellular uptake of phenol red was verified using 125I-labeling techniques. The size-dependent cytotoxicity of CBs was found to closely correlate to adsorption of phenol red, cellular uptake of phenol red-CB complexes and the amount of phenol red delivered into the cells by CBs. Although the CBs were either nontoxic or slightly toxic, as vehicles of phenol red, they played an essential role in the cytotoxicity induced by phenol red. However, MWNTs showed an intrinsic cytotoxicity independent of phenol red. The implications associated with these findings are discussed. PMID:23202901

  2. Source of cytotoxicity in a colloidal silver nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Kukut Hatipoglu, Manolya; Kele?temur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-01

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee-Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  3. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    PubMed

    Hatipoglu, Manolya Kukut; Kele?temur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity. PMID:25904404

  4. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials.

    PubMed

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M; Roberts, Jeffrey T

    2015-07-15

    The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled. PMID:25797930

  5. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells

    PubMed Central

    Lu, Xun; Qian, Jiangchao; Zhou, Huanjun; Gan, Qi; Tang, Wei; Lu, Jingxiong; Yuan, Yuan; Liu, Changsheng

    2011-01-01

    Background Silica nanoparticles have been discovered to exert cytotoxicity and induce apoptosis in normal human cells. However, until now, few studies have investigated the cytotoxicity of silica nanoparticles in tumor cells. Methods This study investigated the cytotoxicity of 7–50 nm silica nanoparticles in human HepG2 hepatoma cells, using normal human L-02 hepatocytes as a control. Cell nucleus morphology changes, cellular uptake, and expression of procaspase-9, p53, Bcl-2, and Bax, as well as the activity of caspase-3, and intracellular reactive oxygen species and glutathione levels in the silica nanoparticle-treated cells, were analyzed. Results The antitumor activity of the silica nanoparticles was closely related to particle size, and the antiproliferation activity decreased in the order of 20 nm > 7 nm > 50 nm. The silica nanoparticles were also cytotoxic in a dose- and time-dependent manner. However, the silica nanoparticles showed only slight toxicity in the L-02 control cells, Moreover, in HepG2 cells, oxidative stress and apoptosis were induced after exposure to 7–20 nm silica nanoparticles. Expression of p53 and caspase-3 increased, and expression of Bcl-2 and procaspase-9 decreased in a dose-dependent manner, whereas the expression of Bax was not significantly changed. Conclusion A mitochondrial-dependent pathway triggered by oxidative stress mediated by reactive oxygen species may be involved in apoptosis induced by silica nanoparticles, and hence cytotoxicity in human HepG2 hepatic cancer cells. PMID:21931484

  6. Unraveling the cytotoxic potential of Temozolomide loaded into PLGA nanoparticles

    PubMed Central

    2014-01-01

    Background Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells. Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry. Results PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility. Conclusion PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity. PMID:24410831

  7. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells

    PubMed Central

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J.; Hofmann, Marie-Claude

    2010-01-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO3) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro. PMID:16014736

  8. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00458b

  9. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    SciTech Connect

    Loh, Jing Wen; Saunders, Martin; Lim, Lee-Yong; School of Biomedical, Biomolecular and Chemical Sciences, 35 Stirling Hwy, Crawley 6009

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ? Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ? Cellular uptake of chitosan nanoparticles was observed. ? Chitosan nanoparticles inflicted extensive damage to the cell morphology. ? The transport of materials along the paracellular pathway was facilitated.

  10. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.

    PubMed

    Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Bhattacharyya, Soumya Sundar; Das, Durba; Khuda-Bukhsh, Anisur Rahman

    2013-01-01

    The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer. PMID:23010037

  11. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    PubMed

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-10-28

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications. PMID:26456245

  12. Synthesis, colloidal properties and cytotoxicity of biopolymer nanoparticles.

    PubMed

    Moorkoth, Dhanya; Nampoothiri, Kesavan Madhavan

    2014-11-01

    To characterize the physicochemical and biological stability of nanodevices suitable for biomedical applications, polylactic acid (PLA) nanoparticles (NPs) of 112?±?6 nm and polyhydroxy butyrate (PHB) of 15?±?5 nm size were prepared by standardizing the suitable method for each. Morphology of NPs was studied by scanning and transmission electron microscopy and temperature stability by thermogravimetric analysis. Their stability in biological fluids (simulated gastrointestinal and saliva) and tolerance against 0.5 mM NaCl were analyzed. PHB NPs remained stable in all fluids, while after 24 h treatment, the PLA NPs showed the beginning of disintegration with intestinal fluid mimic. In addition to the preparation of polyethylene glycol (PEG) surface-coated NPs, PLA-PEG-PLA triblock copolymer (MW???7,366 Da) was also chemically synthesized and characterized. Cytotoxicity of all forms of nanoparticles was tested by MTT assay and by annexin pi staining. PMID:25172058

  13. Cytotoxicity of ?-D-glucose coated silver nanoparticles on human lymphocytes

    NASA Astrophysics Data System (ADS)

    Vergallo, Cristian; Panzarini, Elisa; Izzo, Daniela; Carata, Elisabetta; Mariano, Stefania; Buccolieri, Alessandro; Serra, Antonio; Manno, Daniela; Dini, Luciana

    2014-06-01

    This study deals with the cytotoxicity of 30 nm sized ?-D-Glucose-coated silver NanoParticles (AgNPs-G) on human lymphocytes isolated from peripheral blood. Human lymphocytes were treated with different amounts (2 or 10×103 NPs/cell) of AgNPs-G for 24hs. AgNPs-G toxicity was assayed with MTT test and morphological observations. Further evaluation included: (i) ROS generation (NBT assay) and (ii) absorption/uptake of AgNPs-G by lymphocytes (GF-AAS). As a general result, AgNPs-G were absorbed/taken up by lymphocytes and cytotoxicity and morphology changes were amount and time-dependent. By incubating cells with the highest NPs amount, only 10% viable lymphocytes were found at the end of experimental time. Parallel to cytotoxicity, morphological modifications and ROS generation were induced, thus supporting the increasing cell deaths. Interestingly, the lower amount of AgNPs-G increased cell viability as the glucose did. Our findings suggest that AgNPs-G-induced cytotoxicity depends on NPs amount and provide evidence of AgNPs-G adsorption/entering by lymphocytes; however, the mechanisms of interaction/internalization needs to be further investigated.

  14. Diuron-induced rat bladder epithelial cytotoxicity.

    PubMed

    Da Rocha, Mitscheli S; Arnold, Lora L; Pennington, Karen L; Muirhead, David; Dodmane, Puttappa R; Anwar, Muhammad M; Battalora, Michael; De Camargo, João Lauro V; Cohen, Samuel M

    2012-12-01

    Diuron, a substituted urea herbicide, is carcinogenic to the rat urinary bladder at high dietary levels (2500 ppm). To further elucidate the mode of action, this study aimed to determine the time course and sequence of bladder cytotoxic and proliferative changes induced by diuron treatment of male Wistar rats. Rats were randomized into two groups (control and 2500 ppm diuron) and treated for 28 days. Ten rats from each group were terminated on each of study days 1, 3, 7, or 28. Scanning electron micro scopy (SEM) showed urothelial cell swelling beginning on day 1, and by day 28, showed extensive necrosis, exfoliation and piling up of cells suggestive of hyperplasia. No difference in the bromo deoxyuridine labeling index was detected. In a second experiment, rats were randomized into control and diuron-treated groups and treated for 7 days or 8 weeks. After 7 days, transmission electron microscopy showed cell degenerative changes and distention of the cytoplasm, organelles, and nuclei characteristic of cytolysis. This resulted in protrusion of the superficial cells into the lumen, corresponding to the cell swelling observed previously by SEM. After 8 weeks, bladders in the diuron-treated group showed an increased incidence of simple hyperplasia by light microscopy (6/10, p < 0.05) compared with controls (0/10) and a significantly different SEM classification. In summary, our results support the hypothesis that urothelial cytotoxicity followed by regenerative cell proliferation are the sequential key events that occur with high-dose diuron exposure in rats. PMID:22923491

  15. Cytotoxicity of glass ionomer cements containing silver nanoparticles

    PubMed Central

    Magalhães, Ana-Paula-Rodrigues; Pires, Wanessa-Carvalho; Pereira, Flávia-Castro; Silveira-Lacerda, Elisângela-Paula; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Souza-Costa, Carlos-Alberto; Lopes, Lawrence-Gonzaga; Estrela, Carlos

    2015-01-01

    Background Some studies have investigated the possibility of incorporating silver nanoparticles (NAg) into dental materials to improve their antibacterial properties. However, the potential toxic effect of this material on pulp cells should be investigated in order to avoid additional damage to the pulp tissue. This study evaluated the cytotoxicity of conventional and resin-modified glass ionomer cements (GIC) with and without addition of NAg. Material and Methods NAg were added to the materials at two different concentrations by weight: 0.1% and 0.2%. Specimens with standardized dimensions were prepared, immersed in 400 µL of culture medium and incubated at 37°C and 5% CO2 for 48 h to prepare GIC liquid extracts, which were then incubated in contact with cells for 48 h. Culture medium and 0.78% NAg solution were used as negative and positive controls, respectively. Cell viability was determined by MTT and Trypan Blue assays. ANOVA and the Tukey test (?=0.05) were used for statistical analyses. Results Both tests revealed a significant decrease in cell viability in all groups of resin modified cements (p<0.001). There were no statistically significant differences between groups with and without NAg (p>0.05). The differences in cell viability between any group of conventional GIC and the negative control were not statistically significant (p>0.05). Conclusions NAg did not affect the cytotoxicity of the GIC under evaluation. Key words:Glass ionomer cements, totoxicity, cell culture techniques, nanotechnology, metal nanoparticles. PMID:26644839

  16. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli

    SciTech Connect

    Auffan,M.; Achouak, W.; Rose, J.; Roncato, M.; Chaneac, C.; Waite, D.; Miasion, A.; Woicik, J.; Wiesner, M.; Bottero, J.

    2008-01-01

    Iron-based nanoparticles have been proposed for an increasing number of biomedical or environmental applications although in vitro toxicity has been observed. The aim of this study was to understand the relationship between the redox state of iron-based nanoparticles and their cytotoxicity toward a Gram-negative bacterium, Escherichia coli. While chemically stable nanoparticles ({gamma}Fe2O3) have no apparent cytotoxicity, nanoparticles containing ferrous and, particularly, zerovalent iron are cytotoxic. The cytotoxic effects appear to be associated principally with an oxidative stress as demonstrated using a mutant strain of E. coli completely devoid of superoxide dismutase activity. This stress can result from the generation of reactive oxygen species with the interplay of oxygen with reduced iron species (FeII and/or Fe0) or from the disturbance of the electronic and/or ionic transport chains due to the strong affinity of the nanoparticles for the cell membrane.

  17. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes.

    PubMed

    Periasamy, Vaiyapuri S; Athinarayanan, Jegan; Alfawaz, Mohammed A; Alshatwi, Ali A

    2016-02-01

    Carbon based nanomaterials, including carbon nanotubes, graphene, nanodiamond and carbon nanoparticles, have emerged as potential candidates for a wide variety of applications because of their unusual electrical, mechanical, thermal and optical properties. However, our understanding of how increased usage of carbon based nanomaterials could lead to harmful effects in humans and other biological systems is inadequate. Our present investigation is focused on the cellular toxicity of carbon nanoparticles (CNPs) on human mesenchymal stem cells (hMSCs). Following exposure to CNPs, cell viability, nuclear morphological changes, apoptosis and cell cycle progression were monitored. Furthermore, the expression of genes involved in both cell death (e.g., P53, TNF3, CDKN1A, TNFRSF1A, TNFSF10, NFKBIA, BCL2L1) and cell cycle regulation (e.g., PCNA, EGR1, E2F1, CCNG1, CCND1, CCNC, CYCD3) were assessed using qPCR. Our results indicated that CNPs reduce cell viability and cause chromatin condensation and DNA fragmentation. Cell cycle analysis indicated that CNPs affect the cell cycle progression. However, the gene expression measurements confirmed that CNPs significantly upregulated the P53, TNF3, CDKNIA, and NFKBIA genes and downregulated the EGR1 gene in hMSCs. Our findings suggest that CNPs reduce cell viability by disrupting the expression of cell death genes in human mesenchymal stem cell (hMSC). The results of this investigation revealed that CNPs exhibited moderate toxicity on hMSCs. PMID:26364217

  18. Vitamin E ameliorates iodine-induced cytotoxicity in thyroid.

    PubMed

    Yu, Jiashu; Shan, Zhongyan; Chong, Wei; Mao, Jinyuan; Geng, Yuxiu; Zhang, Caixia; Xing, Qian; Wang, Weiwei; Li, Ningna; Fan, Chenling; Wang, Hong; Zhang, Hongmei; Teng, Weiping

    2011-06-01

    Acute and excessive iodine supplementation leads to iodine-induced thyroid cytotoxicity. Excessive oxidative stress has been suggested to be one of the underlying mechanisms in the development of thyroid cytotoxicity. The aim of this study was to investigate whether vitamin E (VE), an important antioxidant, could ameliorate iodine-induced thyroid cytotoxicity. A goiter was induced in rats by feeding a low-iodine (LI) diet for 12 weeks. Involution of hyperplasia was obtained by administering a twofold physiological dose of iodine in feeding water with/without the supplementation of 25-, 50-, or 100-fold physiological dose of VE in the LI diet for 4 weeks. In iodine-supplemented rats, thyroid epithelial cell ultrastructure injuries remained and were more severe. Relative weights of iodine-induced involuting glands were significantly reduced compared with the goiter, but still higher than control. Immunohistochemistry indicated that the expression of 4-hydroxynonenal, 8-hydroxyguanine, peroxiredoxin 5, and CD68 in thyroid increased (P<0.01), whereas thioredoxin reductase 1 decreased (P<0.01). VE supplementation attenuated thyroid cytotoxicity induced by iodine. A 50-fold VE dose was optimal in attenuating twofold iodine-induced thyroid cytotoxicity. However, VE supplementation did not reduce the weight or relative weight of the iodine-induced involuting gland. These results show that excess iodine leads to thyroid damage and VE supplementation can partly ameliorate iodine-induced thyroid cytotoxicity. PMID:21406454

  19. A Role for Orexin in Cytotoxic Chemotherapy-Induced Fatigue

    PubMed Central

    Weymann, K. B.; Wood, L. J.; Zhu, X.; Marks, D. L.

    2014-01-01

    Fatigue is the most common symptom related to cytotoxic chemotherapeutic treatment of cancer. Peripheral inflammation associated with cytotoxic chemotherapy is likely a causal factor of fatigue. The neural mechanisms by which cytotoxic chemotherapy associated inflammation induces fatigue behavior are not known. This lack of knowledge hinders development of interventions to reduce or prevent this disabling symptom. Infection induced fatigue/lethargy in rodents is mediated by suppression of hypothalamic orexin activity. Orexin is critical for maintaining wakefulness and motivated behavior. Though there are differences between infection and cytotoxic chemotherapy in some symptoms, both induce peripheral inflammation and fatigue. Based on these similarities we hypothesized that cytotoxic chemotherapy induces fatigue by disrupting orexin neuron activity. We found that a single dose of a cytotoxic chemotherapy cocktail (cyclophosphamide, adriamycin, 5-fluorouracil—CAF) induced fatigue/lethargy in mice and rats as evidenced by a significant decline in voluntary locomotor activity measured by telemetry. CAF induced inflammatory gene expression—IL-1R1 (p<0.001), IL-6 (p<0.01), TNF? (p<0.01), and MCP-1 (p<0.05) —in the rodent hypothalamus 6 to 24 hours after treatment during maximum fatigue/lethargy. CAF decreased orexin neuron activity as reflected by decreased nuclear cFos localization in orexin neurons 24 hours after treatment (p<0.05) and by decreased orexin-A in cerebrospinal fluid 16 hours after treatment (p<0.001). Most importantly, we found that central administration of1 ?g orexin-A restored activity in CAF-treated rats (p<0.05). These results demonstrate that cytotoxic chemotherapy induces hypothalamic inflammation and that suppression of hypothalamic orexin neuron activity has a causal role in cytotoxic chemotherapy-induced fatigue in rodents. PMID:24216337

  20. Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents.

    PubMed

    Zhou, Jing; Duan, Lei; Chen, Huaming; Ren, Xiaomei; Zhang, Zhang; Zhou, Fengtao; Liu, Jinsong; Pei, Duanqing; Ding, Ke

    2009-09-01

    2-Piperazinyl naphthoquinones (2) and 2-piperidinyl naphthoquinones (3) were designed and synthesized as new cytotoxic and apoptosis inducing agents by utilizing the anti-parasite drug atovaquone as lead compound. Several compounds displayed significantly improved cytotoxic activities against a panel of cancer cell lines than that of atovaquone. These compounds also induced apoptosis through activating pro-apoptotic caspases 9 and 3. PMID:19632833

  1. Cytotoxical products formation on the nanoparticles heated by the pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Kogan, Boris Ya.; Titov, Andrey A.; Rakitin, Victor Yu.; Kvacheva, Larisa D.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2006-02-01

    Cytotoxical effect of a pulsed laser irradiation in presence of nanoparticles of carbon black, sulphuretted carbon and fullerene-60 on death of human uterus nick cancer HeLa and mice lymphoma P 388 cells was studied in vitro. Bubbles formation as result of "microexplosions" of nanoparticles is one of possible mechanisms of this effect. Other possible mechanism is cytotoxical products formation in result of pyrolysis of nanoparticles and biomaterial which is adjoining. The cytotoxical effect of addition of a supernatant from the carbon nanoparticles suspensions irradiated by the pulsed laser was studied to test this assumption. Analysis using gas chromatograph determined that carbon monoxide is principal gaseous product of such laser pyrolysis. This is known as cytotoxical product. Efficiency of its formation is estimated.

  2. Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices

    PubMed Central

    Haberl, Nadine; Loza, Kateryna; Epple, Matthias; Kreyling, Wolfgang G; Rothen-Rutishauser, Barbara; Rehberg, Markus; Krombach, Fritz

    2014-01-01

    Summary Precision-cut lung slices (PCLS) are an established ex vivo alternative to in vivo experiments in pharmacotoxicology. The aim of this study was to evaluate the potential of PCLS as a tool in nanotoxicology studies. Silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticles as well as quartz particles were used because these materials have been previously shown in several in vitro and in vivo studies to induce a dose-dependent cytotoxic and inflammatory response. PCLS were exposed to three concentrations of 70 nm monodisperse polyvinylpyrrolidone (PVP)-coated Ag-NPs under submerged culture conditions in vitro. ZnO-NPs (NM110) served as ‘soluble’ and quartz particles (Min-U-Sil) as ‘non-soluble’ control particles. After 4 and 24 h, the cell viability and the release of proinflammatory cytokines was measured. In addition, multiphoton microscopy was employed to assess the localization of Ag-NPs in PCLS after 24 h of incubation. Exposure of PCLS to ZnO-NPs for 4 and 24 h resulted in a strong decrease in cell viability, while quartz particles had no cytotoxic effect. Moreover, only a slight cytotoxic response was detected by LDH release after incubation of PCLS with 20 or 30 µg/mL of Ag-NPs. Interestingly, none of the particles tested induced a proinflammatory response in PCLS. Finally, multiphoton microscopy revealed that the Ag-NP were predominantly localized at the cut surface and only to a much lower extent in the deeper layers of the PCLS. In summary, only ‘soluble’ ZnO-NPs elicited a strong cytotoxic response. Therefore, we suggest that the cytotoxic response in PCLS was caused by released Zn2+ ions rather than by the ZnO-NPs themselves. Moreover, Ag-NPs were predominantly localized at the cut surface of PCLS but not in deeper regions, indicating that the majority of the particles did not have the chance to interact with all cells present in the tissue slice. In conclusion, our findings suggest that PCLS may have some limitations when used for nanotoxicology studies. To strengthen this conclusion, however, other NP types and concentrations need to be tested in further studies. PMID:25671139

  3. An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Cimpan, M. R.; Mordal, T.; Schölermann, J.; Allouni, Z. E.; Pliquett, U.; Cimpan, E.

    2013-04-01

    Impedance-based assays can constitute a reliable alternative to the conventional methods used in nanotoxicology due to the important advantages of being label-free and monitoring the cells in real-time. In this study, the suitability of impedance-monitoring for the screening of nanoparticle (NP)-induced cytotoxicity was assessed. The effect of titanium dioxide (TiO2)-NPs on cellular proliferation, viability, spreading, and detachment from substrate was evaluated by continuous impedance-based measurements made with an xCELLigence system. Fibroblasts seeded in microelectrode-embedded E-plates were exposed to spherical anatase nano-TiO2 (5, 10, and 40 nm in diameter) for up to 120 h. An alternative excitation signal (20 mV control voltage amplitude) was applied at 10, 25, and 50 kHz to the microelectrodes in the E-plates. Cells attached to the electrode surfaces act as insulators and lead to an increase in impedance. For validating the impedance-method, Trypan Blue exclusion and ultrahigh resolution imaging (URI) were employed. The general trend observed was a decrease in impedance following exposure to TiO2-NPs. Impedance-based results were in most instances in accordance with those from the Trypan Blue exclusion and URI assays indicating that the impedance-based approach has merit. Further studies are needed to validate it as a high-throughput method for evaluating NPs' cytotoxicity.

  4. Cytotoxicity of TiO? nanoparticles and their detoxification in a freshwater system.

    PubMed

    Dalai, Swayamprava; Pakrashi, Sunandan; Joyce Nirmala, M; Chaudhri, Apoorvi; Chandrasekaran, N; Mandal, A B; Mukherjee, Amitava

    2013-08-15

    In the current study, two aspects concerning (i) the cytotoxicity potential of TiO? nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (?1 ?g/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO? NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration-sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects. PMID:23680676

  5. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli

    E-print Network

    Gini, Giuseppina

    to bacteria Escherichia coli Andrey A. Toropov a, , Alla P. Toropova a , Emilio Benfenati a , Giuseppina Gini Keywords: QSAR CORAL software Cytotoxicity to bacterium Escherichia coli Metal oxide nanoparticle a b s t r of cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of concentration for 50

  6. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 ?g/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  7. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55?nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51?eV for pure to 3.87?eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44??g/ml while for the Al-doped ZnO counterparts was 31??g/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  8. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55?nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51?eV for pure to 3.87?eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44??g/ml while for the Al-doped ZnO counterparts was 31??g/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  9. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55?nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51?eV for pure to 3.87?eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44??g/ml while for the Al-doped ZnO counterparts was 31??g/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  10. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    SciTech Connect

    Kang, Su Jin; Daegu Haany University, College of Oriental Medicine, Gyeongsan-si, Gyeongsangbuk-do 712-715 ; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung; The Catholic University of Korea, College of Pharmacy, 43-1 Yeokgok 2-dong, Bucheon, Gyeonggi-do 420-743

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ? Role of Nrf2 signaling in silver nanoparticle toxicity. ? Silver nanoparticle toxicity is increased by Nrf2 blockade. ? Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ? PI3K and p38MAPK cascades are involved in Nrf2/HO-1 induction.

  11. Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat.

    PubMed

    Meena, Ramovatar; Kajal, Kumari; R, Paulraj

    2015-01-01

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use in consumer products and medicines; also, the potential effects on reproduction and fertility are relevant for this risk evaluation. In the present study, we examined the effects of intravenously injected titanium dioxide nanoparticles (TiO2-NPs; 21 nm), with special emphasis on reproductive system. Antioxidant enzymes such as catalase, glutathione peroxidase, and superoxide dismutase showed a significant decrease, while significant increase in lipid peroxidase was observed. Our results confirmed the bioaccumulation of TiO2-NPs in testicular cells. In TiO2-NPs-treated animals, various functional and pathological disorders, such as reduced sperm count, increase in caspase-3 (a biomarker of apoptosis), creatine kinase activity, DNA damage, and cell apoptosis were observed. Moreover, the testosterone activity was decreased significantly in a dose-dependent manner in the animals treated with TiO2-NPs as compared with control group animals. It is concluded that TiO2-NPs induce oxidative stress, which produce cytotoxic and genotoxic changes in sperms which may affect the fertilizing potential of spermatozoa. PMID:25344432

  12. Hitchhiking nanoparticles: Reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes.

    PubMed

    Wayteck, Laura; Dewitte, Heleen; De Backer, Lynn; Breckpot, Karine; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2016-01-01

    Following intravenous injection of anti-cancer nanomedicines, many barriers need to be overcome en route to the tumor. Cell-mediated delivery of nanoparticles (NPs) is promising in terms of overcoming several of these barriers based on the tumoritropic migratory properties of particular cell types. This guided transport aims to enhance the NP accumulation in the tumor and moreover enhance the infiltration of regions that are typically inaccessible for free NPs. Within this study, cytotoxic CD8(+) T cells were selected as carriers based on both their ability to migrate to the tumor and their intrinsic cytolytic activity against tumor cells. Many anti-cancer nanomedicines require tumor cell internalization to mediate cytosolic drug delivery and enhance the anti-cancer effect. This proof-of-concept therefore reports on the reversible attachment of liposomes to the surface of cytotoxic T lymphocytes via a reduction sensitive coupling. The activation status of the T cells and the liposome composition are shown to strongly influence the loading efficiency. Loading the cells with liposomes does not compromise T cell functionalities like proliferation and cytolytic function. Additionally, the triggered liposome release is demonstrated upon the addition of glutathione. Based on this optimization using liposomes as model NPs, a small interfering RNA (siRNA)-loaded NP was developed that can be coupled to the surface of CD8(+) T cells. PMID:26606450

  13. Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro.

    PubMed

    Ž?kien?, Rasa; Snitka, Valentinas

    2015-11-01

    Bovine serum albumin (BSA) and zinc oxide nanoparticles (ZnO NPs) are chosen as a model system to investigate NPs-protein corona complex formation. ZnO NPs with average size of ?20nm are coated with BSA using covalent and non-covalent conjugation at temperatures of 4°C and 20°C. The interaction mechanism between ZnO NPs and BSA is studied by using UV-vis absorption, fluorescence, synchronous fluorescence and Raman spectroscopy. Raman spectra of BSA in the presence of ZnO NPs are registered for the first time and confirm decreased ?-helix content, increased unstructured folding and ?-sheet content in BSA structure. The synchronous fluorescence spectra revealed that the hydrophobicity of the tyrosine residue is decreased and that of the tryptophan is increased. The relation of elucidated changes in BSA structure of BSA-coated ZnO NPs cytotoxicity is tested for CHO cell viability and reactive oxygen species (ROS) generation in vitro. Covalent and non-covalent binding of BSA to ZnO NPs reduces ZnO NPs cytotoxicity and ROS generation, however changes in BSA conformation makes corona less protective against ZnO NPs. PMID:26275837

  14. Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Sadhukhan, Ratan; Ghosh, Utpal; Das, Tapan Kumar

    2015-04-01

    The interaction of calf thymus DNA (CTDNA) with silver nanoparticles (SNP) has been investigated following spectroscopic studies, analysis of melting temperature (Tm) curves and hydrodynamic measurement. In spectrophotometric titration and thermal denaturation studies of CTDNA it was found that SNP can form a complex with double-helical DNA and the increasing value of Tm also supported the same. The association constant of SNP with DNA from UV-Vis study was found to be 4.1 × 103 L/mol. The fluorescence emission spectra of intercalated ethidium bromide (EB) with increasing concentration of SNP represented a significant reduction of EB intensity and quenching of EB fluorescence. The results of circular dichroism (CD) suggested that SNP can change the conformation of DNA. From spectroscopic, hydrodynamic, and DNA melting studies, SNP has been found to be a DNA groove binder possessing partial intercalating property. Cell cytotoxicity of SNP was compared with that of normal silver salt solution on HeLa cells. Our results show that SNP has less cytotoxicity compared to its normal salt solution and good cell staining property.

  15. Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: limitations of in vitro testing for nanosafety

    NASA Astrophysics Data System (ADS)

    KimPresent Address: Institute Of Pharmaceutical Sciences, Department Of Chemistry; Applied Biosciences, Eth Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland., Jong Ah; SalvatiPresent Address: Division Of Pharmacokinetics, Toxicology; Targeting, Department Of Pharmacy, Antonius Deusinglaan 1, 9713 Av Groningen, The Netherlands., Anna; ÅbergPresent Address: Groningen Institute Of Biomolecular Sciences; Biotechnology, University Of Groningen, Nijenborgh 4, 9747 Ag Groningen, The Netherlands., Christoffer; Dawson, Kenneth A.

    2014-11-01

    Nanomaterials challenge paradigms of in vitro testing because unlike molecular species, biomolecules in the dispersion medium modulate their interactions with cells. Exposing cells to nanoparticles known to cause cell death, we observed cytotoxicity suppression by increasing the amount of serum in the dispersion medium towards in vivo-relevant conditions.Nanomaterials challenge paradigms of in vitro testing because unlike molecular species, biomolecules in the dispersion medium modulate their interactions with cells. Exposing cells to nanoparticles known to cause cell death, we observed cytotoxicity suppression by increasing the amount of serum in the dispersion medium towards in vivo-relevant conditions. Electronic supplementary information (ESI) available: Experimental procedures; cell viability, proliferation and endocytosis levels of cultures grown in the relevant media; cellular uptake and physicochemical characterisation by DCS of silica nanoparticles; physicochemical characterisation by DLS of the amino-modified polystyrene nanoparticles used in the relevant biological media. See DOI: 10.1039/c4nr04970e

  16. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tong, Yongpeng; Li, Changming; Liang, Feng; Chen, Jianmin; Zhang, Hong; Liu, Guoqing; Sun, Huibin; Luong, John H. T.

    2008-12-01

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al 2O 3 and TiO 2) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl 2) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al 2O 3 and TiO 2 nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe 2O 3 nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  17. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    NASA Astrophysics Data System (ADS)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  18. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  19. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  20. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells

    PubMed Central

    2014-01-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway. PMID:25411570

  1. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Mingjun; Yang, Jinmei; Shu, Jing; Fu, Changhong; Liu, Shengnan; Xu, Ge; Zhang, Dechun

    2014-11-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway.

  2. Cytotoxicity induced by nanobacteria and nanohydroxyapatites in human choriocarcinoma cells.

    PubMed

    Zhang, Mingjun; Yang, Jinmei; Shu, Jing; Fu, Changhong; Liu, Shengnan; Xu, Ge; Zhang, Dechun

    2014-01-01

    We explored the cytotoxic effects of nanobacteria (NB) and nanohydroxyapatites (nHAPs) against human choriocarcinoma cells (JAR) and the mechanisms of action underlying their cytotoxicity. JAR cells were co-cultured with NB and nHAPs for 48 h, and ultrastructural changes were more readily induced by NB than nHAPs. Autophagy in the plasma of JAR cells were observed in the NB group. The rate of apoptosis induced by NB was higher than that for nHAPs. The expression of Bax and FasR proteins in the NB group was stronger than that for the nHAP group. NB probably resulted in autophagic formation. Apoptosis was possibly activated via FasL binding to the FasR signaling pathway. PMID:25411570

  3. Synthesis, Characterization and Cytotoxicity Evaluation of Nitric Oxide-Iron Oxide magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddad, P. S.; Britos, T. N.; Santos, M. C.; Seabra, A. B.; Palladino, M. V.; Justo, G. Z.

    2015-05-01

    The present work is focused on the synthesis, characterization and cytotoxic evaluation of superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs have been proposed for an increasing number of biomedical applications, such as drug-delivery. To this end, toxicological studies of their potential effects in biological systems must be better evaluated. The aim of this study was to examine the in vitro cytotoxicity of thiolated (SH) and S-nitrosated (S-NO) SPIONs in cancer cell lines. SPIONs were prepared by the coprecipitation method using ferrous and ferric chlorides in aqueous solution. The nanoparticles (Fe3O4) were coated with thiol containing molecule cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of an aqueous dispersion of thiolated nanoparticles (SH- SPIONs). These particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results obtained showed that Cys-SPIONs have a mean diameter of 14 nm at solid state and present super paramagnetic behavior at room temperature. Thiol groups on the surface of the nanoparticles were nitrosated through the addition of sodium nitrite leading to the formation of S-NOCys-SPIONs (S-nitrosated-Cys-SPIONs), which act as spontaneous nitric oxide (NO) donor). The cytotoxicity of thiolated and S-nitrosated nanoparticles was evaluated in acute T cell leukemia (Jurkat cell line) and Lewis lung carcinoma (3LL) cells. The results showed that at low concentrations thiolated (Cys) and S- nitrosated (S-NOCyst) SPIONs display low cytotoxicity in both cell types. However, at higher concentrations, Cys-SPIONs exhibited cytotoxic effects, whereas S-NOCys-SPIONs protected them, and also promoted cell proliferation.

  4. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim HJ; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb EM; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Isa, Norhaszalina Mohd; Zowalaty, Mohamed Ezzat El

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6–1,000 ?g/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells. PMID:23885175

  5. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

    SciTech Connect

    Loh, Jing Wen; Yeoh, George; Saunders, Martin; Lim, Lee-Yong

    2010-12-01

    Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4 h of exposure to 0.5% w/v of chitosan nanoparticles (18 {+-} 1 nm, 7.5 {+-} 1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4 h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.

  6. Fluorescent chitosan functionalized magnetic polymeric nanoparticles: Cytotoxicity and in vitro evaluation of cellular uptake.

    PubMed

    Kaewsaneha, Chariya; Jangpatarapongsa, Kulachart; Tangchaikeeree, Tienrat; Polpanich, Duangporn; Tangboriboonrat, Pramuan

    2014-11-01

    Nanoparticles possessing magnetic and fluorescent properties were fabricated by the covalent attachment of fluorescein isothiocyanate onto magnetic polymeric nanoparticles functionalized by chitosan. The synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate were successfully used for labeling the living organ and blood-related cancer cells, i.e., HeLa, Hep G2, and K562 cells. The cytotoxicity test of nanoparticles at various incubation times indicated the high cell viability (>90%) without morphological change. The confocal microscopy revealed that they could pass through cell membrane within 2?h for K562 cells and 3?h for HeLa and Hep G2 cells and then confine inside cytoplasm of all types of tested cells for at least 24?h. Therefore, the synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate would potentially be used as cell tracking in theranostic applications. PMID:24951458

  7. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, S?awomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  8. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. PMID:25966046

  9. Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity.

    PubMed

    Altmeyer, Clescila; Karam, Thaysa Ksiaskiewcz; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-03-01

    In this study, poly(L-lactide) (PLA) nanoparticles containing Tamoxifen (Tmx) were developed using an emulsion/solvent evaporation method, observing the influence of surfactants and their concentrations on mean particle size and drug entrapment. Nanoparticles were characterized in terms of size, morphology, polydispersity, interaction drug-polymer and in vitro drug release profile. Cytotoxicity over erythrocytes and tumor cells was assessed. The optimized formulation employed as surfactant 1% polyvinyl alcohol. Mean particle size was 155±4nm (n=3) and Tmx encapsulation efficiency was 85±8% (n=3). The in vitro release profile revealed a biphasic release pattern diffusion-controlled with approximately 24% of drug released in 24h followed by a sustained release up to 120h (30% of Tmx released). PLA nanoparticles containing Tmx presented a very low index of hemolysis (less than 10%), in contrast to free Tmx that was significantly hemolytic. Tmx-loaded PLA nanoparticles showed IC50 value 2-fold higher than free Tmx, but considering the prolonged Tmx release from nanoparticles, cytotoxicity on tumor cells was maintained after nanoencapsulation. Thus, PLA nanoparticles are promising carriers for controlled delivery of Tmx with potential application in cancer treatment. PMID:26706516

  10. Cytotoxicity and physicochemical characterization of iron-manganese-doped sulfated zirconia nanoparticles.

    PubMed

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron-manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner-Emmett-Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron-manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron-manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 ?g/mL to 500 ?g/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron-manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  11. Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    PubMed Central

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 ?g/mL to 500 ?g/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  12. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro.

    PubMed

    De Marzi, Laura; Monaco, Antonina; De Lapuente, Joaquin; Ramos, David; Borras, Miquel; Di Gioacchino, Mario; Santucci, Sandro; Poma, Anna

    2013-01-01

    Owing to their radical scavenging and UV-filtering properties, ceria nanoparticles (CeO(2)-NPs) are currently used for various applications, including as catalysts in diesel particulate filters. Because of their ability to filter UV light, CeO(2)-NPs have garnered significant interest in the medical field and, consequently, are poised for use in various applications. The aim of this work was to investigate the effects of short-term (24 h) and long-term (10 days) CeO(2)-NP exposure to A549, CaCo2 and HepG2 cell lines. Cytotoxicity assays tested CeO(2)-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL, whereas genotoxicity assays tested CeO(2)-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL. In vitro assays showed almost no short-term exposure toxicity on any of the tested cell lines. Conversely, long-term CeO(2)-NP exposure proved toxic for all tested cell lines. NP genotoxicity was detectable even at 24-h exposure. HepG2 was the most sensitive cell line overall; however, the A549 line was most sensitive to the lowest concentration tested. Moreover, the results confirmed the ceria nanoparticles' capacity to protect cells when they are exposed to well-known oxidants such as H(2)O(2). A Comet assay was performed in the presence of both H(2)O(2) and CeO(2)-NPs. When hydrogen peroxide was maintained at 25 ?M, NPs at 0.5 ?g/mL, 50 ?g/mL, and 500 ?g/mL protected the cells from oxidative damage. Thus, the NPs prevented H(2)O(2)-induced genotoxic damage. PMID:23377016

  13. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro

    PubMed Central

    De Marzi, Laura; Monaco, Antonina; De Lapuente, Joaquin; Ramos, David; Borras, Miquel; Di Gioacchino, Mario; Santucci, Sandro; Poma, Anna

    2013-01-01

    Owing to their radical scavenging and UV-filtering properties, ceria nanoparticles (CeO2-NPs) are currently used for various applications, including as catalysts in diesel particulate filters. Because of their ability to filter UV light, CeO2-NPs have garnered significant interest in the medical field and, consequently, are poised for use in various applications. The aim of this work was to investigate the effects of short-term (24 h) and long-term (10 days) CeO2-NP exposure to A549, CaCo2 and HepG2 cell lines. Cytotoxicity assays tested CeO2-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL, whereas genotoxicity assays tested CeO2-NPs over a concentration range of 0.5 ?g/mL to 5000 ?g/mL. In vitro assays showed almost no short-term exposure toxicity on any of the tested cell lines. Conversely, long-term CeO2-NP exposure proved toxic for all tested cell lines. NP genotoxicity was detectable even at 24-h exposure. HepG2 was the most sensitive cell line overall; however, the A549 line was most sensitive to the lowest concentration tested. Moreover, the results confirmed the ceria nanoparticles’ capacity to protect cells when they are exposed to well-known oxidants such as H2O2. A Comet assay was performed in the presence of both H2O2 and CeO2-NPs. When hydrogen peroxide was maintained at 25 ?M, NPs at 0.5 ?g/mL, 50 ?g/mL, and 500 ?g/mL protected the cells from oxidative damage. Thus, the NPs prevented H2O2-induced genotoxic damage. PMID:23377016

  14. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells

    PubMed Central

    Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang

    2015-01-01

    Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285

  15. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells.

    PubMed

    Ahamed, Maqusood; Alhadlaq, Hisham A; Ahmad, Javed; Siddiqui, Maqsood A; Khan, Shams T; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2015-06-01

    Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration-dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration-dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real-time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up-regulated whereas the anti-apoptotic gene bcl-2 was down-regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase-3 and caspase-9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N-acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level. PMID:25663373

  16. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles

    PubMed Central

    Suresh Babu, K; Anandkumar, M; Tsai, TY; Kao, TH; Stephen Inbaraj, B; Chen, BH

    2014-01-01

    Background Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. Methods In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. Results The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0–1,000 ?M except for Au at >100 ?M. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 ?M. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus, while, in coculture tests with Lactobacillus plantarum, S. aureus was inhibited to a greater extent than the other bacteria. Conclusion Gold-supported CeO2 nanoparticles may be a potential nanomaterial for in vivo application owing to their biocompatible and antibacterial properties. PMID:25473288

  17. NLRP3 inflammasome activation and cytotoxicity induced by particulate adjuvants.

    PubMed

    Yang, Marie; Hearnden, Claire H A; Oleszycka, Ewa; Lavelle, Ed C

    2013-01-01

    The ability of particulate materials to provoke inflammatory immune responses has been well documented. In the case of endogenous and environmental particulates, these effects can often lead to pathological disorders. In contrast, particulate adjuvants incorporated into vaccines promote immune responses, which in turn provide efficient protection against infectious diseases. In recent years, studies have revealed that the NLRP3 inflammasome plays a key role in particulate-driven inflammation and its associated cytotoxicity. Hence, this chapter covers protocols useful to (1) assess NLRP3 inflammasome activation triggered by particulate adjuvants or materials in mouse bone marrow-derived dendritic cell (BMDCs) differentiated cultures, and (2) measure particle-induced cytotoxicity. More specifically, protocols are described for the preparation and differentiation of BMDCs, their priming and stimulation using particulate NLRP3 agonists such as monosodium urate monohydrate (MSU) and the vaccine adjuvant alum. We then detail protocols to assess particulate-driven cytotoxicity via flow cytometry using annexin V-propidium iodide (PI) and novel dye LIVE/DEAD(®) aqua stain. General considerations are provided that warn against the use of endotoxin-contaminated particles and emphasize the use of experimental controls. Suggestions are also outlined for further assessment of the immunomodulatory effects of particulate materials in vivo using the mouse peritonitis model. PMID:23852596

  18. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles.

    PubMed

    Jain, Ankit; Thakur, Kanika; Sharma, Gajanand; Kush, Preeti; Jain, Upendra K

    2016-02-10

    The present investigation aimed at the fabrication and characterization of ionically cross-linked docetaxel (DTX) loaded chitosan nanoparticles (DTX-CH-NP) using ionic gelation technique with sodium tripolyphosphate (TPP) as the cross-linking agent. The formulated nanoparticles were characterized in terms of particle size, drug entrapment efficiency (EE), scanning electron microscopy (SEM), in vitro release and cytotoxicity studies. Formulation factors (chitosan, TPP and drug concentration) were examined systematically for their effects on size of the nanoparticles. The average size of the nanoparticles was observed to be in the range of 159.2±3.31 to 220.7±2.23nm with 78-92% encapsulation efficiency (EE). The in vitro cytotoxicity studies on breast cancer cell lines (MDA-MB-231) revealed the advantages of DTX-CH-NP over pure DTX with approximately 85% cell viability reduction. The results indicate that systematic modulation of the surface charge and particle size of ionically cross-linked nanoparticles can be readily achieved with the right control of critical processing parameters. Thus, DTX-CH-NP presents a promising delivery alternative for breast cancer treatment. PMID:26686106

  19. Fe3O4-nanoparticles within porous silicon: Magnetic and cytotoxicity characterization

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Tian, Y.; Akkaraju, G.; Coffer, J.; Poelt, P.; Reissner, M.

    2013-05-01

    The magnetic properties of porous silicon/Fe3O4 composites are investigated with respect to the adjustability of the blocking temperature along with an evaluation of any size-dependent changes in cytocompatibility. Fe3O4-nanoparticles have been infiltrated within mesoporous silicon, resulting in a system with tunable magnetic properties due to the matrix-morphology, the loading of the nanoparticles, and their size. In order to provide basic information regarding its suitability as a therapeutic platform, the cytotoxicity of these composites have been investigated by a trypan blue exclusion assay with respect to human embryonic kidney 293 cells, and the results compared with cell-only and known cytotoxic controls.

  20. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    PubMed Central

    Federman, Noah; Chan, Jason; Nagy, Jon O.; Landaw, Elliot M.; McCabe, Katelyn; Wu, Anna M.; Triche, Timothy; Kang, HyungGyoo; Liu, Bin; Marks, James D.; Denny, Christopher T.

    2012-01-01

    Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (?-AL-HPLN) to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that ?-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, ?-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma. PMID:23024593

  1. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash.

    PubMed

    Cervini-Silva, Javiera; Antonio-Nieto-Camacho; Gomez-Vidales, Virginia; Ramirez-Apan, María Teresa; Palacios, Eduardo; Montoya, Ascención; Kaufhold, Stephan; Abidin, Zeanal; Theng, Benny K G

    2014-06-15

    This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe(3+), and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot(-1). LP was surface controlled but not restricted by structural or surface-bound Fe(3+), because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe(3+) soluble species stemming from surface-bound Fe(3+) or small-sized Fe(3+) refractory minerals in allophane surpassed that of structural Fe(3+) located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell-viability values were as low as 68.5 ± 6.7%. PMID:24793297

  2. Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles.

    PubMed

    Mftah, Ae; Alhassan, Fatah H; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed Ezzat; Webster, Thomas J; Sh-Eldin, Mohammed; Rasedee, Abdullah; Taufiq-Yap, Yun Hin; Rashid, Shah Samiur

    2015-01-01

    Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9-1,000 ?g/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications. PMID:25632233

  3. Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles

    PubMed Central

    Mftah, Ae; Alhassan, Fatah H; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed Ezzat; Webster, Thomas J; Sh-eldin, Mohammed; Rasedee, Abdullah; Taufiq-Yap, Yun Hin; Rashid, Shah Samiur

    2015-01-01

    Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9–1,000 ?g/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications. PMID:25632233

  4. Cellular Targets and Mechanisms in the Cytotoxic Action of Non-biodegradable Engineered Nanoparticles

    PubMed Central

    Fröhlich, Eleonore

    2013-01-01

    The use of nanoparticles (NPs) has improved the quality of many industrial, pharmaceutical, and medical products. Increased surface reactivity, a major reason for the positive effects of NPs, may, on the other hand, also cause adverse biological effects. Almost all non-biodegradable NPs cause cytotoxic effects but employ quite different modes of action. The relation of biodegradable or loaded NPs to cytotoxic mechanism is more difficult to identify because effects may by caused by the particles or degradation products thereof. This review introduces problems of NPs in conventional cytotoxicity testing (changes of particle parameters in biological fluids, cellular dose, cell line and assay selection). Generation of reactive oxygen and nitrogen species by NPs and of metal ions due to dissolution of the NPs is discussed as a cause for cytotoxicity. The effects of NPs on plasma membrane, mitochondria, lysosomes, nucleus, and intracellular proteins as cellular targets for cytotoxicity are summarized. The comparison of the numerous studies on the mechanism of cellular effects shows that, although some common targets have been identified, other effects are unique for particular NPs or groups of NPs. While titanium dioxide NPs appear to act mainly by generation of reactive oxygen and nitrogen species, biological effects of silver and iron oxide are caused by both reactive species and free metal ions. NPs lacking heavy metals, such as carbon nanotubes and polystyrene particles, interfere with cell metabolism mainly by binding to macromolecules. PMID:24160294

  5. HEMA-induced cytotoxicity: oxidative stress, genotoxicity and apoptosis.

    PubMed

    Gallorini, M; Cataldi, A; di Giacomo, V

    2014-09-01

    Dental resin composites consist of organic polymers with inorganic fillers used as bonding resins and direct filling materials in dentine adhesives and as sealing agents for inlays, crowns and orthodontic brackets. Despite various modifications in the formulation, the chemical composition of composite resins includes inorganic filler particles and additives, which are incorporated into a mixture of an organic resin matrix. Among them, 2-hydroxyethylmethacrylate (HEMA) is one of the most frequently used. Several studies have attempted to clarify the mechanisms underlying HEMA cytotoxicity. Most of them support the hypothesis that this compound, once released in the oral environment, increases reactive oxygen species (ROS) production and oxidative DNA damage through double-strand breaks evidenced by in vitro presence of micronuclei. As a consequence, the glutathione detoxifying intracellular pool forms adducts with HEMA through its cysteine motif and inflammation begins to occur: transcription of early genes of inflammation such as tumour necrosis factor ? or inducible cyclooxygenase up to the secretion of prostaglandins 2. These phenomena are counteracted by N-acetylcysteine (NAC), a nonenzymatic antioxidant, but not by vitamin E or other antioxidant. Consequently, NAC prevents HEMA-induced apoptosis acting as a direct ROS scavenger. This minireview collects the most significant papers on HEMA and tries to make an overview of its cytotoxicity on different cell types and experimental models. PMID:24355064

  6. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation.

    PubMed

    Rabolli, Virginie; Thomassen, Leen C J; Uwambayinema, Francine; Martens, Johan A; Lison, Dominique

    2011-10-10

    The aggregation state of NP has been a significant source of difficulty for assessing their toxic activity and great efforts have been done to reduce aggregation of and/or to disperse NP in experimental systems. The exact impact of aggregation on toxicity has, however, not been adequately assessed. Here we compared in vitro the cytotoxic activity of stable monodisperse and aggregated silicon-based nanoparticles (SNP) without introducing a dispersing agent that may affect NP properties. SNP aggregates (180 nm) were produced by controlled electrostatic aggregation through addition of KCl to a Ludox SM sol (25 nm) followed by stabilization and extensive dialysis. The size of the preparations was characterized by TEM and DLS; specific surface area and porosity were derived from N(2) sorption measurements. Macrophage (J774) and fibroblast (3T3) cell lines were exposed to monodisperse or aggregate-enriched suspensions of SNP in DMEM in absence of serum. The cytotoxic activity of the different preparations was assessed by the WST1 assay after 24h of exposure. Parameters that determined the cytotoxic activity were traced by comparing the doses of the different preparations that induced half a maximal reduction in WST1 activity (ED(50)) in both cell lines. We found that ED(50) (6-9 ?g/ml and 15-22 ?g/ml, in J774 and 3T3, respectively) were hardly affected upon aggregation, which was consistent with the fact that the specific surface area of the SNP, a significant determinant of their cytotoxic activity, was unaffected upon aggregation (283-331 m(2)/g). Thus studying small aggregated NP could be as relevant as studying disperse primary NP, when aggregates keep the characteristics of NP, i.e. a high specific surface area and a nanosize dimension. This conclusion does, however, not necessarily hold true for other toxicity endpoints for which the determinants may be different and possibly modified by the aggregation process. PMID:21803137

  7. A novel bone cement impregnated with silver–tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties

    PubMed Central

    Prokopovich, Polina; Leech, Ralph; Carmalt, Claire J; Parkin, Ivan P; Perni, Stefano

    2013-01-01

    Post-operatory infections in orthopedic surgeries pose a significant risk. The common approach of using antibiotics, both parenterally or embedded in bone cement (when this is employed during surgery) faces the challenge of the rising population of pathogens exhibiting resistance properties against one or more of these compounds; therefore, novel approaches need to be developed. Silver nanoparticles appear to be an exciting prospect because of their antimicrobial activity and safety at the levels used in medical applications. In this paper, a novel type of silver nanoparticles capped with tiopronin is presented. Two ratios of reagents during synthesis were tested and the effect on the nanoparticles investigated through TEM, TGA, and UV-Vis spectroscopy. Once encapsulated in bone cement, only the nanoparticles with the highest amount of inorganic fraction conferred antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) at concentrations as low as 0.1% w/w. No other characteristics of the bone cement, such as cytotoxicity or mechanical properties, were affected by the presence of the nanoparticles. Our work presents a new type of silver nanoparticles and demonstrates that they can be embedded in bone cement to prevent infections once the synthetic conditions are tailored for such applications. PMID:23818779

  8. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite.

    PubMed

    Abdel-Mohsen, A M; Abdel-Rahman, Rasha M; Fouda, Moustafa M G; Vojtova, L; Uhrova, L; Hassan, A F; Al-Deyab, Salem S; El-Shamy, Ibrahim E; Jancar, J

    2014-02-15

    Silver nanoparticles (Ag-NPs) have been successfully prepared with a simple and "green" chemical reduction method. Triple helical schizophyllan (SPG) was used for the first time as reducing and stabilizing agents. The effect of temperature, silver nitrate/schizophyllan concentrations, pH of the reactions medium and the reaction time were investigated. The obtained schizophyllan/Ag-NP was characterized by UV-vis spectroscopy, TEM, DLS, X-ray diffraction, TGA, and ATR-FTIR. The results revealed that, Ag-NPs attached to SPG through a strong non-covalent interaction, leading to good dispersion of Ag-NPs with a diameter of 6 nm within the biopolymer matrix. By increasing the pH of the reaction medium, the triple helical structure of SPG was partially broken. The SPG/AgNP nanocomposite was non-toxic for mouse fibroblast line (NIH-3T3) and human keratinocyte cell line (HaCaT). PMID:24507278

  9. Study the cytotoxicity of different kinds of water-soluble nanoparticles in human osteoblast-like MG-63 cells

    SciTech Connect

    Niu, Lu; Li, Yang; Li, Xiaojie; Gao, Xue; Su, Xingguang

    2012-11-15

    Highlights: ? Preparation of three kinds of water-soluble QDs: CdTe, CdTe@SiO{sub 2}, Mn:ZnSe. ? Evaluated the cytotoxicity qualitatively and quantitatively. ? Fluorescent staining. ? Detected the total intracellular cadmium in cells. -- Abstract: Quantum nanoparticles have been applied extensively in biological and medical fields, the cytotoxicity of nanoparticles becomes the key point we should concern. In this paper, the cytotoxicity of three kinds of water-soluble nanoparticles: CdTe, CdTe@SiO{sub 2} and Mn:ZnSe was studied. We evaluated the nanoparticles toxicity qualitatively by observing the morphological changes of human osteoblast-like MG-63 cells at different incubation times and colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were carried out to detect the cell viability quantitatively. The results showed that CdTe nanoparticles with high concentrations caused cells to die largely while CdTe@SiO{sub 2} and Mn:ZnSe nanoparticles had no obvious effect. For further study, we studied the relation between the cell viability and the total cadmium concentration in cells and found that the viability of cells treated with CdTe@SiO{sub 2} nanoparticles was higher than that treated with CdTe nanoparticles. We also discovered that the death rate of cells co-incubated with CdTe nanoparticles was proportional to the total intracellular cadmium concentrations.

  10. Functional up-converting SrTiO3:Er(3+)/Yb(3+) nanoparticles: structural features, particle size, colour tuning and in vitro RBC cytotoxicity.

    PubMed

    Pazik, R; Maczka, M; Malecka, M; Marciniak, L; Ekner-Grzyb, A; Mrowczynska, L; Wiglusz, R J

    2015-06-14

    SrTiO3 nanoparticles co-doped with a broad concentration range of Er(3+) and Yb(3+) ions were fabricated using the citric route as a function of annealing temperatures of 500-1000 °C. The effect of a broad co-dopant concentration range and sintering temperature on structural and up-conversion properties was investigated in detail by X-ray diffraction techniques and optical spectroscopy. The TEM technique was used to estimate the mean particle size, which was around 30 nm for the inorganic product annealed at 600 °C. Up-conversion emission color tuning was achieved by particle size control. Power dependence of the green and red emissions was found to be a result of temperature determination in the operating range of SrTiO3 nanoparticles and a candidate for the fast and local microscopic heating and heat release induced by IR irradiation. The color changed from white-red-yellow-green upon an increase of sintering temperature, inducing changes in the surface-to-volume ratio and the number of optically active ions in particle surface regions. The cytotoxic activity of nanoparticles on human red blood cells was investigated, showing no harmful effects up to a particle concentration of 0.1 mg ml(-1). The cytotoxic response of a colloidal suspension of nanoparticles to RBC cells was connected with the strong affinity of SrTiO3 particles to the cell membranes, blocking the transport of important biological solutes. PMID:25962584

  11. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress.

    PubMed

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-02-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 ?M. Nanoparticles prepared from ?-lactoglobulin (?-lg) were successfully developed. The ?-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with ?-lg nanoparticles. Fluorescein isothiocynate-conjugated ?-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  12. Cytotoxicity Induced by Engineered Silver Nanocrystallites is Dependent on Surface Coatings and Cell Types

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Wang, Wei; Morrell-Falvey, Jennifer L; Doktycz, Mitchel John

    2012-01-01

    Due to their unique antimicrobial properties silver nanocrystallites have garnered substantial recognition and are used extensively in biomedical applications such as wound dressing, surgical instruments and as bone substitute material. They are also released into unintended locations such as the environment or biosphere. Therefore it is imperative to understand the potential interactions, fate and transport of nanoparticles with environmental biotic systems. Although numerous factors including the composition, size, shape, surface charge and capping molecule of nanoparticles are known to influence the cell cytotoxicity, our results demonstrate for the first time that surface coatings are a major determinant in eliciting the potential cytotoxicity and cell interactions of silver nanoparticles. In the present investigation, silver nanocrystallites with nearly uniform size and shape distribution but with different surface coatings, imparting overall high negativity to high positivity, were synthesized. These nanoparticles were poly (diallyldimethylammonium) chloride-Ag, biogenic-Ag, colloidal-Ag (uncoated) and oleate-Ag with zeta potentials +45 5 mV, -12 2 mV, -42 5 mV and -45 5 mV respectively; the particles were thoroughly purified so as to avoid false cytotoxicity interpretations. A systematic investigation on the cytotoxic effects, cellular response and membrane damage caused by these four different silver nanoparticles were evaluated using multiple toxicity measurements on mouse macrophage (RAW-264.7) and lung epithelial (C-10) cell lines. From a toxicity perspective, our results clearly indicated that the cytotoxicity was depend on various factors such as synthesis procedure, surface coat or surface charge and the cell-type for the different silver nanoparticles that were investigated. Poly (diallyldimethylammonium) chloride -Ag was found to be the most toxic, followed by biogenic-Ag and oleate-Ag, whereas uncoated-Ag was found to be least toxic to both macrophage and epithelial cells. Also, based on our cytotoxicity interpretations, epithelial cells were found to be more resistant to the silver nanoparticles than the macrophage cells, regardless of the surface coating.

  13. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    SciTech Connect

    St?pnik, Maciej; Arkusz, Joanna; Smok-Pieni??ek, Anna; Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.; Gromadzi?ska, Jolanta; De Jong, Wim H.; Rydzy?ski, Konrad

    2012-08-15

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (?-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ? Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ? Ludox CL-X silica NPs are cytotoxic to both cell lines. ? In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ? Cell cycle analysis shows alterations in both cell lines with both silica NP tested. ? Buthionine sulfoximine enhances cytotoxicity of Ludox CL-X in 3T3-L1 cells.

  14. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach

    NASA Astrophysics Data System (ADS)

    Luan, Feng; Kleandrova, Valeria V.; González-Díaz, Humberto; Ruso, Juan M.; Melo, André; Speck-Planche, Alejandro; Cordeiro, M. Natália D. S.

    2014-08-01

    Nowadays, the interest in the search for new nanomaterials with improved electrical, optical, catalytic and biological properties has increased. Despite the potential benefits that can be gathered from the use of nanoparticles, only little attention has been paid to their possible toxic effects that may affect human health. In this context, several assays have been carried out to evaluate the cytotoxicity of nanoparticles in mammalian cells. Owing to the cost in both resources and time involved in such toxicological assays, there has been a considerable increase in the interest towards alternative computational methods, like the application of quantitative structure-activity/toxicity relationship (QSAR/QSTR) models for risk assessment of nanoparticles. However, most QSAR/QSTR models developed so far have predicted cytotoxicity against only one cell line, and they did not provide information regarding the influence of important factors rather than composition or size. This work reports a QSTR-perturbation model aiming at simultaneously predicting the cytotoxicity of different nanoparticles against several mammalian cell lines, and also considering different times of exposure of the cell lines, as well as the chemical composition of nanoparticles, size, conditions under which the size was measured, and shape. The derived QSTR-perturbation model, using a dataset of 1681 cases (nanoparticle-nanoparticle pairs), exhibited an accuracy higher than 93% for both training and prediction sets. In order to demonstrate the practical applicability of our model, the cytotoxicity of different silica (SiO2), nickel (Ni), and nickel(ii) oxide (NiO) nanoparticles were predicted and found to be in very good agreement with experimental reports. To the best of our knowledge, this is the first attempt to simultaneously predict the cytotoxicity of nanoparticles under multiple experimental conditions by applying a single unique QSTR model.Nowadays, the interest in the search for new nanomaterials with improved electrical, optical, catalytic and biological properties has increased. Despite the potential benefits that can be gathered from the use of nanoparticles, only little attention has been paid to their possible toxic effects that may affect human health. In this context, several assays have been carried out to evaluate the cytotoxicity of nanoparticles in mammalian cells. Owing to the cost in both resources and time involved in such toxicological assays, there has been a considerable increase in the interest towards alternative computational methods, like the application of quantitative structure-activity/toxicity relationship (QSAR/QSTR) models for risk assessment of nanoparticles. However, most QSAR/QSTR models developed so far have predicted cytotoxicity against only one cell line, and they did not provide information regarding the influence of important factors rather than composition or size. This work reports a QSTR-perturbation model aiming at simultaneously predicting the cytotoxicity of different nanoparticles against several mammalian cell lines, and also considering different times of exposure of the cell lines, as well as the chemical composition of nanoparticles, size, conditions under which the size was measured, and shape. The derived QSTR-perturbation model, using a dataset of 1681 cases (nanoparticle-nanoparticle pairs), exhibited an accuracy higher than 93% for both training and prediction sets. In order to demonstrate the practical applicability of our model, the cytotoxicity of different silica (SiO2), nickel (Ni), and nickel(ii) oxide (NiO) nanoparticles were predicted and found to be in very good agreement with experimental reports. To the best of our knowledge, this is the first attempt to simultaneously predict the cytotoxicity of nanoparticles under multiple experimental conditions by applying a single unique QSTR model. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01285b

  15. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Nhung Hoang, Thi My; Thu Trang Mai, Thi; Quynh Trang Nguyen, Thi; Doan Do, Hai; Hien Pham, Thi; Lap Nguyen, Thi; Thu Ha, Phuong

    2015-01-01

    Doxorubicin (DOX) is one of the most effective anticancer drugs for treating many types of cancer. However, the clinical applications of DOX were hindered because of serious side-effects resulting from the unselective delivery to cancer cell including congestive heart failure, chronic cardiomyopathy and drug resistance. Recently, it has been demonstrated that loading anti-cancer drugs onto drug delivery nanosystems helps to maximize therapeutic efficiency and minimize unwanted side-effects via passive and active targeting mechanisms. In this study we prepared folate decorated DOX loaded PLA-TPGS nanoparticles with the aim of improving the potential as well as reducing the side-effects of DOX. Characteristics of nanoparticles were investigated by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) method and Fourier transform infrared spectroscopy (FTIR). Anticancer activity of the nanoparticles was evaluated through cytotoxicity and cellular uptake assays on HeLa and HT29 cancer cell lines. The results showed that prepared drug delivery system had size around 100 nm and exhibited higher cytotoxicity and cellular uptake on both tested HeLa and HT29 cells.

  16. Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts.

    PubMed

    Çava?, Tolga; Çink?l?ç, Nilüfer; Vatan, Özgür; Y?lmaz, Dilek

    2014-09-01

    The aim of this study was to investigate the effects of water soluble fullerene (fullerenol) nanoparticles on the in vitro genotoxicity induced by the insecticide acetamiprid. Healthy human lung cells (IMR-90) were treated with fullerenol C60(OH)n (n: 18-22) alone and in combination with acetamiprid for 24h. The micronucleus test, comet assay and ?-H2AX foci formation assays were used as genotoxicity endpoints. Cytotoxicity was evaluated using the clonogenic assay. The maximum tested concentration of fullerenol (1.600 ?g/ml) induced 77% survival where as the lowest concentration (25 ?g/ml) was not cytotoxic where as acetamiprid was cytotoxic. Fullerenol did not induce genotoxicity at tested concentrations (50-1600 ?g/L). On the other hand, acetamiprid (>50 ?M) significantly induced formation of micronuclei, and double and single stranded DNA breaks in IMR-90 cells. For simultaneous exposure studies, two non-cytotoxic concentrations (50 and 200 ?g/ml) of fullerenol and three cytotoxic concentrations of acetamiprid (100, 200 and 400 ?M) were selected. As a result, we observed that co-exposure with fullerenol significantly reduced the cytotoxicity and genotoxicity of acetamiprid in IMR-90 cells. Our results indicated the protective effect of water soluble fullerene particles on herbicide induced genotoxicity. PMID:25175643

  17. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells

    NASA Astrophysics Data System (ADS)

    Dhas, T. Stalin; Kumar, V. Ganesh; Karthick, V.; Govindaraju, K.; Shankara Narayana, T.

    2014-12-01

    In this investigation, biological synthesis of gold nanoparticles (AuNPs) using Sargassum swartzii and its cytotoxicity against human cervical carcinoma (HeLa) cells is reported. The biological synthesis involved the reduction of chloroauric acid led to the formation of AuNPs within 5 min at 60 °C and the formation of AuNPs was confirmed using UV-vis spectrophotometer. The AuNPs were stable; spherical in shape with well-defined dimensions, and the average size of the particle is 35 nm. A zeta potential value of -27.6 mV revealed synthesized AuNPs were highly stable. The synthesized AuNPs exhibited a dose-dependent cytotoxicity against human cervical carcinoma (HeLa) cells. Furthermore, induction of apoptosis was measured by DAPI (4?,6-Diamidino-2-phenylindole dihydrochloride) staining.

  18. Effect of radiation energy and intracellular iron dose on iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Strawbridge, Rendall R.; Thompson, Ella S.; Petryk, Alicia A.; Gladstone, David J.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONPs) are one of several high-Z materials currently being investigated for their ability to enhance the cytotoxic effects of therapeutic ionizing radiation. Studies with iron oxide, silver, gold, and hafnium oxide suggest radiation dose, radiation energy, cell type, and the type and level of metallic nanoparticle are all critical factors in achieving radiation enhancement in tumor cells. Using a single 4 Gy radiation dose, we compared the level of tumor cell cytotoxicity at two different intracellular iron concentrations and two different radiation energies in vitro. IONPs were added to cell culture media at concentrations of 0.25 mg Fe/mL and 1.0 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for 72 hours. Extracellular iron was then removed and cells were irradiated at either 662 keV or 10 MV. At the 0.25 mg Fe/mL dose (4 pg Fe/cell), radiation energy did not affect the level of cytotoxicity. However with 1.0 mg Fe/mL (9 pg Fe/cell), the higher 10 MV radiation energy resulted in 50% greater cytotoxicity as compared to cells without IONPs irradiated at this energy. These results suggest IONPs may be able to significantly enhance the cytotoxic effects of radiation and improve therapeutic ratio if they can be selectively associated with cancer cells and/or tumors. Ongoing in vivo studies of IONP radiation enhancement in a murine tumor model are too immature to draw conclusions from at this time, however preliminary data suggests similar effectiveness of IONP radiation enhancement at 6 MV and 18 MV energy levels. In addition to the IONP-based radiation enhancement demonstrated here, the use of tumor-localized IONP with an externally delivered, non-toxic alternating magnetic field affords the opportunity to selectively heat and kill tumor cells. Combining IONP-based radiation sensitization and heat-based cytotoxicity provides a unique and potentially highly effective opportunity for therapeutic ratio enhancement.

  19. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery

    NASA Astrophysics Data System (ADS)

    Pandey, Ambarish; Sarangi, Sasmit; Chien, Kelly; Sengupta, Poulomi; Papa, Anne-Laure; Basu, Sudipta; Sengupta, Shiladitya

    2014-11-01

    Tumor vasculature is critically dependent on platelet mediated hemostasis and disruption of the same can augment delivery of nano-formulation based chemotherapeutic agents which depend on enhanced permeability and retention for tumor penetration. Here, we evaluated the role of Clopidogrel, a well-known inhibitor of platelet aggregation, in potentiating the tumor cytotoxicity of cisplatin nano-formulation in a murine breast cancer model. In vivo studies in murine syngeneic 4T1 breast cancer model showed a significant greater penetration of macromolecular fluorescent nanoparticles after clopidogrel pretreatment. Compared to self-assembling cisplatin nanoparticles (SACNs), combination therapy with clopidogrel and SACN was associated with a 4 fold greater delivery of cisplatin to tumor tissue and a greater reduction in tumor growth as well as higher survival rate. Clopidogrel enhances therapeutic efficiency of novel cisplatin based nano-formulations agents by increasing tumor drug delivery and can be used as a potential targeting agent for novel nano-formulation based chemotherapeutics.

  20. THE EFFECT OF TUNGSTATE NANOPARTICLES ON REACTIVE OXYGEN SPECIES AND CYTOTOXICITY IN RAW 264.7 MOUSE MONOCYTE MACROPHAGE CELLS

    PubMed Central

    Dunnick, Katherine M.; Badding, Melissa A.; Schwegler-Berry, Diane; Patete, Jonathan M.; Koenigsmann, Christopher; Wong, Stanislaus S.; Leonard, Stephen S.

    2015-01-01

    Due to their unique size, surface area, and chemical characteristics, nanoparticles’ use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting. As with many NP, no apparent toxicity studies have been completed with tungstate NP. The hypothesis that tungstate NP in vitro exposure results in reactive oxygen species (ROS) formation and cytotoxicity was examined. Differences in toxicity based on tungstate NP size, shape (sphere vs. wire), and chemical characteristics were determined. RAW 264.7 mouse monocyte macrophages were exposed to tungstate NP, and ROS formation was assessed via electron spin resonance (ESR), and several assays including hydrogen peroxide, intracellular ROS, and Comet. Results showed ROS production induced by tungstate nanowire exposure, but this exposure did not result in oxidative DNA damage. Nanospheres showed neither ROS nor DNA damage following cellular exposure. Cells were exposed over 72 h to assess cytotoxicity using an MTT (tetrazolium compound) assay. Results showed that differences in cell death between wires and spheres occurred at 24 h but were minimal at both 48 and 72 h. The present results indicate that tungstate nanowires are more reactive and produce cell death within 24 h of exposure, whereas nanospheres are less reactive and did not produce cell death. Results suggest that differences in shape may affect reactivity. However, regardless of the differences in reactivity, in general both shapes produced mild ROS and resulted in minimal cell death at 48 and 72 h in RAW 264.7 cells. PMID:25208664

  1. Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake

    PubMed Central

    Tee, Nicolin; Zhu, Yingdong; Mortimer, Gysell M; Martin, Darren J; Minchin, Rodney F

    2015-01-01

    Polyurethanes are widely used in biomedical devices such as heart valves, pacemaker leads, catheters, vascular devices, and surgical dressings because of their excellent mechanical properties and good biocompatibility. Layered silicate nanoparticles can significantly increase tensile strength and breaking strain of polyurethanes potentially increasing the life span of biomedical devices that suffer from wear in vivo. However, very little is known about how these nanoparticles interact with proteins and cells and how they might exert unwanted effects. A series of fluoromica nanoparticles ranging in platelet size from 90 to over 600 nm in diameter were generated from the same base material ME100 by high energy milling and differential centrifugation. The cytotoxicity of the resulting particles was dependent on platelet size but in a manner that is opposite to many other types of nanomaterials. For the fluoromicas, the smaller the platelet size, the less toxicity was observed. The small fluoromica nanoparticles (<200 nm) were internalized by macrophages via scavenger receptors, which was dependent on the protein corona formed in serum. This internalization was associated with apoptosis in RAW cells but not in dTHP-1 cells. The larger particles were not internalized efficiently but mostly decorated the surface of the cells, causing membrane disruption, even in the presence of 80% serum. This work suggests the smaller fluoromica platelets may be safer for use in humans but their propensity to recognize macrophage scavenger receptors also suggests that they will target the reticulo-endoplasmic system in vivo. PMID:25848256

  2. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    PubMed Central

    Kumaran, Rangarajulu Senthil; Choi, Yong-Keun; Singh, Vijay; Song, Hak-Jin; Song, Kyung-Guen; Kim, Kwang Jin; Kim, Hyung Joo

    2015-01-01

    Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS), glutathione S-transferase (GST) and catalase, were quantified using real-time polymerase chain reactions (molecular level) and molecular beacon technologies (cellular level). The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells) at different concentrations (25, 75 and 150 µg/mL) and incubation times (24, 48 and 72 h). Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 µg/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool. PMID:25854426

  3. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Rietjens, Ivonne M. C. M.; Singh, Mani P.; Atkins, Tonya M.; Purkait, Tapas K.; Xu, Zejing; Regli, Sarah; Shukaliak, Amber; Clark, Rhett J.; Mitchell, Brian S.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Fink, Mark J.; Veinot, Jonathan G. C.; Kauzlarich, Susan M.; Zuilhof, Han

    2013-05-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe3+ ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (??m) and ATP production, induction of ROS generation, increased cytoplasmic Ca2+ content, production of TNF-? and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine.Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe3+ ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (??m) and ATP production, induction of ROS generation, increased cytoplasmic Ca2+ content, production of TNF-? and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine. Electronic supplementary information (ESI) available: Syn

  4. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli.

    PubMed

    Tran, Phong A; O'Brien-Simpson, Neil; Reynolds, Eric C; Pantarat, Namfon; Biswas, Dhee P; O'Connor, Andrea J

    2016-01-29

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection-resisting, non-cytotoxic coatings for medical devices. PMID:26656836

  5. Folate Conjugated Cellulose Nanocrystals Potentiate Irreversible Electroporation-induced Cytotoxicity for the Selective Treatment of Cancer Cells.

    PubMed

    Colacino, Katelyn R; Arena, Christopher B; Dong, Shuping; Roman, Maren; Davalos, Rafael V; Lee, Yong W

    2015-12-01

    Cellulose nanocrystals are rod-shaped, crystalline nanoparticles that have shown prom-ise in a number of industrial applications for their unique chemical and physical properties. However, investigations of their abilities in the biomedical field are limited. The goal of this study is to show the potential use of folic acid-conjugated cellulose nanocrystals in the potentiation of irreversible electroporation-induced cell death in folate receptor (FR)-positive cancers. We optimized key pulse parameters including pulse duration, intensity, and incubation time with nanoparticles prior to electroporation. FR-positive cancer cells, KB and MDA-MB-468, were preincubated with cellulose nanocrystals (CNCs) conjugated with the targeting molecule folic acid (FA), 10 and 20 min respectively, prior to application of the optimized pulse electric field (PEF), 600 and 500 V/cm respectively. We have shown cellulose nanocrystals' ability to potentiate a new technique for tumor ablation, irreversible electroporation. Pre-incubation with FA-conjugated CNCs (CNC-FA) has shown a significant increase in cytotoxicity induced by irreversible electroporation in FR-positive cancer cells, KB and MDA-MB-468. Non-targeted CNCs (CNC-COOH) did not potentiate IRE when preincubated at the same parameters as previously stated in these cell types. In addition, CNC-FA did not potentiate irreversible electroporation-induced cytotoxicity in a FR-negative cancer cell type, A549. Without changing irreversible electroporation parameters it is possible to increase the cytotoxic effect on FR-positive cancer cells by exploiting the specific binding of FA to the FR, while not causing further damage to FR-negative tissue. PMID:24750004

  6. Role of oxidative stress in Geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex

    PubMed Central

    Clark, Christina B.; Rane, Madhavi J.; Mehdi, Delphine El; Miller, Cynthia J.; Sachleben, Leroy R.; Gozal, Evelyne

    2009-01-01

    Heat shock protein 90 (Hsp90) is a chaperone protein regulating PC-12 cell survival by binding and stabilizing Akt, Raf-1, and Cdc37. Hsp90 inhibitor Geldanamycin (GA) cytotoxicity has been attributed to disruption of Hsp90 binding, and the contribution of oxidative stress generated by its quinone group has not been studied in this context. Reactive oxygen species (ROS) and cell survival were assessed in PC-12 cells exposed to GA or Menadione (MEN), and Akt, Raf-1, and Cdc37 expression and binding to Hsp90 were determined. GA disrupted Hsp90 binding and increased ROS production starting at 1h, and cell death occurred at 6h, inhibited by N-acetyl cysteine (NAC) without preventing dissociation of proteins. At 24h, NAC prevented cytotoxicity and Hsp90 complex disruption. However MnTBAP antioxidant treatment failed to inhibit GA cytotoxicity, suggesting that NAC acts by restoring gluthathione. In contrast, 24h MEN induced cytotoxicity without disrupting Hsp90 binding. GA and MEN decreased Hsp90-binding proteins expression, and proteasomal inhibition prevented MEN, but not GA-induced degradation. In conclusion, while MEN cytotoxicity is mediated by ROS and proteasomal degradation, GA-induced cytotoxicity requires ROS but induces HSP90 complex dissociation and proteasome-independent protein degradation. These differences between MEN and GA-induced cytotoxicity, may allow more specific targeting of cancer cells. PMID:19703551

  7. Role of ERAB/L-3-Hydroxyacyl-coenzyme A Dehydrogenase Type II Activity in A -induced Cytotoxicity*

    E-print Network

    Clarke, Steven

    Role of ERAB/L-3-Hydroxyacyl-coenzyme A Dehydrogenase Type II Activity in A -induced Cytotoxicity in Alzheimer's disease (AD)-affected brain, binds A , and contributes to A -induced cytotoxicity. Purified re- hyde products could be cytotoxic; ERAB/HADH II cata- lyzed oxidation of a variety of simple alcohols (C

  8. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    PubMed Central

    Uchiyama, Hitoshi; Tsujimoto, Masayuki; Shinmoto, Tadakazu; Ogino, Hitomi; Oda, Tomoko; Yoshida, Takuya; Furukubo, Taku; Izumi, Satoshi; Yamakawa, Tomoyuki; Tachiki, Hidehisa; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2014-01-01

    The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF). Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated). In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated). However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated). These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins. PMID:25192420

  9. Involvement of Iysosomal proteolysis in hepatocyte cytotoxicity induced by Cu (II) or Cr (VI)

    NASA Astrophysics Data System (ADS)

    Pourahmad, J.; O'Brien, P. J.

    2003-05-01

    Previously we showed that the redox active Cu (II) and Cr (VI) were very powerful at inducing reactive oxygen species (“ROS”) formation in hepatocytes and furthermore “ROS” scavengers prevented Cu (II) and Cr (VI) induced hepatocyte cytotoxicity[1,2]. In the following it is shown that hepatocyte cytotoxicity induced by Cu (II) and Cr(VI) were preceded by lysosomal proteolysis as demonstrated by tyrosine release. Hepatocyte lysosomal proteolysis was also prevented by leupeptin and pepstatin (lysosomal protease inhibitors). Cu(II) and Cr (VI) induced cytotoxicity was also prevented by leupeptin and pepstatin. A marked increase in Cu (II) and Cr (VI) induced hepatocyte toxicity also occurred if the lysosomal toxins gentamicin or aurothioglucose were added at the same time as the Cu (II) and Cr (VI). Furthermore destabilizing lysosomal membranes beforehand by preincubating the hepatocytes with gentamicin or aurothioglucose prevented Cu (II) and Cr (VI) induced hepatocyte cytotoxicity. It is proposed that Cu (II) and Cr (VI) induced cytotoxicity involves lysosomal damage that causes the release of cytotoxic digestive enzymes as a result of lysosomal membrane damage by “ROS".

  10. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release

    PubMed Central

    2014-01-01

    Background Silver nanoparticles (AgNPs) are currently one of the most manufactured nanomaterials. A wide range of toxicity studies have been performed on various AgNPs, but these studies report a high variation in toxicity and often lack proper particle characterization. The aim of this study was to investigate size- and coating-dependent toxicity of thoroughly characterized AgNPs following exposure of human lung cells and to explore the mechanisms of toxicity. Methods BEAS-2B cells were exposed to citrate coated AgNPs of different primary particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP coated and 50 nm uncoated AgNPs. The particle agglomeration in cell medium was investigated by photon cross correlation spectroscopy (PCCS); cell viability by LDH and Alamar Blue assay; ROS induction by DCFH-DA assay; genotoxicity by alkaline comet assay and ?H2AX foci formation; uptake and intracellular localization by transmission electron microscopy (TEM); and cellular dose as well as Ag release by atomic absorption spectroscopy (AAS). Results The results showed cytotoxicity only of the 10 nm particles independent of surface coating. In contrast, all AgNPs tested caused an increase in overall DNA damage after 24 h assessed by the comet assay, suggesting independent mechanisms for cytotoxicity and DNA damage. However, there was no ?H2AX foci formation and no increased production of intracellular reactive oxygen species (ROS). The reasons for the higher toxicity of the 10 nm particles were explored by investigating particle agglomeration in cell medium, cellular uptake, intracellular localization and Ag release. Despite different agglomeration patterns, there was no evident difference in the uptake or intracellular localization of the citrate and PVP coated AgNPs. However, the 10 nm particles released significantly more Ag compared with all other AgNPs (approx. 24 wt% vs. 4–7 wt%) following 24 h in cell medium. The released fraction in cell medium did not induce any cytotoxicity, thus implying that intracellular Ag release was responsible for the toxicity. Conclusions This study shows that small AgNPs (10 nm) are cytotoxic for human lung cells and that the toxicity observed is associated with the rate of intracellular Ag release, a ‘Trojan horse’ effect. PMID:24529161

  11. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 ?g/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  12. Spectral Induced Polarization of Goethite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Moradi, S.; Zimmermann, E.; Bosch, J.; Vereecken, H.

    2014-12-01

    Goethite nanoparticles are being considered as a tool to enhance in situ remediation of aquifers contaminated with aromatic hydrocarbons. Injection of goethite nanoparticles into the plume is expected to enhance microbial iron reduction and associated beneficial oxidation of hydrocarbons in a cost-effective manner. Amongst others, current challenges associated with this novel approach are the monitoring of nanoparticle delivery and the nanoparticle and contaminant concentration dynamics over time. Obviously, non-invasive monitoring of these properties would be highly useful. In this study, we aim to evaluate whether spectral induced polarization (SIP) measurements of the complex electrical conductivity are suitable for such non-invasive characterization. In principle, this is not unreasonable because the electrical double layers of the goethite nanoparticles are expected to affect electrical polarization and thus the imaginary part of the complex electrical conductivity. In a first set of measurements, we determined the complex electrical conductivity of goethite nanoparticle suspensions with different nanoparticle concentrations, pH, and ionic strength in the mHz to kHz frequency range. In a second set of measurements, mixtures of sand and different concentrations of goethite nanoparticles and variable pH and ionic strengths were analyzed. Finally, flow experiments were monitored with SIP in a 1-m long laboratory column to investigate dynamic effects associated with goethite nanoparticle injection and delivery. The results showed that the imaginary part of the electrical conductivity was only affected in the high frequency range (Hz - kHz), which is expected from the small size of the goethite nanoparticles. Overall, we found that the goethite nanoparticles are associated with a small increase in the imaginary electrical conductivity at 1 kHz that can be measured in situ using recently improved borehole electrical impedance tomography measurement equipment that provides the required accuracy for frequencies above 100 Hz.

  13. MECHANISMS OF MITOCHONDRIA-MEDIATED APOPTOSIS INDUCED BY CYTOTOXIC STRESS

    E-print Network

    Shelton, Shary Nicole

    2010-06-04

    Defects within the apoptotic pathway are thought to contribute to tumorigenesis and therapeutic resistance. Although most cytotoxic anti-cancer drugs are thought to activate the mitochondria-mediated apoptotic pathway, the precise mechanistic...

  14. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars.

    PubMed

    Favi, Pelagie Marlene; Gao, Ming; Johana Sepúlveda Arango, Liuda; Ospina, Sandra Patricia; Morales, Mariana; Pavon, Juan Jose; Webster, Thomas Jay

    2015-11-01

    Gold nanoparticles are materials with unique optical properties that have made them very attractive for numerous biomedical applications. With the increasing discovery of techniques to synthesize novel nanoparticles such as star-shaped gold nanoparticles for biomedical applications, the safety and performance of these new nanomaterials must be systematically assessed before use. In this study, gold nanostars (AuNSTs) with multibranched surface structures were synthesized, and their influence on the cytotoxicity of human skin fibroblasts and rat fat pad endothelial cells (RFPECs) were assessed and compared with that of gold nanospheres (AuNSPs) with unbranched surfaces. Results showed that the AuNSPs with diameters of approximately 61.46 nm showed greater toxicity with fibroblast cells and RFPECs compared with the synthesized AuNSTs with diameters of approximately 33.69 nm. The AuNSPs were lethal at concentrations of 40 ?g/mL for both cell lines, whereas the AuNSTs were less toxic at higher concentrations (400 ?g/mL). The calculated IC50 (50% inhibitory concentration) values of the AuNSPs exposed to fibroblast cells were greater at 1 and 4 days of culture (26.4 and 27.7 ?g/mL, respectively) compared with the RFPECs (13.6 and 13.8 ?g/mL, respectively), indicating that the AuNSPs have a greater toxicity to endothelial cells. It was proposed that possible factors that could be promoting the reduced toxicity effects of the AuNSTs to fibroblast cells and RFPECs, compared with the AuNSPs may be size, surface chemistry, and shape of the gold nanoparticles. The reduced cell toxicity observed with the AuNSTs suggests that AuNSTs may be a promising material for use in biomedical applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3449-3462, 2015. PMID:25904210

  15. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity

    PubMed Central

    Lee, Yeon Kyung; Choi, Eun-Ju; Webster, Thomas J; Kim, Sang-Hyun; Khang, Dongwoo

    2015-01-01

    Although the cytotoxicity of nanoparticles (NPs) is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses. PMID:25565807

  16. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro; Toledano Furman, Naama E; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. PMID:26653875

  17. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells

    NASA Astrophysics Data System (ADS)

    Ge, Gaoyuan; Wu, Hengfang; Xiong, Fei; Zhang, Yu; Guo, Zhirui; Bian, Zhiping; Xu, Jindan; Gu, Chunrong; Gu, Ning; Chen, Xiangjian; Yang, Di

    2013-05-01

    One major obstacle for successful application of nanoparticles in medicine is its potential nanotoxicity on the environment and human health. In this study, we evaluated the cytotoxicity effect of dimercaptosuccinic acid-coated iron oxide (DMSA-Fe2O3) using cultured human aortic endothelial cells (HAECs). Our results showed that DMSA-Fe2O3 in the culture medium could be absorbed into HAECs, and dispersed in the cytoplasm. The cytotoxicity effect of DMSA-Fe2O3 on HAECs was dose-dependent, and the concentrations no more than 0.02 mg/ml had little toxic effect which were revealed by tetrazolium dye assay. Meanwhile, the cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without DMSA-Fe2O3). However, the endocrine function for endothelin-1 and prostacyclin I-2, as well as the urea transporter function, was altered even without obvious evidence of cell injury in this context. We also showed by real-time PCR analysis that DMSA-Fe2O3 exposure resulted in differential effects on the expressions of pro- and anti-apoptosis genes of HAECs. Meanwhile, it was noted that DMSA-Fe2O3 exposure could activate the expression of genes related to oxidative stress and adhesion molecules, which suggested that inflammatory response might be evoked. Moreover, we demonstrated by in vitro endothelial tube formation that even a small amount of DMSA-Fe2O3 (0.01 and 0.02 mg/ml) could inhibit angiogenesis by the HAECs. Altogether, these results indicate that DMSA-Fe2O3 have some cytotoxicity that may cause side effects on normal endothelial cells.

  18. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    PubMed Central

    Fröhlich, Eleonore

    2012-01-01

    Many types of nanoparticles (NPs) are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging. PMID:23144561

  19. Enhanced bleomycin-induced DNA damage and cytotoxicity with calmodulin antagonists.

    PubMed

    Lazo, J S; Hait, W N; Kennedy, K A; Braun, I D; Meandzija, B

    1985-03-01

    A wide variety of structurally different calmodulin antagonists enhanced the cytotoxicity of bleomycin A2 to leukemic L1210 cells. This potentiation occurred with nontoxic concentrations of calmodulin antagonists. The most potent blockers of L1210 calmodulin activity, melittin and mastoparan, were the most potent potentiators of bleomycin A2 cytotoxicity. Less potent agents such as pimozide, a diphenylbutylpiperidine, trifluoperazine and chlorpromazine, phenothiazines, and W-7, a naphthalene sulfonamide, required higher concentrations for potentiation of bleomycin A2-induced cytotoxicity, while homologs that lack anticalmodulin activity failed to increase the cytotoxicity seen with bleomycin A2. The potentiation of bleomycin A2 cytotoxicity was not due to an elevated cellular content of bleomycin A2 or to inhibition of bleomycin A2 inactivation. Using alkaline elution techniques, we found that pimozide increased bleomycin A2-induced DNA damage in intact L1210 cells. Pimozide did not, however, directly increase the formation of reactive species by bleomycin as measured by single or double strand breakage of covalently closed circular DNA. Thus, the potentiation of bleomycin cytotoxicity by these agents appears to be mediated by an increased damage to cellular DNA; this may be due to inhibition of DNA repair. The hypothesized calmodulin-dependent mechanism was not shared by all agents that caused breaks in DNA because no potentiation in cytotoxicity was observed when calmodulin antagonists were combined with either etoposide or X-irradiation. PMID:2579318

  20. Active targeted nanoparticles: Preparation, physicochemical characterization and in vitro cytotoxicity effect

    PubMed Central

    Heidarian, Sh.; Derakhshandeh, K.; Adibi, H.; Hosseinzadeh, L.

    2015-01-01

    In this study, the folate decorated biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles were developed for tumor targeting of anticancer agents. Due to the overexpression of the folate receptor on tumor surface, the folate has been efficiently employed as a targeting moiety for various anticancer agents to avoid their non-specific attacks on normal tissues and also to increase their cellular uptake within target cells. Folate conjugate PLGA was synthesized successfully and its chemical structure was evaluated by FTIR, DSC and 1HNMR spectroscopy. PLGA-folate nanoparticles (PLGA-Fol NPs) were prepared by nanoprecipitation method, adopting PLGA as a drug carrier, folic acid as a targeting ligand and 9-nitrocampthotecin as a model anticancer drug. The average size and encapsulation efficiency of the prepared PLGA-Fol NPs were found to be around 115 ± 12 nm and 57%, respectively. In vitro release profile indicated that nearly 85% of the drug was released in 50 h. The in vitro intracellular uptakes of PLGA-Fol NPs showed greater cytotoxicity on cancer cell lines compared to non-folate mediated carriers. PMID:26600851

  1. Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake.

    PubMed

    Li, L; Mak, K Y; Shi, J; Koon, H K; Leung, C H; Wong, C M; Leung, C W; Mak, C S K; Chan, N M M; Zhong, W; Lin, K W; Wu, E X; Pong, P W T

    2012-12-01

    Magnetic iron oxide nanoparticles (MIONPs) must be biocompatible, and a thorough knowledge on their potential cytotoxicity is crucial for their biomedical applications. However, the detailed study about the effects of iron oxide nanoparticles on cell viability, cell morphology, and cellular uptake of different mammalian cells is still insufficient. In this paper, comparative cytotoxicity study of uncoated magnetite nanoparticles at different concentrations was performed on human cervical cancer cell line (HeLa) and immortalized normal human retinal pigment epithelial cell line (RPE). The size, structure, and magnetic behavior of the MIONPs were characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD), and vibrating sample magnetometry (VSM) respectively. After 24-hour incubation with the MIONPs, the cell viability was determined by live/dead assay, the cell morphology at high magnification was observed under scanning electron microscopy (SEM), and the cellular uptake of MIONPs was measured under TEM and verified by energy-dispersive X-ray spectroscopy (EDX) analysis. Our results indicate that the uncoated MIONPs at a high concentration (0.40 mg/ml) were toxic to both HeLa and RPE cells. However, the cytotoxicity of uncoated MIONPs at low concentrations was cell-type specific, and RPE cells were more susceptible to these MIONPs than HeLa cells. The effects of the MIONPs on cell morphology and the nanoparticles uptake also showed different features between these two cell lines. Hence cell type should be taken into consideration in the in vitro cytotoxicity study of uncoated MIONPs. Additionally, it should be noticed that the cell morphological changes and the uptake of nanoparticles can take place even though no toxic effect of these MIONPs at low concentrations was reflected in the traditional cell viability assay. PMID:23447952

  2. Donor-specific cytotoxicity induced by allogeneic intestinal epithelial cells in a sponge matrix model.

    PubMed

    Li, X C; Zhong, R; Zhu, L; Grant, D

    1995-01-01

    Small intestinal epithelial cells (IEC) constitutively express MHC class II molecules. However, little is known about the role of IEC in intestinal allograft rejection. The present study examined whether IEC can induce the development of cytotoxic T cells in vivo using a sponge matrix model. IEC isolated from ACI (RT1a) rats were injected into polyurethane sponges implanted i.p. in Lewis (RT1(1)) rats. Sponge grafts with ACI splenocytes or Lewis IEC were used as controls. The sponge grafts were removed and sponge-infiltrating cells (SIC) were harvested on post-operative days (POD) 7, 10, and 14. The phenotype of SIC was determined by FACS analysis and the cell-mediated cytotoxicity was measured using a chromium relapse assay. Non-specific inflammatory cells accumulated in the IEC sponge allografts during the first 10 days. By POD 14, however, 61% of SIC were T lymphocytes and 36% expressed cytotoxic T cell marker (OX-8). The cytotoxicity in IEC sponge allografts was detectable on POD 7 and POD 10, and markedly elevated on POD 14. The cytotoxicity induced by allogeneic splenocytes appeared in the sponge grafts on POD 7, peaked on POD 10, and declined thereafter. The allospecific cytotoxicity induced by IEC was dependent on host macrophages as pretreatment of animals with gadolinium, a rare earth metal that inactivates macrophages, abrogated the induction of cytotoxicity. We conclude that: (1) the migration and maturation of cytotoxic T cells can be induced in vivo by IEC and (2) IEC may contribute to the increased severity of intestinal rejection through interaction with macrophages. PMID:7888046

  3. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766).

    PubMed

    Vignardi, Caroline P; Hasue, Fabio M; Sartório, Priscila V; Cardoso, Caroline M; Machado, Alex S D; Passos, Maria J A C R; Santos, Thais C A; Nucci, Juliana M; Hewer, Thiago L R; Watanabe, Ii-Sei; Gomes, Vicente; Phan, Ngan V

    2015-01-01

    Nanoparticles have physicochemical characteristics that make them useful in areas such as science, technology, medicine and in products of everyday use. Recently the manufacture and variety of these products has grown rapidly, raising concerns about their impact on human health and the environment. Adverse effects of exposure to nanoparticles have been reported for both terrestrial and aquatic organisms, but the toxic effects of the substances on marine organisms remain poorly understood. The main aim of this study was to evaluate the genotoxicity of TiO2-NP in the marine fish Trachinotus carolinus, through cytogenotoxic methods. The fish received two different doses of 1.5 ?g and 3.0 ?g-TiO2-NP g(-1) by intraperitoneal injection. Blood samples were collected to analyze erythrocyte viability using the Trypan Blue exclusion test, comet assay (pH>13), micronucleus (MN) and other erythrocyte nuclear abnormalities (ENA) 24, 48 and 72 h after injection. The possible cell uptake of TiO2-NP in fish injected with the higher dose was investigated after 72 h using transmission electron microscopy (TEM). The results showed that TiO2-NP is genotoxic and potentially cytotoxic for this species, causing DNA damage, inducing the formation of MN and other ENA, and decreasing erythrocyte viability. TEM examination revealed that cell uptake of TiO2-NP was mainly in the kidney, liver, gills and to a lesser degree in muscle. To the extent of the authors' knowledge, this is the first in vivo study of genotoxicity and other effects of TiO2-NP in a marine fish. PMID:25481788

  4. Antibody-dependent and phytohaemagglutinin-induced lymphocyte cytotoxicity in systemic sclerosis.

    PubMed Central

    Wright, J K; Hughes, P; Rowell, N R; Sneddon, I B

    1979-01-01

    Cell-mediated cytotoxicity was examined in thirty-seven patients with systemic sclerosis using both whole blood and purified peripheral blood mononuclear cells (PBM) to measure antibody-dependent (ADCC) and phytohaemagglutinin (PHA) induced lymphocyte cytotoxicity to 51Cr-labelled Chang liver cells. In twenty-three mildly affected patients, ADCC and PHA-induced cytotoxicity did not differ from that found in control populations. By contrast, fourteen patients severely affected by extensive visceral disease showed reductions in both ADCC and PHA-induced cytotoxicity which were more marked in whole blood assays (P less than 0.001) than in those performed with PBM (P less than 0.05). The addition of patient's sera to control cytotoxicity assays suggested that blocking or suppressive serum factors could only account for some of the disproportionate reduction in whole blood cytotoxicity which, in the main, must be due to a lack of circulating effector cells. These results are in agreement with previous findings of reduced numbers of circulating thymus-dependent lymphocytes in patients with severe disease, a defect of cell-mediated immunity that may result from the chronic antigenic stimulation of an autoimmune disease process. PMID:466860

  5. Cytotoxicity study of iron oxide nanoparticles, single-wall carbon nanotubes and their complexes applied to MCF7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mege, Karine

    Reactive Oxygen Species (ROS) are radicals of great concern to biologists. Their role in several diseases---such as neurodegenerative disease, diabetes, premature aging and cancer---has been intensively investigated during the last decade. Since a major focus in cancer research is to better understand how it is induced and therefore how it can be cured, the study of the cytotoxic effects of ROS production within cancer cells is vital. Nanotechnology is an emerging field of science that promises great improvements in a number of disciplines. Nano medicine is one of its daughter fields. Various nanomaterials are used for diagnosis and disease detection, therapy and medical imaging, and many are already being used in oncology medicine. The two most frequently used nanomaterials in cancer research are Carbon nanotubes (CNTs) and iron oxide nanoparticles (IONPs). They have been proven to play a significant role in the ROS production of various cancer cells. In this context, this thesis emphasizes the need to study the impact of nanoparticles, such as single-walled carbon nanotubes (SWCNTs), iron oxide nanoparticles (IONPs) and their complexes, on a human breast cancer cell line (MCF-7). To date, there have been very few studies assessing the effect on the oxidative stress activity of this cell line using these nanoparticles and their complexes.

  6. Diabetes exacerbates nanoparticles induced brain pathology.

    PubMed

    Lafuente, José Vicente; Sharma, Aruna; Patnaik, Ranjana; Muresanu, Dafin Fior; Sharma, Hari Shanker

    2012-02-01

    Long term exposure of nanoparticles e.g., silica dust (SiO2) from desert environments, or engineered nanoparticles from metals viz., Cu, Al or Ag from industry, ammunition, military equipment and related products may lead to adverse effects on mental health. However, it is unclear whether these nanoparticles may further adversely affect human health in cardiovascular or metabolic diseases e.g., hypertension or diabetes. It is quite likely that in diabetes or hypertension where the body immune system is already compromised there will be greater adverse effects following nanoparticles exposure on human health as compared to their exposure to healthy individuals. Previous experiments from our laboratory showed that diabetic or hypertensive animals are more susceptible to heat stress-induced neurotoxicity. Furthermore, traumatic injury to the spinal cord in SiO2 exposed rats resulted in exacerbation of cord pathology. However, whether nanoparticles such as Cu, Ag or SiO2 exposure will lead to enhanced neurotoxicity in diabetic animals are still not well investigated. Previous data from our laboratory showed that Cu or Ag intoxication (50 mg/kg, i.p. per day for 7 days) in streptozotocine induced diabetic rats exhibited enhanced neurotoxicity and exacerbation of sensory, motor and cognitive function as compared to normal animals under identical conditions. Thus the diabetic animals showed exacerbation of regional blood-brain barrier (BBB) disruption, edema formation and cell injuries along with greater reduction in the local cerebral blood flow (CBF) as compared to normal rats. These observations suggest that diabetic animals are more vulnerable to nanoparticles induced brain damage than healthy rats. The possible mechanisms and functional significance of these findings are discussed in this review largely based on our own investigations. PMID:22229323

  7. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells

    PubMed Central

    Swanner, Jessica; Mims, Jade; Carroll, David L; Akman, Steven A; Furdui, Cristina M; Torti, Suzy V; Singh, Ravi N

    2015-01-01

    Identification of differential sensitivity of cancer cells as compared to normal cells has the potential to reveal a therapeutic window for the use of silver nanoparticles (AgNPs) as a therapeutic agent for cancer therapy. Exposure to AgNPs is known to cause dose-dependent toxicities, including induction of oxidative stress and DNA damage, which can lead to cell death. Triple-negative breast cancer (TNBC) subtypes are more vulnerable to agents that cause oxidative stress and DNA damage than are other breast cancer subtypes. We hypothesized that TNBC may be susceptible to AgNP cytotoxicity, a potential vulnerability that could be exploited for the development of new therapeutic agents. We show that AgNPs are highly cytotoxic toward TNBC cells at doses that have little effect on nontumorigenic breast cells or cells derived from liver, kidney, and monocyte lineages. AgNPs induced more DNA and oxidative damage in TNBC cells than in other breast cells. In vitro and in vivo studies showed that AgNPs reduce TNBC growth and improve radiation therapy. These studies show that unmodified AgNPs act as a self-therapeutic agent with a combination of selective cytotoxicity and radiation dose-enhancement effects in TNBC at doses that are nontoxic to noncancerous breast and other cells. PMID:26185437

  8. Size-dependent cytotoxicity of europium doped NaYF ? nanoparticles in endothelial cells.

    PubMed

    Chen, Shizhu; Zhang, Cuimiao; Jia, Guang; Duan, Jianlei; Wang, Shuxiang; Zhang, Jinchao

    2014-10-01

    Lanthanide-doped sodium yttrium fluoride (NaYF4) nanoparticles exhibit novel optical properties which make them be widely used in various fields. The extensive applications increase the chance of human exposure to these nanoparticles and thus raise deep concerns regarding their riskiness. In the present study, we have synthesized europium doped NaYF4 (NaYF4:Eu(3+)) nanoparticles with three diameters and used endothelial cells (ECs) as a cell model to explore the potential toxic effect. The cell viability, cytomembrane integrity, cellular uptake, intracellular localization, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis detection, caspase-3 activity and expression of inflammatory gene were studied. The results indicated that these nanoparticles could be uptaken into ECs and decrease the cell viability, induce the intracellular lactate dehydrogenase (LDH) release, increase the ROS level, and decrease the cell MMP in a size-dependent manner. Besides that, the cells were suffered to apoptosis with the caspase-3 activation, and the inflammation specific gene expressions (ICAM1 and VCAM1) were also increased. Our results suggest that the damage pathway may be related to the ROS generation and mitochondrial damage. The results provide novel evidence to elucidate their toxicity mechanisms and may be helpful for more rational applications of these compounds in the future. PMID:25175221

  9. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.

    PubMed

    Ghosh, Manosij; Bhadra, Sreetama; Adegoke, Aremu; Bandyopadhyay, Maumita; Mukherjee, Anita

    2015-04-01

    Advances in nanotechnology have led to the large-scale production of nanoparticles, which, in turn, increases the chances of environmental exposure. While humans (consumers/workers) are primarily at risk of being exposed to the adverse effect of nanoparticles, the effect on plants and other components of the environment cannot be ignored. The present work investigates the cytotoxic, genotoxic, and epigenetic (DNA methylation) effect of MWCNT on the plant system- Allium cepa. MWCNT uptake in root cells significantly altered cellular morphology. Membrane integrity and mitochondrial function were also compromised. The nanotubes induced significant DNA damage, micronucleus formation and chromosome aberration. DNA laddering assay revealed the formation of internucleosomal fragments, which is indicative of apoptotic cell death. This finding was confirmed by an accumulation of cells in the sub-G0 phase of the cell cycle. An increase in CpG methylation was observed using the isoschizomers MspI/HpaII. HPLC analysis of DNA samples revealed a significant increase in the levels of 5-methyl-deoxy-cytidine (5mdC). These results confirm the cyto-genotoxic effect of MWCNT in the plant system and simultaneously highlight the importance of this epigenetic study in nanoparticle toxicity. PMID:25829105

  10. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells.

    PubMed

    Hanot, Camille C; Choi, Young Suk; Anani, Tareq B; Soundarrajan, Dharsan; David, Allan E

    2016-01-01

    Superparamagnetic iron-oxide nanoparticles (SPIONs) show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells). We evaluated the effect of particle diameter (50 and 100 nm) and polyethylene glycol (PEG) chain length (2k, 5k and 20k Da) on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS). Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications. PMID:26729108

  11. Cytotoxic cells induced after Chlamydia psittaci infection in mice.

    PubMed Central

    Lammert, J K

    1982-01-01

    The ability of spleen cells from Chlamydia psittaci-infected mice to lyse C. psittaci-infected and uninfected target cell monolayers was studied. The cytotoxicity assay used was a terminal label method in which the number of adherent target cells surviving the interaction with effector cells was determined by measuring the uptake of [3H]uridine by such cells. It was observed that in the first few days postinfection (3 to 5), spleens contained cells that lysed infected and uninfected targets with equal efficiency. Subsequently, infected targets were killed primarily. The activity of effector spleen cells for infected targets continued, although at a reduced level, beyond 21 days postinfection. Intact effector cells were required since a disruption by sonication resulted in a loss of cytotoxicity. The enhanced killing observed with infected targets was also observed when target cells were sensitized with heat- or UV-inactivated C. psittaci. This study suggests that the induction of cytotoxic cells after C. psittaci infection may contribute to the ability of the host to control multiplication of the microorganism. PMID:7068208

  12. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract

    PubMed Central

    Namvar, Farideh; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Baharara, Javad; Mahdavi, Mahnaz; Amini, Elaheh; Chartrand, Max Stanley; Yeap, Swee Keong

    2014-01-01

    Magnetic iron oxide nanoparticles (Fe3O4 MNPs) are among the most useful metal nanoparticles for multiple applications across a broad spectrum in the biomedical field, including the diagnosis and treatment of cancer. In previous work, we synthesized and characterized Fe3O4 MNPs using a simple, rapid, safe, efficient, one-step green method involving reduction of ferric chloride solution using brown seaweed (Sargassum muticum) aqueous extract containing hydroxyl, carboxyl, and amino functional groups mainly relevant to polysaccharides, which acts as a potential stabilizer and metal reductant agent. The aim of this study was to evaluate the in vitro cytotoxic activity and cellular effects of these Fe3O4 MNPs. Their in vitro anticancer activity was demonstrated in human cell lines for leukemia (Jurkat cells), breast cancer (MCF-7 cells), cervical cancer (HeLa cells), and liver cancer (HepG2 cells). The cancer cells were treated with different concentrations of Fe3O4 MNPs, and an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to test for cytotoxicity, resulting in an inhibitory concentration 50 (IC50) value of 23.83±1.1 ?g/mL (HepG2), 18.75±2.1 ?g/mL (MCF-7), 12.5±1.7 ?g/mL (HeLa), and 6.4±2.3 ?g/mL (Jurkat) 72 hours after treatment. Therefore, Jurkat cells were selected for further investigation. The representative dot plots from flow cytometric analysis of apoptosis showed that the percentages of cells in early apoptosis and late apoptosis were increased. Cell cycle analysis showed a significant increase in accumulation of Fe3O4 MNP-treated cells at sub-G1 phase, confirming induction of apoptosis by Fe3O4 MNPs. The Fe3O4 MNPs also activated caspase-3 and caspase-9 in a time-response fashion. The nature of the biosynthesis and therapeutic potential of Fe3O4 MNPs could pave the way for further research on the green synthesis of therapeutic agents, particularly in nanomedicine, to assist in the treatment of cancer. PMID:24899805

  13. Mechanisms of cell penetration and cytotoxicity of ultrasmall Au nanoparticles conjugated to doxorubicin and/or targeting peptides

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Poon, Wilson; Zhang, Xuan

    2015-03-01

    The goals of this work were to determine whether conjugation of any of four selected peptides to Au nanoparticles improved their delivery to B16 melanoma in vitro and in vivo. In in vitro cytotoxicity assays, peptides and conjugates were endocytosed but did not escape from endosomes. None of the peptides showed any cytotoxicity, with or without conjugation to the nanoparticles. The combination of peptides and doxorubicin did not improve upon the cytotoxicity of gold-doxorubicin alone. We then tested targeting in vivo using inductively coupled plasma mass spectrometry to quantify the concentration of Au in the organs of B16 tumor-bearing mice 4, 24, and 72 h after intravenous Au nanoparticle injection. These experiments showed that in some cases, peptide conjugation improved upon the enhanced permeability and retention (EPR) effect. A peptide based upon the myxoma virus and the cyclic RGD peptide were both effective at tumor targeting; myxoma was more effective with un-PEGylated particles, and cRGD with PEGylated particles. The FREG and melanocyte stimulating hormone (MSH) peptides did not improve targeting. These results suggest that these peptides may improve delivery of Au particles to tumors, but also may prevent entry of particles into cell nuclei.

  14. Biosensors based on inorganic nanoparticles with biomimetic properties: Biomedical applications and in vivo cytotoxicity measurements

    NASA Astrophysics Data System (ADS)

    Ispas, Cristina R.

    The rapid progress of nanotechnology and advanced nanomaterials production offer significant opportunities for designing powerful biosensing devices with enhanced performances. This thesis introduces ceria (CeO 2) nanoparticles and its congeners as a new class of materials with huge potential in bioanalytical and biosensing applications. Unique redox, catalytic and oxygen storage/release properties of ceria nanoparticles, originating from their dual oxidation state are used to design biomedical sensors with high sensitivity and low oxygen dependency. This thesis describes a new approach for fabrication of implantable microbiosensors designed for monitoring neurological activity in physiological conditions. Understanding the mechanisms involved in neurological signaling and functioning is of great physiological importance. In this respect, the development of effective methods that allow accurate detection and quantification of biological analytes (i.e. L-glutamate and glucose) associated with neurological processes is of paramount importance. The performance of most analytical techniques currently used to monitor L-glutamate and glucose is suboptimal and only a limited number of approaches address the problem of operation in oxygen-restricted conditions, such as ischemic brain injury. Over the past couple of years, enzyme based biosensors have been used to investigate processes related to L-glutamate release/uptake and the glucose cycle within the brain. However, most of these sensors, based on oxidoreductase enzymes, do not work in conditions of limited oxygen availability. This thesis presents the development of a novel sensing technology for the detection of L-glutamate and glucose in conditions of oxygen deprivation. This technology provides real-time assessment of the concentrations of these analytes with high sensitivity, wide linear range, and low oxygen dependence. The fabrication, characterization and optimization of enzyme microbiosensors are discussed. This work introduces a new generic approach of improving the sensitivity of oxidase-based enzymatic assays and indicates that ceria and its mixture with other metal oxide nanoparticles could be used to minimize the problems associated with variations of the oxygen. These materials have great potential in bioanalytical and biotechnological applications and offer great opportunities for development of implantable sensing devices for in vivo and in vitro monitoring of analytes of clinical relevance. Additionally, this thesis evaluates the toxicity of different metal and metal oxide nanoparticles by using zebrafish embryos as a toxicological target. Because of their similarities with other vertebrates, rapid development and low cost, zebrafish embryos are ideal animal models for probing toxicological effects of engineered nanomaterials. Among the nanomaterials tested, nickel nanoparticles were characterized by high toxicity and induced delayed development and morphological malformations, while metal oxides nanoparticles (i.e. ceria nanoparticles) had no toxic effects.

  15. Secondary metabolites, cytotoxic response by neutral red retention and protective effect against H2O2 induced cytotoxicity of Sedum caespitosum.

    PubMed

    Söhreto?lu, Didem; Sabuncuo?lu, Suna

    2012-01-01

    The EtOAc, n-BuOH and H20 subextracts of the crude MeOH extract of the aerial parts of Sedum caespitosum (cav.) Dc. were screened for cytotoxicity using the neutral red assay in Chinese hamster ovary cells as well as their protective effect against H2O2 induced cytotoxicity in human red blood cells. While the extracts did not show cytotoxicity, they displayed a protective effect compared to a blank and ascorbic acid. Gallic acid (1), kaempferol 3-O-alpha-rhamnopyranoside (2), quercetin 3-O-beta-glucopyranoside (3), quercetin 3-O-alpha-rhamnopyranoside (4) and myricetin 3-O-alpha-rhamnopyranoside (5) were isolated from the EtOAc extract and identified by 1D- and 2D-NMR. The protective effects of the isolated compounds against H2O2 induced cytotoxicity in human red blood cells were evaluated and 5 was the most active. PMID:22428239

  16. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    NASA Astrophysics Data System (ADS)

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-01

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  17. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    PubMed Central

    MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria

    2014-01-01

    Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nb?) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nb?. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nb?, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023

  18. Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia

    NASA Astrophysics Data System (ADS)

    Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.

    2015-03-01

    CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.

  19. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Lakshmi Sundaram, R.; Narayanan, V.

    2014-08-01

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585 nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20 nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4- ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations.

  20. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    PubMed

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-01

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise in vitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation. PMID:25459618

  1. Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity.

    PubMed

    Bogdanovi?, Gordana; Koji?, Vesna; Dordevi?, Aleksandar; Canadanovi?-Brunet, Jasna; Vojinovi?-Miloradov, Mirjana; Balti?, Vladimir Vit

    2004-10-01

    Paper presents the effects of the newly synthesized fullerol C60(OH)22 on the growth of tumor cells in vitro and its modulating activity on doxorubicin (DOX)-induced cytotoxicity in human breast cancer cell lines. Cell growth inhibition was evaluated by tetrazolium colorimetric WST1 assay. Electron spin resonance (ESR) "trapping" method was used to investigate OH-radical scavenger activity of fullerol during Fenton's reaction. At a range of nanomolar concentrations fullerol induced cell growth inhibition, which was cell line, dose and time dependent. Fullerol also strongly suppressed DOX-induced cytotoxicity at all concentrations regardless the time of fullerol addition. Proanthocyanidins added as single agent to MCF-7 cell culture for 48 h induced low growth inhibition but in combination with DOX strongly decreased DOX cytotoxicity. Fullerol was found to be a potent hydroxyl radical scavenger: the relative intensity of ESR signals of DMPO-hydroxyl radical (DMPO-OH) spin adduct decreased by 88% in the presence of 0.5 microg/ml of fullerol. The obtained results suggest that antiproliferative effect of the fullerol and its protective effect on DOX-induced cytotoxicity might be mediated through hydroxyl-radical scavenger activity of C60(OH)22. PMID:15251181

  2. Cytotoxicity, tumor targeting and PET imaging of sub-5 nm KGdF4 multifunctional rare earth nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Xinmin; Cao, Fengwen; Xiong, Liqin; Yang, Yang; Cao, Tianye; Cai, Xi; Hai, Wangxi; Li, Biao; Guo, Yixiao; Zhang, Yimin; Li, Fuyou

    2015-08-01

    Ultrasmall sub-5 nm KGdF4 rare earth nanoparticles were synthesized as multifunctional probes for fluorescent, magnetic, and radionuclide imaging. The cytotoxicity of these nanoparticles in human glioblastoma U87MG and human non-small cell lung carcinoma H1299 cells was evaluated, and their application for in vitro and in vivo tumor targeted imaging has also been demonstrated.Ultrasmall sub-5 nm KGdF4 rare earth nanoparticles were synthesized as multifunctional probes for fluorescent, magnetic, and radionuclide imaging. The cytotoxicity of these nanoparticles in human glioblastoma U87MG and human non-small cell lung carcinoma H1299 cells was evaluated, and their application for in vitro and in vivo tumor targeted imaging has also been demonstrated. Electronic supplementary information (ESI) available: Details of the experimental section as well as EDXA, XRD, zeta potential, FTIR, TGA, stability, TEM, Z scanning, ICP-MS, and MicroPET/CT images. See DOI: 10.1039/c5nr03374h

  3. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC50 values in WST-1 assays. The IC50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  4. Cytotoxicity of Gold Nanoparticles with Varying Concentration and Under Low Dose Environmental Radiation on Human Embryonic Kidney 293 Cells (HEK-293)

    NASA Astrophysics Data System (ADS)

    Crudup, Shalana; Braender, Bruce; Iftode, Cristina; Dobbins, Tabbetha

    2013-03-01

    Nanomaterials are increasingly being used in medicine. Most research surrounding the health and safety effects of nanomaterials examine the cytotoxicity of nanoparticles alone. Few studies, as this one does, examines the combined effects of nanoparticle concentration and radiation exposure on cytotoxicity to human embryonic kidney 293 cells (HEK-293). Nanoparticles injected in the body are supposed to undergo biodegradation once they are done their specified task, however, some do not and accumulate in the cells (particularly at the liver and kidney) and this causes intracellular changes. Examples of intracellular changes are the disruption of organelle integrity or gene alterations. This will cause the cells to die because the cells are very sensitive to changes in their pH. The experiments reported here focus on the cytotoxicity of gold nanoparticles as a function of varying particle concentrations and also with and without exposure to UV radiation.

  5. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells

    PubMed Central

    Gurunathan, Sangiliyandi; Raman, Jegadeesh; Malek, Sri Nurestri Abd; John, Priscilla A; Vikineswary, Sabaratnam

    2013-01-01

    Background Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1–10 ?g/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers. PMID:24265551

  6. NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio).

    PubMed

    SanJuan-Reyes, Nely; Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; García-Medina, Sandra; Islas-Flores, Hariz; González-González, Edgar David; Cardoso-Vera, Jesús Daniel; Jiménez-Vargas, Juan Manuel

    2015-10-15

    The pharmaceutical industry generates wastewater discharges of varying characteristics and contaminant concentrations depending on the nature of the production process. The main chemicals present in these effluents are solvents, detergents, disinfectants - such as sodium hypochlorite (NaClO) - and pharmaceutical products, all of which are potentially ecotoxic. Therefore, this study aimed to evaluate the geno- and cytotoxicity induced in the common carp Cyprinus carpio by the effluent emanating from a nonsteroidal anti-inflammatory drug (NSAID)-manufacturing plant. Carp were exposed to the lowest observed adverse effect level (LOAEL, 0.1173%) for 12, 24, 48, 72 and 96 h, and biomarkers of genotoxicity (comet assay and micronucleus test) and cytotoxicity (caspase-3 activity and TUNEL assay) were evaluated. A significant increase with respect to the control group (p<0.05) occurred with all biomarkers from 24h on. Significant positive correlations were found between NSAID concentrations and biomarkers of geno- and cytotoxicity, as well as among geno- and cytotoxicity biomarkers. In conclusion, exposure to this industrial effluent induces geno- and cytotoxicity in blood of C. carpio. PMID:26026403

  7. Protective Cytotoxic T Lymphocytes Are Induced During Murine Infection with Chlamydia trachomatis'

    E-print Network

    Starnbach, Michael

    in lysis of infected cells and the release of cytokines including IFN-y. Members of the genus ChlamydiaProtective Cytotoxic T Lymphocytes Are Induced During Murine Infection with Chlamydia trachomatis and bound by MHCclass I. In this study, we characterizeda CTL line derived from mice infected with C

  8. Use of a Rapid Cytotoxicity Screening Approach to Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping

    PubMed Central

    George, Saji; Pokhrel, Suman; Xia, Tian; Gilbert, Benjamin; Ji, Zhaoxia; Schowalter, Marco; Rosenauer, Andreas; Damoiseaux, Robert; Bradley, Kenneth A; Mädler, Lutz; Nel, André E

    2014-01-01

    The establishment of verifiably safe nanotechnology requires the development of assessment tools to identify hazardous nanomaterial properties that could be modified to improve nanomaterial safety. While there is a lot of debate of what constitutes appropriate safety screening methods, one approach is to use the assessment of cellular injury pathways to collect knowledge about hazardous material properties that could lead to harm to humans and the environment. We demonstrate the use of a multi-parameter cytotoxicity assay that evaluates toxic oxidative stress to compare the effects of titanium dioxide (TiO2), cerium oxide (CeO2) and zinc oxide (ZnO) nanoparticles in bronchial epithelial and macrophage cell lines. The nanoparticles were chosen based on their volume of production and likelihood of spread to the environment. Among the materials, dissolution of ZnO nanoparticles and Zn2+ release were capable of ROS generation and activation of an integrated cytotoxic pathway that includes intracellular calcium flux, mitochondrial depolarization, and plasma membrane leakage. These responses were chosen based on the compatibility of the fluorescent dyes that contemporaneously assess their response characteristics by a semi-automated epifluorescence procedure. Purposeful reduction of ZnO cytotoxicity was achieved by iron doping, which changed the material matrix to slow Zn2+ release. In summary, we demonstrate the utility of a rapid throughput, integrated biological oxidative stress response pathway to perform hazard ranking of a small batch of metal oxide nanoparticles, in addition to showing how this assay can be used to improve nanosafety by decreasing ZnO dissolution through Fe doping. PMID:20043640

  9. Layer by layer assembly of albumin nanoparticles with selective recognition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    PubMed

    Cui, Wei; Wang, Anhe; Zhao, Jie; Yang, Xiaoke; Cai, Peng; Li, Junbai

    2016-03-01

    Crosslinked albumin nanoparticles which loaded with doxorubicin (DOX) were fabricated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and biocompatible polysaccharide, alginate (ALG), using layer-by-layer technique. Albumin nanoparticles exhibited narrow size distribution and fluorescent property. The assembled core/shell structure of the nanoparticles can be internalized more easily with the cancer cells, which attributes to TRAIL binding with death receptors. TRAIL still hold bioactive properties after assembled onto the particles. In addition, after loaded into the albumin core nanoparticles, DOX (as the chemotherapeutics) display a synergistic cytotoxic effect on cytotoxicity in combination with TRAIL in vitro. The core/shell nanostructured nanoparticles realized in this study would be used as a promising candidate for novel drug carriers. PMID:26641559

  10. Comprehensive Evaluation of microRNA Expression Profiling Reveals the Neural Signaling Specific Cytotoxicity of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) through N-Methyl-D-Aspartate Receptor

    PubMed Central

    Sun, Bo; Liu, Rui; Ye, Nan; Xiao, Zhong-Dang

    2015-01-01

    Though nanomaterials are considered as drug carriers or imaging reagents targeting the central nervous system their cytotoxicity effect on neuronal cells has not been well studied. In this study, we treated PC12 cells, a model neuronal cell line, with a nanomaterial that is widely accepted for medical use, superparamagnetic iron oxide nanoparticles (SPIONs). Our results suggest that, after treated with SPIONs, the expression pattern of the cellular miRNAs changed widely in PC12 cells. As potential miRNA targets, NMDAR, one of the candidate mRNAs that were selected using GO and KEGG pathway enrichment, was significantly down regulated by SPIONs treatment. We further illustrated that SPIONs may induce cell death through NMDAR suppression. This study revealed a NMDAR neurotoxic effect of SPIONs and provides a reliable approach for assessing the neurocytotoxic effects of nanomaterials based on the comprehensive annotation of miRNA profiling. PMID:25798908

  11. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity.

    PubMed

    Christen, Verena; Fent, Karl

    2012-04-01

    Engineered silica nanoparticles (SiO(2)-NPs) find widespread application and may lead to exposure of humans and the environment. Here we compare the effects of SiO(2)-NPs and SiO(2)-NPs doped with silver (SiO(2)-Ag-NPs) on survival and cellular function of human liver cells (Huh7) and Pimephales promelas (fathead minnow) fibroblast cells (FMH). In Huh7 cells we investigate effects on the endoplasmatic reticulum (ER), including ER stress, and interactions of nanoparticles (NPs) with metabolizing enzymes and efflux transporters. The NPs formed agglomerates/aggregates in cell culture media as revealed by SEM and TEM. SiO(2) and SiO(2)-1% Ag-NPs were taken up into cells as demonstrated by agglomerates occurring in vesicular-like structures or freely dispersed in the cytosol. Cytotoxicity was more pronounced in Huh7 than in FMH cells, and increased with silver content in silver-doped NPs. Dissolved silver was the most significant factor for cytotoxicity. At toxic and non-cytotoxic concentrations SiO(2)-NPs and SiO(2)-1% Ag-NPs induced perturbations in the function of ER. In Huh7 cells NPs induced the unfolded protein response (UPR), or ER stress response, as demonstrated in induced expression of BiP and splicing of XBP1 mRNA, two selective markers of ER stress. Additionally, SiO(2)-1% Ag-NPs and AgNO(3) induced reactive oxygen species. Pre-treatment of Huh7 cells with SiO(2)-1% Ag-NPs followed by exposure to the inducer benzo(a)pyrene caused a significant reduced induction of CYP1A activity. NPs did not alter the activity of ABC transporters. These data demonstrate for the first time that SiO(2)-NPs and SiO(2)-1% Ag-NPs result in perturbations of the ER leading to the ER stress response. This represents a novel and significant cellular signalling pathway contributing to the cytotoxicity of NPs. PMID:22245057

  12. Flow-Induced Assembly of Nickel Nanoparticles

    NASA Astrophysics Data System (ADS)

    Russell, Nathan A.; Borca-Tasciuc, Theodorian; Hirsa, Amir H.

    2008-07-01

    Lead telluride and bismuth telluride exhibit the peak value of about 1 for figure of merit (ZT) of bulk thermoelectric materials; the figure of merit is a measure of efficiency for thermoelectric energy conversion. ZT greater than around 2-3 is necessary for thermoelectric devices to have widespread, practical applications in fields such as regenerative power recovery. Nanoscaled thermoelectric materials have surpassed this criterion, however, the scale-up of these nanostructured materials while maintaining the desired properties has proven to be challenging. Flow-induced assembly of nanoparticles at an air/water interface is a potential candidate to scale-up production of nanostructured thermoelectric materials. Here, we spread nanoparticles on the surface of water using classical techniques developed for Langmuir monolayers. Interfacial shear is produced by an annular Couette flow driven by the constant rotation of an outer cylinder and a stationary inner cylinder. The Reynolds number is large enough to produce strong shearing motion at the interface in order to assemble the particles into a well organized film. These films will subsequently be harvested and stacked accordingly with minimal loss of desired properties. In this paper we investigate flow induced assembly of nickel nanoparticles as a model system.

  13. Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators.

    PubMed

    Zhang, Qin; Hitchins, Victoria M; Schrand, Amanda M; Hussain, Saber M; Goering, Peter L

    2011-09-01

    More information characterizing the biological responses to nanoparticles is needed to allow the U.S. Food and Drug Administration to evaluate the safety and effectiveness of products with nano-scale components. The potential cytotoxicity and inflammatory responses of Au NPs (60 nm, NIST standard reference materials) were investigated in murine macrophages. Cytotoxicity was evaluated by MTT and LDH assays. Cytokines (IL-6, TNF-?), nitric oxide, and ROS were assayed to assess inflammatory responses. Morphological appearance and localization of particles were examined by high resolution illumination microscopy, transmission electron microscopy (TEM), and scanning TEM coupled with EDX spectroscopy. Results showed no cytotoxicity and no elevated production of proinflammatory mediators; however, imaging analyses demonstrated cellular uptake of Au NPs and localization within intracellular vacuoles. These results suggest that 60 nm Au NPs, under the exposure conditions tested, are not cytotoxic, nor elicit pro-inflammatory responses. The localization of Au NPs in intracellular vacuoles suggests endosomal containment and an uptake mechanism involving endocytosis. PMID:20849214

  14. c-Myc induces cellular susceptibility to the cytotoxic action of TNF-alpha.

    PubMed Central

    Klefstrom, J; Västrik, I; Saksela, E; Valle, J; Eilers, M; Alitalo, K

    1994-01-01

    Tumor necrosis factor-alpha (TNF) is a multifunctional cytokine which is cytotoxic for some tumor cells and transformed cells. The molecular mechanisms which render transformed and tumor cells sensitive to the cytotoxic action of TNF are unclear. We show here that an increased expression of the c-Myc oncoprotein strongly increases cellular sensitivity to TNF cytotoxicity. In Rat1A fibroblasts, which are resistant to TNF, the addition of TNF with a concomitant activation of a hormone-inducible c-Myc-estrogen receptor chimera (MycER) resulted in apoptotic cell death. Similarly, c-Myc overexpression enhanced the sensitivity of NIH3T3 fibroblasts to TNF-induced death. The c-Myc and TNF-induced apoptosis was inhibited by ectopic expression of the Bcl2 oncoprotein and by the free oxygen radical scavenging enzyme Mn superoxide dismutase. Furthermore, in highly TNF-sensitive fibrosarcoma cells, antisense c-myc oligodeoxynucleotides caused a specific inhibition of TNF cytotoxicity. Our results suggest that the deregulation of c-Myc, which is common in human tumors and tumor cell lines is one reason why these cells are TNF sensitive. Images PMID:7957110

  15. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle

    PubMed Central

    Zhang, Kathy; Geddie, Melissa L; Kohli, Neeraj; Kornaga, Tad; Kirpotin, Dmitri B; Jiao, Yang; Rennard, Rachel; Drummond, Daryl C; Nielsen, Ulrik B; Xu, Lihui; Lugovskoy, Alexey A

    2015-01-01

    Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting. PMID:25484041

  16. Partially Acetylated Dendrimer-Entrapped Gold Nanoparticles with Reduced Cytotoxicity for Gene Delivery Applications.

    PubMed

    Hou, Wenxiu; Wen, Shihui; Guo, Rui; Wang, Shige; Shi, Xiangyang

    2015-06-01

    Gene therapy has been concerned to be one of the most promising strategies to treat many diseases such as genetic disorders and cancer. However, design of safe and highly efficient gene delivery vectors still remains a great challenge. In this work, we report the use of partially acetylated dendrimer-entrapped gold nanoparticles (Au DENPs) for gene delivery applications. First, partially acetylated generation 5 poly(amidoamine) dendrimers with different acetylation degrees were used as templates to synthesize Au DENPs. The formed Au DENPs were characterized via different techniques and were used to complex two different pDNAs encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The Au DENPs/pDNA polyplexes with different N/P ratios were characterized by gel retardation assay, dynamic light scattering, and zeta potential measurements, and the gene transfection efficiency was evaluated by Luc assay and fluorescence microscopic imaging of the EGFP expression, respectively. We show that despite the partial acetylation (5, 10, 20, and 30 acetyl groups per G5 dendrimer according to the molar feeding ratio), all acetylated Au DENPs are able to effectively compact the pDNA and transfect genes to the model cell line with high efficiency comparable to the Au DENPs without acetylation. With the proven less cytotoxicity of the partially acetylated Au DENPs than that of non-acetylated Au DENPs by cell viability assay, the developed partially acetylated Au DENPs may serve as promising vectors for safe gene delivery applications with non-compromised gene transfection efficiency. PMID:26369017

  17. Cytotoxicity of magnetic nanoparticles derived from green chemistry against human cells

    NASA Astrophysics Data System (ADS)

    Hanumandla, Pranitha

    The core-shelled Fe3O4 magnetic nanoparticles (MNPs) have been extensively investigated by the researchers due to their diversified applications. Recently, the study on the toxicity of nanomaterials has been drawn increasing attention to reduce or mitigate the environmental hazards and health risk. The objectives of this thesis are three fold: 1) prepare series functionalized Fe3O4 MNPs and optimize the synthesis variables of; 2) characterize their nanostructures using the state-of-the-art instrumental techniques; and 3) evaluate their cytotoxicity by measurement of nitrogen monoxide (NO) release, reactive oxygen species (ROS) and single oxygen species (SOS) generation. In order to prepare the crystalline Fe3O4 MNPs, a cost-effective and user-friendly wet chemistry (Sol-Gel) method was used. Two Indian medicinal plants were extracted to derive the active chemicals, which were used to functionalize the Fe3O 4 MNPs. The results indicated that the Fe3O4 MNPs were well-indexed with the standard inverse spinel structure (PDF 65-3107, a=8.3905A, ? = 90°). The particle's sizes varied from 6-10 nm with the Fe3O 4 MNPs acting as cores and medicinal extracts as shell. The active chemical components extracted from two Hygrophila auriculata/ Chlorophytum borivilianum are fatty acid, Saponins, sterols, carbohydrates and amino acids, which are in agreement with the reported data. Toxicological evaluations of MNPs indicated that the Fe3O4 MNPs functionalized with Hygrophila auriculata/ Chlorophytum borivilianum extract prepared at room temperature were toxic to the cells when compared to the control, and act in a mechanism similar to the actions of hydrogen peroxide (H2O2). These functionalized MNPs, which were prepared at 100 ° C, displayed similar mechanism of action to the anticancer drug (SN-38). It was also found that the MNPs prepared at lower temperatures are less toxic and showed similar mechanism of action as the sodium nitrite (NaNO 2).

  18. Feselol enhances the cytotoxicity and DNA damage induced by cisplatin in 5637 cells.

    PubMed

    Mollazadeh, Samaneh; Matin, Maryam M; Bahrami, Ahmad Reza; Iranshahi, Mehrdad; Behnam-Rassouli, Morteza; Rassouli, Fatemeh B; Neshati, Vajiheh

    2011-01-01

    Transitional cell carcinoma (TCC), which is the most common type of bladder cancer, shows resistance to chemotherapeutic agents due to the overexpression of drug efflux pumps. In this study, the effects of feselol, a sesquiterpene coumarin extracted from Ferula badrakema, on cisplatin cytotoxicity were investigated in 5637 cells, a TCC subline. Cell viability and DNA lesion were evaluated by thiazolyl blue tetrazolium bromide and comet assays, respectively. Feselol had no significant cytotoxic effect in 5637 cells but at 32 microg/mL it increased the cytotoxicity of 1 microg/mL cisplatin by 37% after 24 h. Furthermore, the comet assay revealed that DNA damage induced by cisplatin in 5637 cells is enhanced by 31% when used in combination with feselol. Therefore, feselol might be considered as an effective reversal agent for future in vivo and clinical studies. PMID:22351980

  19. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ? Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ? The impairment of mitochondrial functions may contribute to the enhanced toxicity. ? Inhibition of JNK activity attenuated palmitate/ CsA induced toxicity. ? Palmitate sensitizes cells to the toxicity induced by CsA at therapeutic exposure. ? Elevated free fatty acids may predispose the patients to CsA-induced toxicity.

  20. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, P.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Al-Dhabi, Naif Abdullah

    2015-02-01

    The application of microorganisms for the synthesis of nanoparticles as an eco-friendly and promising approach is welcome due to its non-toxicity and simplicity. The aim of this study was to synthesize silver nanoparticle using Streptomyces sp. (09 PBT 005). 09 PBT 005 was isolated from the soil sample of the agriculture field in Vengodu, Thiruvannamalai district, Tamil Nadu, India. 09 PBT 005 was subjected to molecular characterization by 16S rRNA sequence analysis. It was found that 09 PBT 005 belonged to Streptomyces sp. The isolate Streptomyces sp. 09 PBT 005 was inoculated in fermentation medium and incubated at 30 ºC for 12 days in different pH conditions. The 0.02 molar concentration showed good antibacterial activity against Gram-positive and Gram-negative bacteria at pH-7. The synthesis of silver nanoparticles was investigated by UV-Vis spectroscopy, scanning electron microscopy and Fourier Transform Infrared analysis. The synthesized AgNPs sizes were found to be in the dimensions ranging between 198 and 595 nm. The cytotoxicity of the synthesized nanoparticles was studied against A549 adenocarcinoma lung cancer cell line. It showed 83.23 % activity at 100 ?l with IC 50 value of 50 ?l. This method will be useful in the biosynthesis of nanoparticles.

  1. Interferon-? gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    PubMed

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-? (IFN?) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFN? gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFN?) to human cells. IFN? gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFN?-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFN? gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFN?-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFN?, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFN? expression could be related to the resistance displayed by one human melanoma cell line. As IFN? gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. PMID:26054674

  2. Virus-induced complement activation and neutrophil-mediated cytotoxicity against respiratory syncytial virus (RSV).

    PubMed

    Kaul, T N; Faden, H; Baker, R; Ogra, P L

    1984-06-01

    Complement-dependent neutrophil-mediated cytotoxicity (CDNC) was determined by specific release of 51-chromium (51Cr) from respiratory syncytial virus infected HEp2 cells in a microcytotoxicity assay. There was significant release of 51Cr from RSV infected cells as compared to uninfected cells in the presence of complement (C) and neutrophils (PMN). The degree of cytotoxicity was dependent upon the concentration of C used in the assay. Such cytotoxicity was effectively abolished after heat-inactivation of complement. Complement deficient in C4 did not induce cytotoxicity. Similarly, inhibitors of C1 or C3 blocked CDNC. The maximal CDNC was observed at 37 degrees C with little or no response at 4 degrees C. Lymphocytes and monocytes mediated complement-dependent cytotoxicity very poorly in comparison to PMN. Evidence of complement activation by infected cells was demonstrated by the detection of C3 fixed to RSV infected cells by indirect immunofluorescence. Treatment of C with EDTA or heat prevented subsequent attachment of C3 to the infected cells. These in vitro observations suggest an initial activation of complement by RSV infected cells and subsequent lysis by PMN. It is proposed that this process may play a role in the elimination of virus in the early phase of infection in the absence of specific antibody or sensitized lymphocytes. PMID:6744659

  3. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.--a model approach.

    PubMed

    Taranath, T C; Patil, Bheemanagouda N; Santosh, T U; Sharath, B S

    2015-06-01

    Zinc nanoparticles were synthesized using aqueous leaf extract of Justicia adhatoda L. The characterization of nanoparticles was done by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HR-TEM). The characteristic absorption peak of the UV spectrum was recorded at 379 nm. The FTIR data revealed the possible biomolecules involved in bioreduction and capping of zinc nanoparticles for efficient stabilization. AFM and HR-TEM images have shown that the size of zinc nanoparticles ranges from 55 to 83 nm and they are spherical in shape. The biogenic zinc nanoparticles were evaluated for their toxic effect on mitotic chromosomes of Allium cepa as a model system. Experiments were conducted in triplicate to assay the effect of 25, 50, 75, and 100 % of zinc nanoparticles on mitotic chromosomes at an interval of 6 h duration for 24 h. The investigation revealed that the mitotic index (MI) was decreased with increased concentration of zinc nanoparticles and exposure duration. The results revealed that zinc nanoparticles have induced abnormalities like anaphase bridge formation, diagonal anaphase, C-metaphase, sticky metaphase, laggards, and sticky anaphase at different percentages and times of exposure. It is evident from the observation that mitotic cell division becomes abortive at 100 % treatment of zinc nanoparticles. PMID:25586613

  4. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer.

    PubMed

    Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Bao, Huijing; Li, Xue; Liu, Yunde; Yang, Xianjin

    2013-07-01

    Silver nanoparticle (AgNP) was incorporated into dopamine-modified alginate/chitosan (DAL/CHI) polyelectrolyte multilayer to modify the surface of titanium alloy and improve its antibacterial property. Scanning electron microscopy showed that AgNP with the size of 50 nm embedded in DAL/CHI multilayers homogeneously. X-ray photoelectron spectroscopy analysis indicated that the nanoparticles were silver (0) with peaks at 368.4 and 374.4 eV, respectively. The formation of silver (0) without the addition of reductants was due to the self-polymerization of dopamine, which can reduce the silver cation into neutral metal. The polyelectrolyte multilayer coating enhanced the wettability of titanium alloy and promoted the fibroblast proliferation significantly, which could be attributed to the excellent biocompatibility of DAL/CHI. Despite the slight fall of L929 cell activity after AgNP incorporation, AgNP-DAL/CHI multilayer inhibited the growth of both Escherichia coli and Staphylococcus aureus. The above results demonstrate that dopamine decoration is a simple and effective way to induce the in-situ formation of AgNP within polyelectrolyte multilayer. Furthermore, the AgNP-containing multilayer considerably enhances the antibacterial activity of titanium alloy. The fabrication of AgNP-DAL/CHI multilayer on the surface of titanium implant might have great potential in orthopedic use. PMID:23623101

  5. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol ?, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  6. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated from Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas; Ahmed, Arham S.; Ahmed, Faheem; Ahmad, Ejaz; Sherwani, Asif; Owais, Mohammad; Azam, Ameer

    2013-01-01

    Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ?93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases. PMID:23555625

  7. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

    PubMed Central

    Feiden, Lisa; Hermanns, Maria I; Bantz, Christoph; Maskos, Michael; Unger, Ronald E; Kirkpatrick, C James

    2015-01-01

    Summary The air–blood barrier is a very thin membrane of about 2.2 µm thickness and therefore represents an ideal portal of entry for nanoparticles to be used therapeutically in a regenerative medicine strategy. Until now, numerous studies using cellular airway models have been conducted in vitro in order to investigate the potential hazard of NPs. However, in most in vitro studies a crucial alveolar component has been neglected. Before aspirated NPs encounter the cellular air–blood barrier, they impinge on the alveolar surfactant layer (10–20 nm in thickness) that lines the entire alveolar surface. Thus, a prior interaction of NPs with pulmonary surfactant components will occur. In the present study we explored the impact of pulmonary surfactant on the cytotoxic potential of amorphous silica nanoparticles (aSNPs) using in vitro mono- and complex coculture models of the air–blood barrier. Furthermore, different surface functionalisations (plain-unmodified, amino, carboxylate) of the aSNPs were compared in order to study the impact of chemical surface properties on aSNP cytotoxicity in combination with lung surfactant. The alveolar epithelial cell line A549 was used in mono- and in coculture with the microvascular cell line ISO-HAS-1 in the form of different cytotoxicity assays (viability, membrane integrity, inflammatory responses such as IL-8 release). At a distinct concentration (100 µg/mL) aSNP–plain displayed the highest cytotoxicity and IL-8 release in monocultures of A549. aSNP–NH2 caused a slight toxic effect, whereas aSNP–COOH did not exhibit any cytotoxicity. In combination with lung surfactant, aSNP–plain revealed an increased cytotoxicity in monocultures of A549, aSNP–NH2 caused a slightly augmented toxic effect, whereas aSNP–COOH did not show any toxic alterations. A549 in coculture did not show any decreased toxicity (membrane integrity) for aSNP–plain in combination with lung surfactant. However, a significant augmented IL-8 release was observed, but no alterations in combination with lung surfactant. The augmented aSNP toxicity with surfactant in monocultures appears to depend on the chemical surface properties of the aSNPs. Reactive silanol groups seem to play a crucial role for an augmented toxicity of aSNPs. The A549 cells in the coculture seem to be more robust towards aSNPs, which might be a result of a higher differentiation and polarization state due the longer culture period. PMID:25821694

  8. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  9. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.

    PubMed

    Skrzypski, M; Sassek, M; Abdelmessih, S; Mergler, S; Grötzinger, C; Metzke, D; Wojciechowicz, T; Nowak, K W; Strowski, M Z

    2014-01-01

    Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo. PMID:24075930

  10. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity

    PubMed Central

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W.; Wileman, Thomas; Roberts, Alexandra A.; Hamilton, Chris J.; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 ?M. Pre-treatment with SFN (5 ?M) increased cell viability in response to CdSe QDs (20 ?M) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy. PMID:26402917

  11. Functionalized nanoparticles for AMF-induced gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the non-toxic magnetoplexes (magnetic nanoparticle + pDNA complex) derived from dMLP deliver pDNA into mammalian cells even without external magnetic assistance. To date, dMLP is the only polymer-free magnetic gene delivery system that can deliver pDNA without any magnetic assistance. Chapter 3 of this thesis outlines the synthesis and characterization of other oxime ether lipids and details studies using derived-lipoplexes. These lipids were evaluated in pDNA and siRNA transfection studies in various mammalian cell lines. This work constitutes the first use of an oxime ether as the linking domain in cationic transfection lipids. These biocompatible oxime ether lipids can be readily assembled by click chemistry through ligation of hydrophobic aldehydes with quaternary ammonium aminooxy salts. Our studies showed that the oxime ether lipids transfected pDNA and siRNA efficiently in MCF-7, H 1792, and in PAR C10 cells comparable to and in some cases better than commercial transfection lipids. Chapter 4 describes the design and characterization of a nano-magnetic delivery system for AMF-induced drug (doxorubicin) release. In efforts to develop a magnetic formulation free from thermosensitive materials, such as hydrogels, we synthesized three nanoparticle-based doxorubicin formulations using charge interactions as the key associative force. To do so, we synthesized and characterized a novel cationic oxime ether conjugate at C-13 of doxorubicin. Our investigation indicated that the positive charge of the oxime ether drug conjugate tended to bind better to the negatively charged nanoparticle than did the other formulations prepared in stepwise manner. Our findings show that the nano-magnetic formulations remained essestially inactive at body temperature (37.5 °C) and released a majority of the cargo only when exposed to an external AMF. Our designed magnetic drug delivery platform is the first example of an AMF-inducible system that does not depend on the inclusion of thermosensitive materials. Finally, we have developed a bioanalytical application of the highly chemosele

  12. CIIA prevents SOD1(G93A)-induced cytotoxicity by blocking ASK1-mediated signaling

    PubMed Central

    Lee, Jae Keun; Hwang, Sang Gil; Shin, Jin Hee; Shim, Jaekyung; Choi, Eui-Ju

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease with higher selectivity in degeneration of motor neurons. However, the molecular mechanism by which the ALS-linked mutants of human superoxide dismutase 1 (SOD1) gene induce neurotoxicity remains obscure yet. Here, we show that depletion of CIIA expression by RNA interference (RNAi) promoted cytotoxicity caused by ALS-linked G93A mutant of the SOD1 gene. The RNAi-mediated knockdown of CIIA also enhanced the SOD1(G93A)-induced interaction between ASK1 and TRAF2 as well as ASK1 activity. Furthermore, endogenous silencing of CIIA by RNAi augmented the effects of SOD1(G93A) on reduction of mitochondria membrane potential (??m), release of cytochrome c into the cytoplasm, and caspase activation. Together, our results suggest that CIIA negatively modulates ASK1-mediated cytotoxic signaling processes in a SOD1(G93A)-expressing cellular model of ALS. PMID:25018698

  13. Sonodynamically-induced cytotoxicity by rose bengal derivative and microbubbles in isolated sarcoma 180 cells

    NASA Astrophysics Data System (ADS)

    Sugita, Nami; Hosokawa, Mami; Sunaga, Naoki; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko; Umemura, Shin-ichiro

    2015-07-01

    It is known that the combination of ultrasound and sonodynamic sensitizer (SDS) is effective in noninvasive tumor treatment, referred to as sonodynamic therapy (SDT). Microbubbles have been used in ultrasound therapy as well. The purpose of this paper is to clarify the effect of microbubbles on SDT. Sarcoma 180 cells were suspended in air-saturated phosphate-buffered saline and exposed to ultrasound with the SDS rose bengal derivative (RBD) in standing wave mode in the presence and absence of microbubbles [sonazoid (SZ)]. The ultrasonically induced cytotoxicity with RBD and SZ was about 20 times higher than without either, and about 80% of the SZ microbubbles were destructed by ultrasonic exposure in as short as five seconds. Since microbubbles induce significant cytotoxicity even with short duration, low intensity ultrasound, the application of microbubbles in SDT shows promise in anti-tumor treatment.

  14. Enhanced cytotoxicity and activation of ROS-dependent c-Jun NH2-terminal kinase and caspase-3 by low doses of tetrandrine-loaded nanoparticles in Lovo cells--a possible Trojan strategy against cancer.

    PubMed

    Li, Xiaolin; Zhen, Donghui; Lu, Xiaowei; Xu, Hua'e; Shao, Yun; Xue, Qiping; Hu, Yong; Liu, Baorui; Sun, Weihao

    2010-08-01

    Tetrandrine (Tet), a bis-benzylisoquinoline alkaloid, has recently been reported as a novel anti-cancer agent in vitro and in vivo by inducing apoptosis with the formation of reactive oxygen species (ROS) and the activation of ROS-dependent c-Jun NH(2)-terminal kinase (JNK) and caspase-3. However, application of Tet is limited for its insolubility. Accumulated evidences raise the possibility of developing nanoscale delivery systems of Trojan strategy with improved solubility, stability and cytotoxicity of lipophilic Tet. Here, we reported first a simple way to produce Tet-loaded nanoparticles based on amphiphilic block copolymer. The controlled release pattern of Tet-loaded nanoparticles (Tet-np) was characterized by in vitro release experiments. Cytotoxicity tests proved anti-tumor effect of Tet-np against Lovo cells. Moreover, doses of Tet-np during lower concentrations (1-8 microg/ml) led to more cell inhibition than equivalent doses of free Tet did (1-8 microg/ml). It was further presented that the higher uptake efficiency, more reactive oxygen species (ROS) generation, and the stronger activation of ROS-dependent c-Jun NH(2)-terminal kinase (JNK) and caspase-3 were induced by the equivalent dose of Tet delivered by nanoparticles. Although the present results suggested that Tet-np could be a potential useful chemotherapeutic tool, intensive researches are still warranted. PMID:20438840

  15. Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2).

    PubMed

    Roopan, Selvaraj Mohana; Kumar, Subramanian Hari Subbish; Madhumitha, Gunabalan; Suthindhiran, Krishnamurthy

    2015-02-01

    In this paper, we have established for the first time, the terrific efficiency of aqueous extract of agricultural waste dried peel of sugar apple (Annona squamosa) in the rapid synthesis of stable SnO2 nanoparticles. In topical years, the deployment of secondary metabolites from plant extract has emerged as a novel technology for the synthesis of various nanoparticles. In this paper, we have studied the potential of SnO2 nanoparticles assembly using agricultural waste source for the first time. The synthesized nanoparticles were characterized and confirmed as SnO2 nanoparticles by using UV-visible spectroscopy, XRD, and TEM analysis. The motivation of this study was to examine cytotoxicity study of SnO2 nanoparticles against hepatocellular carcinoma cell line (HepG2). SnO2 nanoparticles inhibited the cell proliferation in a dose- and time-dependent manner with an IC50 value of 148 ?g/mL. The treated cells showed an altered morphology with increasing concentrations of SnO2 nanoparticles. Our result shows that the SnO2 nanoparticles exhibit moderate cytotoxicity towards the hepatocellular carcinoma (HepG2) at tested concentrations. PMID:25410804

  16. Comparison of aza-anthracenedione-induced DNA damage and cytotoxicity in experimental tumor cells.

    PubMed

    Hazlehurst, L A; Krapcho, A P; Hacker, M P

    1995-09-28

    Aza-anthracenediones are a new class of anti-cancer drugs, which demonstrate promising in vitro and in vivo activity. Our laboratory has synthesized a variety of structural analogs in which we determined previously that the positioning of the nitrogen within the backbone, as well as sidearm modification, results in dramatic differences in the potency of cytotoxicity. We reported previously that although DNA reactivity appears to be a necessary component for mediating cell death, it is not sufficient for predicting cytotoxicity of the aza-anthracenediones. We have chosen three aza-anthracenediones (BBR 2828, BBR 2778 and BBR 2378) to investigate the importance of DNA strand breaks and/or protein-concealed DNA breaks induced by aza-anthracenediones. We determined in the present study that, while all three drugs cause DNA breaks as determined by alkaline and neutral elution, as well as KCl-SDS precipitation, these breaks do not correlate directly with their potency as cytotoxic compounds. Further, we found significant differences in the types of DNA breaks induced by these drugs. Finally, we report that the persistence of protein-DNA complexes induced by all three drugs was similar and, therefore, cannot account for differences in the potency of cytotoxicity of the aza-anthracenediones. Thus, we postulate that, while the total number of drug-induced protein-concealed DNA breaks is an important indicator of drug toxicity, it is possible that the actual nature of the breaks may differ among the aza-anthracenedione congeners, and it is these differences in the actual proteins present in the DNA breaks that differentiate between aza-anthracenediones. PMID:7575665

  17. Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway.

    PubMed

    Fu, Ying-Zi; Yan, Yuan-Yuan; He, Miao; Xiao, Qing-Huan; Yao, Wei-Fan; Zhao, Lin; Wu, Hui-Zhe; Yu, Zhao-Jin; Zhou, Ming-Yi; Lv, Mu-Tian; Zhang, Shan-Shan; Chen, Jian-Jun; Wei, Min-Jie

    2016-02-01

    Breast cancer stem cells (BCSCs) are believed to be responsible for tumor chemoresistance, recurrence, and metastasis formation. Salinomycin (SAL), a carboxylic polyether ionophore, has been reported to act as a selective breast CSC inhibitor. However, the molecular mechanisms underlying SAL-induced cytotoxicity on BCSCs remain unclear. The Hedgehog (Hh) signaling pathway plays an important role in CSC maintenance and carcinogenesis. Here, we investigated whether SAL induces cytotoxicity on BCSCs through targeting Hh pathway. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain breast CSC-enriched MCF-7 mammospheres (MCF-7 MS). MCF-7 MS cells possessed typical BCSC properties, such as CD44+CD24-/low phenotype, high expression of OCT4 (a stem cell marker), increased colony-forming ability, strong migration and invasion capabilities, differentiation potential, and strong tumorigenicity in xenografted mice. SAL exhibited selective cytotoxicity to MCF-7 MS cells relative to MCF-7 cells. The Hh pathway was highly activated in BCSC-enriched MCF-7 MS cells and SAL inhibited Hh signaling activation by downregulating the expression of critical components of the Hh pathway such as PTCH, SMO, Gli1, and Gli2, and subsequently repressing the expression of their essential downstream targets including C-myc, Bcl-2, and Snail (but not cyclin D1). Conversely, Shh-induced Hh signaling activation could largely reverse SAL-mediated inhibitory effects. These findings suggest that SAL-induced selective cytotoxicity against MCF-7 MS cells is associated with the inhibition of Hh signaling activation and the expression of downstream targets and the Hh pathway is an important player and a possible drug target in the pathogenesis of BCSCs. PMID:26718029

  18. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam.

    PubMed

    Rathi Sre, P R; Reka, M; Poovazhagi, R; Arul Kumar, M; Murugesan, K

    2015-01-25

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines. PMID:25189525

  19. Effect of PEG Molecular Weight on Stability, T2 contrast, Cytotoxicity, and Cellular Uptake of Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

    PubMed Central

    Park, Yoonjee C.; Smith, Jared B.; Pham, Tuan; Whitaker, Ragnhild D.; Sucato, Christopher A.; Hamilton, James A.; Bartolak-Suki, Elizabeth

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are currently unavailable as MRI contrast agents for detecting atherosclerosis in the clinical setting because of either low signal enhancement or safety concerns. Therefore, a new generation of SPIONs with increased circulation time, enhanced image contrast, and less cytotoxicity is essential. In this study, monodisperse SPIONs were synthesized and coated with polyethylene glycol (PEG) of varying molecular weights. The resulting PEGylated SPIONs were characterized, and their interactions with vascular smooth muscle cells (VSMCs) were examined. SPIONs were tested at different concentrations (100 and 500 ppm Fe) for stability, T2 contrast, cytotoxicity, and cellular uptake to determine an optimal formulation for in vivo use. We found that at 100 ppm Fe, the PEG 2K SPIONs showed adequate stability and magnetic contrast, and exhibited the least cytotoxicity and nonspecific cellular uptake. An increase in cell viability was observed when the SPION-treated cells were washed with PBS after one hour incubation compared to 5 and 24 hour incubation without washing. Our investigation provides insight into the potential safe application of SPIONs in the clinic. PMID:24877593

  20. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells.

    PubMed

    Min, Kyung-San; Chang, Hoon-Sang; Bae, Ji-Myung; Park, Sang-Hyuk; Hong, Chan-Ui; Kim, Eun-Cheol

    2007-11-01

    The aim of this study was to investigate the cytotoxic and nitric oxide (NO)-inducing effects of bismuth oxide (Bi(2)O(3))-containing Portland cement (BPC) on human dental pulp cells. We also assessed whether heme oxygenase-1 (HO-1) is involved in BPC-induced cytotoxicity in dental pulp cells. Cytotoxicity and NO production induced by BPC were higher than those induced by Portland cement at 12 and 24 hours, and the former gradually decreased to the level observed for PC. HO-1 and inducible nitric oxide synthase messenger RNA expressions in the BPC group showed maximal increase at 24 hours, and it gradually decreased with increasing cultivation time. Hemin treatment reversed the BPC-induced cytotoxicity, whereas zinc protoporphyrin IX treatment increased the cytotoxicity. These results suggested that NO production by BPC correlates with HO-1 expression in dental pulp cells. Moreover, BPC-induced HO-1 expression in dental pulp cells plays a protective role against the cytotoxic effects of BPC. PMID:17963960

  1. Carnosine's Effect on Amyloid Fibril Formation and Induced Cytotoxicity of Lysozyme

    PubMed Central

    Wu, Josephine W.; Liu, Kuan-Nan; How, Su-Chun; Chen, Wei-An; Lai, Chia-Min; Liu, Hwai-Shen; Hu, Chaur-Jong; Wang, Steven S. -S.

    2013-01-01

    Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases. PMID:24349167

  2. Vitamin C effect on mitoxantrone-induced cytotoxicity in human breast cancer cell lines.

    PubMed

    Guerriero, Eliana; Sorice, Angela; Capone, Francesca; Napolitano, Virginia; Colonna, Giovanni; Storti, Gabriella; Castello, Giuseppe; Costantini, Susan

    2014-01-01

    In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments. PMID:25531443

  3. Vitamin C Effect on Mitoxantrone-Induced Cytotoxicity in Human Breast Cancer Cell Lines

    PubMed Central

    Capone, Francesca; Napolitano, Virginia; Colonna, Giovanni; Storti, Gabriella; Castello, Giuseppe; Costantini, Susan

    2014-01-01

    In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments. PMID:25531443

  4. Carnosine's effect on amyloid fibril formation and induced cytotoxicity of lysozyme.

    PubMed

    Wu, Josephine W; Liu, Kuan-Nan; How, Su-Chun; Chen, Wei-An; Lai, Chia-Min; Liu, Hwai-Shen; Hu, Chaur-Jong; Wang, Steven S-S

    2013-01-01

    Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases. PMID:24349167

  5. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  6. Cytotoxic and DNA damage-inducing activities of low molecular weight phenols from rhubarb.

    PubMed

    Shi, Y Q; Fukai, T; Sakagami, H; Kuroda, J; Miyaoka, R; Tamura, M; Yoshida, N; Nomura, T

    2001-01-01

    Six new phenol (anthraquinone or stilbene) glycosides with an acyl group at 6-position of the glucopyranose moiety were isolated from rhubarb (the roots of Rheum palmatum) cultivated in Japan, together with 22 known compounds. Most of these compounds were evaluated for cytotoxic activity against tumor and normal cells and for induction of DNA damage by spore rec-assay. Among them, emodin and aloe-emodin showed higher cytotoxic activities against human oral squamous cell carcinoma (HSC-2) and salivary gland tumor (HSG) cell lines than against normal human gingival fibroblasts (HGF). Chrysophanol 8-O-beta-(6'-acetyl)glucopyranoside, 4-(4'-hydroxyphenyl)-2-butanone 4'-O-beta-D-(2"-O-galloyl-6"-O-cinnamoyl) glucopyranoside, and 6"-O-(4'''-hydroxybenzoyl) resveratroloside exhibited relatively higher cytotoxic activities against all these cells. The other glycosides of anthraquinone or stilbene showed weaker cytotoxic activity against these tumor cell lines, but may be considered as cancer chemopreventive agents. Spore rec-assay with a recombination deficient mutant of Bacillus subtilis M45 demonstrated the DNA damage-inducing activity of emodin and aloe-emodin 15-O-beta-D-glucopyranoside among, rhubarb phenols. PMID:11724365

  7. Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro.

    PubMed

    Mata, Rani; Nakkala, Jayachandra Reddy; Sadras, Sudha Rani

    2015-04-01

    Green synthesis of silver nanoparticles using biological entities is gaining interest because of their potential applications in nano-medicine. Herein, we report the biological synthesis of Abutilon indicum silver nanoparticles (AIAgNPs) using aqueous Abutilon indicum leaf extract (AILE) and evaluation of their biological applications. TEM analysis revealed that the spherical biogenic AIAgNPs were found to be between 5 and 25 nm in size. The bioactive phyto-constituents such are condensed tannins of AILE were found to play a key role in the reduction and capping of AIAgNPs. The biological properties of AIAgNPs were premeditated as free radical scavenging activity, antibacterial effect and anti-proliferative activity. AIAgNPs were found to exhibit good free radical scavenging activities and the intense zone of inhibition displayed by them in six different pathogenic species indicate the potential antibacterial effect. Further, AIAgNPs showed a dose dependant anti-proliferative effect against COLO 205 (human colon cancer) and MDCK (normal) cells with an IC50 of 3 and 4 ?g/mL and 100 and 75 ?g/mL, respectively after 24 and 48 h. The morphological changes, chromatin condensation and membrane potential loss induced by AIAgNPs were evidenced by AO/EB and AnnexinV-Cy3 staining. The mitochondrial membrane potential (MMP) loss and G1/S transition cell cycle arrest in COLO 205 cells was evidenced in rhodamine123 staining and FACS analysis. The high levels of ROS as shown in DCF-DA staining could have played a major role in DNA fragmentation and eventually lead to apoptosis. The mode of action through the induction apoptosis by AIAgNPs in COLO 205 cells is exciting with promising application of nano-materials in biomedical research. PMID:25701118

  8. Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.

    PubMed

    Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye

    2014-08-01

    The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. PMID:24771703

  9. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity

    PubMed Central

    Williams, James P; Southern, Paul; Lissina, Anya; Christian, Helen C; Sewell, Andrew K; Phillips, Rodney; Pankhurst, Quentin; Frater, John

    2013-01-01

    The latent HIV-1 reservoir remains the major barrier to HIV-1 eradication. Although successful at limiting HIV replication, highly active antiretroviral therapy is unable to cure HIV infection, thus novel therapeutic strategies are needed to eliminate the virus. Magnetic field hyperthermia (MFH) generates thermoablative cytotoxic temperatures in target-cell populations, and has delivered promising outcomes in animal models, as well as in several cancer clinical trials. MFH has been proposed as a strategy to improve the killing of HIV-infected cells and for targeting the HIV latent reservoirs. We wished to determine whether MFH could be used to enhance cytotoxic T-lymphocyte (CTL) targeting of HIV-infected cells in a proof-of-concept study. Here, for the first time, we apply MFH to an infectious disease (HIV-1) using the superparamagnetic iron oxide nanoparticle FeraSpin R. We attempt to improve the cytotoxic potential of T-cell receptor-transfected HIV-specific CTLs using thermotherapy, and assess superparamagnetic iron oxide nanoparticle toxicity, uptake, and effect on cell function using more sensitive methods than previously described. FeraSpin R exhibited only limited toxicity, demonstrated efficient uptake and cell-surface attachment, and only modestly impacted T-cell function. In contrast to the cancer models, insufficient MFH was generated to enhance CTL killing of HIV-infected cells. MFH remains an exciting new technology in the field of cancer therapeutics, which, as technology improves, may have significant potential to enhance CTL function and act as an adjunctive therapy in the eradication of latently infected HIV-positive cells. PMID:23901272

  10. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity.

    PubMed

    Williams, James P; Southern, Paul; Lissina, Anya; Christian, Helen C; Sewell, Andrew K; Phillips, Rodney; Pankhurst, Quentin; Frater, John

    2013-01-01

    The latent HIV-1 reservoir remains the major barrier to HIV-1 eradication. Although successful at limiting HIV replication, highly active antiretroviral therapy is unable to cure HIV infection, thus novel therapeutic strategies are needed to eliminate the virus. Magnetic field hyperthermia (MFH) generates thermoablative cytotoxic temperatures in target-cell populations, and has delivered promising outcomes in animal models, as well as in several cancer clinical trials. MFH has been proposed as a strategy to improve the killing of HIV-infected cells and for targeting the HIV latent reservoirs. We wished to determine whether MFH could be used to enhance cytotoxic T-lymphocyte (CTL) targeting of HIV-infected cells in a proof-of-concept study. Here, for the first time, we apply MFH to an infectious disease (HIV-1) using the superparamagnetic iron oxide nanoparticle FeraSpin R. We attempt to improve the cytotoxic potential of T-cell receptor-transfected HIV-specific CTLs using thermotherapy, and assess superparamagnetic iron oxide nanoparticle toxicity, uptake, and effect on cell function using more sensitive methods than previously described. FeraSpin R exhibited only limited toxicity, demonstrated efficient uptake and cell-surface attachment, and only modestly impacted T-cell function. In contrast to the cancer models, insufficient MFH was generated to enhance CTL killing of HIV-infected cells. MFH remains an exciting new technology in the field of cancer therapeutics, which, as technology improves, may have significant potential to enhance CTL function and act as an adjunctive therapy in the eradication of latently infected HIV-positive cells. PMID:23901272

  11. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    SciTech Connect

    Zheng, H.; Crowley, J.J.; Chan, J.C.; Hoffmann, H.; Hatherill, J.R.; Ishizaka, A.; Raffin, T.A. )

    1990-11-01

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents that attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.

  12. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    SciTech Connect

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade. • Autophagy is involved in idarubicin-induced apoptotic death of leukemic cells. • Idarubicin does not induce cytotoxic autophagy in normal human leukocytes.

  13. Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos.

    PubMed

    Kikuchi, Takashi; Uchiyama, Emiko; Ukiya, Motohiko; Tabata, Keiichi; Kimura, Yumiko; Suzuki, Takashi; Akihisa, Toshihiro

    2011-02-25

    Six lanostane-type triterpene acids (1a-6a), isolated from Poria cocos , and their methyl ester (1b-6b) and hydroxy derivatives (1c-6c) were prepared. Upon evaluation of the cytotoxic activity of these compounds against leukemia (HL60), lung (A549), melanoma (CRL1579), ovary (NIH:OVCAR-3), breast (SK-BR-3), prostate (DU145), stomach (AZ521), and pancreas (PANC-1) cancer cell lines, 11 compounds (5a, 6a, 2b-5b, 1c, and 3c-6c) exhibited activity with single-digit micromolar IC(50) values against one or more cell lines. Poricotriol A (1c), a hydroxy derivative of poricoic acid A (1a), exhibited potent cytotoxicities against six cell lines with IC(50) values of 1.2-5.5 ?M. Poricotriol A induced typical apoptotic cell death in HL60 and A549 cells on evaluation of the apoptosis-inducing activity by flow cytometric analysis. Western blot analysis in HL60 cells showed that poricotriol A activated caspases-3, -8, and -9, while increasing the ratio of Bax/Bcl-2. This suggested that poricotriol A induced apoptosis via both mitochondrial and death receptor pathways in HL60. On the other hand, poricotriol A did not activate caspases-3, -8, and -9, but induced translocation of apoptosis-inducing factor (AIF) from mitochondria and increased the ratio of Bax/Bcl-2 in A549. This suggested that poricotriol A induced apoptosis via the mitochondrial pathway mostly by translocation of AIF, independent from the caspase pathway in A549. Furthermore, poricotriol A was shown to possess high selective toxicity in lung cancer cells since it exhibited only weak cytotoxicity against a normal lung cell line (WI-38). PMID:21250700

  14. Can ultrasounds induce cytotoxicity in presence of hematoporphyrin derivative as photodynamic therapy?

    NASA Astrophysics Data System (ADS)

    Meunier, Anne; Guillemin, Francois H.; Merlin, Jean-Louis; Eikermann, Karine; Schmitt, Sabine; Stoss, Markus; Hopfel, Dieter; Barth, Gerhard; Bolotina-Bezdetnaya, Lina

    1996-01-01

    Ultrasounds were described by a few authors as possibly inducing sonodynamic reaction, with singlet oxygen production, as photodynamic therapy. The aim of this project was to evidence this effect and to try to explain its different mechanisms. A specific device was developed with a strict control of temperature to avoid hyperthermia and of acoustical intensity: the characteristics of the US beam and the reproducibility of treatment conditions were strictly evaluated. We studied the frequency of 2.21 MHz using an antiresonance frequency of a transducer. US treatment was applied continuously or in pulsed mode. Human colorectal adenocarcinoma cells (HT-29) were used to test the cytotoxicity using trypan blue exclusion test. Analyses were performed using cell suspensions. Different intensities were studied ranging from 0 to 3.7 W/cm2. Moreover, fluorescence emission spectra of hematoporphyrine derivative (HpD) were recorded before and after US treatment. Results of viability showed a higher cytotoxicity with US alone or with HpD in cell suspensions from 3.7 W/cm2 (20% survival). These results show that cavitation alone can account for the cytotoxic effects of sonotherapy. In fact, cavitation is higher with continuous than with pulsed US treatment. No significant difference was found with or without HpD. HpD fluorescence spectra did not differ before and after US treatment suggesting that no modification of HpD structure was induced by US. Fluorescence spectra showed a very slow and small decrease in fluorescence intensity with time probably caused by the low interfering light used for the experiment. In conclusion, in our experiments, ultrasounds do not seem to induce any chemical reaction with photosensitizers, conversely to what was already reported. However, other photosensitizers, molecules and different cell lines (less resistant) must be studied in order to conclude about the absence of cytotoxicity of this technique.

  15. Evaluation of pulsed laser ablation in liquids generated gold nanoparticles as novel transfection tools: efficiency and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Willenbrock, Saskia; Durán, María. Carolina; Barchanski, Annette; Barcikowski, Stephan; Feige, Karsten; Nolte, Ingo; Murua Escobar, Hugo

    2014-03-01

    Varying transfection efficiencies and cytotoxicity are crucial aspects in cell manipulation. The utilization of gold nanoparticles (AuNP) has lately attracted special interest to enhance transfection efficiency. Conventional AuNP are usually generated by chemical reactions or gas pyrolysis requiring often cell-toxic stabilizers or coatings to conserve their characteristics. Alternatively, stabilizer- and coating-free, highly pure, colloidal AuNP can be generated by pulsed laser ablation in liquids (PLAL). Mammalian cells were transfected efficiently by addition of PLAL-AuNP, but data systematically evaluating the cell-toxic potential are lacking. Herein, the transfection efficiency and cytotoxicity of PLAL AuNP was evaluated by transfection of a mammalian cell line with a recombinant HMGB1/GFP DNA expression vector. Different methods were compared using two sizes of PLAL-AuNP, commercialized AuNP, two magnetic NP-based protocols and a conventional transfection reagent (FuGENE HD; FHD). PLAL-AuNP were generated using a Spitfire Pro femtosecond laser system delivering 120 fs laser pulses at a wavelength of 800 nm focusing the fs-laser beam on a 99.99% pure gold target placed in ddH2O. Transfection efficiencies were analyzed after 24h using fluorescence microscopy and flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of necrotic, propidium iodide positive cells (PI %). The addition of PLAL-AuNP significantly enhanced transfection efficiencies (FHD: 31 %; PLAL-AuNP size-1: 46 %; size-2: 50 %) with increased PI% but no reduced cell proliferation. Commercial AuNP-transfection showed significantly lower efficiency (23 %), slightly increased PI % and reduced cell proliferation. Magnetic NP based methods were less effective but showing also lowest cytotoxicity. In conclusion, addition of PLAL-AuNP provides a novel tool for transfection efficiency enhancement with acceptable cytotoxic side-effects.

  16. Protective effect of kombucha mushroom (KM) tea on phenol-induced cytotoxicity in albino mice.

    PubMed

    Yapar, Kursad; Cavusoglu, Kultigin; Oruc, Ertan; Yalcin, Emine

    2010-09-01

    The present study was carried out to evaluate the protective role of kombucha mushroom (KM) tea on cytotoxicity induced by phenol (PHE) in mice. We used weight gain and micronucleus (MN) frequency as indicators of cytotoxicity and supported these parameters with pathological findings. The animals were randomly divided into seven groups: (Group I) only tap water (Group II) 1000 microl kg(-1) b. wt KM-tea, (Group III) 35 mg kg(-1) body wt. PHE (Group IV) 35 mg kg(-1) body wt. PHE + 250 microl kg(-1) b. wt KM-tea (Group V) 35 mg kg(-1) b. wt PHE + 500 microl kg(-1) b. wt KM-tea (Group VI) 35 mg kg(-1) b. wt PHE + 750 microl kg(-1) b. wt KM-tea, (Group VII) 35 mg kg(-1) b. wt PHE + 1000 microl kg(-1) b. wt KM-tea, for 20 consecutive days by oral gavage. The results indicated that all KM-tea supplemented mice showed a lower MN frequency than erythrocytes in only PHE-treated group. There was an observable regression on account of lesions in tissues of mice supplemented with different doses of KM-tea in histopathological observations. In conclusion, the KM-tea supplementation decreases cytotoxicity induced by PHE and its protective role is dose-dependent. PMID:21387911

  17. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    SciTech Connect

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-11-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure.

  18. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells.

    PubMed

    Mehri, Soghra; Abnous, Khalil; Mousavi, Seyed Hadi; Shariaty, Vahideh Motamed; Hosseinzadeh, Hossein

    2012-03-01

    Acrylamide (ACR) is a potent neurotoxic in human and animal models. In this study, the effect of crocin, main constituent of Crocus sativus L. (Saffron) on ACR-induced cytotoxicity was evaluated using PC12 cells as a suitable in vitro model. The exposure of PC12 cells to ACR reduced cell viability, increased DNA fragmented cells and phosphatidylserine exposure, and elevated Bax/Bcl-2 ratio. Results showed that ACR increased intracellular reactive oxygen species (ROS) in cells and ROS played an important role in ACR cytotoxicity. The pretreatment of cells with 10-50 ?M crocin before ACR treatment significantly attenuated ACR cytotoxicity in a dose-dependent manner. Crocin inhibited the downregulation of Bcl-2 and the upregulation of Bax and decreased apoptosis in treated cells. Also, crocin inhibited ROS generation in cells exposed to ACR. In conclusion, our results indicated that pretreatment with crocin protected cells from ACR-induced apoptosis partly by inhibition of intracellular ROS production. PMID:21901509

  19. A Signaling Network Induced by ?2 Integrin Controls the Polarization of Lytic Granulesin Cytotoxic Cells

    PubMed Central

    Zhang, Minggang; March, Michael E.; Lane, William S.; Long, Eric O.

    2014-01-01

    Cytotoxic lymphocyte skill target cells by polarized release of the content of perforin-containing granules. In natural killer cells, the binding of ?2 integrin to its ligand ICAM-1 is sufficient to promote not only adhesion but also lytic granule polarization. This provided a unique opportunity to study polarization in the absence of degranulation, and ?2 integrin signaling independently of inside-out signals from other receptors. Using an unbiased proteomics approach we identified a signaling network centered on an integrin-linked kinase (ILK)–Pyk2–Paxillin core that was required for granule polarization. Downstream of ILK, the highly conserved Cdc42–Par6 signaling pathway that controls cell polarity was activated and required for granule polarization. These results delineate two connected signaling networks induced upon ?2 integrin engagement alone, which are integrated to control polarization of the microtubule organizing center and associated lytic granules toward the site of contact with target cells during cellular cytotoxicity. PMID:25292215

  20. Photoexpulsion of Surface-Grafted Ruthenium Complexes and Subsequent Release of Cytotoxic Cargos to Cancer Cells from Mesoporous Silica Nanoparticles

    PubMed Central

    Frasconi, Marco; Liu, Zhichang; Lei, Juying; Wu, Yilei; Strekalova, Elena; Malin, Dmitry; Ambrogio, Michael W.; Chen, Xinqi; Botros, Youssry Y.; Cryns, Vincent L.; Sauvage, Jean-Pierre; Stoddart, J. Fraser

    2014-01-01

    Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions. PMID:23815127

  1. Nanoparticle-induced surface reconstruction of phospholipid membranes

    E-print Network

    Granick, Steve

    , 2008) The nonspecific adsorption of charged nanoparticles onto single- component phospholipid bilayers this study is summarized in Fig. 1: A phospholipid bilayer's local phase state can be switched by bindingNanoparticle-induced surface reconstruction of phospholipid membranes Bo Wanga , Liangfang Zhangb

  2. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells

    PubMed Central

    Buranrat, Benjaporn; Prawan, Auemduan; Kukongviriyapan, Upa; Kongpetch, Sarinya; Kukongviriyapan, Veerapol

    2010-01-01

    AIM: To investigate whether dicoumarol, a potent inhibitor of NAD(P)H quinone oxidoreductase-1 (NQO1), potentiates gemcitabine to induce cytotoxicity in cholangiocarcinoma cells (CCA) and the role of reactive oxygen generation in sensitizing the cells. METHODS: Four human cell lines with different NQO1 activity were used; the human CCA cell lines, KKU-100, KKU-OCA17, KKU-M214, and Chang liver cells. NQO1 activity and mRNA expression were determined. The cells were pretreated with dicoumarol at relevant concentrations before treatment with gemcitabine. Cytotoxicity was determined by staining with fluorescent dyes. Oxidant formation was examined by assay of cellular glutathione levels and reactive oxygen species production by using dihydrofluorescein diacetate. Measurement of mitochondrial transmembrane potential was performed by using JC-1 fluorescent probe. Western blotting analysis was performed to determine levels of survival related proteins. RESULTS: Dicoumarol markedly enhanced the cytotoxicity of gemcitabine in KKU-100 and KKU-OCA17, the high NQO1 activity and mRNA expressing cells, but not in the other cells with low NQO1 activity. Dicoumarol induced a marked decrease in cellular redox of glutathione in KKU-100 cells, in contrast to KKU-M214 cells. Dicoumarol at concentrations that inhibited NQO1 activity did not alter mitochondrial transmembrane potential and production of reactive oxygen species. Gemcitabine alone induced activation of NF-?B and Bcl-XL protein expression. However, gemcitabine and dicoumarol combination induced increased p53 and decreased Bcl-XL levels in KKU-100, but not in KKU-M214 cells. CONCLUSION: NQO1 may be important in sensitizing cells to anticancer drugs and inhibition of NQO1 may be a strategy for the treatment of CCA. PMID:20480521

  3. The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro

    NASA Astrophysics Data System (ADS)

    Zavisova, Vlasta; Koneracka, Martina; Kovac, Jozef; Kubovcikova, Martina; Antal, Iryna; Kopcansky, Peter; Bednarikova, Monika; Muckova, Marta

    2015-04-01

    The toxicity of magnetite nanoparticles modified with bioavailable materials such as dextran, bovine serum albumin, polyethylene glycol, and polyvinylpyrrolidone was studied in normal and cancer cells. The size distribution and magnetic properties of the modified magnetic nanoparticles were characterized by different techniques. Transmission electron microscopy showed a nearly spherical shape of the magnetite core with diameters ranging from 4 to 11 nm. Dynamic light scattering was employed to monitor the hydrodynamic size and colloidal stability of the magnetic nanoparticles: Z-average hydrodynamic diameter was between 53 and 69 nm and zeta potential in the range from -35 to -48 mV. Saturation magnetization of the modified nanoparticles was 55-64 emu/gFe3O4. Prepared biocompatible nanoparticles had no significant toxic effect on Chinese hamster lung fibroblast cell line V79, but they substantially affected mouse melanoma B16 cell line.

  4. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier

    SciTech Connect

    Kanipandian, Nagarajan; Ramesh, Ramar; Subramanian, Periyasamy

    2014-01-01

    Graphical abstract: The figure is the TEM image of green synthesized silver nanoparticles from Cleistanthus collinus. In this investigation we have used the poisonous plant as a reducing and capping agent. This is a first time data to synthesis the metal nanoparticles using poisonous plant. - Highlights: • A hitherto unreported venomous plant mediated AgNPs synthesis. • The particle size is observed in the range of 20–40 nm. • Surface morphology of the well-dispersed silver nanoparticles is studied using SEM and TEM. • Crystalline nature of AgNPs is confirmed by X-ray diffraction analysis. • Antioxidant activities of green synthesized AgNPs are tested in vitro. - Abstract: We report, here a simple green method for the preparation of silver nanoparticles (AgNPs) using the plant extract of Cleistanthus collinus as potential phyto reducer. The synthesized AgNPs were characterized by UV–vis spectra, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results confirmed that the AgNPs were crystalline in nature and the morphological studies reveal the spherical shape of AgNPs with size ranging from 20 to 40 nm. The in vitro antioxidant activity of AgNPs showed a significant effect on scavenging of free radicals. The cytotoxicity study exhibited a dose-dependent effect against human lung cancer cells (A549) and normal cells (HBL-100), the inhibitory concentration (IC{sub 50}) were found to be 30 ?g/mL and 60 ?g/mL respectively. The in vivo histopathology of mouse organs proved that AgNPs does not possess toxic effect and can be extensively applied in biomedical sciences.

  5. The protective effect of resveratrol against dentin bonding agents-induced cytotoxicity.

    PubMed

    Atalayin, Cigdem; Armagan, Guliz; Konyalioglu, Sibel; Kemaloglu, Hande; Tezel, Huseyin; Ergucu, Zeynep; Keser, Aysegul; Dagci, Taner; Onal, Banu

    2015-12-01

    This study was designed to evaluate the cytotoxicity of four dentin bonding agents and the effects of an antioxidant addition. Group A: G-aenial Bond, Group B: Optibond All in One, Group C: Gluma Self Etch and Group D: Clearfil S(3) Bond were added to the medium using extract method. The cells were cultured with or without resveratrol (RES) addition. MTT, reactive oxygen species (ROS), DCF, Comet and 8-OHdG measurements were performed. The agents had a dose-dependent (1:1>1:10>1:20) cytotoxic effect. Considering 1:10 concentration; Group D at 1 h (p<0.01) and Group B and D at 24 h had the weakest cytotoxic effect (p<0.05). After RES addition, the highest cell viability was determined in Groups B+RES and D+RES at 1 h and in Groups A+RES and B+RES at 24 h (p<0.01). The dentin bonding agents induced ROS production and DNA damage regarding to their composition. However, RES addition decreased the indicated parameters. PMID:26510940

  6. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity

    PubMed Central

    LaFrance, Michelle E.; Farrow, Melissa A.; Chandrasekaran, Ramyavardhanee; Sheng, Jinsong; Rubin, Donald H.; Lacy, D. Borden

    2015-01-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea in the United States. The two main virulence factors of C. difficile are the large toxins, TcdA and TcdB, which enter colonic epithelial cells and cause fluid secretion, inflammation, and cell death. Using a gene-trap insertional mutagenesis screen, we identified poliovirus receptor-like 3 (PVRL3) as a cellular factor necessary for TcdB-mediated cytotoxicity. Disruption of PVRL3 expression by gene-trap mutagenesis, shRNA, or CRISPR/Cas9 mutagenesis resulted in resistance of cells to TcdB. Complementation of the gene-trap or CRISPR mutants with PVRL3 resulted in restoration of TcdB-mediated cell death. Purified PVRL3 ectodomain bound to TcdB by pull-down. Pretreatment of cells with a monoclonal antibody against PVRL3 or prebinding TcdB to PVRL3 ectodomain also inhibited cytotoxicity in cell culture. The receptor is highly expressed on the surface epithelium of the human colon and was observed to colocalize with TcdB in both an explant model and in tissue from a patient with pseudomembranous colitis. These data suggest PVRL3 is a physiologically relevant binding partner that can serve as a target for the prevention of TcdB-induced cytotoxicity in C. difficile infection. PMID:26038560

  7. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  8. Arginine-chitosan- and arginine-polyethylene glycol-conjugated superparamagnetic nanoparticles: Preparation, cytotoxicity and controlled-release.

    PubMed

    Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida; Hussein, Mohd Zobir; Dorniani, Dena

    2014-01-19

    Iron oxide magnetic nanoparticles (MNPs) can be used in targeted drug delivery systems for localized cancer treatment. MNPs coated with biocompatible polymers are useful for delivering anticancer drugs. Iron oxide MNPs were synthesized via co-precipitation method then coated with either chitosan (CS) or polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs, respectively. Arginine (Arg) was loaded onto both coated nanoparticles to form Arg-CS-MNP and Arg-PEG-MNP nanocomposites. The X-ray diffraction results for the MNPs and the Arg-CS-MNP and Arg-PEG-MNPs nanocomposites indicated that the iron oxide contained pure magnetite. The amount of CS and PEG bound to the MNPs were estimated via thermogravimetric analysis and confirmed via Fourier transform infrared spectroscopy analysis. Arg loading was estimated using UV-vis measurements, which yielded values of 5.5% and 11% for the Arg-CS-MNP and Arg-PEG-MNP nanocomposites, respectively. The release profile of Arg from the nanocomposites followed a pseudo-second-order kinetic model. The cytotoxic effects of the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs were evaluated in human cervical carcinoma cells (HeLa), mouse embryonic fibroblast cells (3T3) and breast adenocarcinoma cells (MCF-7). The results indicate that the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs do not exhibit cytotoxicity toward 3T3 and HeLa cells. However, treatment of the MCF-7 cells with the Arg-CS-MNP and Arg-PEG-MNP nanocomposites reduced the cancer cell viability with IC50 values of 48.6 and 42.6?µg/mL, respectively, whereas the MNPs and free Arg did not affect the viability of the MCF-7 cells. PMID:24445774

  9. Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells

    PubMed Central

    Zhang, Ming-jun; Liu, Sheng-nan; Xu, Ge; Guo, Ya-nan; Fu, Jian-nan; Zhang, De-chun

    2014-01-01

    Background The existing evidence that nanobacteria (NB) are closely associated with human disease is overwhelming. However, their potential toxicity against cancer cells has not yet been reported. The objective of this study was to investigate the cytotoxic effects of NB and nanohydroxyapatites (nHAPs) against human breast cancer cells and to elucidate the mechanisms of action underlying their cytotoxicity. Methodology/principal findings NB were isolated from calcified placental tissue, and nHAPs were artificially synthesized. The viability of the MDA-MB-231 human breast cancer cell line was tested by using the Kit-8 cell counting kit assay. Apoptosis was examined by transmission electron microscopy and flow cytometry. The endocytosis of NB and nHAPs by MDA-MB-231 cells was initially confirmed by microscopy. Although both NB and nHAPs significantly decreased MDA-MB-231 cell viability and increased the population of apoptotic cells, NB were more potent than nHAPs. After 72 hours, NB also caused ultrastructural changes typical of apoptosis, such as chromatin condensation, nuclear fragmentation, nuclear dissolution, mitochondrial swelling, and the formation of apoptotic bodies. Conclusion/significance In MDA-MB-231 human breast cancer cells, NB and nHAPs exerted cytotoxic effects that were associated with the induction of apoptosis. The effects exerted by NB were more potent than those induced by nHAPs. NB cytotoxicity probably emerged from toxic metabolites or protein components, rather than merely the hydroxyapatite shells. NB divided during culturing, and similar to cells undergoing binary fission, many NB particles were observed in culture by transmission electron microscopy, suggesting they are live microorganisms. PMID:24403832

  10. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles.

    PubMed

    Chanthini, Abdhul Basheer; Balasubramani, Govindasamy; Ramkumar, Rajendiran; Sowmiya, Rajamani; Balakumaran, Manickam Dakshinamoorthi; Kalaichelvan, Pudhupalayam Thangavelu; Perumal, Pachiappan

    2015-12-01

    The present study pertains to the synthesis, structural elucidation, antioxidant and in vitro cytotoxic properties of silver nanoparticles (AgNPs) from marine angiosperm, Cymodocea serrulata aqueous extract (CSAE). The characterization was made through UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential and dynamic light scanning (DLS) analyses. The UV-Vis spectrum resulted in a strong surface plasmon resonance (SPR) at 430nm. The average crystalline size of the AgNPs was predicted through XRD peaks that indicated the 2 theta values of 37.84°, 44.06°, 64.42° and 77.74° for Bragg's refraction index. The functional groups responsible for the bio-reduction of Ag(+) into Ag(0) were focused through FTIR spectrum. The FESEM images showed that the C. serrulata mediated AgNPs (CS-AgNPs) were spherical in shape. DPPH assay revealed the higher free radical scavenging activity in CS-AgNPs, when compared to CSAE. The cytotoxicity assay on the cervical cancer (HeLa) and African green monkey kidney (Vero) cells upon treatment with CSAE: 107.7 & 124.3?gml(-1) and CS-AgNPs: 34.5 & 61.24?gml(-1), respectively showed good inhibition rate. These findings highlight the fact that C. serrulata could be a potential source for developing potent drugs and further studies are needed. PMID:26409094

  11. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study.

    PubMed

    Arokiyaraj, Selvaraj; Arasu, Mariadhas Valan; Vincent, Savariar; Prakash, Nyayirukannaian Udaya; Choi, Seong Ho; Oh, Young-Kyoon; Choi, Ki Choon; Kim, Kyoung Hoon

    2014-01-01

    The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using Chrysanthemum indicum and its antibacterial and cytotoxic effects. The formation of AgNPs was confirmed by color change, and it was further characterized by ultraviolet-visible spectroscopy (435 nm). The phytochemical screening of C. indicum revealed the presence of flavonoids, terpenoids, and glycosides, suggesting that these compounds act as reducing and stabilizing agents. The crystalline nature of the synthesized particles was confirmed by X-ray diffraction, as they exhibited face-centered cubic symmetry. The size and morphology of the particles were characterized by transmission electron microscopy, which showed spherical shapes and sizes that ranged between 37.71-71.99 nm. Energy-dispersive X-ray spectroscopy documented the presence of silver. The antimicrobial effect of the synthesized AgNPs revealed a significant effect against the bacteria Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Additionally, cytotoxic assays showed no toxicity of AgNPs toward 3T3 mouse embryo fibroblast cells (25 ?g/mL); hence, these particles were safe to use. PMID:24426782

  12. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study

    PubMed Central

    Arokiyaraj, Selvaraj; Arasu, Mariadhas Valan; Vincent, Savariar; Prakash, Nyayirukannaian Udaya; Choi, Seong Ho; Oh, Young-Kyoon; Choi, Ki Choon; Kim, Kyoung Hoon

    2014-01-01

    The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using Chrysanthemum indicum and its antibacterial and cytotoxic effects. The formation of AgNPs was confirmed by color change, and it was further characterized by ultraviolet–visible spectroscopy (435 nm). The phytochemical screening of C. indicum revealed the presence of flavonoids, terpenoids, and glycosides, suggesting that these compounds act as reducing and stabilizing agents. The crystalline nature of the synthesized particles was confirmed by X-ray diffraction, as they exhibited face-centered cubic symmetry. The size and morphology of the particles were characterized by transmission electron microscopy, which showed spherical shapes and sizes that ranged between 37.71–71.99 nm. Energy-dispersive X-ray spectroscopy documented the presence of silver. The antimicrobial effect of the synthesized AgNPs revealed a significant effect against the bacteria Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Additionally, cytotoxic assays showed no toxicity of AgNPs toward 3T3 mouse embryo fibroblast cells (25 ?g/mL); hence, these particles were safe to use. PMID:24426782

  13. Femtosecond laser induced synthesis of Au nanoparticles mediated by chitosan.

    PubMed

    Ferreira, P H D; Vivas, M G; De Boni, L; dos Santos, D S; Balogh, D T; Misoguti, L; Mendonca, C R

    2012-01-01

    This paper reports the synthesis of Au nanoparticles by 30-fs pulses irradiation of a sample containing HAuCl4 and chitosan, a biopolymer used as reducing agent and stabilizer. We observed that it is a multi-photon induced process, with a threshold irradiance of 3.8 × 10(11) W/cm2 at 790 nm. By transmission electron microscopy we observed nanoparticles from 8 to 50 nm with distinct shapes. Infrared spectroscopy indicated that the reduction of gold and consequent production of nanoparticles is related to the fs-pulse induced oxidation of hydroxyl to carbonyl groups in chitosan. PMID:22274373

  14. Inhibition of chlorogenic acid-induced cytotoxicity by CoCl2.

    PubMed

    Jiang, Y; Satoh, K; Watanabe, S; Kusama, K; Sakagami, H

    2001-01-01

    Chlorogenic acid (CGA) induced apoptotic cell death in human oral squamous cell carcinoma (HSC-2) and salivary gland tumor (HSG) cell lines. CGA exhibited oxidation potential in the culture medium, as demonstrated by NO monitor. Both cytotoxic activity and oxidation potential were significantly reduced by the addition of CoCl2. ESR spectroscopy showed that CGA produced seven peaks of radicals under alkaline condition, while addition of CoCl2 altered the spectral pattern and diminished the radical intensity of CGA. CoCl2 accelerated the CGA-induced coloration of the culture medium and modified the difference spectrum at around 325 nm, an absorption maximum characteristic of CGA. These data suggest that CoCl2 induced conformational changes in the CGA molecule. PMID:11848493

  15. Neuroprotective effects of porphyran derivatives against 6-hydroxydopamine-induced cytotoxicity is independent on mitochondria restoration

    PubMed Central

    Wang, Weiwei; Song, Ning; Jia, Fengjv; Xie, Junxia; Zhang, Quanbin

    2015-01-01

    We previously reported that acetylated and phosphorylated derivatives of porphyran extracted from Porphyra haitanensis exhibit antioxidant activity in cell-free system. The aim of the present study was to investigate the neuroprotective effects of porphyran and its derivatives on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure cell viability. Changes in the mitochondrial transmembrane potential (??m) were measured by rhodamine123 using flow cytometry. The results showed that porphyran and its two derivatives, acetylated porphyran (AP) and phosphorylated porphyran (PP) (<1 mg/mL) alone did not have any toxic effects on MES23.5 cells. The cell viability decreased when cells were treated with 25 µmol/L 6-OHDA. Both AP and PP, rather than porphyran, significantly antagonized 25 µmol/L 6-OHDA-induced cytotoxicity. However, neither AP nor PP could antagonize 6-OHDA-induced mitochondrial transmembrane potential (??m) collapse. None of the three materials were effective on cell survival when cells were cotreated with 75 µmol/L 6-OHDA. These results suggest that two derivatives of porphyran, AP and PP, could antagonize the weak toxicity of 6-OHDA on MES23.5 dopaminergic cells, possessing minor neuroprotective effects independent of mitochondria restoration. PMID:25815300

  16. Novel epitopes identified from efflux pumps of Mycobacterium tuberculosis could induce cytotoxic T lymphocyte response

    PubMed Central

    Zhai, Ming-xia; Chen, Fei; Zhao, Yuan-yuan; Wu, Ya-hong; Li, Guo-dong; Qi, Yuan-ming

    2015-01-01

    Overcoming drug-resistance is one of the major challenges to control tuberculosis (TB). The up-regulation of efflux pumps is one common mechanism that leads to drug-resistance. Therefore, immunotherapy targeting these efflux pump antigens could be promising strategy to be combined with current chemotherapy. Considering that CD8+ cytotoxic T lymphocytes (CTLs) induced by antigenic peptides (epitopes) could elicit HLA-restricted anti-TB immune response, efflux pumps from classical ABC family (Mycobacterium tuberculosis, Mtb) were chosen as target antigens to identify CTL epitopes. HLA-A2 restricted candidate peptides from Rv2937, Rv2686c and Rv2687c of Mycobacterium tuberculosis were predicted, synthesized and tested. Five peptides could induce IFN-? release and cytotoxic activity in PBMCs from HLA-A2+ PPD+ donors. Results from HLA-A2/Kb transgenic mice immunization assay suggested that four peptides Rv2937-p168, Rv2937-p266, Rv2686c-p151, and Rv2686c-p181 could induce significant CTL response in vivo. These results suggested that these novel epitopes could be used as immunotherapy candidates to TB drug-resistance. PMID:26417538

  17. Cytotoxic and aryl hydrocarbon hydroxylase-inducing effects of laboratory rodent diets. A cell culture study

    SciTech Connect

    Toerroenen, R.; Pelkonen, K.; Kaerenlampi, S. )

    1991-01-01

    Extracts of several rodent diets were studied for their cytotoxic and aryl hydrocarbon hydroxylase-inducing properties by an in vitro method. The cell culture system based on a mouse hepatoma cell line (Hepa-1) was shown to be convenient and sensitive method for screening of diets for these parameters implying the presence of compounds potentially harmful in vivo. Considerable differences among diets and batches were detected. Smallest effects were observed with a semipurified diet and with the unrefined diet which - contrary to other four unrefined diets - contained no fish.

  18. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    SciTech Connect

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis.

  19. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    NASA Astrophysics Data System (ADS)

    Parab, Harshala J.; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S.

    2011-09-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  20. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging.

    PubMed

    Cao, Jun; Liu, Yong; Jia, Li; Jiang, Li-Ping; Geng, Cheng-Yan; Yao, Xiao-Feng; Kong, Ying; Jiang, Bao-Na; Zhong, Lai-Fu

    2008-12-24

    Acrylamide (AA), a proven rodent carcinogen, has recently been discovered in foods heated at high temperatures. This finding raises public health concerns. In our previous study, we found that AA caused DNA fragments and increase of reactive oxygen species (ROS) formation and induced genotoxicity and weak cytotoxicity in HepG2 cells. Presently, curcumin, a natural antioxidant compound present in turmeric was evaluated for its protective effects. The results showed that curcumin at the concentration of 2.5 microg/mL significantly reduced AA-induced ROS production, DNA fragments, micronuclei formation, and cytotoxicity in HepG2 cells. The effect of PEG-catalase on protecting against AA-induced cytotoxicity suggests that AA-induced cytotoxicity is directly dependent on hydrogen peroxide production. These data suggest that curcumin could attenuate the cytotoxicity and genotoxicity induced by AA in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of curcumin may be a plausible way to prevent AA-mediated genotoxicity. PMID:19012407

  1. Influence of immunomodulatory drugs on the cytotoxicity induced by monoclonal antibody 17-1A and interleukin-2.

    PubMed

    Flieger, Dimitri; Varvenne, Michael; Kleinschmidt, Rolf; Schmidt-Wolf, Ingo G H

    2007-03-01

    Patients treated with monoclonal antibodies and cytokines for cancer receive often co-medication, which may influence treatment efficacy. Therefore, we investigated with a flowcytometric cytotoxicity assay the effect of several immunomodulatory drugs on antibody dependent cellular cytotoxicity (ADCC), interleukin-2 (IL-2) induced cytotoxicity and IL-2-induced-ADCC. We found that dexamethasone markedly inhibited the IL-2 induced cytotoxicity and the IL-2-induced-ADCC. Ondansetron, a 5-HT-3 serotonin receptor antagonist augmented significantly ADCC. Clemastine, a histamine type-2 receptor antagonist augmented the IL-2-induced-ADCC. The TNF antagonist thalidomide suppressed ADCC whereas pentoxifylline proved to be ineffective. Other tested drugs namely ibuprofen and indomethacin, both prostaglandin E2 antagonists, cimetidine a histamine type-2 receptor antagonist, the opioid pethidine, prostaglandin E2 and histamine exerted minor effects or had no influence on the tested parameters. We conclude that glucocorticosteroids should be avoided with monoclonal antibody and cytokine treatment. According to our in vitro data the other drugs tested did not have a negative impact on cellular cytotoxicity and ADCC. PMID:17562330

  2. Methyl jasmonate down-regulates survivin expression and sensitizes colon carcinoma cells towards TRAIL-induced cytotoxicity

    PubMed Central

    Raviv, Z; Zilberberg, A; Cohen, S; Reischer-Pelech, D; Horrix, C; Berger, MR; Rosin-Arbesfeld, R; Flescher, E

    2011-01-01

    BACKGROUND AND PURPOSE Methyl jasmonate (MJ) is a plant stress hormone with selective cytotoxic anti-cancer activities. The TNF-related apoptosis-inducing ligand (TRAIL) death pathway is an attractive target for cancer therapy. Although TRAIL receptors are specifically expressed in primary cancer cells and cancer cell lines, many types of cancer cells remain resistant to TRAIL-induced cytotoxicity. Here we have assessed a possible synergy between MJ and TRAIL cytotoxicity in colorectal cancer (CRC) cell lines. EXPERIMENTAL APPROACH CRC cell lines were pre-incubated with sub-cytotoxic concentrations of MJ followed by TRAIL administration. Cell death was determined by XTT assay and microscopy. Cytochrome c release, caspase cleavage, TRAIL-associated factors, X-linked inhibitor of apoptosis (XIAP) and survivin protein levels were detected by immunoblotting. Survivin transcription was examined by RT-PCR. KEY RESULTS Pre-treatment with MJ resulted in increased TRAIL-induced apoptotic cell death, increased cytochrome c release and caspase cleavage. TNFRSF10A, TNFRSF10B, TNFRSF10D, Fas-associated death domain and cellular FLICE-like inhibitory protein remained unchanged during MJ-induced TRAIL sensitization, whereas MJ induced a significant decrease in survivin protein levels. Overexpression of survivin prevented MJ-induced TRAIL cytotoxicity, implying a role for survivin in MJ-induced TRAIL sensitization. MJ decreased survivin mRNA indicating that MJ may affect survivin transcription. In a ?-catenin/transcription factor (TCF)-dependent luciferase activity assay, MJ decreased TCF-dependent transcriptional activity. CONCLUSION AND IMPLICATIONS MJ, at sub-cytotoxic levels, sensitized CRC cells to TRAIL-induced apoptosis. Thus, combinations of MJ and TRAIL, both selective anti-cancer agents, have potential as novel treatments for CRC. PMID:21486277

  3. The cytotoxicity and cellular stress by temperature-fabricated polyshaped gold nanoparticles using marine macroalgae, Padina gymnospora.

    PubMed

    Singh, Manoj; Saurav, Kumar; Majouga, Alexander; Kumari, Mamta; Kumar, Manish; Manikandan, S; Kumaraguru, A K

    2015-01-01

    Bioreduction of metal ions for the synthesis of stable nanoparticles (NPs) in physiological environment has been a great challenge in the field of nanotechnology and its application. In the present study, well-defined biofunctionalized gold nanoparticles (AuNPs) were developed following a biomimetic approach for an enhanced anticancer activity. The fucoxanthins-capped crystalline AuNPs showed a particle size of 14 nm. The temperature-mediated biosynthesized NPs were characterized by UV-vis, dynamic light scattering, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The cytotoxicity of the NPs was analyzed on liver (HepG2) and lung (A549) cancerous cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay infers that the biofunctionalized polyshaped AuNPs synthesized with an aqueous macroalgae extract showed a satisfactory anticancer effect on the cell lines, as evaluated by changes in cell morphology, cell viability, and metabolic activity. An altered cellular function and the morphology of cancer cell lines suggest a potential for in vivo application of AuNPs and the need to understand the interactions between nanomaterials, biomolecules, and cellular components. With continued improvements, these NPs may prove to be potential drug delivery vehicles for cancer therapy. PMID:25041078

  4. Surface induced suppression of magnetization in nanoparticles

    NASA Astrophysics Data System (ADS)

    Westman, C.; Jang, S.; Kim, C.; He, S.; Harmon, G.; Miller, N.; Graves, B.; Poudyal, N.; Sabirianov, R.; Zeng, H.; DeMarco, M.; Liu, J. P.

    2008-11-01

    A model based on competing exchange interactions is presented for the investigation of nanoparticle magnetization. The ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions contribute differently at the nanoparticle surface and interior, leading to reduced ferromagnetic order at the surface. This model predicts an unconventional temperature dependence of magnetization and a surface magnetically 'dead layer'. This is confirmed by temperature dependent magnetization and Mössbauer measurements of FePt nanoparticles. The effects are sensitive to particle size and surface terminations.

  5. Cytotoxicity and GMI bio-sensor detection of maghemite nanoparticles internalized into cells

    NASA Astrophysics Data System (ADS)

    Blanc-Béguin, F.; Nabily, S.; Gieraltowski, J.; Turzo, A.; Querellou, S.; Salaun, P. Y.

    2009-02-01

    In this work we determine conditions to produce cell samples for imaging with detection of the modification of the magnetic field by maghemite (Fe 2O 3) nanoparticles acting as a high sensitivity magnetic bio-sensor based on the giant magneto-impedance (GMI) effect. Mat Ly Lu cells are grown for 24 h with various maghemite nanoparticles concentrations (from 0 to 6 mg/ml). The percentage of viable cells is determined by counting labeled cells with trypan blue under an optical microscope. The quantity of nanoparticles internalized into the cells is evaluated by X-ray fluorescence analysis and expressed in iron moles per cell. The GMI bio-sensor was tested with the various samples. We observed that the best sensitivity of the GMI bio-sensor was obtained at a frequency of 1 MHz. To confirm these results in the presence of cell samples, four measurement frequencies were pre-selected (from 1 to 100 MHz) and tested. Cell growth conditions compatible with an acceptable percentage of cell viability for various concentrations of nanoparticles were also determined. These experiments allow us to conclude that cell growth with 0.1 mg/ml of nanoparticles for 24 h shows modifications of the magnetic field detectable optimally at 1 MHz frequency.

  6. Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma.

    PubMed

    Mamede, A C; Guerra, S; Laranjo, M; Carvalho, M J; Oliveira, R C; Gonçalves, A C; Alves, R; Prado Castro, L; Sarmento-Ribeiro, A B; Moura, P; Abrantes, A M; Maia, C J; Botelho, M F

    2015-12-01

    Hepatocellular carcinoma (HCC) has a worldwide high incidence and mortality. For this reason, it is essential to invest in new therapies for this type of cancer. Our team already proved that human amniotic membrane (hAM) is able to inhibit the metabolic activity of several human cancer cell lines, including HCC cell lines. Taking into account the previously performed work, this experimental study aimed to investigate the pathways by which hAM protein extracts (hAMPEs) act on HCC. Our results showed that hAMPE reduce the metabolic activity, protein content and DNA content in a dose- and time-dependent manner in all HCC cell lines. This therapy presents selective cytotoxicity, since it was not able to inhibit a non-tumorigenic human cell line. In addition, hAMPE induced cell morphology alterations in all HCC cell lines, but death type is cell line dependent, as proved by in vitro and in vivo studies. In conclusion, hAMPE have a promising role in HCC therapy, since it is capable of inducing HCC cytotoxicity and cell death. PMID:26507652

  7. Antioxidants protect primary rat hepatocyte cultures against acetaminophen-induced DNA strand breaks but not against acetaminophen-induced cytotoxicity.

    PubMed

    Lewerenz, Virginia; Hanelt, Sabine; Nastevska, Cathrin; El-Bahay, Claudia; Röhrdanz, Elke; Kahl, Regine

    2003-09-30

    Acetaminophen, a safe analgesic when dosed properly but hepatotoxic at overdoses, has been reported to induce DNA strand breaks but it is unclear whether this event preceeds hepatocyte toxicity or is only obvious in case of overt cytotoxicity. Moreover, it is not known whether the formation of reactive oxygen species (ROS) is involved in the formation of the DNA strand breaks. In the present study, the dose-response curves for cytotoxicity and DNA strand breaks and the response to antioxidant protection have been compared. In primary hepatocytes from untreated male rats, cytotoxicity as measured by the MTT test and by Neutral Red accumulation was obvious at 10 mM acetaminophen but DNA strand breaks as measured by the comet assay were only found at 25-30 mM acetaminophen. Non-cytotoxic concentrations of three compounds with antioxidant activity, the glutathione precursor N-acetylcysteine (100 micro M), the plant polyphenol silibin (25 micro M) and the antioxidant vitamin alpha-tocopherol (50 micro M), were not able to inhibit acetaminophen toxicity at any acetaminophen concentration, while they completely prevented the formation of DNA strand breaks at 25-30 mM acetaminophen. The occurrence of oxidative stress in our experiments was indicated by a slight increase of malondialdehyde formation at 40 mM acetaminophen and by an adaptive increase in catalase mRNA concentration. We conclude that in acetaminophen-treated hepatocytes ROS-independent cell death and ROS-dependent DNA strand breaks occur which appear not to be causally related as judged from their dose dependency and their response to antioxidants. PMID:12965121

  8. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    SciTech Connect

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  9. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells

    SciTech Connect

    Hiraishi, H.; Terano, A.; Ota, S.; Ivey, K.J.; Sugimoto, T.

    1987-07-01

    Reactive oxygen metabolites have been reported to be responsible for the pathogenesis of ischemia-induced gastric mucosal lesion. The authors have investigated the possible protective effect of specific enzymes and oxygen radical scavenging agents on oxygen metabolite-induced injury to cultured gastric mucosal cells. Oxygen-reactive metabolites were generated by 1 mM xanthine and 10-100 mU/ml xanthine oxidase. Cytotoxicity was quantified by measuring /sup 51/Cr release from prelabeled cells. Xanthine oxidase caused a dose-dependent increase of /sup 51/Cr release in the presence of 1 mM xanthine. Catalase diminished xanthine-xanthine oxidase-induced /sup 51/Cr release in a dose-dependent manner. Superoxide dismutase failed to affect the amounts of /sup 51/Cr release induced by xanthine plus xanthine oxidase. Pretreatment with diethyl maleate potentiated oxygen radical-mediated /sup 51/Cr release dose dependently. The presence of ferrous ion or ethylenediaminetetraacetic acid-chelated iron did not alter xanthine-xanthine oxidase-induced cellular injury. They conclude that in vitro (1) oxygen metabolites, extracellularly generated, have a direct toxic effect on gastric mucosal cells; (2) hydrogen peroxide is a major mediator of oxygen metabolite-induced gastric cell injury; (3) the oxygen-derived superoxide and hydroxyl radicals are less toxic to gastric mucosal cells than hydrogen peroxide; and (4) intracellular glutathione, which detoxifies hydrogen peroxide, may be involved in antioxidant defense mechanisms.

  10. Effects of soyasaponin I and soyasaponins-rich extract on the alternariol-induced cytotoxicity on Caco-2 cells.

    PubMed

    Vila-Donat, Pilar; Fernández-Blanco, Celia; Sagratini, Gianni; Font, Guillermina; Ruiz, María-José

    2015-03-01

    Alternariol (AOH) is a mycotoxin produced by Alternaria spp. Soyasaponin I (Ss-I) is present naturally in legumes, and it has antioxidant properties. Cytotoxic and genotoxic effects of AOH have been demonstrated previously in vitro. In the present study, the cytotoxicity of AOH, Ss-I, and soyasaponins-rich extract from lentils was investigated; as well as, the cytoprotective effects of Ss-I and lentil extracts against AOH induced-cytotoxicity on Caco-2 cells. Cytotoxicity was carried out using MTT and PC assays (AOH: 3.125-100?µM, Ss-I: 3.125-50?µM, and lentil extracts: 1:0-1:32) during 24?h of exposure. Only AOH showed cytotoxic effect. The reduction in cell proliferation ranged from 25% to 47%. Simultaneous combination of Ss-I with AOH (1:1) increased cell proliferation (35%) compared to AOH tested alone. The Ss-I and extracts showed synergistic cytoprotective effects against cytotoxicity induced by AOH on Caco-2 cells. Food commodities containing Ss-I could contribute to diminish the toxicological risk that natural contaminant as AOH in diet can produce to humans. PMID:25542527

  11. Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro.

    PubMed

    Best, M; Phillips, G; Fowler, C; Rowland, J; Elsom, J

    2015-12-25

    Nanoparticles are increasingly being utilised in the innovation of consumer product formulations to improve their characteristics; however, established links between their properties, dose and cytotoxicity are not well defined. The purpose of this study was to screen four different nanomaterials of interest to oral care product development in the absence of stabilisers, alongside their respective bulk equivalents, within a non-keratinised oral epithelial cell model (H376). Particle morphology and size were characterised using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The H376 model showed that zinc oxide (ZnO) was the most cytotoxic material at concentrations exceeding 0.031% w/v, as assessed using the lactate dehydrogenase (LDH) and dimethylthiazolyl-diphenyl-tetrazolium-bromide (MTT) assays. ZnO cytotoxicity does not appear to be dependent upon size of the particle; a result supported by SEM of cell-particle interactions. Differences in cytotoxicity were observed between the bulk and nanomaterial forms of hydroxyapatite and silica (SiO2); titanium dioxide (TiO2) was well tolerated in both forms at the doses tested. Overall, nano-size effects have some impact on the cytotoxicity of a material; however, these may not be as significant as chemical composition or surface properties. Our data highlights the complexities involved at the nano-scale, in both the characterisation of materials and in relation to cytotoxic properties exerted on oral epithelial cells. PMID:26432707

  12. Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells

    PubMed Central

    Siddiqui, Maqsood A.; Alhadlaq, Hisham A.; Ahmad, Javed; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed; Ahamed, Maqusood

    2013-01-01

    Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2–50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level. PMID:23940521

  13. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    PubMed

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3ml of 0.02% lignin and 1mM silver nitrate incubated for 30min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500?g/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles. PMID:26434518

  14. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line.

    PubMed

    Tabatabaei Mirakabad, Fatemeh Sadat; Akbarzadeh, Abolfazl; Milani, Morteza; Zarghami, Nosratollah; Taheri-Anganeh, Mortaza; Zeighamian, Vahideh; Badrzadeh, Fariba; Rahmati-Yamchi, Mohammad

    2014-09-17

    Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among women worldwide. Herbal medicines have tremendous potential as promising agents for the treatment of cancer. Curcumin is a natural polyphenol which has many anticancer effects. Because of its low aqueous solubility, low bioavailability, and quick degradation and metabolism, curcumin was released using PLGA-PEG nanoparticles. Herein, the efficiency of pure curcumin and curcumin-loaded PLGA-PEG in MCF-7 human breast cancer cell lines was studied. (1)H NMR, FT-IR and SEM demonstrated PLGA-PEG structure and curcumin loaded on nanoparticles. Subsequently, the cytotoxic effects of free curcumin and curcumin-loaded PLGA-PEG were determined via an MTT assay. Our study confirmed that curcumin-loaded PLGA-PEG has more cytotoxic effects on the MCF-7 breast cancer cell line and could be exploited as a potential source for developing novel drugs against breast cancer. PMID:25229832

  15. Neolignans from Nectandra megapotamica (Lauraceae) Display in vitro Cytotoxic Activity and Induce Apoptosis in Leukemia Cells.

    PubMed

    Ponci, Vitor; Figueiredo, Carlos R; Massaoka, Mariana H; de Farias, Camyla F; Matsuo, Alisson L; Sartorelli, Patricia; Lago, João Henrique G

    2015-01-01

    Nectandra megapotamica (Spreng.) Mez. (Lauraceae) is a well-known Brazilian medicinal plant that has been used in folk medicine to treat several diseases. In continuation of our ongoing efforts to discover new bioactive natural products from the Brazilian flora, this study describes the identification of cytotoxic compounds from the MeOH extract of N. megapotamica (Lauraceae) leaves using bioactivity-guided fractionation. This approach resulted in the isolation and characterization of eight tetrahydrofuran neolignans: calopeptin (1), machilin-G (2), machilin-I (3), aristolignin (4), nectandrin A (5), veraguensin (6), ganschisandrin (7), and galgravin (8). Different assays were conducted to evaluate their cytotoxic activities and to determine the possible mechanism(s) related to the activity displayed against human leukemia cells. The most active compounds 4, 5 and 8 gave IC50 values of 14.2 ± 0.7, 16.9 ± 0.8 and 16.5 ± 0.8 µg/mL, respectively, against human leukemia (HL-60) tumor cells. Moreover, these compounds induced specific apoptotic hallmarks, such as plasma membrane bleb formation, nuclear DNA condensation, specific chromatin fragmentation, phosphatidyl-serine exposure on the external leaflet of the plasma membrane, cleavage of PARP as well as mitochondrial damage, which as a whole could be related to the intrinsic apoptotic pathway. PMID:26184150

  16. Involvement of enniatins-induced cytotoxicity in human HepG2 cells.

    PubMed

    Juan-García, Ana; Manyes, Lara; Ruiz, María-José; Font, Guillermina

    2013-04-12

    Enniatins (ENNs) are mycotoxins found in Fusarium fungi and they appear in nature as mixtures of cyclic depsipeptides. The ability to form ionophores in the cell membrane is related to their cytotoxicity. Changes in ion distribution between inner and outer phases of the mitochondria affect to their metabolism, proton gradient, and chemiosmotic coupling, so a mitochondrial toxicity analysis of enniatins is highly recommended because they host the homeostasis required for cellular survival. Two ENNs, ENN A and ENN B on hepatocarcinoma cells (HepG2) at 1.5 and 3 ?M and three exposure times (24, 48 and 72 h) were studied. Flow cytometry was used to examine their effects on cell proliferation, to characterize at which phase of the cell cycle progression the cells were blocked and to study the role of the mitochondrial in ENNs-induced apoptosis. In conclusion, apoptosis induction on HepG2 cells allowed to compare cytotoxic effects caused by both ENNs, A and B. It is reported the possible mechanism observed in MMP changes, cell cycle analysis and apoptosis/necrosis, identifying ENN B more toxic than ENN A. PMID:23370383

  17. Methyllycaconitine Alleviates Amyloid-? Peptides-Induced Cytotoxicity in SH-SY5Y Cells

    PubMed Central

    Zheng, XiaoLei; Xie, ZhaoHong; Zhu, ZhengYu; Liu, Zhen; Wang, Yun; Wei, LiFei; Yang, Hui; Yang, HongNa; Liu, YiQing; Bi, JianZhong

    2014-01-01

    Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. As the most common form of dementia, it affects more than 35 million people worldwide and is increasing. Excessive extracellular deposition of amyloid-? peptide (A?) is a pathologic feature of AD. Accumulating evidence indicates that macroautophagy is involved in the pathogenesis of AD, but its exact role is still unclear. Although major findings on the molecular mechanisms have been reported, there are still no effective treatments to prevent, halt, or reverse Alzheimer's disease. In this study, we investigated whether A?25–35 could trigger an autophagy process and inhibit the growth of SH-SY5Y cells. Furthermore, we examined the effect of methyllycaconitine (MLA) on the cytotoxity of A?25–35. MLA had a protective effect against cytotoxity of A?, which may be related to its inhibition of A?-induced autophagy and the involvement of the mammalian target of rapamycin pathway. Moreover, MLA had a good safety profile. MLA treatment may be a promising therapeutic tool for AD. PMID:25360664

  18. Amyloid-? suppresses AMP-activated protein kinase (AMPK) signaling and contributes to ?-synuclein-induced cytotoxicity.

    PubMed

    Lin, Chih-Li; Cheng, Yu-Shih; Li, Hsin-Hua; Chiu, Pai-Yi; Chang, Yen-Ting; Ho, Ying-Jui; Lai, Te-Jen

    2016-01-01

    Dementia with Lewy bodies (DLB) is a neurodegenerative disorder caused by abnormal accumulation of Lewy bodies, which are intracellular deposits composed primarily of aggregated ?-synuclein (?Syn). Although ?Syn has been strongly implicated to induce neurotoxicity, overexpression of wild-type ?Syn is shown to be insufficient to trigger formation of protein aggregates by itself. Therefore, investigating the possible mechanism underlying ?Syn aggregation is essential to understand the pathogenesis of DLB. Previous studies have demonstrated that amyloid ? (A?), the primary cause of Alzheimer's disease (AD), may promote the formation of ?Syn inclusion bodies. However, it remains unclear how A? contributes to the deposition and neurotoxicity of ?Syn. In the present study, we investigated the cytotoxic effects of A? in ?Syn-overexpressed neuronal cells. Our results showed that A? inhibits autophagy and enhances ?Syn aggregation in ?Syn-overexpressed cells. Moreover, A? also reduced sirtuin 1 (Sirt1) and its downstream signaling, resulting in increased intracellular ROS accumulation and mitochondrial dysfunction. Our in vitro and in vivo studies support that A?-inhibition of AMP-activated protein kinase (AMPK) signaling is involved in the neurotoxic effects of ?Syn. Taken together, our findings suggest that A? plays a synergistic role in ?Syn aggregation and cytotoxicity, which may provide a novel understanding for exploring the underlying molecular mechanism of DLB. PMID:26515689

  19. Houttuynia cordata Thunb extract induces cytotoxicity in human nasopharyngeal carcinoma cells: Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Li, Zuanfang; Yu, Yun; Lin, Duo; Huang, Hao; Shi, Hong

    2016-01-01

    The molecular mechanisms of cytotoxicity induced by Houttuynia cordata Thunb (HCT) in nasopharyngeal carcinoma (NPC) cells was investigated by Raman spectroscopy (RS). The average Raman spectra of cell groups treated with HCT (0, 62.5, 125, 250, and 500 ?g ml?1) for 24?h were measured separately. Compared to the control group, the intensities of the selected bands (1002, 1338, and 1448?cm?1) related to protein, DNA, and lipid in the treatment groups decreased obviously as the concentration of HCT increased. Both cell groups treated with 250 and 500 ?g ml?1 of HCT could be differentiated from the control group by principal component analysis (PCA) combined with linear discriminate analysis (LDA) with a diagnostic accuracy of 100%, suggesting that cytotoxicity occurred and that 250 ?g ml?1 was the proper dose for treatment. Simultaneously, the Raman spectra of cells treated with different treatment times with 250 ?g ml?1 of HCT were obtained. We can get that treatment with HCT decreased cell viability in a dose and time-dependent fashion. The results indicated that the RS combined with PCA–LDA can be used for pharmacokinetics studies of HCT in NPC cells, which could also provide useful data for clinical dosage optimization for HCT.

  20. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures

    PubMed Central

    2011-01-01

    Background To date silica nanoparticles (SNPs) play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities). They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs) of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures. Methods Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release), and TER (Transepithelial Electrical Resistance) measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release) and apoptosis markers were investigated. Results Regarding toxic effects (viability, membrane integrity, TER) the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the in vitro coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number of apoptosis markers belonging to the intrinsic pathway were upregulated in the coculture following aSNP treatment. Analysis of the individual markers indicated that the cells suffered from DNA damage, hypoxia and ER-stress. Conclusion We present evidence that our in vitro coculture model of the alveolar-capillary barrier is clearly advantageous compared to conventional monocultures in evaluating the extent of damage caused by hazardous material encountering the principle biological barrier in the lower respiratory tract. PMID:21272353

  1. The mining chemical Polydadmac is cytotoxic but does not interfere with Cu-induced toxicity in Atlantic salmon hepatocytes.

    PubMed

    Olsvik, Pål A; Berntssen, Marc H G; Waagbø, Rune; Hevrøy, Ernst; Søfteland, Liv

    2015-12-25

    To speed up sedimentation of suspended solids the mining industry often uses flocculent chemicals. In this work we evaluated the cytotoxic and mechanistic effects of Polydadmac, and its basic component Dadmac, on fish cells. Dose-response effects, temperature-dependent effects and impact of Dadmac and Polydadmac on Cu toxicity were studied in Atlantic salmon hepatocytes. We used the xCELLigence system and the MTT test for cytotoxicity assessments, and real-time RT-qPCR to evaluate molecular effects. The results showed a cytotoxic response for Polydadmac but not for Dadmac. Elevated levels of Cu were cytotoxic. Moderately cytotoxic concentrations of Cu (100-1000?M) induced significant responses on the transcription of a number of genes in the cells, i.e. cuznsod (sod1), cat, mnsod (sod2), nfe2l2, hmox1, mta, casp3b, casp6, bclx, cyp1a, ccs, atp7a, app, mmp13, esr1, ppara, fads2 and ptgs2. A factorial PLS regression model for mnsod transcription showed a synergistic effect between Dadmac and Cu exposure in the cells, indicating an interaction effect between Dadmac and Cu on mitochondrial ROS scavenging. No interaction effects were seen for Polydadmac on Cu toxicity. In conclusion, Polydadmac is cytotoxic at elevated concentrations but appears to have low ability to interfere with Cu toxicity in Atlantic salmon liver cells. PMID:26368670

  2. Inhibitory effect of ganglioside on mastoparan-induced cytotoxicity and degranulation in lipid raft of connective tissue type mast cell.

    PubMed

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-01-01

    Antihistamine, the most important drug for Hymenoptera stinging, cannot attenuate cytotoxicity and mast cell direct activation by mastoparan that is the most abundant polypeptides in the venoms of social wasps. The aim of this study was to investigate whether gangliosides inhibit the effect of mastoparan on mast cells activation. The degranulation and cytotoxicity in canine cutaneous mastocytoma cells (CM-MC) were done by measurement of ?-hexosaminidase release and MTT assay. Lipid raft was isolated with discontinuous sucrose gradient centrifuge for the analysis of distribution of G?(q) and G?(i) protein by western blotting. We found that mastoparan induced the degranulation in (CM-MC) via direct activation of G?(i) and G?(q) with a decrease in their amount in lipid raft. Ganglioside G(D1a) (disialoganglioside) and G(M1) (monosialoganglioside) strongly reduced the degranulation and cytotoxicity through stabilizing the structure of lipid raft domain. In addition, mastoparan generated intracellular reactive oxygen species (ROS) independently from cytotoxicity, through arachidonic cascade but not G-protein activations. Crude wasp venom showed cytotoxicity and induction of the release from CM-MC, which were potently reduced by gangliosides. We show here that mastoparan activates both G?(i) and G?(q) protein and that the exogenous ganglioside G(D1a) and G(M1) inhibit the degranulation and cytotoxicity through stabilizing lipid raft. Gangliosides have potentials to be therapeutic tool or clinical prophylaxis for wasp stinging. PMID:21671308

  3. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    PubMed Central

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018

  4. Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

    PubMed Central

    Elsabahy, Mahmoud; Zhang, Shiyi; Zhang, Fuwu; Deng, Zhou J.; Lim, Young H.; Wang, Hai; Parsamian, Perouza; Hammond, Paula T.; Wooley, Karen L.

    2013-01-01

    The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications. PMID:24264796

  5. Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

    NASA Astrophysics Data System (ADS)

    Elsabahy, Mahmoud; Zhang, Shiyi; Zhang, Fuwu; Deng, Zhou J.; Lim, Young H.; Wang, Hai; Parsamian, Perouza; Hammond, Paula T.; Wooley, Karen L.

    2013-11-01

    The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications.

  6. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2014-09-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  7. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2015-06-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  8. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    SciTech Connect

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei; Ma, Xiao-Ni; Li, Qing-Fang; Yan, Jun; Wang, Hua; Wang, Li-Sheng

    2010-03-19

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  9. Simian Immunodeficiency Virus Infection Induces Expansion of ?4?7+ and Cytotoxic CD56+ NK Cells?

    PubMed Central

    Reeves, R. Keith; Evans, Tristan I.; Gillis, Jacqueline; Johnson, R. Paul

    2010-01-01

    Herein we demonstrate that chronic simian immunodeficiency virus (SIV) infection induces significant upregulation of the gut-homing marker ?4?7 on macaque NK cells, coupled with downregulation of the lymph node-trafficking marker, CCR7. Interestingly, in naïve animals, ?4?7 expression was associated with increased NK cell activation and, on CD16+ NK cells, delineated a unique dual-function cytotoxic-CD107a+/gamma interferon (IFN-?)-secreting population. However, while SIV infection increased CD107a expression on stimulated CD56+ NK cells, ?4?7+ and ?4?7? NK cells were affected similarly. These findings suggest that SIV infection redirects NK cells away from the lymph nodes to the gut mucosae but alters NK cell function independent of trafficking repertoires. PMID:20554780

  10. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    PubMed

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). PMID:25483368

  11. Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines

    PubMed Central

    Namvar, Farideh; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Azizi, Susan; Tahir, Paridah Mohd; Chartrand, Max Stanley

    2015-01-01

    The aim of this study is to evaluate the in vitro cytotoxic activity and cellular effects of previously prepared ZnO-NPs on murine cancer cell lines using brown seaweed (Sargassum muticum) aqueous extract. Treated cancer cells with ZnO-NPs for 72 hours demonstrated various levels of cytotoxicity based on calculated IC50 values using MTT assay as follows: 21.7?±?1.3??g/mL (4T1), 17.45?±?1.1??g/mL (CRL-1451), 11.75?±?0.8??g/mL (CT-26), and 5.6?±?0.55??g/mL (WEHI-3B), respectively. On the other hand, ZnO-NPs treatments for 72 hours showed no toxicity against normal mouse fibroblast (3T3) cell line. On the other hand, paclitaxel, which imposed an inhibitory effect on WEHI-3B cells with IC50 of 2.25?±?0.4, 1.17?±?0.5, and 1.6?±?0.09??g/mL after 24, 48, and 72 hours treatment, respectively, was used as positive control. Furthermore, distinct morphological changes were found by utilizing fluorescent dyes; apoptotic population was increased via flowcytometry, while a cell cycle block and stimulation of apoptotic proteins were also observed. Additionally, the present study showed that the caspase activations contributed to ZnO-NPs triggered apoptotic death in WEHI-3 cells. Thus, the nature of biosynthesis and the therapeutic potential of ZnO-NPs could prepare the way for further research on the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer. PMID:25784947

  12. Humic Acid Increases Amyloid ?-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells.

    PubMed

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer's disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid ? (A?) peptide in the brain. However, the role that HA contributes to A?-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing A?-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2? phosphorylation. We also observed HA and A?-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1? pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and A?. Our findings suggest a new mechanism by which HA can deteriorate A?-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  13. Humic Acid Increases Amyloid ?-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells

    PubMed Central

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer’s disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid ? (A?) peptide in the brain. However, the role that HA contributes to A?-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing A?-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2? phosphorylation. We also observed HA and A?-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1? pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and A?. Our findings suggest a new mechanism by which HA can deteriorate A?-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  14. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells

    PubMed Central

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment. PMID:26609475

  15. Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line.

    PubMed

    Yalcin, Serap; Unsoy, Gozde; Mutlu, Pelin; Khodadust, Rouhollah; Gunduz, Ufuk

    2014-01-01

    In this study, polyhydroxybutyrate (PHB)-coated magnetic nanoparticles (MNPs) were prepared by coprecipitation of iron salts (Fe and Fe) by ammonium hydroxide. Characterizations of PHB-coated MNPs were performed by Fourier transform infrared spectroscopy, x-ray diffraction, dynamic light scattering, thermal gravimetric analysis, vibrating sample magnetometry, and transmission electron microscopy analyses. Doxorubicin was loaded onto PHB-MNPs, and the release efficiencies at different pHs were studied under in vitro conditions. The most efficient drug loading concentration was found about 87% at room temperature in phosphate-buffered saline (pH 7.2). The drug-loaded MNPs were stable up to 2 months in neutral pH for mimicking physiological conditions. The drug release studies were performed with acetate buffer (pH 4.5) that mimics endosomal pH. Doxorubicin (60%) released from PHB-MNPs within 65 hours. Doxorubicin-loaded PHB-MNPs were about 2.5-fold more cytotoxic as compared with free drug on resistant Michigan Cancer Foundation-7 (human breast adenocarcinoma, MCF-7) cell line (1 ?M doxorubicin) in vitro. Therefore, doxorubicin-loaded PHB-MNPs lead to overcome the drug resistance. PMID:25137407

  16. Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations.

    PubMed

    Zhang, Shengrui; Yang, Haitao; Ji, Xiaohui; Wang, Qin

    2016-02-01

    The chemical compositions, sizes and fluorescent properties of synthesized carbon nanoparticles (CNPs) were characterized. Escherichia coli (E. coli) cells were used as a model to study the cytotoxicity of CNPs, and the results of the cellular uptake of CNPs yielded excellent results: the CNPs demonstrated good biocompatibility and were non-toxic to the growth of the E. coli cells. Moreover, to assess the potential toxicity of CNPs to human health, the binding behavior of CNPs with human immunoglobulin G (HIgG) was examined by fluorescence quenching spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy under physiological conditions. The fluorescence quenching constants and parameters for the interaction at different temperatures had been calculated according to Scatchard. The thermodynamic parameters, such as enthalpy change (?H), entropy change (?S) and free energy change (?G), were calculated, and the results indicated strong static quenching and showed that van der Waals forces, hydrogen bonds and hydrophobic interactions were the predominant intermolecular forces stabilizing the CNP-HIgG complex. Synchronous fluorescence and circular dichroism spectra provided information regarding the conformational alteration of HIgG in the presence of CNPs. These findings help to characterize the interactions between CNPs and HIgG, which may clarify the potential risks and undesirable health effects of CNPs, as well as the related cellular trafficking and systemic translocation. PMID:26505286

  17. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Guan, Rongfa; Kang, Tianshu; Lu, Fei; Zhang, Zhiguo; Shen, Haitao; Liu, Mingqi

    2012-10-01

    Traces of zinc oxide nanoparticles (ZnO NPs) used may be found in the liver and kidney. The aim of this study is to determine the optimal viability assay for using with ZnO NPs and to assess their toxicity to human hepatocyte (L02) and human embryonic kidney (HEK293) cells. Cellular morphology, mitochondrial function (MTT assay), and oxidative stress markers (malondialdehyde, glutathione (GSH) and superoxide dismutase (SOD)) were assessed under control and exposed to ZnO NPs conditions for 24 h. The results demonstrated that ZnO NPs lead to cellular morphological modifications, mitochondrial dysfunction, and cause reduction of SOD, depletion of GSH, and oxidative DNA damage. The exact mechanism behind ZnO NPs toxicity suggested that oxidative stress and lipid peroxidation played an important role in ZnO NPs-elicited cell membrane disruption, DNA damage, and subsequent cell death. Our preliminary data suggested that oxidative stress might contribute to ZnO NPs cytotoxicity.

  18. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects

    PubMed Central

    Aravinthan, Adithan; Govarthanan, Muthusamy; Selvam, Kandasamy; Praburaman, Loganathan; Selvankumar, Thangasamy; Balamurugan, Rangachari; Kamala-Kannan, Seralathan; Kim, Jong-Hoon

    2015-01-01

    A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2–4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1–4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 ?g/mL. PMID:25792831

  19. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model.

    PubMed

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2013-11-01

    Glioblastomas (GBMs) are highly lethal primary brain tumours. Treatment of these malignant gliomas remains ineffective as these are extremely resistant to chemotherapeutic applications. Furthermore, combination therapy for cancer treatment is becoming more popular because it generates synergistic anticancer effects, by reducing individual drug-related toxicity and associated side effects. Currently, magnetic nanoparticles (MNPs) based drug delivery system has attracted much more attention owing to its intrinsic magnetic properties and drug loading capacity. In the present study, MNPs based drug delivery approach for co-delivering of potent chemotherapeutic drugs such as Curcumin (herbal drug) and Temozolomide (DNA methylating agent) has been implemented. The dual drug loaded MNPs formulations were evaluated in two-dimensional (2-D) monolayer culture and three-dimensional (3-D) tumour spheroid culture of T-98G cells for understanding the therapeutic discrepancy. The dual drug loaded MNPs formulations demonstrated higher cytotoxic effect than single drug loaded MNPs formulations as compared to their corresponding native drugs in 2-D and 3-D culture. The combination index (CI) analysis revealed synergistic mode of action of dual drug loaded MNPs formulations, which was further confirmed by cell death induction assay mediated by acridine orange (AO)/propidium iodide (PI) staining, illustrating higher efficacy of the formulation towards GBM therapy. PMID:23891772

  20. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects.

    PubMed

    Aravinthan, Adithan; Govarthanan, Muthusamy; Selvam, Kandasamy; Praburaman, Loganathan; Selvankumar, Thangasamy; Balamurugan, Rangachari; Kamala-Kannan, Seralathan; Kim, Jong-Hoon

    2015-01-01

    A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2-4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1-4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 ?g/mL. PMID:25792831

  1. Nanoparticle-Mediated, Light-Induced Phase Separations.

    PubMed

    Neumann, Oara; Neumann, Albert D; Silva, Edgar; Ayala-Orozco, Ciceron; Tian, Shu; Nordlander, Peter; Halas, Naomi J

    2015-12-01

    Nanoparticles that both absorb and scatter light, when dispersed in a liquid, absorb optical energy and heat a reduced fluid volume due to the combination of multiple scattering and optical absorption. This can induce a localized liquid-vapor phase change within the reduced volume without the requirement of heating the entire fluid. For binary liquid mixtures, this process results in vaporization of the more volatile component of the mixture. When subsequently condensed, these two steps of vaporization and condensation constitute a distillation process mediated by nanoparticles and driven by optical illumination. Because it does not require the heating of a large volume of fluid, this process requires substantially less energy than traditional distillation using thermal sources. We investigated nanoparticle-mediated, light-induced distillation of ethanol-H2O and 1-propanol-H2O mixtures, using Au-SiO2 nanoshells as the absorber-scatterer nanoparticle and nanoparticle-resonant laser irradiation to drive the process. For ethanol-H2O mixtures, the mole fraction of ethanol obtained in the light-induced process is substantially higher than that obtained by conventional thermal distillation, essentially removing the ethanol-H2O azeotrope that limits conventional distillation. In contrast, for 1-propanol-H2O mixtures the distillate properties resulting from light-induced distillation were very similar to those obtained by thermal distillation. In the 1-propanol-H2O system, a nanoparticle-mediated, light-induced liquid-liquid phase separation was also observed. PMID:26535465

  2. Deoxynivalenol-induced cytotoxicity, cytokines and related genes in unstimulated or lipopolysaccharide stimulated primary porcine macrophages.

    PubMed

    Döll, Susanne; Schrickx, Jan A; Dänicke, Sven; Fink-Gremmels, Johanna

    2009-01-30

    The cytotoxicity of deoxynivalenol (DON) as well as the induction of cytokines and related genes was investigated in porcine pulmonary alveolar macrophages (PAM) in absence or presence of lipopolysaccharides (LPS). IC(20) values were 1.1, 0.4 and 1.0microM DON in the MTT, neutral red and alamar blue assay, respectively, and did not differ significantly in the presence of LPS. The mRNA expression of tumour necrosis factor (TNF)-alpha peaked at 3h, whereas LPS and DON showed synergistic effects resulting in an approximately 20-fold increase at 500nM DON as compared to untreated controls. The supernatant concentrations of TNF-alpha showed similar synergistic effects. The expression of interleukin (IL)-1beta was significantly induced by DON (except for 12h) and LPS. An induction of the mRNA expression of IL-6 by DON was evident only at 3h, whereas the supernatant concentrations of LPS stimulated PAM incubated with 500nM DON were significantly decreased at most time points. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression did not seem to contribute to the effects of DON in porcine macrophages. The results of the present investigation suggest a contribution of cytokines, especially TNF-alpha and IL-1beta, induced by DON in porcine macrophages to the effects observed in vivo. PMID:19027837

  3. RTP801 regulates maneb- and mancozeb-induced cytotoxicity via NF-?B.

    PubMed

    Cheng, Shu-Yuan; Oh, Seon; Velasco, Marcela; Ta, Christine; Montalvo, Jessica; Calderone, Alyssa

    2014-07-01

    Environmental factors have been implicated in the pathogenesis of neurodegenerative diseases. Maneb (MB) and mancozeb (MZ) have been extensively used as pesticides. Exposure to MB lowers the threshold for dopaminergic damage triggered by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. MB and MZ potentiate 1-methyl-4-phenylpyridium (MPP(+))-induced cytotoxicity in rat pheochromocytoma (PC12) cells partially via nuclear factor kappa B (NF-?B) activation. RTP801 dramatically increased by oxidative stresses and DNA damage is the possible mechanism of neurotoxins-induced cell death in many studies. This study demonstrated that MB and MZ induced DNA damage as seen in comet assay. The expressions of RTP801 protein and mRNA were elevated after MB and MZ exposures. By knocking down RTP801 using shRNA, we demonstrated that NF-?B activation by MB and MZ was regulated by RTP801 and cell death triggered by MB and MZ was associated with RTP801 elevation. This revealed that the toxic mechanisms of dithiocarbamates are via the cross talk between RTP801 and NF-?B. PMID:24764117

  4. Curcumin inhibits PhIP induced cytotoxicity in breast epithelial cells through multiple molecular targets.

    PubMed

    Jain, Ashok; Samykutty, Abhilash; Jackson, Carissa; Browning, Darren; Bollag, Wendy B; Thangaraju, Muthusamy; Takahashi, Satoru; Singh, Shree Ram

    2015-08-28

    Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), found in cooked meat, is a known food carcinogen that causes several types of cancer, including breast cancer, as PhIP metabolites produce DNA adduct and DNA strand breaks. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity. To date, no study has examined the interaction of PhIP with curcumin in breast epithelial cells. The present study demonstrates the mechanisms by which curcumin inhibits PhIP-induced cytotoxicity in normal breast epithelial cells (MCF-10A). Curcumin significantly inhibited PhIP-induced DNA adduct formation and DNA double stand breaks with a concomitant decrease in reactive oxygen species (ROS) production. The expression of Nrf2, FOXO targets; DNA repair genes BRCA-1, H2AFX and PARP-1; and tumor suppressor P16 was studied to evaluate the influence on these core signaling pathways. PhIP induced the expression of various antioxidant and DNA repair genes. However, co-treatment with curcumin inhibited this expression. PhIP suppressed the expression of the tumor suppressor P16 gene, whereas curcumin co-treatment increased its expression. Caspase-3 and -9 were slightly suppressed by curcumin with a consequent inhibition of cell death. These results suggest that curcumin appears to be an effective anti-PhIP food additive likely acting through multiple molecular targets. PMID:26004342

  5. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A{sub 2}-induced degranulation in mast cells

    SciTech Connect

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of {beta}-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G{sub M1}), di-sialoganglioside (G{sub D1a}) and tri-sialoganglioside (G{sub T1b}). In contrast, honeybee venom-derived phospholipase A{sub 2} induced the net degranulation directly without cytotoxicity, which was not inhibited by G{sub M1}, G{sub D1a} and G{sub T1b}. For analysis of distribution of G{alpha}{sub q} and G{alpha}{sub i} protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of G{alpha}{sub q} and G{alpha}{sub i} at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A{sub 2}-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A{sub 2}-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  6. Enhanced Cellular Cytotoxicity and Antibacterial Activity of 18-?-Glycyrrhetinic Acid by Albumin-conjugated PLGA Nanoparticles.

    PubMed

    Darvishi, B; Manoochehri, S; Esfandyari-Manesh, M; Samadi, N; Amini, M; Atyabi, F; Dinarvand, R

    2015-12-01

    The aim of the present work was to encapsulate 18-?-Glycyrrhetinic acid (GLA) in albumin conjugated poly(lactide-co-glycolide) (PLGA) nanoparticles by a modified nanoprecipitation method. Nanoparticles (NPs) were prepared by different drug to polymer ratios, human serum albumin (HSA) content, dithiothreitol (as producer of free thiol groups) content, and acetone (as non-solvent in nanoprecipitation). NPs with a size ranging from 126 to 174?nm were achieved. The highest entrapment efficiency (89.4±4.2%) was achieved when the ratio of drug to polymer was 1:4. The zeta potential of NPs was fairly negative (-8 to -12). Fourier transform infrared spectroscopy and differential scanning calorimetry proved the conjugation of HSA to PLGA NPs. In vitro release profile of NPs showed 2 phases: an initial burst for 4?h (34-49%) followed by a slow release pattern up to the end. The antibacterial effects of NPs against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa were studied by microdilution method. The GLA-loaded NPs showed more antibacterial effect than pure GLA (2-4 times). The anticancer MTT test revealed that GLA-loaded NPs were approximately 9 times more effective than pure GLA in Hep G2 cells. PMID:25607747

  7. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-01

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  8. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci.

    PubMed

    Boda, Sunil Kumar; Broda, Janine; Schiefer, Frank; Weber-Heynemann, Josefine; Hoss, Mareike; Simon, Ulrich; Basu, Bikramjit; Jahnen-Dechent, Willi

    2015-07-01

    The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10(-6) m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections. PMID:25712910

  9. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    SciTech Connect

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  10. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis.

    PubMed

    Tian, Cheng-Lei; Wen, Qian; Fan, Ting-Jun

    2015-10-01

    Atropine is an anticholinergic drug for mydriasis in eye clinic, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of atropine to the cornea and its cellular and molecular mechanisms remain unknown. In this study, we investigated the cytotoxicity of atropine to corneal epithelium and its underlying mechanisms using an in vitro model of non-transfected human corneal epithelial (HCEP) cells. Our results showed that atropine, above the concentration of 0.3125g/l (1/32 of its therapeutic dosage in eye clinic), had a dose- and time-dependent toxicity to HCEP cells by inducing morphological abnormality, cytopathic effect, viability decline, and proliferation retardation. Moreover, the proliferation-retarding effect of atropine on the cells was achieved by inducing G1/S phase arrest and downregulation of E-cadherin and ?-catenin. Besides, atropine also had an apoptosis-inducing effect on the cells by inducing phosphatidylserine externalization, plasma membrane permeability elevation, DNA fragmentation and apoptotic body formation. Furthermore, atropine could also induce activations of caspase-2, -3 and -9, disruption of mitochondrial transmembrane potential, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor, implying a death receptor-mediated mitochondrion-dependent pathway is most probably involved in the apoptosis of HCEP cells induced by atropine. Taken together, our results suggest that atropine has remarkable cytotoxicity to HCEP cells by inducing cell cycle arrest and death receptor-mediated mitochondrion-dependent apoptosis. PMID:26296992

  11. Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells

    NASA Astrophysics Data System (ADS)

    Panzarini, Elisa; Mariano, Stefania; Dini, Luciana

    2015-06-01

    This study reports the induction of autophagy by two concentrations (2×103 or 2×104 NPs/cell) of 30 nm sized ?-D-Glucose- and ?-D-Glucose/Sucrose-coated silver NanoParticles (AgNPs-G and AgNPs-GS respectively) in HeLa cells treated for 6, 12, 24 and 48 hrs. Cell viability was assessed by Neutral Red (NR) test and morphological evaluation. In addition ROS generation (NBT test) and induction of apoptosis/necrosis (Annexin V/Propidium Iodide-Annexin V/PI staining) and autophagy (Monodansylcadaverine-MDC staining) were evaluated. Cytotoxicity, ROS generation and morphology changes depend on NPs type and amount, and incubation time. As a general result, AgNPs-G are more toxic than AgNPs-GS. Moreover, the lowest AgNPs-GS concentration is ineffective on cell viability and ROS generation. Only 10% and 25% of viable HeLa cells were found at the end of incubation time in the presence of higher amount of AgNPs - G and AgNPs-GS respectively and in parallel ROS generation is induced. To elucidate the type of cell death, Annexin V/PI and MDC staining was performed. Interestingly, irrespective of coating type and NPs amount the percentage of apoptotic cells (Annexin V+/PI-) is similar to viable HeLa cells. At contrary, we observed a NPs amount dependent autophagy and necrosis induction. In fact, the lower amount of NPs induces autophagy (MDC+/PI- cells) whereas the higher one induces necrosis (Annexin V+/PI+ cells). Our findings suggest that AgNPs-induced cytotoxicity depends on AgNPs amount and type and provide preliminary evidence of induction of autophagy in HeLa cells cultured in the presence of AgNPs.

  12. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms

    PubMed Central

    Zhong, Ying-jia; Shi, Fang; Zheng, Xue-lian; Wang, Qiong; Yang, Lan; Sun, Hong; He, Fan; Zhang, Lin; Lin, Yong; Qin, Yong; Liao, Lin-chuan; Wang, Xia

    2011-01-01

    Aim: To investigate the anticancer effect of crocetin, a major ingredient in saffron, and its underlying mechanisms. Methods: Cervical cancer cell line HeLa, non-small cell lung cancer cell line A549 and ovarian cancer cell line SKOV3 were treated with crocetin alone or in combination with vincristine. Cell proliferation was examined using MTT assay. Cell cycle distribution and sub-G1 fraction were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit with flow cytometry. Cell death was measured based on the release of lactate dehydrogenase (LDH). The expression levels of p53 and p21WAF1/Cip1 as well as caspase activation were examined using Western blot analysis. Results: Treatment of the 3 types of cancer cells with crocetin (60-240 ?mol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (240 ?mol/L) significantly induced cell cycle arrest through p53-dependent and -independent mechanisms accompanied with p21WAF1/Cip1 induction. Crocetin (120-240 ?mol/L) caused cytotoxicity in the 3 types of cancer cells by enhancing apoptosis in a time-dependent manner. In the 3 types of cancer cells, crocetin (60 ?mol/L) significantly enhanced the cytotoxicity induced by vincristine (1 ?mol/L). Furthermore, this synergistic effect was also detected in the vincristine-resistant breast cancer cell line MCF-7/VCR. Conclusion: Ccrocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug or as a chemosensitizer for vincristine. PMID:21986580

  13. Synthesis, structures, cellular uptake and apoptosis-inducing properties of highly cytotoxic ruthenium-Norharman complexes.

    PubMed

    Tan, Caiping; Wu, Shouhai; Lai, Sensen; Wang, Minxu; Chen, Yu; Zhou, Lingjun; Zhu, Yiping; Lian, Wu; Peng, Wenlie; Ji, Liangnian; Xu, Anlong

    2011-09-14

    Three novel Ru(II) complexes of the general formula [Ru(N-N)(2)(Norharman)(2)](SO(3)CF(3))(2), where N-N = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), 4,7-diphenyl-1,10-phenanthroline (DIP, 3) and Norharman (9H-pyrido[3,4-b]indole) is a naturally occurring ?-carboline alkaloid, have been synthesized and characterized. The molecular structures of 1 and 2 have been determined by X-ray diffraction analysis. The cellular uptake efficiencies, in vitro cytotoxicities and apoptosis-inducing properties of these complexes have been extensively explored. Notably, 1-3 exhibit potent antiproliferative activities against a panel of human cancer cell lines with IC(50) values lower than those of cisplatin. Further studies show that 1-3 can cause cell cycle arrest in the G0/G1 phase and induce apoptosis through mitochondrial dysfunction and reactive oxygen species (ROS) generation. In vitro DNA binding studies have also been conducted to provide information about the possible mechanism of action. PMID:21804968

  14. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts.

    PubMed

    Pérez-Díaz, M; Alvarado-Gomez, E; Magaña-Aquino, M; Sánchez-Sánchez, R; Velasquillo, C; Gonzalez, C; Ganem-Rondero, A; Martínez-Castañon, G; Zavala-Alonso, N; Martinez-Gutierrez, F

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and preventive strategies. PMID:26706536

  15. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.

    PubMed

    Yakunin, Alexander N; Avetisyan, Yuri A; Tuchin, Valery V

    2015-05-01

    This paper discusses one of the key problems of laser-induced tissue/cell hyperthermia mediated by gold nanoparticles, namely, quantifying and precise prediction of the light exposure to provide a controllable local heating impact on living organisms. The distributions of such parameters as an efficiency factor of absorption, differential and integral absorbing power of a nanoparticle, temperature increment, and Arrhenius damage integral were used to quantify nanoparticle effectiveness in the two-dimensional coordinate space “laser wavelength (?) × radius of gold nanoparticles (R).” It was found that the fulfillment of required spatial and temporal characteristics of temperature fields in the vicinity of nanoparticle determines the optimal ? and R. As a result, the area in the space (? × R) with a minimal criticality to alterations of the local hyperthermia may be significantly displaced from the position of the plasmonic resonance. The aspects of generalization of the proposed methodology for the analysis of local hyperthermia using nanoparticles of different shapes (nanoshells, nanorods, nanostars) and short pulse laser radiation are discussed. PMID:25629389

  16. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Avetisyan, Yuri A.; Tuchin, Valery V.

    2015-05-01

    This paper discusses one of the key problems of laser-induced tissue/cell hyperthermia mediated by gold nanoparticles, namely, quantifying and precise prediction of the light exposure to provide a controllable local heating impact on living organisms. The distributions of such parameters as an efficiency factor of absorption, differential and integral absorbing power of a nanoparticle, temperature increment, and Arrhenius damage integral were used to quantify nanoparticle effectiveness in the two-dimensional coordinate space "laser wavelength (?)× radius of gold nanoparticles (R)." It was found that the fulfillment of required spatial and temporal characteristics of temperature fields in the vicinity of nanoparticle determines the optimal ? and R. As a result, the area in the space (?×R) with a minimal criticality to alterations of the local hyperthermia may be significantly displaced from the position of the plasmonic resonance. The aspects of generalization of the proposed methodology for the analysis of local hyperthermia using nanoparticles of different shapes (nanoshells, nanorods, nanostars) and short pulse laser radiation are discussed.

  17. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction

    PubMed Central

    Asano, Shinichi; Arvapalli, Ravikumar; Manne, Nandini DPK; Maheshwari, Mani; Ma, Bing; Rice, Kevin M; Selvaraj, Vellaisamy; Blough, Eric R

    2015-01-01

    The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (Po) function (sham: 25.6±1.6 N/cm2 vs CeO2: 23.4±0.8 N/cm2 vs Sep: 15.9±1.0 N/cm2 vs Sep+CeO2: 20.0±1.0 N/cm2, P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat. PMID:26491293

  18. Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies.

    PubMed

    Ghasempour, Sarieh; Shokrgozar, Mohammad Ali; Ghasempour, Roghayeh; Alipour, Mohsen

    2015-10-01

    In recent years, iron oxide nanorods find a lot of applications including drug delivery, cell separation, hyperthermia and magnetic resonance imaging. In this study the cytotoxicity of iron oxide nanorods was evaluated based on mouse fibroblast cell behavior and wistar rat's liver and kidney function. At first for modification, nanorods were added to Dulbecco's modified Eagle's medium (DMEM) which contained a lot of sources of vitamins, amino acids, proteins in Fetal Bovine Serum (FBS). The MTT assay was employed for evaluating the toxic effects of 200 and 400?g/mL modified and non-modified iron oxide nanorods on L929 mouse fibroblast cells in a 24h period. Changes in cell granularity and size as well as cell cycle were investigated using flow cytometry. Moreover liver and kidney function test and serum iron level measurement were performed 24h after the injection of modified iron oxide nanorods via the tail peripheral vein of wistar rats. Results indicated that greater concentration of modified iron oxide nanorods had no significant effect on cell viability while greater concentration of non-modified iron oxide nanorods significantly decreased cell viability. Modified iron oxide nanorods did not have significant effects on cell cycle. The results of liver and kidney function tests did not differ significantly while a significant increase in serum iron level was observed. After H&E staining of slices, there were no changes on morphology of rat's kidney and liver cells. This study suggests that short-time use of 200 and 400?g/mL iron oxide nanorods are probably safe. Further studies are needed for investigation of toxic effects of different concentrations, coatings, and exposure time periods of iron oxide nanorods. PMID:26279467

  19. Nanoparticle-induced platelet aggregation and vascular thrombosis

    PubMed Central

    Radomski, Anna; Jurasz, Paul; Alonso-Escolano, David; Drews, Magdalena; Morandi, Maria; Malinski, Tadeusz; Radomski, Marek W

    2005-01-01

    Ever increasing use of engineered carbon nanoparticles in nanopharmacology for selective imaging, sensor or drug delivery systems has increased the potential for blood platelet–nanoparticle interactions. We studied the effects of engineered and combustion-derived carbon nanoparticles on human platelet aggregation in vitro and rat vascular thrombosis in vivo. Multiplewall (MWNT), singlewall (SWNT) nanotubes, C60 fullerenes (C60CS) and mixed carbon nanoparticles (MCN) (0.2–300??g?ml?1) were investigated. Nanoparticles were compared with standard urban particulate matter (SRM1648, average size 1.4??m). Platelet function was studied using lumi aggregometry, phase-contrast, immunofluorescence and transmission electron microscopy, flow cytometry, zymography and pharmacological inhibitors of platelet aggregation. Vascular thrombosis was induced by ferric chloride and the rate of thrombosis was measured, in the presence of carbon particles, with an ultrasonic flow probe. Carbon particles, except C60CS, stimulated platelet aggregation (MCN?SWNT>MWNT>SRM1648) and accelerated the rate of vascular thrombosis in rat carotid arteries with a similar rank order of efficacy. All particles resulted in upregulation of GPIIb/IIIa in platelets. In contrast, particles differentially affected the release of platelet granules, as well as the activity of thromboxane-, ADP, matrix metalloproteinase- and protein kinase C-dependent pathways of aggregation. Furthermore, particle-induced aggregation was inhibited by prostacyclin and S-nitroso-glutathione, but not by aspirin. Thus, some carbon nanoparticles and microparticles have the ability to activate platelets and enhance vascular thrombosis. These observations are of importance for the pharmacological use of carbon nanoparticles and pathology of urban particulate matter. PMID:16158070

  20. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  1. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs. PMID:24835429

  2. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells. PMID:26121084

  3. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity.

    PubMed

    Fangueiro, Joana F; Andreani, Tatiana; Egea, Maria A; Garcia, Maria L; Souto, Selma B; Silva, Amélia M; Souto, Eliana B

    2014-01-30

    In the present study we have developed lipid nanoparticle (LN) dispersions based on a multiple emulsion technique for encapsulation of hydrophilic drugs or/and proteins by a full factorial design. In order to increase ocular retention time and mucoadhesion by electrostatic attraction, a cationic lipid, namely cetyltrimethylammonium bromide (CTAB), was added in the lipid matrix of the optimal LN dispersion obtained from the factorial design. There are a limited number of studies reporting the ideal concentration of cationic agents in LN for drug delivery. This paper suggests that the choice of the concentration of a cationic agent is critical when formulating a safe and stable LN. CTAB was included in the lipid matrix of LN, testing four different concentrations (0.25%, 0.5%, 0.75%, or 1.0%wt) and how composition affects LN behavior regarding physical and chemical parameters, lipid crystallization and polymorphism, and stability of dispersion during storage. In order to develop a safe and compatible system for ocular delivery, CTAB-LN dispersions were exposed to Human retinoblastoma cell line Y-79. The toxicity testing of the CTAB-LN dispersions was a fundamental tool to find the best CTAB concentration for development of these cationic LN, which was found to be 0.5 wt% of CTAB. PMID:24275449

  4. Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5- fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line.

    PubMed

    Hajikarimi, Zahra; Khoei, Samideh; Khoee, Sepideh; Mahdavi, Seied Rabi

    2014-12-01

    The purpose of this study was to investigate the uptake and cytotoxic effects of magnetic poly lactic-co-glycolic acid (PLGA)-coated iron oxide nanoparticles as a carrier of 5-fluorouracil (5-FU) and X-ray on the level of proliferation capacity of DU145 prostate carcinoma cell line in monolayer culture. Following monolayer culture, DU 145 cells were treated with different concentrations of 5-FU or 5-FU loaded nanoparticles for 24 h and 2Gy X-ray (6 Mega-voltage (MV)). The rate of nanoparticles penetration was then measured using atomic adsorption spectroscopy (AAS). The cytotoxicity effect of these nanoparticles with/ without X-ray radiation was evaluated using colony formation assay. Spectroscopy results showed that iron content and therefore the cellular uptake of 5-FU loaded nanoparticles increased with increasing nanoparticle concentrations. Further, the proliferation capacity of the cells decreased with the increase of 5-FU and 5- FU loaded nanoparticle concentrations in combination with X-ray radiation. However the extent of reduction in colony number following treatment with 5-FU-loaded nanoparticles in combination with 2Gy of megavoltage X-ray radiation was significantly more than for free 5-FU. Thus, drug-loaded nanoparticles could deliver 5-FU more efficiently into the cells. PLGA coated iron oxide nanoparticles are therefore effective drug delivery vehicles for 5-FU. PLGA coated iron oxide nanoparticles are biocompatible and this coating is an appropriate surface that can penetrate into the cells. PMID:25051558

  5. Surface modification of PLGA nanoparticles with biotinylated chitosan for the sustained in vitro release and the enhanced cytotoxicity of epirubicin.

    PubMed

    Chen, Hongli; Xie, Li Qin; Qin, Jingwen; Jia, Yajing; Cai, Xinhua; Nan, WenBin; Yang, Wancai; Lv, Feng; Zhang, Qi Qing

    2016-02-01

    In this study, poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) with biotinylated chitosan (Bio-CS)-surface modification were prepared to be usded as a tumor-targeted and prolonged delivery system for anticancer drugs. Epirubicin (EPB), as a model drug, was encapsulated into Bio-CS surface modified PLGA (Bio-CS-PLGA) NPs with a drug encapsulation efficiency of 84.1?±?3.4%. EPB-loaded Bio-CS-PLGA NPs were spherical shaped, and had a larger size and higher positive zeta potential compared to the unmodfied EPB-loaded PLGA NPs. The in vitro drug releases showed that EPB-loaded Bio-CS-PLGA NPs exhibited relatively constant drug release kinetics during the first 48?h and the drug burst release significantly decreased in comparison to the unmodified PLGA NPs. The results of MTS assays showed that Bio-CS-PLGA NPs markedly increased the cytotoxicity of EPB, compared to both the unmodified PLGA NPs and the CS-PLGA NPs. The uptakes of NPs in human breast cancer MCF-7 cells were evaluated by the flow cytometry and the confocal microscope. The results revealed that Bio-CS-PLGA NPs exhibited a greater extent of cellular uptake than the unmodified PLGA NPs and CS-PLGA NPs. Moreover, the cellular uptake of Bio-CS-PLGA NPs was evidently inhibited by the endocytic inhibitors and the receptor ligand, indicating that biotin receptor-mediated endocytosis was perhaps involved in the cell entry of Bio-CS-PLGA NPs. In MCF-7 tumor-bearing nude mice, EPB-loaded Bio-CS-PLGA NPs were efficiently accumulated in the tumors. In summary, Bio-CS-PLGA NPs displayed great potential for application as the carriers of anticancer drugs. PMID:26638176

  6. Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method

    PubMed Central

    Chellappa, M; Anjaneyulu, U; Manivasagam, Geetha; Vijayalakshmi, U

    2015-01-01

    The purpose of this study is to prepare and evaluate the effect of synthesized titanium dioxide (TiO2) nanoparticles for their biocompatibility on physiological body fluids and the effect of cell toxicity to produce osteointegration when used as implantable materials. For the past few decades, the number of researches done to understand the importance of the biocompatibility of bioceramics, metals, and polymers and their effect on clinical settings of biomedical devices has increased. Hence, the total concept of biocompatibility encourages researchers to actively engage in the investigation of the most compatible materials in living systems by analyzing them using suitable physical, chemical, and biological (bioassay) methods. The ceramic material nano TiO2 was prepared by sol-gel method and analyzed for its functional group and phase formation by Fourier transform infrared spectroscopy and powder X-ray diffraction. Furthermore, the particle size, shape, surface topography, and morphological behavior were analyzed by dynamic light scattering, zeta potential, scanning electron microscopy–energy dispersive X-ray analysis, and transmission electron microscopy analysis. In addition to this, the cytotoxicity and cytocompatibility were determined on MG63 cell lines with varying doses of concentrations such as 1 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL with different time periods such as 24 hours and 48 hours. The results have not shown any toxicity, whereas, it improved the cell viability/proliferation at various concentrations. Hence, these findings indicate that the nano TiO2 material acts as a good implantable material when used in the biomedical field as a prime surface-modifying agent. PMID:26491305

  7. Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NF?B activation.

    PubMed

    Monturiol-Gross, Laura; Flores-Díaz, Marietta; Pineda-Padilla, Maria Jose; Castro-Castro, Ana Cristina; Alape-Giron, Alberto

    2014-01-01

    Clostridium perfringens phospholipase C (CpPLC), also called ?-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NF?B signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NF?B pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NF?B inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis. PMID:24466113

  8. Curcumin protects PC12 cells from corticosterone-induced cytotoxicity: possible involvement of the ERK1/2 pathway.

    PubMed

    Zhou, Hong; Li, Xuejun; Gao, Min

    2009-03-01

    Antiglucocorticoid therapy in depressed patients is effective, which indicates that glucocorticoids play a key role in the occurrence of depression. Our previous work demonstrated the efficacy of curcumin in treating depression in rat and mouse models. We characterized the protective effects of curcumin against corticosterone-induced cytotoxicity in PC12 cells and explored the mechanisms of these protective effects in association with the phosphorylation and expression of ERK1/2 in PC12 cells. MTT assay showed that curcumin significantly protected PC12 cells from corticosterone-induced cytotoxicity. Curcumin at concentrations from 10(-8) to 10(-6) M rescued PC12 cells from corticosterone-induced cytotoxicity. Cell viability was increased more than 20% with curcumin treatment. Western blot analysis showed that corticosterone increased ERK1/2 phosphorylation in PC12 cells and curcumin 10(-9) M to 10(-6) M significantly inhibited corticosterone-induced ERK1/2 phosphorylation in PC12 cells in a dose-dependent manner. These results suggest that curcumin is able to protect PC12 cells which may be associated with inhibition of ERK phosphorylation. PMID:19175364

  9. Clostridium perfringens Phospholipase C Induced ROS Production and Cytotoxicity Require PKC, MEK1 and NF?B Activation

    PubMed Central

    Monturiol-Gross, Laura; Flores-Díaz, Marietta; Pineda-Padilla, Maria Jose; Castro-Castro, Ana Cristina; Alape-Giron, Alberto

    2014-01-01

    Clostridium perfringens phospholipase C (CpPLC), also called ?-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NF?B signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NF?B pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NF?B inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis. PMID:24466113

  10. Dissociation of the vacuolar and macroautophagic cytopathology from the cytotoxicity induced by the lipophilic local anesthetic bupivacaine.

    PubMed

    Morissette, Guillaume; Bawolak, Marie-Thérèse; Marceau, François

    2011-07-01

    Local anesthetics, like many other cationic drugs, induce a vacuolar and macroautophagic cytopathology that has been observed in vivo and in various cell types; some also induce cytotoxicity of mitochondrial origin (apoptosis and necrosis) and it is not known whether the 2 types of toxicity overlap or interact. We compared bupivacaine with a more hydrophilic agent, lidocaine, for morphological, functional, and toxicological responses in a previously exploited nonneuronal system, primary smooth muscle cells. Bupivacaine induced little vacuolization (?2.5 mmol/L, 4 h), but elicited autophagic accumulation (?0.5 mmol/L, 4 h) and was massively cytotoxic at 2.5-5 mmol/L (4-24 h), the latter effect being unabated by the V-ATPase inhibitor bafilomycin A1. Lidocaine exerted little cytotoxicity at and below 5 mmol/L for 24 h, but intensely induced the V-ATPase-dependent vacuolar and autophagic cytopathology. Bupivacaine was more potent than lidocaine in disrupting mitochondrial potential, as judged by Mitotracker staining (significant proportions of cells affected in the 1-5 and 5-10 mmol/L concentration ranges, respectively). The addition of mitochondrial-inactivating toxins antimycin A and oligomycin to lidocaine (2.5 mmol/L) reproduced the profile of bupivacaine action (low intensity of vacuolization and retained autophagic accumulation). The high potency of bupivacaine as a mitochondrial toxicant eclipses the benign vacuolar and autophagic response seen with more hydrophilic local anesthetics. PMID:21812528

  11. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles

    PubMed Central

    Rodríguez-Luccioni, Héctor L; Latorre-Esteves, Magda; Méndez-Vega, Janet; Soto, Orlando; Rodríguez, Ana R; Rinaldi, Carlos; Torres-Lugo, Madeline

    2011-01-01

    Colloidal suspensions of iron oxide magnetic nanoparticles are known to dissipate energy when exposed to an oscillating magnetic field. Such energy dissipation can be employed to locally raise temperature inside a tumor between 41°C and 45°C (hyperthermia) to promote cell death, a treatment known as magnetic fluid hyperthermia (MFH). This work seeks to quantify differences between MFH and hot-water hyperthermia (HWH) in terms of reduction in cell viability using two cancer cell culture models, Caco-2 (human epithelial colorectal adenocarcinoma) and MCF-7 (human breast cancer). Magnetite nanoparticles were synthesized via the co-precipitation method and functionalized with adsorbed carboxymethyl dextran. Cytotoxicity studies indicated that in the absence of an oscillating magnetic field, cell viability was not affected at concentrations of up to 0.6 mg iron oxide/mL. MFH resulted in a significant decrease in cell viability when exposed to a magnetic field for 120 minutes and allowed to rest for 48 hours, compared with similar field applications, but with shorter resting time. The results presented here suggest that MFH most likely induces apoptosis in both cell types. When compared with HWH, MFH produced a significant reduction in cell viability, and these effects appear to be cell-type related. PMID:21499427

  12. Light-induced binding of metal nanoparticles via surface plasmons

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Zheng, M. J.; Yu, K. W.

    2010-03-01

    Recently, nanomachines based on the interaction of nanosize objects with nanostructrued surfaces have attracted much attention. In this work, we study theoretically the light-induced binding forces between a metallic nanosphere and a planar structure, and also between nanoparticles in a diatomic plamonic chain of shelled and unshelled metallic nanoparticles placed alternatively. These forces are calculated by Bergman-Milton spectral representation and multiple image methods within the long wavelength limit. When we tune the incident frequency to the surface plasmon resonant frequency, a stable local minimum in the potential energy is found. It signifies a binding between nanoparticles (nanostructures), which indicates a possible stable structure of the metallic clusters. Such binding is caused by the excitation of collective plasmon modes, which depends on the interparticle distances. This study has potential applications in plasmonic waveguides and colloidal metallic clusters on the nanoscales.

  13. In vivo and in vitro evaluation of the cytotoxic effects of Photosan-loaded hollow silica nanoparticles on liver cancer

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Tao; Xiong, Li; Liu, Zhi-Peng; Miao, Xiong-Ying; Lin, Liang-Wu; Wen, Yu

    2014-06-01

    This study aimed to compare the inhibitory effects of photosensitizers loaded in hollow silica nanoparticles and conventional photosensitizers on HepG2 human hepatoma cell proliferation and determine the underlying mechanisms. Photosensitizers (conventional Photosan-II or nanoscale Photosan-II) were administered to in vitro cultured HepG2 hepatoma cells and treated by photodynamic therapy (PDT) with various levels of light exposure. To assess photosensitizers' effects, cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, apoptotic and necrotic cells were measured by flow cytometry and the expression of caspase-3 and caspase-9 evaluated by western blot. Finally, the in vivo effects of nanoscale and conventional photosensitizers on liver cancer were assessed in nude mice. Nanoscale Photosan-II significantly inhibited hepatoma cell viability in a concentration-dependent manner and this effect was more pronounced with high laser doses. Moreover, nanoscale photosensitizers performed better than the conventional ones under the same experimental conditions ( p < 0.05). Flow cytometry data demonstrated that laser-induced cell death was markedly increased after treatment with nanoscale Photosan-II in comparison with free Photosan-II ( p < 0.05). Activated caspase-3 and caspase-9 levels were significantly higher in cells treated with Photosan-II loaded in silica nanoparticles than free Photosan-II ( p < 0.05). Accordingly, treatment with nanoscale photosensitizers resulted in improved outcomes (tumor volume) in a mouse model of liver cancer, in comparison with conventional photosensitizers. Hollow silica nanoparticles containing photosensitizer more efficiently inhibited hepatoma cells than photosensitizer alone, through induction of apoptosis, both in vivo and in vitro.

  14. Mechanism of trifluorothymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells

    PubMed Central

    Temmink, O H; Hoebe, E K; van der Born, K; Ackland, S P; Fukushima, M; Peters, G J

    2007-01-01

    Oxaliplatin (OHP) is an anticancer agent that acts by formation of Platinum-DNA (Pt-DNA) adducts resulting in DNA-strand breaks and is used for the treatment of colorectal cancer. The pyrimidine analog trifluorothymidine (TFT) forms together with a thymidine phosphorylase inhibitor (TPI) the anticancer drug formulation TAS-102, in which TPI enhances the bioavailability of TFT in vivo. In this in vitro study the combined cytotoxic effects of OHP with TFT were investigated in human colorectal cancer cells as a model for TAS-102 combinations. In a panel of five colon cancer cell lines (WiDr, H630, Colo320, SNU-C4 and SW1116) we evaluated the OHP-TFT drug combinations using the multiple drug–effect analysis with CalcuSyn software, in which the combination index (CI) indicates synergism (CI<0.9), additivity (CI=0.9–1.1) or antagonism (CI>1.1). Drug target analysis was used for WiDr, H630 and SW1116 to investigate whether there was an increase in Pt-DNA adduct formation, DNA damage induction, cell cycle delay and apoptosis. Trifluorothymidine combined with OHP resulted in synergism for all cell lines (all CI<0.9). This was irrespective of schedule in which either one of the drugs was kept at a constant concentration (using variable drug ratio) or when the two drugs were added in a 1?:?1 IC50-based molar ratio. Synergism could be increased for WiDr using sequential drug treatment schedules. Trifluorothymidine increased Pt-DNA adduct formation significantly in H630 and SW1116 (14.4 and 99.1%, respectively; P<0.05). Platinum-DNA adducts were retained best in SW1116 in the presence of TFT. More DNA-strand breaks were induced in SW1116 and the combination increased DNA damage induction (>20%) compared with OHP alone. Exposure to the drugs induced a clear cell-cycle S-phase arrest, but was dose schedule and cell line dependent. Trifluorothymidine (TFT) and OHP both induced apoptosis, which increased significantly for WiDr and SW1116 after TFT–OHP exposure (18.8 and 20.6% respectively; P<0.05). The basal protein levels of ERCC1 DNA repair enzyme were not related to the DNA damage that was induced in the cell lines. In conclusion, the combination of TFT with the DNA synthesis inhibitor OHP induces synergism in colorectal cancer cells, but is dependent on the dose and treatment schedule used. PMID:17242697

  15. Investigation of the cytotoxic, genotoxic, and apoptosis-inducing effects of estragole isolated from fennel (Foeniculum vulgare).

    PubMed

    Villarini, Milena; Pagiotti, Rita; Dominici, Luca; Fatigoni, Cristina; Vannini, Samuele; Levorato, Sara; Moretti, Massimo

    2014-04-25

    The present study was undertaken to evaluate, in the HepG2 human hepatoma cell line, the in vitro cytotoxic, genotoxic, and apoptotic activities of estragole (1), contained in the essential oil of Foeniculum vulgare (fennel) and suspected to induce hepatic tumors in susceptible strains of mice. Toward this end, an MTT cytotoxicity assay, a trypan blue dye exclusion test, a double-staining (acridine orange and DAPI) fluorescence viability assay, a single-cell microgel-electrophoresis (comet) assay, a mitochondrial membrane potential (??m) assay, and a DNA fragmentation analysis were conducted. In terms of potential genotoxic effects, the comet assay indicated that estragole (1) was not able to induce DNA damage nor apoptosis under the experimental conditions used. PMID:24617303

  16. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea.

    PubMed

    Li, Rong-Yu; Wu, Xiao-Mao; Yin, Xian-Hui; Long, You-Hua; Li, Ming

    2015-02-01

    Given the importance of finding alternatives to synthetic fungicides, the antifungal effects of natural product citral on six plant pathogenic fungi (Magnaporthe grisea, Gibberella zeae, Fusarium oxysporum, Valsa mali, Botrytis cinerea, and Rhizoctonia solani) were determined. Mycelial growth rate results showed that citral possessed high antifungal activities on those test fungi with EC50 values ranging from 39.52 to 193.00?µg/mL, which had the highest inhibition rates against M. grisea. Further action mechanism of citral on M. grisea was carried out. Citral treatment was found to alter the morphology of M. grisea hyphae by causing a loss of cytoplasm and distortion of mycelia. Moreover, citral was able to induce an increase in chitinase activity in M. grisea, indicating disruption of the cell wall. These results indicate that citral may act by disrupting cell wall integrity and membrane permeability, thus resulting in physiology changes and causing cytotoxicity. Importantly, the inhibitory effect of citral on M. grisea appears to be associated with its effects on mycelia reducing sugar, soluble protein, chitinase activity, pyruvate content, and malondialdehyde content. PMID:25752425

  17. Multigenerational Study of Chemically Induced Cytotoxicity and Proliferation in Cultures of Human Proximal Tubular Cells

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Benipal, Bavneet

    2014-01-01

    Primary cultures of human proximal tubular (hPT) cells are a useful experimental model to study transport, metabolism, cytotoxicity, and effects on gene expression of a diverse array of drugs and environmental chemicals because they are derived directly from the in vivo human kidney. To extend the model to investigate longer-term processes, primary cultures (P0) were passaged for up to four generations (P1–P4). hPT cells retained epithelial morphology and stained positively for cytokeratins through P4, although cell growth and proliferation successively slowed with each passage. Necrotic cell death due to the model oxidants tert-butyl hydroperoxide (tBH) and methyl vinyl ketone (MVK) increased with increasing passage number, whereas that due to the selective nephrotoxicant S-(1,2-dichlorovinyl)-l-cysteine (DCVC) was modest and did not change with passage number. Mitochondrial activity was lower in P2–P4 cells than in either P0 or P1 cells. P1 and P2 cells were most sensitive to DCVC-induced apoptosis. DCVC also increased cell proliferation most prominently in P1 and P2 cells. Modest differences with respect to passage number and response to DCVC exposure were observed in expression of three key proteins (Hsp27, GADD153, p53) involved in stress response. Hence, although there are some modest differences in function with passage, these results support the use of multiple generations of hPT cells as an experimental model. PMID:25411799

  18. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation

    PubMed Central

    Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588

  19. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with ?(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease. PMID:25674907

  20. Cotransin induces accumulation of a cytotoxic clusterin variant that cotranslationally rerouted to the cytosol

    SciTech Connect

    Choi, Ilho; Kim, Jiyeon; Park, Joong-Yeol; Kang, Sang-Wook

    2013-05-01

    Although clusterin (CLU) was originally identified as a secreted glycoprotein that plays cytoprotective role, several intracellular CLU variants have been recently identified in the diverse pathological conditions. The mechanistic basis of these variants is now believed to be alternative splicing and retrotranslocation. Here, we uncovered, an unglycosylated and signal sequence-unprocessed, CLU variant in the cytosol. This variant proved to be a product that cotranslationally rerouted to the cytosol during translocation. Cytosolic CLU was prone to aggregation at peri-nuclear region of cells and induced cell death. Signal sequence is shown to be an important determinant for cytosolic CLU generation and aggregation. These results provide not only a new mechanistic insight into the cytosolic CLU generation but also an idea for therapeutic mislocalization of CLU as a strategy for cancer treatment. - Highlights: ? Intracellular CLU variants have been recently identified in the diverse pathological conditions. ? Translocation of clusterin is less efficient than that of Prl. ? We identified a new cytotoxic clusterin variant whose signal sequence was unprocessed. ? This variant proved to be a product that cotranslationally rerouted to cytosol.

  1. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.

    PubMed

    Sopoušek, Ji?í; Zoba?, Ond?ej; Buršík, Ji?í; Roupcová, Pavla; Vykoukal, Vít; Brož, Pavel; Pinkas, Ji?í; V?ešt'ál, Jan

    2015-11-14

    Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated. PMID:25929324

  2. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach.

    PubMed

    Senapati, Violet Aileen; Kumar, Ashutosh; Gupta, Govind Sharan; Pandey, Alok Kumar; Dhawan, Alok

    2015-11-01

    The wide application of zinc oxide nanoparticles (ZnO NPs) in cosmetics, paints, biosensors, drug delivery, food packaging and as anticancerous agents has increased the risk of human exposure to these NPs. Earlier in vitro and in vivo studies have demonstrated a cytotoxic and genotoxic potential of ZnO NPs. However, there is paucity of data regarding their immunomodulatory effects. Therefore, the present study was aimed to investigate the immunotoxic potential of ZnO NPs using human monocytic cell line (THP-1) as model to understand the underlying molecular mechanism. A significant (p < 0.01) increase in pro-inflammatory cytokines (TNF-? and IL-1?) and reactive oxygen species (ROS) was observed with a concomitant concentration dependent (0.5, 1, 5, 10, 15 and 20 ?g/mL) decrease in the glutathione (GSH) levels as compared to control. The expression levels of mitogen activated protein kinase (MAPK) cascade proteins such as p-ERK1/2, p-p38 and p-JNK were also significantly (p < 0.05, p < 0.01) induced. Also, at the concentration tested, NPs induced DNA damage as assessed by the Comet and micronucleus assays. Our data demonstrated that ZnO NPs induce oxidative and nitrosative stress in human monocytes, leading to increased inflammatory response via activation of redox sensitive NF-?B and MAPK signalling pathways. PMID:26146191

  3. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics and safety of nanomaterials.The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics and safety of nanomaterials. Electronic supplementary information (ESI

  4. Chronic Oxidative Stress Increases Resistance to Doxorubicin-Induced Cytotoxicity in Renal Carcinoma Cells Potentially Through Epigenetic Mechanism.

    PubMed

    Ponnusamy, Logeswari; Mahalingaiah, Prathap Kumar S; Singh, Kamaleshwar P

    2016-01-01

    Renal cell carcinoma is the most common form of kidney cancer and is highly resistant to chemotherapy. Although the role of oxidative stress in kidney cancer is known, the chemotherapeutic response of cancer cells adapted to chronic oxidative stress is not clear. Hence, the effect of oxidative stress on sensitivity to doxorubicin-induced cytotoxicity was evaluated using an in vitro model of human kidney cancer cells adapted to chronic oxidative stress. Results of MTT- and anchorage-independent growth assays and cell cycle analysis revealed significant decrease in sensitivity to doxorubicin in Caki-1 cells adapted to oxidative stress. Changes in the expression of genes involved in drug transport, cell survival, and DNA repair-dependent apoptosis further confirmed increased resistance to doxorubicin-induced cytotoxicity in these cells. Decreased expression of mismatch repair (MMR) gene MSH2 in cells exposed to oxidative stress suggests that loss of MMR-dependent apoptosis could be a potential mechanism for increased resistance to doxorubicin-induced cytotoxicity. Additionally, downregulation of HDAC1, an increase in the level of histone H3 acetylation, and hypermethylation of MSH2 promoter were also observed in Caki-1 cells adapted to chronic oxidative stress. DNA-demethylating agent 5-Aza-2dC significantly restored the expression of MSH2 and doxorubicin-induced cytotoxicity in Caki-1 cells adapted to chronic oxidative stress, suggesting the role of DNA hypermethylation in inactivation of MSH2 expression and consequently MMR-dependent apoptosis in these cells. In summary, this study for the first time provides direct evidence for the role of oxidative stress in chemotherapeutic resistance in renal carcinoma cells potentially through epigenetic mechanism. PMID:26519223

  5. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-?B signaling pathway

    PubMed Central

    Chen, Xi; Zhouhua, Wang; Jie, Zhou; Xinlu, Fu; Jinqiang, Liang; Yuwen, Qiu; Zhiying, Huang

    2015-01-01

    Previous studies have indicated that the nephrotoxicity induced by mesoporous silica nanoparticles (MSNs) is closely related to inflammation. Nuclear factor kappa B (NF-?B), a common rapid transcription factor associated with inflammation, plays an important role in the process of many kidney diseases. Acute toxicity assessment with a high-dose exposure is critical for the development of nanoparticle, as a part of standardized procedures for the evaluation of their toxicity. The present study was undertaken to observe the acute toxicity, predict the potential target organs of MSNs injury, and test the hypothesis that the NF-?B pathway plays a role in mediating the acute kidney injury and renal interstitial fibrosis in mice induced by MSNs. Balb/c mice were intraperitoneally injected with MSNs at concentrations of 150, 300, or 600 mg/kg. All of the animals were euthanized 2 and 12 days after exposure, and the blood and kidney tissues were collected for further studies. In vitro, the cytotoxicity, fibrosis markers, and NF-?B pathway were measured in a normal rat kidney cell line (NRK-52E). Acute kidney injury was induced by MSNs in mice after 2 days, some renal tubules regenerated and renal interstitial fibrosis was also observed. The expression of fibrosis markers and the nuclear translocation of NF-?B p65 in the kidney homogenates increased after exposure to MSNs. The in vitro study showed that MSNs cause cytotoxicity in NRK-52E cells and increased the expression of fibrosis markers. In addition, the NF-?B pathway could be induced, and inhibition of the NF-?B pathway could alleviate the fibrosis caused by MSNs. We conclude that inflammation is a major effector of the acute kidney toxicity induced by MSNs and results in renal interstitial fibrosis, which is mediated by the NF-?B signaling pathway. PMID:25565800

  6. Butein Shows Cytotoxic Effects and Induces Apoptosis in Human Ovarian Cancer Cells.

    PubMed

    Yang, Pei-Yu; Hu, Dan-Ning; Lin, I-Ching; Liu, Fu-Shing

    2015-01-01

    Butein is a polyphenol, one of the compounds of chalcones, which are flavonoids that are widely biosynthesized in plants, and exhibits different pharmacological activities. Plants containing butein have been used in Chinese traditional medicine. Recently, it has been reported that butein suppresses proliferation and triggers apoptosis in various human cancer cells in vitro and in vivo. The aim of this study was to investigate its pro-apoptotic effect and mechanisms in two cultured human ovarian cancer cells (ES-2 and TOV-21G). The effects of butein on cell viability were assessed by a MTT assay at 3, 10, 30, and 100 ?/M. The apoptotic pathway related factors, including the mitochondrial transmembrane potential (MTP), cytochrome c, caspase cascade, and Bcl-2 family proteins, were examined. MTT assay revealed that butein was cytotoxic to both ovarian cancer cells in a dose- and time-dependent manner. JC-1 flow cytometry, cytochrome c, and caspase activity assays revealed that butein damaged the MTP, increased the level of cytosol cytochrome c and the activities of caspase-3, -8, and -9 in the two ovarian cancer cells. Western blot analysis revealed that butein down-regulated the anti-apoptotic proteins Bcl-2 and Bcl-xL and increased the pro-apoptotic proteins Bax and Bad. These findings suggest that butein-induced apoptosis in ovarian cancer cells via the activation of both extrinsic and intrinsic pathways. In addition, butein also down-regulated the expressions of the inhibitor of apoptosis (IAP) proteins, XIAP, survivin, CIAP-1, and CIAP-2. This indicates that the inhibition of IAP proteins was also involved in butein-induced apoptosis. The results of our study suggest that butein may be a promising anticancer agent in treating ovarian cancer. PMID:26119952

  7. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis.

    PubMed

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-21

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ?10(5) tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics and safety of nanomaterials. PMID:23584723

  8. Evaporation induced wrinkling of graphene oxide at the nanoparticle interface

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-12-01

    With the thickness of only a single atomic layer, graphene displays many interesting surface properties. A general observation is that wrinkles are formed on graphene oxide (GO) when it is dried in the presence of adsorbed inorganic nanoparticles. In this case, evaporation induced wrinkling is not an elastic deformation but is permanent. Understanding the nanoscale force of wrinkle formation is important for device fabrication and sensing. Herein, we employ surface functionalized gold nanoparticles (AuNPs) as a model system. All tested AuNPs induced wrinkling, including those capped by DNA, polymers and proteins. The size of AuNPs is less important compared to the properties of solvent. Wrinkle formation is attributed to drying related capillary force acting on the GO surface, and a quantitative equation is derived. After drying, the adsorption affinity between GO and AuNPs is increased due to the increased contact area.With the thickness of only a single atomic layer, graphene displays many interesting surface properties. A general observation is that wrinkles are formed on graphene oxide (GO) when it is dried in the presence of adsorbed inorganic nanoparticles. In this case, evaporation induced wrinkling is not an elastic deformation but is permanent. Understanding the nanoscale force of wrinkle formation is important for device fabrication and sensing. Herein, we employ surface functionalized gold nanoparticles (AuNPs) as a model system. All tested AuNPs induced wrinkling, including those capped by DNA, polymers and proteins. The size of AuNPs is less important compared to the properties of solvent. Wrinkle formation is attributed to drying related capillary force acting on the GO surface, and a quantitative equation is derived. After drying, the adsorption affinity between GO and AuNPs is increased due to the increased contact area. Electronic supplementary information (ESI) available: Methods. See DOI: 10.1039/c4nr05832a

  9. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. PMID:25701610

  10. A rapid survival assay to measure drug-induced cytotoxicity and cell cycle effects

    E-print Network

    Valiathan, Chandni

    We describe a rapid method to accurately measure the cytotoxicity of mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a fraction of the time required to perform the traditional ...

  11. Production of a Novel Fucoidanase for the Green Synthesis of Gold Nanoparticles by Streptomyces sp. and Its Cytotoxic Effect on HeLa Cells.

    PubMed

    Manivasagan, Panchanathan; Oh, Junghwan

    2015-01-01

    Marine actinobacteria-produced fucoidanases have received considerable attention as one of the major research topics in recent years, particularly for the medical exploitation of fucoidans and their degradation products. The present study describes the optimization and production of a novel fucoidanase for the green synthesis of gold nanoparticles and its biological applications. The production of fucoidanase was optimized using Streptomyces sp. The medium components were selected in accordance with the Plackett-Burman design and were further optimized via response surface methodology. The fucoidanase was statistically optimized with the most significant factors, namely wheat bran 3.3441 g/L, kelp powder 0.7041 g/L, and NaCl 0.8807 g/L, respectively. The biosynthesized gold nanoparticles were determined by UV-vis spectroscopy and were further characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, and high-resolution transmission electron microscopy. Furthermore, the biosynthesized gold nanoparticles exhibited a dose-dependent cytotoxicity against HeLa cells and the inhibitory concentration (IC50) was found to be 350 µg/mL at 24 h and 250 µg/mL at 48 h. Therefore, the production of novel fucoidanase for the green synthesis of gold nanoparticles has comparatively rapid, less expensive and wide application to anticancer therapy in modern medicine. PMID:26569267

  12. Production of a Novel Fucoidanase for the Green Synthesis of Gold Nanoparticles by Streptomyces sp. and Its Cytotoxic Effect on HeLa Cells

    PubMed Central

    Manivasagan, Panchanathan; Oh, Junghwan

    2015-01-01

    Marine actinobacteria-produced fucoidanases have received considerable attention as one of the major research topics in recent years, particularly for the medical exploitation of fucoidans and their degradation products. The present study describes the optimization and production of a novel fucoidanase for the green synthesis of gold nanoparticles and its biological applications. The production of fucoidanase was optimized using Streptomyces sp. The medium components were selected in accordance with the Plackett-Burman design and were further optimized via response surface methodology. The fucoidanase was statistically optimized with the most significant factors, namely wheat bran 3.3441 g/L, kelp powder 0.7041 g/L, and NaCl 0.8807 g/L, respectively. The biosynthesized gold nanoparticles were determined by UV-vis spectroscopy and were further characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, and high-resolution transmission electron microscopy. Furthermore, the biosynthesized gold nanoparticles exhibited a dose-dependent cytotoxicity against HeLa cells and the inhibitory concentration (IC50) was found to be 350 µg/mL at 24 h and 250 µg/mL at 48 h. Therefore, the production of novel fucoidanase for the green synthesis of gold nanoparticles has comparatively rapid, less expensive and wide application to anticancer therapy in modern medicine. PMID:26569267

  13. Green Synthesis of Silver Nanoparticles Using Extract of Oak Fruit Hull (Jaft): Synthesis and In Vitro Cytotoxic Effect on MCF-7 Cells

    PubMed Central

    Rashidipour, Marzieh

    2015-01-01

    A green synthetic approach by using oak fruit hull (Jaft) extract for preparation of silver nanoparticles (AgNPs) was developed and optimized. Parameters affecting the synthesis of AgNPs, such as temperature, extract pH, and concentration of extract (ratio of plant sample to extraction solvent), were investigated and optimized. Optimum conditions for the synthesis of silver nanoparticles are as follows: Ag+ concentration, 1?mM; extract concentration, 40?g/L (4% w/v); pH = 9 and temperature, 45°C. Biosynthesized silver nanoparticles were characterized using UV-visible absorption spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). TEM and DLS analyses have shown the synthesized AgNPs were predominantly spherical in shape with an average size of 40?nm. The cytotoxic activity of the synthesized AgNPs and Jaft extract containing AgNPs against human breast cancer cell (MCF-7) was investigated and the half maximal inhibitory concentrations (IC50) were found to be 50 and 0.04??g/mL at 24?h incubation, respectively. This eco-friendly and cost-effective synthesis method can be potentially used for large-scale production of silver nanoparticles. PMID:25685560

  14. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages.

    PubMed

    Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Tsapis, Nicolas; Pallardy, Marc; Kerdine-Römer, Saadia; Fattal, Elias

    2015-03-30

    The purpose of this study was to investigate the toxicity of a series of poly(lactide-co-glycolic) (PLGA) nanoparticles on human-like THP-1 macrophages. Positively-, negatively-charged and neutral nanoparticles (200 nm) were prepared using chitosan (CS), poloxamer 188 (PF68) and poly(vinyl alcohol) (PVA) as stabilizer. Stabilizer-free PLGA nanoparticles were obtained as well. When used at therapeutically relevant concentrations (up to 0.1 mg/mL in vitro), all tested nanoparticles showed no or scarce signs of toxicity, as assessed by cell mitochondrial activity, induction of apoptosis and necrosis, production of intracellular reactive oxygen species (ROS) and secretion of pro-inflammatory cytokines. At high concentrations (above 1mg/mL), cytotoxicity was found to be induced by the presence of stabilizers, whatever the toxicological pattern of the stabilizer itself. While stabilizer-free PLGA nanoparticles exerted no cytotoxicity, the slightly cytotoxic CS polymer conferred PLGA nanoparticles significant cytotoxicity when used as nanoparticle stabilizer; more surprisingly, the otherwise innocuous PVA and PF68 polymers also conferred a significant cytotoxicity to PLGA nanoparticles. These results unveiled the critical toxicological contribution played by stabilizers used for the formulation of PLGA nanoparticles when used at high concentrations, which may have implications for local toxicities of PLGA-based nanomedicine, and provided additional insight in cytotoxic effects of internalized nanoparticles. PMID:25448553

  15. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 ?m (97%) and length >5 ?m (93%). A549 cells were incubated with 5, 50, or 100 ?g/ml (2.1, 21, and 42 ?g/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549. PMID:25620604

  16. Protection against 2-chloroethyl ethyl sulfide (CEES) - induced cytotoxicity in human keratinocytes by an inducer of the glutathione detoxification pathway

    SciTech Connect

    Abel, Erika L.; Bubel, Jennifer D.; Simper, Melissa S.; Powell, Leslie; McClellan, S. Alex; Andreeff, Michael; MacLeod, Michael C.; DiGiovanni, John

    2011-09-01

    Sulfur mustard (SM or mustard gas) was first used as a chemical warfare agent almost 100 years ago. Due to its toxic effects on the eyes, lungs, and skin, and the relative ease with which it may be synthesized, mustard gas remains a potential chemical threat to the present day. SM exposed skin develops fluid filled bullae resulting from potent cytotoxicity of cells lining the basement membrane of the epidermis. Currently, there are no antidotes for SM exposure; therefore, chemopreventive measures for first responders following an SM attack are needed. Glutathione (GSH) is known to have a protective effect against SM toxicity, and detoxification of SM is believed to occur, in part, via GSH conjugation. Therefore, we screened 6 potential chemopreventive agents for ability to induce GSH synthesis and protect cultured human keratinocytes against the SM analog, 2-chloroethyl ethyl sulfide (CEES). Using NCTC2544 human keratinocytes, we found that both sulforaphane and methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) stimulated nuclear localization of Nrf2 and induced expression of the GSH synthesis gene, GCLM. Additionally, we found that treatment with CDDO-Me elevated reduced GSH content of NCTC2544 cells and preserved their viability by {approx} 3-fold following exposure to CEES. Our data also suggested that CDDO-Me may act additively with 2,6-dithiopurine (DTP), a nucleophilic scavenging agent, to increase the viability of keratinocytes exposed to CEES. These results suggest that CDDO-Me is a promising chemopreventive agent for SM toxicity in the skin. - Highlights: > CDDO-Me treatment increased intracellular GSH in human keratinocytes. > CDDO-Me increased cell viability following exposure to the half-mustard, CEES. > The cytoprotective effect of CDDO-Me was likely due to scavenging with endogenous GSH.

  17. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress. PMID:26649137

  18. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress. PMID:26649137

  19. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    SciTech Connect

    Yan, Judy; Tang, Damu

    2014-10-15

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of ?H2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated ?H2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of ?H2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  20. Lipoic acid induces p53-independent cell death in colorectal cancer cells and potentiates the cytotoxicity of 5-fluorouracil.

    PubMed

    Dörsam, Bastian; Göder, Anja; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg

    2015-10-01

    Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU). We show that LA induces a dose-dependent decrease in cell viability, which was independent of the p53 status as attested in isogenic p53-proficient and p53-deficient cell lines. This effect was largely attributable to cell death induction as revealed by Annexin-V/PI staining. LA-treated HCT116 cells underwent caspase-dependent and caspase-independent cell death, which was blocked by the pan-caspase inhibitor zVAD and the RIP-kinase inhibitor Necrostatin-1, respectively. In CaCO-2 and HT29 cells, LA induced caspase-dependent cell demise via activation of caspase-9, caspase-3 and caspase-7 with subsequent PARP-1 cleavage as demonstrated by immunoblot analysis, activity assays and pan-caspase inhibition. Interestingly, LA treatment did neither activate p53 nor induced genotoxic effects as shown by lack of DNA strand breaks and phosphorylation of histone 2AX. Finally, we provide evidence that LA increases the cytotoxic effect induced by the anticancer drug 5-FU as revealed by significantly enhanced cell death rates in HCT116 and CaCO-2 cells. Collectively, these findings demonstrate that LA induces CRC cell death independent of their p53 status and potentiates the cytotoxicity of 5-FU without causing DNA damage on its own, which makes it a candidate for tumor therapy. PMID:25526924

  1. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials

    PubMed Central

    2015-01-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  2. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials.

    PubMed

    Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine

    2014-07-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  3. Cell line-dependent cytotoxicity of poly(isobutylcyanoacrylate) nanoparticles coated with chitosan and thiolated chitosan: Insights from cultured human epithelial HeLa, Caco2/TC7 and HT-29/MTX cells.

    PubMed

    Pradines, Bénédicte; Lievin-Le Moal, Vanessa; Vauthier, Christine; Ponchel, Gilles; Loiseau, Philippe M; Bouchemal, Kawthar

    2015-08-01

    Nanoparticles composed of poly(isobutylcyanoacrylate) core coated with a mixture of chitosan and thiolated chitosan have already shown promising results in terms of mucoadhesion and permeation enhancement properties of pharmaceutical active drugs delivered via mucosal routes. In the present work, the cytotoxicity of these nanoparticles was first investigated using direct contact assay on undifferentiated human cervix epithelial HeLa cells. The results showed strong toxicity in HeLa cells for the two investigated concentrations 25 and 50 ?g/mL. The cytotoxic effect was mainly attributed to the poly(isobutylcyanoacrylate) core since no significant differences in nanoparticle cytotoxicity were reported when nanoparticle shell composition was modified by adding chitosan or thiolated chitosan. In contrast, lower nanoparticle toxicity was reported using human fully-differentiated enterocyte-like Caco-2/TC7, and fully-differentiated mucus-secreting HT-29/MTX cells forming monolayer in culture mimicking an intestinal epithelial barrier. This study demonstrated that the toxicity of poly(isobutylcyanoacrylate) nanoparticles is highly cell line-dependent. PMID:26051544

  4. Plasmon-induced hot carriers in metallic nanoparticles.

    PubMed

    Manjavacas, Alejandro; Liu, Jun G; Kulkarni, Vikram; Nordlander, Peter

    2014-08-26

    Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. However, despite very significant experimental effort, a comprehensive theoretical description of the hot carrier generation process is still missing. In this work we develop a theoretical model for the plasmon-induced hot carrier process and apply it to spherical silver nanoparticles and nanoshells. In this model, the conduction electrons of the metal are described as free particles in a finite spherical potential well, and the plasmon-induced hot carrier production is calculated using Fermi’s golden rule. We show that the inclusion of many-body interactions has only a minor influence on the results. Using the model we calculate the rate of hot carrier generation, finding that it closely follows the spectral profile of the plasmon. Our analysis reveals that particle size and hot carrier lifetime play a central role in determining both the production rate and the energy distribution of the hot carriers. Specifically, larger nanoparticle sizes and shorter lifetimes result in higher carrier production rates but smaller energies, and vice versa. We characterize the efficiency of the hot carrier generation process by introducing a figure of merit that measures the number of high energy carriers generated per plasmon. Furthermore, we analyze the spatial distribution and directionality of these excitations. The results presented here contribute to the basic understanding of plasmon-induced hot carrier generation and provide insight for optimization of the process. PMID:24960573

  5. Increasing the cisplatin cytotoxicity and cisplatin-induced DNA damage by conferone in 5637 cells.

    PubMed

    Neshati, Vajiheh; Matin, Maryam M; Bahrami, Ahmad Reza; Iranshahi, Mehrdad; Rassouli, Fatemeh B; Saeinasab, Morvarid

    2012-01-01

    Despite widespread application of cisplatin in treatment of transitional cell carcinomas, its efficiency is far from satisfactory due to acquired drug resistance. The present study was carried out to estimate the effects of conferone, a sesquiterpene-coumarin isolated from Ferula badrakema, on increasing cisplatin cytotoxicity in 5637 cells. In order to determine conferone effects, 5637 cells were cultured in the presence of different concentrations of conferone and cisplatin in combination. The cytotoxicity and DNA damaging effects were then studied using MTT and comet assays, respectively. The results revealed that 24?h after the combination of 1?µg?mL?¹ cisplatin with 32?µg?mL?¹ conferone, the cytotoxicity of cisplatin was increased by 36.76%, and comet assay analyses showed that conferone could enhance the DNA damaging effects of cisplatin by 41%. PMID:21988674

  6. Enhancement of Cytotoxicity and Inhibition of Angiogenesis in Oral Cancer Stem Cells by a Hybrid Nanoparticle of Bioactive Quinacrine and Silver: Implication of Base Excision Repair Cascade.

    PubMed

    Satapathy, Shakti Ranjan; Siddharth, Sumit; Das, Dipon; Nayak, Anmada; Kundu, Chanakya Nath

    2015-11-01

    A poly(lactic-co-glycolic acid) (PLGA)-based uniform (50-100 nm) hybrid nanoparticle (QAgNP) with positive zeta potential (0.52 ± 0.09 mV) was prepared by single emulsion solvent evaporation method with bioactive small molecule quinacrine (QC) in organic phase and silver (Ag) in aqueous phase. Physiochemical properties established it as a true hybrid nanoparticle and not a mixture of QC and Ag. Antitumor activity of QAgNP was evaluated by using various cancer cell lines including H-357 oral cancer cells and OSCC-cancer stem cell in an in vitro model system. QAgNP caused more cytotoxicity in cancer cells than normal epithelial cells by increasing BAX/BCL-XL, cleaved product PARP-1, and arresting the cells at S phase along with DNA damage. In addition, QAgNPs offered greater ability to kill the OSCC-CSCs compared to NQC and AgNPs. QAgNP offered anticancer action in OSCC-CSCs by inhibiting the base excision repair (BER) within the cells. Interestingly, alteration of BER components (Fen-1 and DNA polymerases (?, ?, and ?) and unalteration of NHEJ (DNA-PKC) or HR (Rad-51) components was noted in QAgNP treated OSCC-CSC cells. Furthermore, QAgNP significantly reduced angiogenesis in comparison to physical mixture of NQC and AgNP in fertilized eggs. Thus, these hybrid nanoparticles caused apoptosis in OSCC-CSCs by inhibiting the angiogenesis and BER in cells. PMID:26448277

  7. Cytotoxic activity and apoptosis-inducing potential of di-spiropyrrolidino and di-spiropyrrolizidino oxindole andrographolide derivatives.

    PubMed

    Dey, Sumit Kumar; Bose, Dipayan; Hazra, Abhijit; Naskar, Subhendu; Nandy, Abhishek; Munda, Rudra Narayan; Das, Subhadip; Chatterjee, Nabanita; Mondal, Nirup Bikash; Banerjee, Sukdeb; Saha, Krishna Das

    2013-01-01

    Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively) and substitution of different functional groups (-CH3, -OCH3 and halogens) were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells). Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively), none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5), MiaPaCa-2 (GI50 11.2) and HepG2 (GI50 16.6) cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-?B p65, PI3K and p-Akt; translocation of P53/P21, NF-?B p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide. PMID:23472133

  8. Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints.

    PubMed

    Costa, João G; Saraiva, Nuno; Guerreiro, Patrícia S; Louro, Henriqueta; Silva, Maria J; Miranda, Joana P; Castro, Matilde; Batinic-Haberle, Ines; Fernandes, Ana S; Oliveira, Nuno G

    2016-01-01

    Ochratoxin A (OTA) is a well-known nephrotoxic and potential carcinogenic agent but no consensus about the molecular mechanisms underlying its deleterious effects has been reached yet. The aim of this study is to integrate several endpoints concerning OTA-induced toxicological effects in Vero kidney cells in order to obtain additional mechanistic data, especially regarding the influence of reactive oxygen species (ROS). One innovative aspect of this work is the use of the superoxide dismutase mimic (SODm) MnTnHex-2-PyP as a mechanistic tool to clarify the involvement of oxidative stress in OTA toxicity. The results showed concentration and time-dependent cytotoxic effects of OTA (crystal violet, neutral red and LDH leakage assays). While the SODm mildly increased cell viability, trolox and ascorbic acid had no effect with regards to this endpoint. OTA induced micronuclei formation. Using the FPG modified comet assay, OTA modestly increased the % of DNA in tail, revealing the presence of oxidative DNA lesions. This mycotoxin increased apoptosis, which was attenuated by SODm. In addition, the SODm decreased the ROS accumulation observed in DHE assay. Taken together, our data suggest that ROS partially contribute to the cytotoxicity and genotoxicity of OTA, although other mechanisms may be relevant in OTA-induced deleterious effects. PMID:26627377

  9. Differential Contribution of BLT1 and BLT2 to Leukotriene B4-Induced Human NK Cell Cytotoxicity and Migration

    PubMed Central

    Wang, Meng; Mostafa El-Maghraby, Nermine; Turcotte, Sylvie; Rola-Pleszczynski, Marek; Stankova, Jana

    2015-01-01

    Accumulating evidence indicates that leukotriene B4 (LTB4) via its receptors BLT1 and/or BLT2 (BLTRs) could have an important role in regulating infection, tumour progression, inflammation, and autoimmune diseases. In the present study, we showed that LTB4 not only augments cytotoxicity by NK cells but also induces their migration. We found that approximately 30% of fresh NK cells express BLT1, 36% express BLT2, and 15% coexpress both receptors. The use of selective BLTR antagonists indicated that BLT1 was involved in both LTB4-induced migration and cytotoxicity, whereas BLT2 was involved exclusively in NK cell migration, but only in response to higher concentrations of LTB4. BLT1 and BLT2 expression increased after activation of NK cells with IL-2 and IL-15. These changes of BLTR expression by cytokines were reflected in enhanced NK cell responses to LTB4. Our findings suggest that BLT1 and BLT2 play differential roles in LTB4-induced modulation of NK cell activity. PMID:26696753

  10. LL-37-induced host cell cytotoxicity depends on cellular expression of the globular C1q receptor (p33).

    PubMed

    Svensson, Daniel; Wilk, Laura; Mörgelin, Matthias; Herwald, Heiko; Nilsson, Bengt-Olof

    2016-01-01

    The human host-defence peptide (HDP) LL-37 not only displays anti-microbial activity but also immune-modulating properties that trigger intracellular signalling events in host cells. Since the cytolytic activity of high LL-37 concentrations affects cell viability, the function of LL-37 requires tight regulation. Eukaryotic cells therefore benefit from protective measures to prevent harmful effects of LL-37. p33, also known as globular C1q receptor (gC1qR), is reported to act as an LL-37 antagonist by binding the peptide, thereby reducing its cytotoxic activity. In the present report, we show that high levels of endogenous p33 correlate with an increased viability in human cells treated with LL-37. Sub-cellular localization analysis showed p33 distribution at the mitochondria, the plasma membrane and in the cytosol. Strikingly, cytosolic overexpression of p33 significantly antagonized detrimental effects of LL-37 on cell fitness, whereas the reverse effect was observed by siRNA-induced down-regulation of p33. However, modulation of p33 expression had no effect on LL-37-induced plasma membrane pore forming capacity pointing to an intracellular mechanism. A scavenging function of intracellular p33 is further supported by co-immunoprecipitation experiments, showing a direct interaction between intracellular p33 and LL-37. Thus, our findings support an important role of intracellular p33 in maintaining cell viability by counteracting LL-37-induced cytotoxicity. PMID:26508735

  11. A NEW POLYMER-LIPID HYBRID NANOPARTICLE SYSTEM INCREASES CYTOTOXICITY OF DOXORUBICIN AGAINST MULTIDRUG-RESISTANT HUMAN BREAST CANCER CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work is intended to develop and evaluate a new polymer-lipid hybrid nanoparticle system that can efficiently load and release water-soluble anticancer drug doxorubicin hydrochloride (Dox) and enhance Dox toxicity against multidrug-resistant (MDR) cancer cells. Dox loaded nanoparticles (Dox-SLN...

  12. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    NASA Astrophysics Data System (ADS)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska; Bergemann, Christian; Hochhaus, Andreas; Clement, Joachim H.

    2015-04-01

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood-brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 ?g/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  13. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (?-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. PMID:23523724

  14. Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells

    PubMed Central

    Wang, Lei; Zhang, Haijun; Chen, Baoan; Xia, Guohua; Wang, Shuai; Cheng, Jian; Shao, Zeye; Gao, Chong; Bao, Wen; Tian, Liang; Ren, Yanyan; Xu, Peipei; Cai, Xiaohui; Liu, Ran; Wang, Xuemei

    2012-01-01

    Traditional Chinese medicine is gradually becoming a new source of anticancer drugs. One such example is wogonin, which is cytotoxic to various cancer cell lines in vitro. However, due to its low water solubility, wogonin is restricted to clinical administration. Recently, the application of drug-coated magnetic nanoparticles (MNPs) to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. In this study, wogonin was conjugated with the drug delivery system of MNPs by mechanical absorption polymerization to fabricate wogonin-loaded MNPs. It was demonstrated that MNPs could strengthen wogonin-induced cell inhibition, apoptosis, and cell cycle arrest in Raji cells by methylthiazol tetrazolium assay, flow cytometer assay, and nuclear 4?,6-diamidino-2-phenylindole staining. Furthermore, the molecular mechanisms of these phenomena were explored by western blot, in which the protein levels of caspase 8 and caspase 3 were increased significantly while those of survivin and cyclin E were decreased significantly in wogonin-MNPs group. These findings suggest that the combination of wogonin and MNPs provides a promising strategy for lymphoma therapy. PMID:22359456

  15. Magnetite nanoparticles induced adaptive mechanisms counteract cell death in human pulmonary fibroblasts.

    PubMed

    Radu, Mihaela; Dinu, Diana; Sima, Cornelia; Burlacu, Radu; Hermenean, Anca; Ardelean, Aurel; Dinischiotu, Anca

    2015-10-01

    Magnetite nanoparticles (MNP) have attracted great interest for biomedical applications due to their unique chemical and physical properties, but the MNP impact on human health is not fully known. Consequently, our study proposes to highlight the biochemical mechanisms that underline the toxic effects of MNP on a human lung fibroblast cell line (MRC-5). The cytotoxicity generated by MNP in MRC-5 cells was dose and time-dependent. MNP-treated MRC-5 cells accumulated large amount of iron and reactive oxygen species (ROS) and exhibited elevated antioxidant scavenger enzymes. Reduced glutathione (GSH) depletion and enhanced lipid peroxidation (LPO) processes were also observed. The cellular capacity to counteract the oxidative damage was sustained by high levels of heat shock protein 60 (Hsp60), a protein that confers resistance against ROS attack and inhibition of cell death. While significant augmentations in nitric oxide (NO) and prostaglandine E2 (PGE2) levels were detected after 72 h of MNP-exposure only, caspase-1 was activated earlier starting with 24h post-treatment. Taken together, our results suggest that MRC-5 cells have the capacity to develop cell protection mechanisms against MNP. Detailed knowledge of the mechanisms induced by MNP in cell culture could be essential for their prospective use in various in vivo biochemical applications. PMID:26065626

  16. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1.

    PubMed

    Zhang, Chunlei; Zhou, Zhijun; Zhi, Xiao; Ma, Yue; Wang, Kan; Wang, Yuxia; Zhang, Yingge; Fu, Hualin; Jin, Weilin; Pan, Fei; Cui, Daxiang

    2015-01-01

    Chiral gold nanoclusters (Au NCs) exhibit attracting properties owing to their unique physical and chemical properties. Herein we report for the first time chiral gold nanoclusters' cytotoxicity and potential molecular mechanism. The L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs were prepared and characterized by HRTEM, UV-vis, photoluminescence and circular dichroism (CD) spectroscopy. Results showed that the CD spectra of L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs exhibited multiple bands which were identically mirror-imaged, demonstrating that the chirality of GSH-capped NCs had contributions from both the metal core and the ligand. The effects of AuNCs@L-GSH and AuNCs@D-GSH on cells were similar based on the cell physiology related cytotoxicity, although the effects became more prominent in AuNCs@D-GSH treated cells, including ROS generation, mitochondrial membrane depolarization, cell cycle arrest and apoptosis. Global gene expression and pathway analysis displayed that both AuNCs@L-GSH and AuNCs@D-GSH caused the up-regulation of genes involved in cellular rescue and stress response, while AuNCs@D-GSH individually induced up-regulation of transcripts involved in some metabolic- and biosynthetic-related response. MGC-803 cells were more sensitive to the oxidative stress damage induced by chiral Au NCs than GES-1 cells, which was associated with GSTP1 hypermethylation. In conclusion, chiral gold nanoclusters exhibit this chirality-associated regulation of cytotoxicity, different gene expression profiling and epigenetic changes should be responsible for observed phenomena. Our study highlights the importance of the interplays between chiral materials and biological system at sub-nano level. PMID:25553104

  17. Safrole-2',3'-oxide induces cytotoxic and genotoxic effects in HepG2 cells and in mice.

    PubMed

    Chiang, Su-yin; Lee, Pei-yi; Lai, Ming-tsung; Shen, Li-ching; Chung, Wen-sheng; Huang, Hui-fen; Wu, Kuen-yuh; Wu, Hsiu-ching

    2011-12-24

    Safrole-2',3'-oxide (SAFO) is a reactive electrophilic metabolite of the hepatocarcinogen safrole, the main component of sassafras oil. Safrole occurs naturally in a variety of spices and herbs, including the commonly used Chinese medicine Xi xin (Asari Radix et Rhizoma) and Dong quai (Angelica sinensis). SAFO is the most mutagenic metabolite of safrole tested in the Ames test. However, little or no data are available on the genotoxicity of SAFO in mammalian systems. In this study, we investigated the cytotoxicity and genotoxicity of SAFO in human HepG2 cells and male FVB mice. Using MTT assay, SAFO exhibited a dose- and time-dependent cytotoxic effect in HepG2 cells with TC(50) values of 361.9?M and 193.2?M after 24 and 48h exposure, respectively. In addition, treatment with SAFO at doses of 125?M and higher for 24h in HepG2 cells resulted in a 5.1-79.6-fold increase in mean Comet tail moment by the alkaline Comet assay and a 2.6-7.8-fold increase in the frequency of micronucleated binucleated cells by the cytokinesis-block micronucleus assay. Furthermore, repeated intraperitoneal administration of SAFO (15, 30, 45, and 60mg/kg) to mice every other day for a total of twelve doses caused a significant dose-dependent increase in mean Comet tail moment in peripheral blood leukocytes (13.3-43.4-fold) and in the frequency of micronucleated reticulocytes (1.5-5.8-fold). Repeated administration of SAFO (60mg/kg) to mice caused liver lesions manifested as a rim of ballooning degeneration of hepatocytes immediately surrounding the central vein. Our data clearly demonstrate that SAFO significantly induced cytotoxicity, DNA strand breaks, micronuclei formation both in human cells in vitro and in mice. More studies are needed to explore the role SAFO plays in safrole-induced genotoxicity. PMID:21986196

  18. Strain/defect induced enhanced coercivity in single domain CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Simrjit; Munjal, Sandeep; Khare, Neeraj

    2015-07-01

    Two sets of single domain CoFe2O4 (CFO) nanoparticles have been synthesized using hydrothermal technique which are of the same sizes, but with different amount of strain/defects. The nanoparticles synthesized at a lower growth temperature (80 °C) exhibit high density of planar defects and oxygen vacancies as compared to the CFO nanoparticles grown at higher temperature (180 °C). The CFO nanoparticles with high density of defects also possess higher intrinsic strain. The nanoparticles with higher strain/defects exhibit higher coercivity and smaller value of saturation magnetization. The effect of strain on the magnetization characteristics of CFO nanoparticles is simulated using the Object Oriented MicroMagnetic Framework. The observed larger value of coercivity for the CFO nanoparticles with higher intrinsic strain is attributed to strain induced enhanced anisotropy of the nanoparticles.

  19. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species

    PubMed Central

    Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Khan, MA Majeed; Ahmad, Javed; Alrokayan, Salman A

    2012-01-01

    Background Zinc oxide nanoparticles (ZnO NPs) have received much attention for their implications in cancer therapy. It has been reported that ZnO NPs induce selective killing of cancer cells. However, the underlying molecular mechanisms behind the anticancer response of ZnO NPs remain unclear. Methods and results We investigated the cytotoxicity of ZnO NPs against three types of cancer cells (human hepatocellular carcinoma HepG2, human lung adenocarcinoma A549, and human bronchial epithelial BEAS-2B) and two primary rat cells (astrocytes and hepatocytes). Results showed that ZnO NPs exert distinct effects on mammalian cell viability via killing of all three types of cancer cells while posing no impact on normal rat astrocytes and hepatocytes. The toxicity mechanisms of ZnO NPs were further investigated using human liver cancer HepG2 cells. Both the mRNA and protein levels of tumor suppressor gene p53 and apoptotic gene bax were upregulated while the antiapoptotic gene bcl-2 was downregulated in ZnO NP-treated HepG2 cells. ZnO NPs were also found to induce activity of caspase-3 enzyme, DNA fragmentation, reactive oxygen species generation, and oxidative stress in HepG2 cells. Conclusion Overall, our data demonstrated that ZnO NPs selectively induce apoptosis in cancer cells, which is likely to be mediated by reactive oxygen species via p53 pathway, through which most of the anticancer drugs trigger apoptosis. This study provides preliminary guidance for the development of liver cancer therapy using ZnO NPs. PMID:22393286

  20. Ion beam induced effects on the ferromagnetism in Pd nanoparticles

    SciTech Connect

    Kulriya, P. K.; Mehta, B. R.; Agarwal, D. C.; Agarwal, Kanika; Kumar, Praveen; Shivaprasad, S. M.; Avasthi, D. K.

    2012-06-05

    Present study demonstrates the role of metal-insulator interface and ion irradiation induced defects on the ferromagnetic properties of the non-magnetic materials. Magnetic properties of the Pd nanoparticles(NPs) embedded in the a-silica matrix synthesized using atom beam sputtering technique, were determined using SQUID magnetometry measurements which showed that ferromagnetic response of Pd increased by 3.5 times on swift heavy ion(SHI) irradiation. The ferromagnetic behavior of the as-deposited Pd NPs is due to strain induced by the surrounding matrix and modification in the electronic structure at the Pd-silica interface as revealed by insitu XRD and XPS investigations, respectively. The defects created by the SHI bombardment are responsible for enhancement of the magnetization in the Pd NPs.

  1. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, ?-terpinene, ?-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. PMID:23707744

  2. Water dispersible, non-cytotoxic, cross-linked luminescent AIE dots: Facile preparation and bioimaging applications

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Zhang, Xiqi; Yang, Bin; Deng, Fengjie; Li, Zhen; Wei, Junchao; Zhang, Xiaoyong; Wei, Yen

    2014-12-01

    Fluorescent organic nanoparticles have attracted great current research interest due to their superior properties as compared with small organic dyes and fluorescent inorganic nanoparticles. However, fluorescent organic nanoparticles based on conventional organic dyes often result in significant fluorescence decrease due to the notorious aggregation-caused quenching effect. On the other hand, these fluorescent organic nanoparticles obtained from self-assembly are normally not stable in diluted solution. Therefore, the development of novel fluorescent organic nanoparticles which could overcome these limitations is highly desirable for their practical biomedical applications. In this work, water dispersible, non-cytotoxic and cross-linked luminescent polymeric nanoparticles based on aggregation induced emission dyes were prepared via one pot emulsion polymerization. These cross-linked luminescent polymeric nanoparticles emitted strong red fluorescence and were highly stable in diluted aqueous solution, making them highly potential for various biomedical applications.

  3. Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines (RTL-W1, RTH-149, RTG-2) and Primary Hepatocytes

    PubMed Central

    Connolly, Mona; Fernandez-Cruz, Maria-Luisa; Quesada-Garcia, Alba; Alte, Luis; Segner, Helmut; Navas, Jose M.

    2015-01-01

    Among all classes of nanomaterials, silver nanoparticles (AgNPs) have potentially an important ecotoxicological impact, especially in freshwater environments. Fish are particularly susceptible to the toxic effects of silver ions and, with knowledge gaps regarding the contribution of dissolution and unique particle effects to AgNP toxicity, they represent a group of vulnerable organisms. Using cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes of rainbow trout (Oncorhynchus mykiss) as in vitro test systems, we assessed the cytotoxicity of the representative AgNP, NM-300K, and AgNO3 as an Ag+ ion source. Lack of AgNP interference with the cytotoxicity assays (AlamarBlue, CFDA-AM, NRU assay) and their simultaneous application point to the compatibility and usefulness of such a battery of assays. The RTH-149 and RTL-W1 liver cell lines exhibited similar sensitivity as primary hepatocytes towards AgNP toxicity. Leibovitz’s L-15 culture medium composition (high amino acid content) had an important influence on the behaviour and toxicity of AgNPs towards the RTL-W1 cell line. The obtained results demonstrate that, with careful consideration, such an in vitro approach can provide valuable toxicological data to be used in an integrated testing strategy for NM-300K risk assessment. PMID:26006119

  4. The synthesis and characterization of poly(?-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Inbaraj, B. Stephen; Kao, T. H.; Tsai, T. Y.; Chiu, C. P.; Kumar, R.; Chen, B. H.

    2011-02-01

    Magnetite nanoparticles (MNPs) modified with sodium and calcium salts of poly(?-glutamic acid) (NaPGA and CaPGA) were synthesized by the coprecipitation method, followed by characterization and evaluation of their antibacterial and cytotoxic effects. Superparamagnetic MNPs are particularly attractive for magnetic driving as well as bacterial biofilm and cell targeting in in vivo applications. Characterization of synthesized MNPs by the Fourier transform infrared spectra and magnetization curves confirmed the PGA coating on MNPs. The mean diameter of NaPGA- and CaPGA-coated MNPs as determined by transmission electron microscopy was 11.8 and 14 nm, respectively, while the x-ray diffraction pattern revealed the as-synthesized MNPs to be pure magnetite. Based on agar dilution assay, both NaPGA- and CaPGA-coated MNPs showed a lower minimum inhibitory concentration in Salmonella enteritidis SE 01 than the commercial antibiotics linezolid and cefaclor, but the former was effective against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 10832, whereas the latter was effective against Escherichia coli O157:H7 TWC 01. An in vitro cytotoxicity study in human skin fibroblast cells as measured by MTT assay implied the as-synthesized MNPs to be nontoxic. This outcome demonstrated that both ?-PGA-modified MNPs are cytocompatible and possess antibacterial activity in vitro, and thereby should be useful in in vivo studies for biomedical applications.

  5. Nonlethal dose of silver nanoparticles attenuates TNF-?-induced hepatic epithelial cell death through HSP70 overexpression.

    PubMed

    Tsai, Tsen-Ni; Lee, Tzu-Ying; Liu, Maw-Shung; Ho, Jia-Jing; Huang, Li-Ju; Liu, Chia-Jen; Chen, Tsan-Ju; Yang, Rei-Cheng

    2015-06-15

    Silver nanoparticles (Ag-nps) have been widely used in various biomedical products. Compared with its hazardous effects extensively being studied, rare attention has been paid to the potential protective effect of Ag-nps to human health. The present study was designed to evaluate the protective effects of Ag-nps and heat shock treatment on tumor necrosis factor-? (TNF-?)-induced cell damage in Clone 9 cells. Clone 9 cells were pretreated with nonlethal concentration of Ag-nps (1 ?g/ml) or heat shock, and then cell damages were induced by TNF-? (1 ng/ml). Protective effects of Ag-nps administration or heat shock treatment were determined by examining the TNF-?-induced changes in cell viabilities. The results showed that the intensity of cytotoxicity produced by TNF-? was alleviated upon treatment with nonlethal concentration of Ag-nps (1 ?g/ml). Similar protective effects were also found upon heat shock treatment. These data demonstrate that Ag-nps and heat shock treatment were equally capable of inducing heat shock protein 70 (HSP70) protein expression in Clone 9 cells. The results suggest that clinically Ag-nps administration is a viable strategy to induce endogenous HSP70 expression instead of applying heat shock. In conclusion, our study for the first time provides evidence that Ag-nps may act as a viable alternative for HSP70 induction clinically. PMID:25877698

  6. Ex Vivo Antibody-Dependent Cellular Cytotoxicity Inducibility Predicts Efdicacy of Cetuximab

    PubMed Central

    Taylor, Rodney J.; Saloura, Vassiliki; Jain, Ajay; Goloubeva, Olga; Wong, Stuart; Kronsberg, Shari; Nagilla, Madhavi; Silpino, Lorna; de Souza, Jonas; Seiwert, Tanguy; Vokes, Everett; Villaflor, Victoria; Cohen, Ezra E.W.

    2015-01-01

    We conducted in vitro studies and a clinical trial for patients with squamous cell carcinoma of the head and neck (SCCHN) to study the relationship between Fc?RIIIa polymorphisms and antibody-dependent cellular cytotoxicity (ADCC). In vitro, Fc?RIIIa genotype was correlated with ADCC and innate cytotoxicity using natural killer (NK) cells harvested from healthy donors. In the phase II study, patients with recurrent or metastatic SCCHN were treated with cetuximab (500 mg/m2 i.v. every 2 weeks) and lenalidomide (25 mg daily). Fc?RIIIa genotype and ex vivo ADCC were correlated with clinical response, progression-free survival (PFS), and overall survival (OS). In vitro, healthy donors with a Fc?RIIIa 158-V allele demonstrated more effective ADCC against two colon cancer cell lines HT29 and SW480, mean cytotoxicity: FF 16.1%, VF/VV 24.3% (P = 0.015) and FF 11.7%, VF/VV 21.0% (P = 0.008), respectively. We observed a linear relationship between ADCC response and innate cytotoxicity. In the phase II trial, 40 patients received cetuximab and lenalidomide with median PFS of 7.2 weeks and OS of 16.4 weeks. Thirty-six patients had Fc?RIIIa genotype: VV (2), VF (20), and FF (14), and 25 patients had sufficient NK-cell yield to perform ex vivo ADCC. Fc?RIIIa genotype was not associated with any clinical outcomes. Patients mounting ex vivo ADCC response had a higher likelihood of stable disease (P = 0.01) and showed a trend toward increased PFS: 14 weeks versus 6.8 weeks, respectively (P = 0.13). Enhanced ex vivo ADCC and innate immunity responses were more predictive of clinical response than Fc?RIIIa and may offer a functional assay to select patients suitable for cetuximab therapy. PMID:25769300

  7. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods

    NASA Astrophysics Data System (ADS)

    Yasun, Emir; Li, Chunmei; Barut, Inci; Janvier, Denisse; Qiu, Liping; Cui, Cheng; Tan, Weihong

    2015-05-01

    Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells.Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells. Electronic supplementary information (ESI) available: Fig. S-1 to S-6 are included. See DOI: 10.1039/c5nr01704a

  8. Molecular basis of arsenite (As+3)-induced acute cytotoxicity in human cervical epithelial carcinoma cells

    PubMed Central

    Arshad, Muhammad Nauman; Nisar, Muhammad Atif; Khurshid, Mohsin; Hussain, Syed Zajif; Maqsood, Umer; Asghar, Muhammad Tahir; Nazir, Jawad

    2015-01-01

    Background Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As+3) on DNA biosynthesis and cell death. Methods After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. Results We show that As+3 ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As+3 (7.5 µg/ml). Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. Conclusion Our results indicate that sudden exposure of cells to arsenite (As+3) resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases. PMID:25922308

  9. Crystallite size induced crossover from paramagnetism to superparamagnetism in zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Gautam, Sanjeev; Srivastava, R. C.; Asokan, K.; Kanjilal, D.; Chae, Keun Hwa

    2015-10-01

    Present work investigates the crossover from paramagnetism to superparamagnetism as a function of crystallite size in zinc ferrite nanoparticles using near edge X-ray absorption spectroscopy. Synthesized paramagnetic and superparamagnetic nanoparticles exhibit presence of Fe2+ and Fe3+ ions with dominant concentration of Fe3+ ions. Fe L- and O K-edges spectra of paramagnetic nanoparticles consist of more intense spectral features compared to that of superparamagnetic nanoparticles. This reflects enhanced t2g and eg symmetry states of Fe-O hybridized states in paramagnetic nanoparticles induced by increased degree of crystallization.

  10. Mechanistic Study on the Reduction of SWCNT-induced Cytotoxicity by Albumin Coating

    PubMed Central

    Liu, Yang; Ren, Lei; Yan, Dong

    2014-01-01

    Single walled carbon nanotubes (SWCNTs) are utilized in many areas, accompanied with the ever rising safety concerns. Coating the SWCNTs by serum albumin has shown promises in reduction of their cytotoxicity. The cause of toxicity reduction could be due to the blockage of cellular protein adsorption by bovine serum albumin (BSA). Here, our study explored the mechanism of toxicity reduction from the point of view of protein adsorption. Different loadings of BSA led to varied surface coverage of the SWCNTs, which was positively related to the level of cytotoxicity. In addition, the BSA-coated SWCNTs were tested for their surface morphology change, cellular uptake, and adsorption of cellular proteins. BSA could be competed off the SWCNT surface by the cytosol proteins, and thus a higher BSA loading was needed to provide better protection to the cells. Cellular uptake was also reduced with a higher BSA loading. Moreover, the BSA coating changed the surface property of SWCNTs, and as a consequence, altered the types of proteins adsorbed by the SWCNTs. Our results support that adsorption of BSA reduces cellular uptake of SWCNTs as well as adsorption of cellular proteins on SWCNTs, both contributing to the much lower cytotoxicity observed for the BSA-coated SWCNTs. PMID:25580058

  11. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells

    PubMed Central

    Wiggins, Helen L.; Wymant, Jennifer M.; Solfa, Francesca; Hiscox, Stephen E.; Taylor, Kathryn M.; Westwell, Andrew D.; Jones, Arwyn T.

    2015-01-01

    Disulfiram, a clinically used alcohol-deterrent has gained prominence as a potential anti-cancer agent due to its impact on copper-dependent processes. Few studies have investigated zinc effects on disulfiram action, despite it having high affinity for this metal. Here we studied the cytotoxic effects of disulfiram in breast cancer cells, and its relationship with both intra and extracellular zinc. MCF-7 and BT474 cancer cell lines gave a striking time-dependent biphasic cytotoxic response between 0.01 and 10 ?M disulfiram. Co-incubation of disulfiram with low-level zinc removed this effect, suggesting that availability of extracellular zinc significantly influences disulfiram efficacy. Live-cell confocal microscopy using fluorescent endocytic probes and the zinc dye Fluozin-3 revealed that disulfiram selectively and rapidly increased zinc levels in endo-lysosomes. Disulfiram also caused spatial disorganization of late endosomes and lysosomes, suggesting they are novel targets for this drug. This relationship between disulfiram toxicity and ionophore activity was consolidated via synthesis of a new disulfiram analog and overall we demonstrate a novel mechanism of disulfiram-cytotoxicity with significant clinical implications for future use as a cancer therapeutic. PMID:25557293

  12. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells.

    PubMed

    Wiggins, Helen L; Wymant, Jennifer M; Solfa, Francesca; Hiscox, Stephen E; Taylor, Kathryn M; Westwell, Andrew D; Jones, Arwyn T

    2015-02-01

    Disulfiram, a clinically used alcohol-deterrent has gained prominence as a potential anti-cancer agent due to its impact on copper-dependent processes. Few studies have investigated zinc effects on disulfiram action, despite it having high affinity for this metal. Here we studied the cytotoxic effects of disulfiram in breast cancer cells, and its relationship with both intra and extracellular zinc. MCF-7 and BT474 cancer cell lines gave a striking time-dependent biphasic cytotoxic response between 0.01 and 10 ?M disulfiram. Co-incubation of disulfiram with low-level zinc removed this effect, suggesting that availability of extracellular zinc significantly influences disulfiram efficacy. Live-cell confocal microscopy using fluorescent endocytic probes and the zinc dye Fluozin-3 revealed that disulfiram selectively and rapidly increased zinc levels in endo-lysosomes. Disulfiram also caused spatial disorganization of late endosomes and lysosomes, suggesting they are novel targets for this drug. This relationship between disulfiram toxicity and ionophore activity was consolidated via synthesis of a new disulfiram analog and overall we demonstrate a novel mechanism of disulfiram-cytotoxicity with significant clinical implications for future use as a cancer therapeutic. PMID:25557293

  13. Effect of polyphenols on enniatins-induced cytotoxic effects in mammalian cells.

    PubMed

    Lombardi, G; Prosperini, A; Font, G; Ruiz, M J

    2012-11-01

    Enniatins (ENs) are fungal secondary metabolites produced by genus Fusarium. The ENs exert antimicrobial and insecticidal effect, and has also been demonstrated cytotoxic effects on several mammalian cell lines. On the other hands, it has been proved that natural polyphenols have antioxidant effect. In this study, cell effects at low levels of exposure of four ENs (A, A(1), B and B(1)) and five polyphenols (quercetin, quercetin-3-?-D-glucoside, rutin, myricetin and t-pterostilbene) present in wine; and the cytoprotective effect of these polyphenols exposed simultaneously with ENs in Chinese Hamster Ovary (CHO-K1) cells, were studied. Cell effects were determined by the MTT test after 24?h of exposure. All ENs showed cytotoxic effect. The IC(50) obtained ranged from 4.5?±?1.2 to 11.0?±?2.7 µM. The concentration of polyphenols tested ranged from 5 to 50 µM. Polyphenols did not show cytotoxicity and the cytoprotective effect of polyphenols varies depending on the EN tested. The cytoprotective effect of polyphenols in CHO-K1 cells exposed to ENs was as follow: quercetin, from 24 to 84%; quercetin-3-?-D-glucoside, from 12 to 76%; rutin, from 17 to 83%; myricetin, from 16 to 92% and pterostilbene from 25 to 100%. All polyphenols protected CHO-K1 cells against EN A(1) exposure. PMID:22888764

  14. Mycalamide A Shows Cytotoxic Properties and Prevents EGF-Induced Neoplastic Transformation through Inhibition of Nuclear Factors

    PubMed Central

    Dyshlovoy, Sergey A.; Fedorov, Sergey N.; Kalinovsky, Anatoly I.; Shubina, Larisa K.; Bokemeyer, Carsten; Stonik, Valentin A.; Honecker, Friedemann

    2012-01-01

    Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-?B, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed. PMID:22822368

  15. Effect of radiation on cytotoxicity, apoptosis and cell cycle arrest of human osteosarcoma MG-63 induced by a ruthenium(II) complex

    NASA Astrophysics Data System (ADS)

    Liu, Si-Hong; Zhao, Jian-Hua; Deng, Kun-Kang; Wu, Yong; Zhu, Jian-Wei; Liu, Qing-Hua; Xu, Hui-Hua; Wu, Hai-Feng; Li, Xin-Yan; Wang, Jian-Wei; Guo, Qi-Feng

    2015-04-01

    Radiation has large influence on the cytotoxicity, apoptosis and cell cycle arrest. The bioactivity of ruthenium(II) complex [Ru(dmb)2(DBHIP)](ClO4)2 (Ru1) (DBHIP = 2-(3,5-dibromo-4-hydroxylphenyl)imidazo[4,5-f][1,10]phenanthroline) was investigated in the absence and presence of radiation. The cytotoxicity of Ru1 against MG-63 cells was evaluated by CCK-8 method. Ru1 shows high cytotoxicity upon radiation. Radiation can enhance the cytotoxicity of Ru1 on MG-63 cells. The apoptosis was studied by Hoechst 33258 staining method and flow cytometry. The reactive oxygen species, mitochondrial membrane potential, cell cycle arrest and western blot analysis were investigated in detail. The complex induces the apoptosis in MG-63 cells through ROS-mediated mitochondrial dysfunction pathway.

  16. Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster.

    PubMed

    Mehdi, Syed Hassan; Qamar, Ayesha

    2013-08-01

    Paraquat (PQ), a quaternary nitrogen herbicide, is commonly used as a pesticide despite of its high toxicity. Our study evaluated the effect of subchronic PQ exposure on the neuropathology, genotoxicity, and antioxidant activity on the nervous tissue of Drosophila melanogaster. We also explored the behavioral effect of PQ on D. melanogaster. Furthermore, we attempted to validate the mechanism by evaluating PQ-induced cytotoxicity on the D-Mel2 cell lines. The fruit fly D. melanogaster serves as a feasible model to understand the mechanism of neurodegenerative diseases. Our study shows a dose-dependent PQ-induced neuropathology in the brain tissue of D. melanogaster as evidenced by hematoxylin and eosin staining, silver nitrate staining, and transmission electron microscopy. Electron microscopic study of D. melanogaster brain tissue exhibited vacuolar degeneration and significant neuronal damage across the nervous tissue structure in comparison with control. Our findings also indicate a dose-dependent locomotor impairment and decreased superoxide dismutase (SOD) specific activity in PQ-treated D. melanogaster. These PQ-induced neuroanatomical changes and decreased SOD specific activity showed a significant association with oxidative DNA damage as observed by alkaline comet assay. Additionally, we show, for the first time, a dose-dependent PQ-induced cytotoxicity in the D-Mel2 cells suggesting loss of neuronal cell viability via cytotoxic damage. Our data suggest that PQ exposure results in neurodegeneration in D. melanogaster and that fruit fly is a suitable in vivo model for correlating the neuroanatomical changes with neurotoxic damages to nervous system. PMID:23697686

  17. Calcium phosphate nanoparticles carrying BMP-7 plasmid DNA induce an osteogenic response in MC3T3-E1 pre-osteoblasts.

    PubMed

    Hadjicharalambous, Chrystalleni; Kozlova, Diana; Sokolova, Viktoriya; Epple, Matthias; Chatzinikolaidou, Maria

    2015-12-01

    Functionalized calcium phosphate nanoparticles with osteogenic activity were prepared. Polyethyleneimine-stabilized calcium phosphate nanoparticles were coated with a shell of silica and covalently functionalized by silanization with thiol groups. Between the calcium phosphate surface and the outer silica shell, plasmid DNA which encoded either for bone morphogenetic protein 7 (BMP-7) or for enhanced green fluorescent protein was incorporated as cargo. The plasmid DNA-loaded calcium phosphate nanoparticles were used for the transfection of the pre-osteoblastic MC3T3-E1 cells. The cationic nanoparticles showed high transfection efficiency together with a low cytotoxicity. Their potential to induce an osteogenic response by transfection was demonstrated by measuring the alkaline phosphatase (ALP) activity and calcium deposition with alizarin red staining. The expression of the osteogenic markers Alp, Runx2, ColIa1 and Bsp was investigated by means of real-time quantitative polymerase chain reaction. It was shown that phBMP-7-loaded nanoparticles can provide a means of transient transfection and localized production of BMP-7 in MC3T3-E1 cells, with a subsequent increase of two osteogenic markers, specifically ALP activity and calcium accumulation in the extracellular matrix. Future strategies to stimulate bone regeneration focus into enhancing transfection efficiency and achieving higher levels of BMP-7 produced by the transfected cells. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3834-3842, 2015. PMID:26097146

  18. Biocompatibility of Mn0.4Zn0.6Fe2O4 Magnetic Nanoparticles and Their Thermotherapy on VX2-Carcinoma-Induced Liver Tumors.

    PubMed

    Yuan, Chun-Yan; Tang, Qiu-Sha; Zhang, Dong-Sheng

    2015-01-01

    Malignant tumors are the most serious threat to human health. Much research has focused on revealing the characteristics of this disease and developing methods of treatment. Because tumor cells are more sensitive to heat than normal cells, thermotherapy for the treatment of tumors has attracted much attention. In this paper, we presented functional Mn-Zn ferrite nanoparticles with the molecular composition of Mn0.4Zn0.6Fe2O4 as the magnetic response material for the thermotherapy. The suggested Mn-Zn ferrite nanoparticles were with a self-regulation temperature of 43 degrees C which was ideal for tumor thermotherapy. The biocompatibility and anti-tumor effect of this material were well investigated. It was found that the Mn0.4Zn0.6Fe2O4 nanoparticles have no hemolysis activity, no genotoxic effects and cytotoxicity. Its Median Lethal Dose (LD50) arrived at 6.026 g/kg and it did not induce any abnormal clinical signs in laboratory animals. Moreover, the suggested nanoparticles can increase the inhibitory ratio of weight and volume of tumors, cause tumor tissues necrosis and show the therapeutic effect on the xenograft live cancers in vivo. Based on these results, we could envision the valuable application of the Mn0.4Zn0.6Fe2O4 nanoparticles for the practical thermotherapy. PMID:26328307

  19. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    SciTech Connect

    Naranmandura, Hua; Xu, Shi; Koike, Shota; Pan, Li Qiang; Chen, Bin; Wang, Yan Wei; Rehman, Kanwal; Wu, Bin; Chen, Zhe; Suzuki, Noriyuki

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ?ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ?Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ?ER-stress and generation of ROS are caused by the increase in unfolded proteins.

  20. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-07-01

    Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology. Exposure to TBHP caused a reduction in cell viability, increased membrane leakage and disturbed the intra-cellular antioxidant machineries in hepatocytes. TBHP exposure disrupted mitochondrial membrane potential and induced apoptosis as evidenced by flow cytometric analyses. KT treatment, however, counteracted the changes in mitochondrial membrane potential and prevented apoptotic cell death of the hepatocytes. BT treatment also reverted TBHP induced hepatotoxicity, however KT was found to be more efficient. This may be due to the formation of antioxidant molecules like D-saccharic acid-1,4-lactone (DSL) during fermentation process and are absent in BT. Moreover, the radical scavenging activities of KT were found to be higher than BT. Results of the study showed that KT has the potential to ameliorate TBHP induced oxidative insult and cell death in murine hepatocytes more effectively than BT. PMID:21800502

  1. Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells.

    PubMed

    Efremenko, Anastasija V; Ignatova, Anastasija A; Grin, Mikhail A; Sivaev, Igor B; Mironov, Andrey F; Bregadze, Vladimir I; Feofanov, Alexey V

    2014-01-01

    Further development of boron neutron capture therapy (BNCT) requires new neutronsensitizers with improved ability to deliver (10)B isotopes in cancer cells. Conjugation of boron nanoparticles with porphyrin derivatives is an attractive and recognized strategy to solve this task. We report on breakthroughs in the structural optimization of conjugates of chlorin e6 derivative with cobalt-bis(dicarbollide) nanoparticles resulting in the creation of dimethyl ester 13-carbomoylchlorin e6 [N-hexylamine-N'-ethoxyethoxy]-cobalt-bis(dicarbollide) (conjugate 1). Conjugate 1 is able to accumulate quickly and efficiently (distribution factor of 80) in cancer cells, thus delivering more than 10(9) boron atoms per cell when its extracellular concentration is more than 1 ?mol L(-1). Also 1 is an active photosensitizer and is phototoxic towards human lung adenocarcinoma A549 cells at 80 nmol L(-1) (50% cell death). Photoinduced cytotoxicity of 1 is associated with lipid peroxidation, lysosome rupture and protease activity enhancement. Conjugate 1 fluoresces in the red region (670 nm), which is useful to monitor its accumulation and distribution in vivo. It is not toxic to cells without activation by neutrons or photons. Structural features that improve the functional properties of 1 are discussed. The properties of 1 warrant its preclinical evaluation as a multifunctional agent for BNCT, photodynamic therapy and fluorescent tumor diagnosis. PMID:24258161

  2. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system

    PubMed Central

    Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming

    2014-01-01

    Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles. PMID:24817930

  3. The morphology of silver nanoparticles prepared by enzyme-induced reduction.

    PubMed

    Schneidewind, Henrik; Schüler, Thomas; Strelau, Katharina K; Weber, Karina; Cialla, Dana; Diegel, Marco; Mattheis, Roland; Berger, Andreas; Möller, Robert; Popp, Jürgen

    2012-01-01

    Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis. PMID:23016145

  4. The morphology of silver nanoparticles prepared by enzyme-induced reduction

    PubMed Central

    Schüler, Thomas; Strelau, Katharina K; Weber, Karina; Cialla, Dana; Diegel, Marco; Mattheis, Roland; Berger, Andreas; Möller, Robert; Popp, Jürgen

    2012-01-01

    Summary Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis. PMID:23016145

  5. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells.

    PubMed

    Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2015-10-01

    Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components - carbohydrates, proteins and fatty acids - were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results. PMID:26040006

  6. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities.

    PubMed

    Swamy, Mallappa Kumara; Akhtar, Mohd Sayeed; Mohanty, Sudipta Kumar; Sinniah, Uma Rani

    2015-12-01

    Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 ?g/ml. PMID:26186612

  7. Gravity-induced swirl of nanoparticles in microfluidics

    PubMed Central

    Zhao, Chao; Oztekin, Alparslan

    2013-01-01

    Parallel flows of two fluids in microfluidic devices are used for miniaturized chemistry, physics, biology and bioengineering studies, and the streams are often considered to remain parallel. However, as the two fluids do not always have the same density, interface reorientation induced by density stratification is unavoidable. In this paper, flow characteristics of an aqueous polystyrene nanofluid and a sucrose-densified aqueous solution flowing parallel in microchannels are examined. Nanoparticles 100 nm in diameter are used in the study. The motion of the nanoparticles is simulated using the Lagrangian description and directly observed by a confocal microscope. Matched results are obtained from computational and empirical analysis. Although solution density homogenizes rapidly resulting from a fast diffusion of sucrose in water, the nanofluid is observed to rotate for an extended period. Angular displacement of the nanofluid depends on the ratio of gravitational force to viscous force, Re/Fr2, where Re is the Reynolds number and Fr is the Froude number. In the developing region at the steady state, the angular displacement is related to y/Dh, the ratio between distance from the inlet and the hydraulic diameter of the microfluidic channel. The development of nanofluid flow feature also depends on h/w, the ratio of microfluidic channel’s height to width. The quantitative description of the angular displacement of nanofluid will aid rational designs of microfluidic devices utilizing multistream, multiphase flows. PMID:24563612

  8. Oxide nanoparticles synthesis via laser-induced plasma in liquid

    NASA Astrophysics Data System (ADS)

    Goto, Taku; Weihs, Hansel; Honda, Mitsuhiro; Kulinich, Sergei; Shimizu, Yoshiki; Ito, Tsuyohito

    2014-10-01

    Laser ablation in fluids has recently attracted a lot of attention as one of synthetic techniques to prepare new attractive nanomaterials, with the ability to control both product chemistry and morphology in many systems. In this study, we generated laser-induced plasma in H2O - ethanol mixtures, while ablating metal targets to produce oxide nanoparticles and to study the effect of the medium on their properties. The ablated targets used in this study were Zn or Sn plates. A nanosecond Nd:YAG laser with the wavelength of 532 nm (10 Hz, 20--30 mJ/pulse) was applied to irradiate the targets. The liquid media were maintained at 0.1 to 30 MPa to study the effect of pressure. We found that the H2O/ethanol ratio (at atmospheric pressure) can control the properties of the produced ZnO nanoparticles, such as defects and oxidation degree. The properties were examined by photoluminescence (PL) spectroscopy, X-ray diffraction, electron microscopies, and so on. More details will be presented at the symposium.

  9. Water-soluble core/shell nanoparticles for proton therapy through particle-induced radiation

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan; Kim, Maeng Jun; Kim, Kye-Ryung

    2015-02-01

    Metallic nanoparticles have been used in biomedical applications such as magnetic resonance imaging (MRI), therapy, and drug delivery systems. Metallic nanoparticles as therapeutic tools have been demonstrated using radio-frequency magnetic fields or near-infrared light. Recently, therapeutic applications of metallic nanomaterials combined with proton beams have been reported. Particle-induced radiation from metallic nanoparticles, which can enhance the therapeutic effects of proton therapy, was released when the nanoparticles were bombarded by a high-energy proton beam. Core/shell nanoparticles, especially Au-coated magnetic nanoparticles, have drawn attention in biological applications due to their attractive characteristics. However, studies on the phase transfer of organic-ligand-based core/shell nanoparticles into water are limited. Herein, we demonstrated that hydrophobic core/shell structured nanomaterials could be successfully dispersed in water through chloroform/surfactant mixtures. The effects of the core/shell nanomaterials and the proton irradiation on Escherichia coli (E. coli) were also explored.

  10. The tocotrienol-rich fraction from rice bran enhances cisplatin-induced cytotoxicity in human mesothelioma H28 cells.

    PubMed

    Nakashima, Keisuke; Virgona, Nantiga; Miyazawa, Mio; Watanabe, Takashi; Yano, Tomohiro

    2010-09-01

    Resistance to chemotherapy (chemoresistance) is a serious problem in malignant mesothelioma, a highly aggressive neoplasm. Gamma-tocotrienol (gamma-T3) can sensitize various cancerous cells to chemotherapeutic agents by inhibiting pathways that lead to treatment resistance. In this study, we investigated the modulating effect of tocotrienol-rich fraction (TRF) from rice bran, which is abundant in gamma-T3, on chemoresistance in human MM H28 cells. TRF treatment caused a marked reduction in the viability of H28 cells in a dose-dependent manner, while cisplatin treatment had no effect on the cells, indicating that H28 cells are resistant to cisplatin. A significant increase in cytotoxicity was observed in H28 cells treated with TRF, and this effect was enhanced by the combination treatment with cisplatin. The cytotoxic effect was closely related to the inhibition of phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Inactivation of Akt signaling by TRF or the combination with cisplatin mitigated cisplatin-induced activation of Akt, resulting in reducing the chemoresistance H28 cells to cisplatin. Reduced cell viability and attenuated chemoresistance of the H28 cells against cisplatin were also observed following the use of a PI3K inhibitor, LY294002. These results suggest that the combination therapy of cisplatin with TRF is a plausible strategy for achieving tolerance for the chemotherapeutic agent in MM therapy. PMID:20127663

  11. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in Hep G2 cells.

    PubMed

    Kim, Youn Chul; An, Ren Bo; Yoon, Na Young; Nam, Taek Jeong; Choi, Jae Sue

    2005-12-01

    In this study, ethanolic extracts from 18 seaweed variants were assessed for hepatoprotective activity against tacrine-induced cytotoxicity in Hep G2 cells. Only one of these, Ecklonia stolonifera Okamura (Laminariaceae), a member of the brown algae, exhibited promising hepatoprotective activity. Bioassay-guided fractionation of the active ethyl acetate (EtOAc) soluble fraction obtained from the ethanolic extract of E. stolonifera, resulted in the isolation of several phlorotannins [phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5)]. Compounds 2 and 4 were determined to protect Hep G2 cells against the cytotoxic effects of tacrine, with EC50 values of 62.0 and 79.2 microg/mL, respectively. Silybin, a well characterized hepatoprotective agent, was used as a positive control, and exhibited an EC50 value of 50.0 microg/mL. It has been suggested that the phlorotannins derived from marine brown algae might prove useful sources in the development of novel hepatoprotective agents. PMID:16392671

  12. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    SciTech Connect

    Naha, Pratap C.; Davoren, Maria; Lyng, Fiona M.; Byrne, Hugh J.

    2010-07-15

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H{sub 2}DCFDA to DCF both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at {approx} 4 h), TNF-{alpha} and IL-6 secretion (maximum at {approx} 24 h), MIP-2 levels and cell death ({approx} 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.

  13. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    PubMed

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy. PMID:24628411

  14. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-?. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-?. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  15. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    SciTech Connect

    Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S.

    2011-02-01

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.

  16. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    PubMed

    Liu, Yi; Wang, Chao; Wei, Yujie; Zhu, Leyi; Li, Dongguo; Jiang, J Samuel; Markovic, Nenad M; Stamenkovic, Vojislav R; Sun, Shouheng

    2011-04-13

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials. PMID:21355537

  17. Influence of laser parameters on nanoparticle-induced membrane permeabilization

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Qu, Xiaochao; Zhang, Zhenxi; Hüttmann, Gereon; Rahmanzadeh, Ramtin

    2009-09-01

    Light-absorbing nanoparticles that are heated by short laser pulses can transiently increase membrane permeability. We evaluate the membrane permeability by flow cytometry assaying of propidium iodide and fluorescein isothiocyanate dextran (FITC-D) using different laser sources. The dependence of the transfection efficiency on laser parameters such as pulse duration, irradiant exposure, and irradiation mode is investigated. For nano- and also picosecond irradiation, we show a parameter range where a reliable membrane permeabilization is achieved for 10-kDa FITC-D. Fluorescent labeled antibodies are able to penetrate living cells that are permeabilized using these parameters. More than 50% of the cells are stained positive for a 150-kDa IgG antibody. These results suggest that the laser-induced permeabilization approach constitutes a promising tool for targeted delivery of larger exogenous molecules into living cells.

  18. Protective Effect of Prolactin against Methylmercury-Induced Mutagenicity and Cytotoxicity on Human Lymphocytes

    PubMed Central

    Silva-Pereira, Liz Carmem; da Rocha, Carlos Alberto Machado; Cunha, Luiz Raimundo Campos da Silva e; da Costa, Edmar Tavares; Guimarães, Ana Paula Araújo; Pontes, Thais Brilhante; Diniz, Domingos Luiz Wanderley Picanço; Leal, Mariana Ferreira; Moreira-Nunes, Caroline Aquino; Burbano, Rommel Rodríguez

    2014-01-01

    Mercury exhibits cytotoxic and mutagenic properties as a result of its effect on tubulin. This toxicity mechanism is related to the production of free radicals that can cause DNA damage. Methylmercury (MeHg) is one of the most toxic of the mercury compounds. It accumulates in the aquatic food chain, eventually reaching the human diet. Several studies have demonstrated that prolactin (PRL) may be differently affected by inorganic and organic mercury based on interference with various neurotransmitters involved in the regulation of PRL secretion. This study evaluated the cytoprotective effect of PRL on human lymphocytes exposed to MeHg in vitro, including observation of the kinetics of HL-60 cells (an acute myeloid leukemia lineage) treated with MeHg and PRL at different concentrations, with both treatments with the individual compounds and combined treatments. All treatments with MeHg produced a significant increase in the frequency of chromatid gaps, however, no significant difference was observed in the chromosomal breaks with any treatment. A dose-dependent increase in the mitotic index was observed for treatments with PRL, which also acts as a co-mitogenic factor, regulating proliferation by modulating the expression of genes that are essential for cell cycle progression and cytoskeleton organization. These properties contribute to the protective action of PRL against the cytotoxic and mutagenic effects of MeHg. PMID:25247425

  19. Protective effect of prolactin against methylmercury-induced mutagenicity and cytotoxicity on human lymphocytes.

    PubMed

    Silva-Pereira, Liz Carmem; da Rocha, Carlos Alberto Machado; Cunha, Luiz Raimundo Campos da Silva E; da Costa, Edmar Tavares; Guimarães, Ana Paula Araújo; Pontes, Thais Brilhante; Diniz, Domingos Luiz Wanderley Picanço; Leal, Mariana Ferreira; Moreira-Nunes, Caroline Aquino; Burbano, Rommel Rodríguez

    2014-09-01

    Mercury exhibits cytotoxic and mutagenic properties as a result of its effect on tubulin. This toxicity mechanism is related to the production of free radicals that can cause DNA damage. Methylmercury (MeHg) is one of the most toxic of the mercury compounds. It accumulates in the aquatic food chain, eventually reaching the human diet. Several studies have demonstrated that prolactin (PRL) may be differently affected by inorganic and organic mercury based on interference with various neurotransmitters involved in the regulation of PRL secretion. This study evaluated the cytoprotective effect of PRL on human lymphocytes exposed to MeHg in vitro, including observation of the kinetics of HL-60 cells (an acute myeloid leukemia lineage) treated with MeHg and PRL at different concentrations, with both treatments with the individual compounds and combined treatments. All treatments with MeHg produced a significant increase in the frequency of chromatid gaps, however, no significant difference was observed in the chromosomal breaks with any treatment. A dose-dependent increase in the mitotic index was observed for treatments with PRL, which also acts as a co-mitogenic factor, regulating proliferation by modulating the expression of genes that are essential for cell cycle progression and cytoskeleton organization. These properties contribute to the protective action of PRL against the cytotoxic and mutagenic effects of MeHg. PMID:25247425

  20. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:

    NASA Astrophysics Data System (ADS)

    Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F.

    2006-11-01

    Photoreceptor cells are incessantly bombarded with photons of light, which, along with the cells' high rate of oxygen metabolism, continuously exposes them to elevated levels of toxic reactive oxygen intermediates (ROIs). Vacancy-engineered mixed-valence-state cerium oxide nanoparticles (nanoceria particles) scavenge ROIs. Our data show that nanoceria particles prevent increases in the intracellular concentrations of ROIs in primary cell cultures of rat retina and, in vivo, prevent loss of vision due to light-induced degeneration of photoreceptor cells. These data indicate that the nanoceria particles may be effective in inhibiting the progression of ROI-induced cell death, which is thought to be involved in macular degeneration, retinitis pigmentosa and other blinding diseases, as well as the ROI-induced death of other cell types in diabetes, Alzheimer's disease, atherosclerosis, stroke and so on. The use of nanoceria particles as a direct therapy for multiple diseases represents a novel strategy and suggests that they may represent a unique platform technology.

  1. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. PMID:25476277

  2. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    PubMed Central

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3 days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  3. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.

    PubMed

    Ma, Jane; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M; Demokritou, Philip; Castranova, Vincent

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  4. RasGAP-derived peptide GAP159 enhances cisplatin-induced cytotoxicity and apoptosis in HCT116 cells

    PubMed Central

    Zhang, Hao; Zhang, Shenghua; He, Hongwei; Zhang, Caixia; Chen, Yi; Yu, Dongke; Chen, Jianhua; Shao, Rongguang

    2014-01-01

    To increase the efficacy of currently used anti-cancer genotoxins, one of the current efforts is to find agents that can sensitize cancer cells to genotoxins so that the efficacious doses of genotoxins can be lowered to reduce deleterious side-effects. In this study, we reported that a synthetic RasGAP-derived peptide GAP159 could enhance the effect of chemotherapeutic agent cisplatin (CDDP) in human colon carcinoma HCT116 cells. Our results showed that GAP159 significantly increased the CDDP-induced cytotoxicity and apoptosis in HCT116 cells. This synergistic effect was associated with the inhibitions of phospho-AKT, phospho-ERK and NF-?B. In mouse colon tumor CT26 animal models, GAP159 combined with CDDP significantly suppressed CT26 tumor growth, and GAP159 alone showed slight inhibitory effect. Our data suggests that co-treatment of GAP159 and chemotherapeutics will become a potential therapeutic strategy for colon cancers.

  5. Protective effect of chlorophyllin and lycopene from water spinach extract on cytotoxicity and oxidative stress induced by heavy metals in human hepatoma cells.

    PubMed

    Yang, Ui-Jeong; Park, Tae-Sik; Shim, Soon-Mi

    2013-01-01

    The purpose of this study was to examine the inhibitory effects of ethanol extract of water spinach (EEWS) containing chlorophyll and lycopene on cytotoxicity and oxidative stress in liver induced by heavy metals. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay and dichlorofluorescein (DCF) assay were conducted to measure cytotoxicity and inhibition of reactive oxygen species (ROS), respectively. Cytotoxicity was prevented at a concentration of 11.7 mg/L of EEWS. Both sodium copper chlorophyllin (SCC) and lycopene in EEWS were identified by ultraperformance liquid chromatography-photodiode array-electrospray ionization-mass spectroscopy (UPLC-PDA-ESI-MS/MSn) as major components at m/z 722.64 and 535.45, respectively. The concentrations of SCC and lycopene were 0.12 and 0.04 mg from 100 g of dried powder, respectively. Approximately 99% cytotoxicity induced by Cd was inhibited by EEWS. However, the inhibitory effect attributed to generation of ROS was similar with SCC, lycopene, and EEWS. Our results indicated that EEWS was effective in reducing cytotoxicity and oxidative stress produced by heavy metals in a HepG2 cell. Data suggest that the possible mechanism underlying the preventive action of SCC might be associated with diminished absorption of metal ions by chelating and blocking metal-mediated generation of ROS, while lycopene effects may be attributed to its high number of conjugated dienes that act as most potent singlet oxygen quenchers. PMID:24283422

  6. Laser-induced motion in nanoparticle suspension droplets on a surface Mathias Dietzel and Dimos Poulikakosa

    E-print Network

    Daraio, Chiara

    Laser-induced motion in nanoparticle suspension droplets on a surface Mathias Dietzel and Dimos nanoparticle suspension droplet "nano-ink" spreading on a flat surface upon local heating through a laser beam is investigated numerically. The laser diameter, laser intensity, and the absorption coefficient of the nano

  7. Effect of Selenium-Enriched Garlic Oil against Cytotoxicity Induced by OX-LDL in Endothelial Cells.

    PubMed

    Yang, Cheng; Cui, Kai; Diao, Yutao; Du, Min; Wang, Shumei

    2014-01-01

    Objective. To detect the effect of selenium-enriched garlic oil (Se-garlic oil) against cytotoxicity induced by ox-LDL in endothelial cells. Methods. Se-garlic oil was extracted by organic solvent extraction. High performance liquid chromatography (HPLC) was used to detect the content of allicin in the Se-garlic oil. Hydride generation atomic fluorescence spectrometry (HG-AFS) was used to detect the content of Se in the Se-garlic oil. ECV-304 cells were separated into five groups (blank, ox-LDL, and low-, medium-, and high-dose Se-garlic oil). Methyl thiazolyl tetrazolium (MTT) assay was used to detect the cytoactivity of each cell group after culturing for 24, 48, and 72 hours. Flow cytometry (FCM) stained with annexin V-FITC/PI was used to detect the apoptosis of the cells from the blank, Se-garlic oil, ox-LDL, and Se-garlic oil + ox-ldl groups after 48 hours of incubation. Results. The amount of allicin in Se-garlic oil was 142.66?mg/ml, while, in Se, it was 198?mg/kg. When ox-LDL was added to low-, medium-, and high-dose Se-garlic oil, the cell viability rates of ECV-304 cells treated in the three groups were all higher, while the apoptosis rates were significantly lower than those of the ox-LDL group (P < 0.05). However, there was no significant difference between the apoptosis rates of the blank, Se-garlic oil, and Se-garlic oil + ox-LDL groups (P > 0.05). Conclusion. Se-garlic oil could inhibit the cytotoxic effect induced by ox-LDL in endothelial cells. PMID:24987429

  8. Sunitinib Indirectly Enhanced Anti-Tumor Cytotoxicity of Cytokine-Induced Killer Cells and CD3+CD56+ Subset through the Co-Culturing Dendritic Cells

    PubMed Central

    Wongkajornsilp, Adisak; Wamanuttajinda, Valla; Kasetsinsombat, Kanda; Duangsa-ard, Sunisa; Sa-ngiamsuntorn, Khanit; Hongeng, Suradej; Maneechotesuwan, Kittipong

    2013-01-01

    Cytokine-induced killer (CIK) cells have reached clinical trials for leukemia and solid tumors. Their anti-tumor cytotoxicity had earlier been shown to be intensified after the co-culture with dendritic cells (DCs). We observed markedly enhanced anti-tumor cytotoxicity activity of CIK cells after the co-culture with sunitinib-pretreated DCs over that of untreated DCs. This cytotoxicity was reliant upon DC modulation by sunitinib because the direct exposure of CIK cells to sunitinib had no significant effect. Sunitinib promoted Th1-inducing and pro-inflammatory phenotypes (IL-12, IFN-? and IL-6) in DCs at the expense of Th2 inducing phenotype (IL-13) and regulatory phenotype (PD-L1, IDO). Sunitinib-treated DCs subsequently induced the upregulation of Th1 phenotypic markers (IFN-? and T-bet) and the downregulation of the Th2 signature (GATA-3) and the Th17 marker (RORC) on the CD3+CD56+ subset of CIK cells. It concluded that sunitinib-pretreated DCs drove the CD3+CD56+ subset toward Th1 phenotype with increased anti-tumor cytotoxicity. PMID:24232460

  9. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    SciTech Connect

    Brechbuhl, Heather M.; Kachadourian, Remy; Min, Elysia; Chan, Daniel; Day, Brian J.

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 ?M) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 ?M) and DOX (0.025–3.0 ?M) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ? Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ? Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ? Cancer cell sensitivity correlated with GSH and MRP gene network expression. ? This approach could allow for lower side effects and targeting resistant tumors.

  10. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    PubMed Central

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  11. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-{kappa}B and Akt pathways

    SciTech Connect

    Wang Xia; Chen Wenshu; Lin Yong . E-mail: ylin@lrri.org

    2007-04-13

    Blockage of either nuclear factor-{kappa}B (NF-{kappa}B) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-{kappa}B activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-{kappa}B. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-{kappa}B activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-{kappa}B activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-{kappa}B and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-{kappa}B and Akt, which may be applied in lung cancer therapy.

  12. Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Kim, Jun-Hyung; Jeong, Myeong Seon; Kim, Dong-Yung; Her, Song; Wie, Myung-Bok

    2015-11-01

    Zinc oxide nanoparticles (ZnO NPs) are known to induce oxidative stress and modulate an inflammatory process in various cell types. Although the cytotoxic effects of ZnO NPs in various cell types have been evaluated, few neurotoxic surveys on ZnO NPs as well as rescue studies have been reported. This study was designed to examine the neurotoxic ZnO NP concentration according to exposure time and dose, and the mechanisms that underlie ZnO NP-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line. A significant reduction in neuronal viability as well as distinct morphological findings resulted from application of 15 ?M ZnO NPs. Apoptotic injury-as measured by annexin V and caspase 3/7 activities-was significantly elevated at 12 h and 24 h, but not 6 h, after ZnO NP exposure. However, electron microscopy revealed typical necrotic characteristics, such as swelling or loss of cell organelles and rupture of the cytosolic or nuclear membrane at 12 h and 24 h after ZnO NP exposure. In rescue studies, the lipoxygenase (LOX) inhibitor esculetin attenuated ZnO NP-induced neuronal injury. The elevation of PI3 kinase (PI3K) and p-Akt/Akt activities induced by ZnO NP was significantly decreased by esculetin or LY294002. Allopurinol, N-acetyl-l-cysteine and ?-tocopherol protected ZnO NP-induced cytotoxicity. Sodium nitroprusside (SNP)-induced neurotoxicity and ZnO NP-mediated NO overproduction were ameliorated by esculetin. Esculetin reduced the production of reactive oxygen species (ROS) and the depletion of antioxidant enzymes induced by ZnO NPs. The concentration of zinc from the dissolution of ZnO NPs increased in proportion to increases in the ZnO NPs concentration. These results suggest that ZnO NPs induce apoptosis via the PI3K/Akt/caspase-3/7 pathway and necrosis by LOX-mediated ROS production elevation. PMID:26364578

  13. Effects of surface-modifying ligands on the colloidal stability of ZnO nanoparticle dispersions in in vitro cytotoxicity test media

    PubMed Central

    Kwon, Dongwook; Park, Jonghoon; Park, Jaehong; Choi, Seo Yeon; Yoon, Tae Hyun

    2014-01-01

    The extrinsic physicochemical properties of nanoparticles (NPs), such as hydrodynamic size, surface charge, surface functional group, and colloidal stabilities, in toxicity testing media are known to have a significant influence on in vitro toxicity assessments. Therefore, interpretation of nanotoxicity test results should be based on reliable characterization of the NPs’ extrinsic properties in actual toxicity testing media. Here, we present a set of physicochemical characterization results for commercially available ZnO NPs, including core diameter, hydrodynamic diameter, surface charges, and colloidal stabilities, in two in vitro toxicity testing media (Roswell Park Memorial Institute [RPMI] and Dulbecco’s Modified Eagle’s Medium [DMEM]), as well as simple cell viability assay results for selected ZnO NPs. Four commercially available and manufactured ZnO NPs, with different core sizes, were used in this study, and their surface charge was modified with five different surface coating materials (sodium citrate, tris(2-aminoethyl)amine, poly(acrylic acid), poly(allylamine hydrochloride), and poly-L-lysine hydrochloride). The results showed that ZnO NPs were better dispersed in cell culture media via surface modification with positively or negatively charged molecules. Moreover, in the presence of fetal bovine serum (FBS) in RPMI and DMEM media, ZnO NPs were found even better dispersed for a longer period (at least 48 hours). For the HeLa cells exposed to ZnO NPs in DMEM media without FBS, surface charge-dependent cytotoxicity trends were observed, while these trends were not observed for those cells cultured in FBS-containing media. This confirmed the important roles of surface-modifying compounds and of surface charge on the resultant cytotoxicities of NPs. PMID:25565826

  14. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  15. Triptolide Inhibited Cytotoxicity of Differentiated PC12 Cells Induced by Amyloid-Beta25–35 via the Autophagy Pathway

    PubMed Central

    Xu, Pengjuan; Li, Zhigui; Wang, Hui; Zhang, Xiaochen; Yang, Zhuo

    2015-01-01

    Evidence shows that an abnormal deposition of amyloid beta-peptide25–35 (A?25–35) was the primary cause of the pathogenesis of Alzheimer’s disease (AD). And the elimination of A?25–35 is considered an important target for the treatment of AD. Triptolide (TP), isolated from Tripterygium wilfordii Hook.f. (TWHF), has been shown to possess a broad spectrum of biological profiles, including neurotrophic and neuroprotective effects. In our study investigating the effect and potential mechanism of triptolide on cytotoxicity of differentiated rat pheochromocytoma cell line (the PC12 cell line is often used as a neuronal developmental model) induced by Amyloid-Beta25–35 (A?25–35), we used 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay, flow cytometry, Western blot, and acridine orange staining to detect whether triptolide could inhibit A?25–35–induced cell apoptosis. We focused on the potential role of the autophagy pathway in A?25–35-treated differentiated PC12 cells. Our experiments show that cell viability is significantly decreased, and the apoptosis increased in A?25–35-treated differentiated PC12 cells. Meanwhile, A?25–35 treatment increased the expression of microtubule-associated protein light chain 3 II (LC3 II), which indicates an activation of autophagy. However, triptolide could protect differentiated PC12 cells against A?25–35-induced cytotoxicity and attenuate A?25–35-induced differentiated PC12 cell apoptosis. Triptolide could also suppress the level of autophagy. In order to assess the effect of autophagy on the protective effects of triptolide in differentiated PC12 cells treated with A?25–35, we used 3-Methyladenine (3-MA, an autophagy inhibitor) and rapamycin (an autophagy activator). MTT assay showed that 3-MA elevated cell viability compared with the A?25–35-treated group and rapamycin inhibits the protection of triptolide. These results suggest that triptolide will repair the neurological damage in AD caused by deposition of A?25–35 via the autophagy pathway, all of which may provide an exciting view of the potential application of triptolide or TWHF as a future research for AD. PMID:26554937

  16. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses.

    PubMed

    Wang, Li-Xin; Mei, Zhen-Yang; Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li

    2013-01-01

    Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-? producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+), but not CD4(+) T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy. PMID:23671644

  17. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy

    NASA Astrophysics Data System (ADS)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu

    2014-11-01

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1-5 W/cm2). For both types of nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  18. Protective effect of dieckol against chemical hypoxia-induced cytotoxicity in primary cultured mouse hepatocytes.

    PubMed

    Jeon, Yu Jin; Kim, Hyoung Seok; Song, Kyung-Sik; Han, Ho Jae; Park, Soo Hyun; Chang, Woochul; Lee, Min Young

    2015-04-01

    Hepatic ischemic injury is a major complication arising from liver surgery, transplantation, or other ischemic diseases, and both reactive oxygen species (ROS) and pro-inflammatory mediators play the role of key mediators in hepatic ischemic injury. In this study, we examined the effect of dieckol in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased after treatment with cobalt chloride (CoCl2), a well-known hypoxia mimetic agent in a time- and dose-dependent manner. Pretreatment with dieckol before exposure to CoCl2 significantly attenuated the CoCl2-induced decrease of cell viability. Additionally, pretreatment with dieckol potentiated the CoCl2-induced decrease of Bcl-2 expression and attenuated the CoCl2-induced increase in the expression of Bax and caspase-3. Treatment with CoCl2 resulted in an increased intracellular ROS generation, which is inhibited by dieckol or N-acetyl cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by dieckol or NAC. In addition, dieckol and SB203580 (p38 MAPK inhibitor) increased the CoCl2-induced decrease of Bcl-2 expression and decreased the CoCl2-induced increase of Bax and caspase-3 expressions. CoCl2-induced decrease of cell viability was attenuated by pretreatment with dieckol, NAC, and SB203580. Furthermore, dieckol attenuated CoCl2-induced COX-2 expression. Similar to the effect of dieckol, NAC also blocked CoCl2-induced COX-2 expression. Additionally, CoCl2-induced decrease of cell viability was attenuated not only by dieckol and NAC but also by NS-398 (a selective COX-2 inhibitor). In conclusion, dieckol protects primary cultured mouse hepatocytes against CoCl2-induced cell injury through inhibition of ROS-activated p38 MAPK and COX-2 pathway. PMID:25155888

  19. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings. Electronic supplementary information (ESI) available: Synthesis of ZnO nanorods, instrumentation details, contact killing of Ag/ZnO. See DOI: 10.1039/c4nr06913g

  20. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells

    PubMed Central

    Lai, Y-S; Chen, J-Y; Tsai, H-J; Chen, T-Y; Hung, W-C

    2015-01-01

    Epigenetic modifying enzymes have a crucial role in the pathogenesis of acute myeloid leukemia (AML). Methylation of lysine 9 on histone H3 by the methyltransferase G9a and SUV39H1 is associated with inhibition of tumor suppressor genes. We studied the effect of G9a and SUV39H1 inhibitors on viability and differentiation of AML cells and tested the cytotoxicity induced by combination of G9a and SUV39H1 inhibitors and various epigenetic drugs. The SUV39H1 inhibitor (chaetocin) and the G9a inhibitor (UNC0638) caused cell death in AML cells at high concentrations. However, only chaetocin-induced CD11b expression and differentiation of AML cells at non-cytotoxic concentration. HL-60 and KG-1a cells were more sensitive to chaetocin than U937 cells. Long-term incubation of chaetocin led to downregulation of SUV39H1 and reduction of H3K9 tri-methylation in HL-60 and KG-1a cells. Combination of chaetocin with suberoylanilide hydroxamic acid (SAHA, a histone deacetylase inhibitor) or JQ (a BET (bromodomain extra terminal) bromodomain inhibitor) showed synergistic cytotoxicity. Conversely, no synergism was found by combining chaetocin and UNC0638. More importantly, chaetocin-induced differentiation and combined cytotoxicity were also found in the primary cells of AML patients. Collectively, the SUV39H1 inhibitor chaetocin alone or in combination with other epigenetic drugs may be effective for the treatment of AML. PMID:25978433

  1. 5-AZA-2'-DEOXYCYTIDINE INDUCED CYTOTOXICITY AND LONG BONE REDUCTION DEFECTS IN THE MURINE LIMB

    EPA Science Inventory

    The antineoplastic drug 5-aza-2'-deoxycytidine (dAZA) is a DNA hypomethylating agent that can be used to induce hind limb phocomelia in the offspring of CD-1 Swiss Webster mice. Previously, our laboratory investigated the possibility that dAZA induced alterations in gene express...

  2. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies.

    PubMed

    Li, Jiawei; Guo, Xiujun; Liu, Zhidong; Okeke, Chukwunweike Ikechukwu; Li, Nan; Zhao, Hainan; Aggrey, Mike Okweesi; Pan, Weisan; Wu, Tao

    2014-07-01

    In this study, tetrandrine-loaded cationic solid lipid nanoparticles (TET-CNP) and solid lipid nanoparticles (TET-NP) were prepared by the emulsion evaporation-solidification at low temperature method. The particle size, zeta potential, and entrapment efficiency of TET-CNP and TET-NP were characterized. The results showed that the TET-CNP and TET-NP had average diameters of (15.29?±?1.34) nm and (18.77?±?1.23) nm with zeta potentials of (5.11?±?1.03) mV and (-8.71?±?-1.23) mV and entrapment efficiencies of (94.1?±?2.37)% and (95.6?±?2.43)%, respectively. In vitro release studies indicated that the TET-CNP and TET-NP retained the drug entity better than tetrandrine ophthalmic solutions (TET-SOL). In the pharmacokinetics studies, the AUC values of TET-CNP and TET-NP were 1.96-fold and 2.00-fold higher than that of TET-SOL (?p?Cytotoxicity study showed that TET-CNP and TET-NP had no significant toxicity at low concentrations. Flow cytometry studies and confocal microscopy analysis demonstrated that calcein labeled NP (CA-NP) uptake by SRA 01/04 cells was much higher than those of calcein labeled CNP (CA-CNP) and calcein solution (CA-SOL). PMID:23662696

  3. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity.

    PubMed

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-28

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings. PMID:25830178

  4. Rapamycin enhances docetaxel-induced cytotoxicity in a androgen-independent prostate cancer xenograft model by survivin downregulation

    SciTech Connect

    Morikawa, Yasuyuki; Koike, Hidekazu; Sekine, Yoshitaka; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Suzuki, Kazuhiro

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Rapamycin (RPM) enhances the susceptibility of PC3 cells to docetaxel. Black-Right-Pointing-Pointer Low-dosage of docetaxel (DTX) did not reduce survivin expression levels in PC3 cells. Black-Right-Pointing-Pointer Combination treatment of RPM with DTX suppressed the expression of surviving. Black-Right-Pointing-Pointer SiRNA against survivin enhanced the susceptibility of PC3 cells to DTX. Black-Right-Pointing-Pointer RPM and DTX cotreatment inhibited PC3 cell growth and decreased surviving in vivo. -- Abstract: Background: Docetaxel is a first-line treatment choice in castration-resistant prostate cancer (CRPC). However, the management of CRPC remains an important challenge in oncology. There have been many reports on the effects of rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR), in the treatment of carcinogenesis. We assessed the cytotoxic effects of the combination treatment of docetaxel and rapamycin in prostate cancer cells. Furthermore, we examined the relationship between these treatments and survivin, which is a member of the inhibitory apoptosis family. Methods: Prostate cancer cells were cultured and treated with docetaxel and rapamycin. The effects on proliferation were evaluated with the MTS assay. In addition, we evaluated the effect on proliferation of the combination treatment induced knockdown of survivin expression by small interfering RNA transfection and docetaxel. Protein expression levels were assayed using western blotting. PC3 cells and xenograft growth in nude mice were used to evaluate the in vivo efficacy of docetaxel and its combination with rapamycin. Results: In vitro and in vivo, the combination of rapamycin with docetaxel resulted in a greater inhibition of proliferation than treatment with rapamycin or docetaxel alone. In addition, in vitro and in vivo, rapamycin decreased basal surviving levels, and cotreatment with docetaxel further decreased these levels. Transfection siRNA against survivin enhanced the cytotoxicity of docetaxel in PC3 cells. Conclusion: The rapamycin-dependent enhancement of the cytotoxic effects of docetaxel was associated with the downregulation of survivin expression. Our results suggest that the combination of docetaxel and rapamycin is a candidate for the improved treatment of advanced prostate cancer.

  5. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells

    SciTech Connect

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Matsuyama, Keigo; Nakazato, Yasutaro; Tochigi, Saeko; Hirai, Toshiro; Kondoh, Sayuri; Nagano, Kazuya; Abe, Yasuhiro; The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 ; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo; Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085; The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer There is increasing concern regarding the potential health risks of nanomaterials. Black-Right-Pointing-Pointer We evaluated the effect of surface properties of nanomaterials on cellular responses. Black-Right-Pointing-Pointer We showed that the surface properties play an important in determining its safety. Black-Right-Pointing-Pointer These data provide useful information for producing safer nanomaterials. -- Abstract: Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70 nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.

  6. Nutlin-3 sensitizes nasopharyngeal carcinoma cells to cisplatin-induced cytotoxicity

    PubMed Central

    VOON, YEE-LIN; AHMAD, MUNIRAH; WONG, POOI-FONG; HUSAINI, ROSLINA; NG, WAYNE TIONG-WENG; LEONG, CHEE-ONN; LANE, DAVID PHILIP; KHOO, ALAN SOO-BENG

    2015-01-01

    The small-molecule inhibitor of p53-Mdm2 interaction, Nutlin-3, is known to be effective against cancers expressing wild-type (wt) p53. p53 mutations are rare in nasopharyngeal carcinoma (NPC), hence targeting disruption of p53-Mdm2 interaction to reactivate p53 may offer a promising therapeutic strategy for NPC. In the present study, the effects of Nutlin-3 alone or in combination with cisplatin, a standard chemotherapeutic agent, were tested on C666-1 cells, an Epstein-Barr virus (EBV)-positive NPC cell line bearing wt p53. Treatment with Nutlin-3 activated the p53 pathway and sensitized NPC cells to the cytotoxic effects of cisplatin. The combined treatment also markedly suppressed soft agar colony growth formation and increased apoptosis of NPC cells. The effect of Nutlin-3 on NPC cells was inhibited by knockdown of p53, suggesting that its effect was p53-dependent. Extended treatment with increasing concentrations of Nutlin-3 did not result in emergence of p53 mutations in the C666-1 cells. Collectively, the present study revealed supportive evidence of the effectiveness of combining cisplatin and Nutlin-3 as a potential therapy against NPC. PMID:26252575

  7. Antibody-dependent cellular cytotoxicity in antimyelin antibody-induced oligodendrocyte damage in vitro.

    PubMed

    Griot-Wenk, M; Griot, C; Pfister, H; Vandevelde, M

    1991-08-01

    Treatment of dissociated murine brain cell cultures with an antibody recognizing galactocerebroside (GalC) led to degeneration of oligodendrocytes with loss of their cell processes. F(ab')2 fragments prepared from this antibody showed no effect. The anti-GalC antibody--but not its F(ab')2 fragments b2 was able to stimulate macrophages in these cultures as seen in a chemiluminescence assay. Therefore, antibodies bound to oligodendrocytes stimulated nearby macrophages by interacting with their Fc receptors. The oligodendroglial damage coincided with the release of toxic compounds by the stimulated macrophages, since treatment of the cultures with the anti-GalC antibody and a variety of other macrophage stimulating agents led to secretion of reactive oxygen species and--in some experiments--tumor necrosis factor, both known to be toxic for oligodendrocytes. These in vitro experiments show evidence that antibody-dependent cellular cytotoxicity may be an important mechanism of tissue destruction in inflammatory demyelinating diseases. PMID:2066397

  8. Influenza peptide-induced self-lysis and down-regulation of cloned cytotoxic T cells.

    PubMed Central

    Pemberton, R M; Wraith, D C; Askonas, B A

    1990-01-01

    Virus-specific cytotoxic T-cell (Tc) clones can lyse target cells in vitro in the presence of their specific peptide epitopes. The lytic potency of murine influenza nucleoprotein (NP)-specific Tc clones was investigated after observing that target cell killing was reduced in the presence of high (greater than 0.2 microM) concentrations of specific NP peptide antigen. Following incubation of Tc for 16 hr in the presence of a range of peptide concentrations, two effects were observed; (i) a peptide dose-dependent mortality of Tc, which has been attributed to self-lysis by clonal Tc in the presence of specific peptide; (ii) and a reduced ability to specifically lyse NP-expressing target cells whilst retaining lectin-dependent lytic activity in the surviving Tc. This functional down-regulation was reversible after 24 hr incubation in the absence of peptide. Toxic effects were excluded, since inhibition of specific target lysis by Tc was mediated only be pretreatment with specifically recognized peptide. PMID:2373520

  9. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia.

    PubMed

    Sujobert, Pierre; Poulain, Laury; Paubelle, Etienne; Zylbersztejn, Florence; Grenier, Adrien; Lambert, Mireille; Townsend, Elizabeth C; Brusq, Jean-Marie; Nicodeme, Edwige; Decrooqc, Justine; Nepstad, Ina; Green, Alexa S; Mondesir, Johanna; Hospital, Marie-Anne; Jacque, Nathalie; Christodoulou, Alexandra; Desouza, Tiffany A; Hermine, Olivier; Foretz, Marc; Viollet, Benoit; Lacombe, Catherine; Mayeux, Patrick; Weinstock, David M; Moura, Ivan C; Bouscary, Didier; Tamburini, Jerome

    2015-06-01

    AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2?/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers. PMID:26004183

  10. Nutlin-3 sensitizes nasopharyngeal carcinoma cells to cisplatin-induced cytotoxicity.

    PubMed

    Voon, Yee-Lin; Ahmad, Munirah; Wong, Pooi-Fong; Husaini, Roslina; Ng, Wayne Tiong-Weng; Leong, Chee-Onn; Lane, David Philip; Khoo, Alan Soo-Beng

    2015-10-01

    The small-molecule inhibitor of p53-Mdm2 interaction, Nutlin-3, is known to be effective against cancers expressing wild-type (wt) p53. p53 mutations are rare in nasopharyngeal carcinoma (NPC), hence targeting disruption of p53-Mdm2 interaction to reactivate p53 may offer a promising therapeutic strategy for NPC. In the present study, the effects of Nutlin-3 alone or in combination with cisplatin, a standard chemotherapeutic agent, were tested on C666-1 cells, an Epstein-Barr virus (EBV)-positive NPC cell line bearing wt p53. Treatment with Nutlin-3 activated the p53 pathway and sensitized NPC cells to the cytotoxic effects of cisplatin. The combined treatment also markedly suppressed soft agar colony growth formation and increased apoptosis of NPC cells. The effect of Nutlin-3 on NPC cells was inhibited by knockdown of p53, suggesting that its effect was p53-dependent. Extended treatment with increasing concentrations of Nutlin-3 did not result in emergence of p53 mutations in the C666-1 cells. Collectively, the present study revealed supportive evidence of the effectiveness of combining cisplatin and Nutlin-3 as a potential therapy against NPC. PMID:26252575

  11. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 ?g/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. PMID:23546397

  12. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity.

    PubMed

    Messmann, Joanna J; Reisser, Tanja; Leithäuser, Frank; Lutz, Manfred B; Debatin, Klaus-Michael; Strauss, Gudrun

    2015-08-27

    Myeloid-derived suppressor cells (MDSCs) inhibit T-cell expansion and functions by versatile mechanisms such as nutrient depletion, nitrosylation, or apoptosis. Since graft-versus-host disease (GVHD) is characterized by the expansion of donor-derived T cells destroying recipient tissue, we analyzed whether MDSCs can be used for GVHD prevention in murine allogeneic bone marrow transplantation models. Transplantation of MDSCs, generated from bone marrow cells by granulocyte-macrophage colony-stimulating factor (GM-CSF)/G-CSF in vitro, inhibited GVHD-induced death and attenuated histologic GVHD, whereas antitumor cytotoxicity of alloantigen-specific T cells was maintained. MDSCs expanded in vivo and invaded lymphatic and GVHD target organs. Major histocompatibility complex class I expression on MDSCs was dispensable for their suppressive capacity. Inhibition of GVHD required the presence of MDSCs during T-cell priming, whereas allogeneic T-cell numbers and homing in lymphoid and GVHD target organs were not considerably affected in MDSC-treated mice. However, MDSCs skewed allogeneic T cells toward type 2 T cells upregulating T helper 2 (Th2)-specific cytokines. Type 2 T-cell induction was indispensable for GVHD prevention since MDSC treatment failed to prevent GVHD when allogeneic STAT6-deficient T cells, which are unable to differentiate into Th2 cells, were transplanted. MDSC-induced Th2 induction might be applicable for GVHD treatment in clinical settings. PMID:26185131

  13. MLN4924 Synergistically Enhances Cisplatin-induced Cytotoxicity via JNK and Bcl-xL Pathways in Human Urothelial Carcinoma

    PubMed Central

    Ho, I-Lin; Kuo, Kuan-Lin; Liu, Shing-Hwa-; Chang, Hong-Chiang; Hsieh, Ju-Ton; Wu, June-Tai; Chiang, Chih-Kang; Lin, Wei-Chou; Tsai, Yu-Chieh; Chou, Chien-Tso; Hsu, Chen-Hsun; Pu, Yeong-Shiau; Shi, Chung-Sheng; Huang, Kuo-How

    2015-01-01

    Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma. However, the response rate is only 40–65%. This study investigated the anti-tumor effect and underlying mechanisms of the combination of cisplatin and the NEDD8-activating enzyme inhibitor MLN4924 in human bladder urothelial carcinoma. The combination of cisplatin and MLN4924 exerted synergistic cytotoxicity on two high-grade bladder urothelial carcinoma cell lines, NTUB1 and T24 (combination index <1). MLN4924 also potentiated the cisplatin-induced apoptosis and activation of caspase-3 and -7, phospho-histone H2A.X and PARP. c-Jun N-terminal kinase (JNK) activation and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) were also observed during cisplatin and MLN4924 treatment. Inhibition of JNK activation partially restored cell viability and Bcl-xL expression. Bcl-xL overexpression also rescued cell viability. MLN4924 significantly potentiated cisplatin-induced tumor suppression in urothelial carcinoma xenograft mice. In summary, MLN4924 synergistically enhanced the anti-tumor effect of cisplatin via an increase in DNA damage, JNK activation and down-regulation of Bcl-xL in urothelial carcinoma cells. These findings provide a new therapeutic strategy for the treatment of bladder cancer. PMID:26592553

  14. Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species.

    PubMed

    Shang, Yu; Zhang, Ling; Jiang, Yuting; Li, Yi; Lu, Ping

    2014-04-01

    Ambient particulate matter (PM) is associated with adverse health effects. Quinones present in PM are hypothesized to contribute to these harmful effects through the generation of reactive oxygen species (ROS). However, whether the ROS induced by quinones is involved in mediating DNA damage as well as other biological responses in pulmonary cells is less well known. In this study, the toxic effects of five typical airborne quinones, including 1,2-naphthoquinone, 2-methylanthraquinone, 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone, and acenaphthenequinone, on cytotoxicity, DNA damage, intracellular calcium homeostasis, and ROS generation, were studied in human lung epithelial A549 cells. An antioxidant N-acetylcysteine (NAC) was used to examine the involvement of ROS in adverse biological responses induced by quinones. The quinones caused a concentration-dependent viability decrease, cellular LDH release, DNA damage, and ROS production in A549 cells. 1,2-Naphthoquinone, but not the other four quinones, increased intracellular calcium (Ca(2+)) levels in a dose-dependent manner. These toxic effects were abolished by administration of NAC, suggesting that ROS played a key role in the observed toxic effects of quinones in A549 cells. These results emphasize the importance of quinones in PM on the adverse health effects of PMs, which has been underestimated in the past few years, and highlight the need, when evaluating the effects on health and exposure management, to always consider their qualitative chemical compositions in addition to the size and concentration of PMs. PMID:24480427

  15. MLN4924 Synergistically Enhances Cisplatin-induced Cytotoxicity via JNK and Bcl-xL Pathways in Human Urothelial Carcinoma.

    PubMed

    Ho, I-Lin; Kuo, Kuan-Lin; Liu, Shing-Hwa-; Chang, Hong-Chiang; Hsieh, Ju-Ton; Wu, June-Tai; Chiang, Chih-Kang; Lin, Wei-Chou; Tsai, Yu-Chieh; Chou, Chien-Tso; Hsu, Chen-Hsun; Pu, Yeong-Shiau; Shi, Chung-Sheng; Huang, Kuo-How

    2015-01-01

    Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma. However, the response rate is only 40-65%. This study investigated the anti-tumor effect and underlying mechanisms of the combination of cisplatin and the NEDD8-activating enzyme inhibitor MLN4924 in human bladder urothelial carcinoma. The combination of cisplatin and MLN4924 exerted synergistic cytotoxicity on two high-grade bladder urothelial carcinoma cell lines, NTUB1 and T24 (combination index <1). MLN4924 also potentiated the cisplatin-induced apoptosis and activation of caspase-3 and -7, phospho-histone H2A.X and PARP. c-Jun N-terminal kinase (JNK) activation and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) were also observed during cisplatin and MLN4924 treatment. Inhibition of JNK activation partially restored cell viability and Bcl-xL expression. Bcl-xL overexpression also rescued cell viability. MLN4924 significantly potentiated cisplatin-induced tumor suppression in urothelial carcinoma xenograft mice. In summary, MLN4924 synergistically enhanced the anti-tumor effect of cisplatin via an increase in DNA damage, JNK activation and down-regulation of Bcl-xL in urothelial carcinoma cells. These findings provide a new therapeutic strategy for the treatment of bladder cancer. PMID:26592553

  16. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    PubMed Central

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52?µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  17. Interleukin-21 and cellular activation concurrently induce potent cytotoxic function and promote antiviral activity in human CD8 T cells.

    PubMed

    Parmigiani, Anita; Pallin, Maria F; Schmidtmayerova, Helena; Lichtenheld, Mathias G; Pahwa, Savita

    2011-02-01

    Infection with human immunodeficiency virus (HIV)-1 induces a progressive deterioration of the immune system that ultimately leads to acquired immune deficiency syndrome (AIDS). Murine models indicate that the common ?-chain (?(c))-sharing cytokine interleukin (IL)-21 and its receptor (IL-21R) play a crucial role in maintaining polyfunctional T cell responses during chronic viral infections. Therefore, we analyzed the ability of this cytokine to modulate the properties of human CD8 T cells in comparison with other ?(c)-sharing cytokines (IL-2, IL-7, and IL-15). CD8 T cells from healthy volunteers were stimulated in vitro via T cell receptor signals to mimic the heightened status of immune activation of HIV-infected patients. The administration of IL-21 upregulated cytotoxic effector function and the expression of the costimulatory molecule CD28. Notably, this outcome was not accompanied by increased cellular proliferation or activation. Moreover, IL-21 promoted antiviral activity while not inducing HIV-1 replication in vitro. Thus, IL-21 may be a favorable molecule for immunotherapy and a suitable vaccine adjuvant in HIV-infected individuals. PMID:20977918

  18. Anti-aquaporin-4 autoantibodies in systemic lupus erythematosus persist for years and induce astrocytic cytotoxicity but not CNS disease.

    PubMed

    Alexopoulos, Harry; Kampylafka, Eleni I; Fouka, Penelope; Tatouli, Ioanna; Akrivou, Sofia; Politis, Panagiotis K; Moutsopoulos, Haralampos M; Tzioufas, Athanasios G; Dalakas, Marinos C

    2015-12-15

    Anti-aquaporin-4 autoantibodies are specific for the neuromyelitis optica spectrum disorders (NMOSD) and they have also been described in patients with systemic lupus erythematosus (SLE) with neurological signs consistent with NMOSD. Our objective was to test for the presence and pathogenicity of anti-AQP4 antibodies in SLE patients without neurological disease. Sera from 89 non-CNS-SLE patients were screened for anti-AQP4 autoantibodies. Two of the 89 patients were positive. Archived samples dating back 11years were also positive. A brain and spinal cord MRI did not reveal any NMOSD-compatible lesions. An in vitro cytotoxicity assay showed that either sera or purified IgG from these patients induced a complement-mediated damage in cultured astrocytes comparable to antibodies obtained from typical NMO patients. We conclude that AQP4-antibodies can be present in SLE patients and persist for many years, without concurrent clinical or radiological NMOSD signs. It is unclear why the anti-AQP4 antibodies did not induce CNS disease. PMID:26616866

  19. A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyan; Dorn, Marco; Vogt, Jürgen; Spemann, Daniel; Yu, Wei; Mao, Zhengwei; Estrela-Lopis, Irina; Donath, Edwin; Gao, Changyou

    2014-07-01

    Noble-metal nanoparticles (NPs) especially prepared from gold and silver have been combined on the surface of graphene to obtain graphene-based nanocomposites for novel functions in enhanced performance in bio-imaging, cancer detection and therapy. However, little is known about their cellular uptake, especially the intracellular quantity which plays a critical role in determining their functions and safety. Therefore, we prepared covalently conjugated GO/Au and GO/Ag composites by immobilizing Au and Ag nanoparticles on GO sheets pre-functionalized with disulfide bonds, respectively. The cellular uptake of these composites was quantitatively studied by means of an ion beam microscope (IBM) to determine the metal content in human lung cancer cells (A549 cells) and liver hepatocellular carcinoma cells (HepG2 cells). The cell uptake was also studied by inductively coupled plasma mass spectrometry (ICP-MS), which is one of the most sensitive techniques being applied to cell suspensions, for comparison. Toxicity, one of the consequences of cellular uptake of GO based composites, was studied as well. The potential toxicity mechanism was also suggested based on the results of intracellular quantification of the nanomaterials.Noble-metal nanoparticles (NPs) especially prepared from gold and silver have been combined on the surface of graphene to obtain graphene-based nanocomposites for novel functions in enhanced performance in bio-imaging, cancer detection and therapy. However, little is known about their cellular uptake, especially the intracellular quantity which plays a critical role in determining their functions and safety. Therefore, we prepared covalently conjugated GO/Au and GO/Ag composites by immobilizing Au and Ag nanoparticles on GO sheets pre-functionalized with disulfide bonds, respectively. The cellular uptake of these composites was quantitatively studied by means of an ion beam microscope (IBM) to determine the metal content in human lung cancer cells (A549 cells) and liver hepatocellular carcinoma cells (HepG2 cells). The cell uptake was also studied by inductively coupled plasma mass spectrometry (ICP-MS), which is one of the most sensitive techniques being applied to cell suspensions, for comparison. Toxicity, one of the consequences of cellular uptake of GO based composites, was studied as well. The potential toxicity mechanism was also suggested based on the results of intracellular quantification of the nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01763c

  20. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  1. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells.

    PubMed

    Trif, Mihaela; Florian, Paula E; Roseanu, Anca; Moisei, Magdalena; Craciunescu, Oana; Astete, Carlos E; Sabliov, Cristina M

    2015-11-01

    Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 ?g/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015. PMID:25976509

  2. Baicalin scavenges reactive oxygen species and protects human keratinocytes against UVC-induced cytotoxicity.

    PubMed

    Wang, Shou-Cheng; Chen, Sue-Fung; Lee, Yi-Min; Chuang, Chin-Liang; Bau, Da-Tian; Lin, Song-Shei

    2013-01-01

    Long-term exposure to solar ultraviolet (UV) radiation can cause multiple skin disorders, including skin cancer. Protection against UV-induced damage is, therefore, a worldwide concern. Baicalin, a major component of traditional Chinese medicine Scutellaria baicalensis, has been reported to have antioxidant and cytostatic effects on normal epithelial and normal peripheral blood and myeloid cells. In the current study, we examined whether baicalin could also effectively protect human keratinocytes from damaging short-wave UVC irradiation. Baicalin-scavenged reactive oxygen species increased within 2 h after UVC radiation. Baicalin also abrogated UVC-induced apoptosis. In addition, we identified the major products after UVC radiation with T4 UV endonuclease, finding that baicalin prevented cyclobutane pyrimidine dimer formation induced by UVC. Furthermore, baicalin also prevented formation of oxidative adducts induced by UVC. Our results demonstrated the utility of baicalin in assessing the potential contribution of traditional Chinese medicinal agents in therapy of UVC-induced genomic damage to skin and suggest potential application of these agents as pharmaceuticals in prevention of solar-induced skin damage. PMID:24292572

  3. Induction thermal plasma process modifies the physicochemical properties of materials used for carbon nanotube production, influencing their cytotoxicity.

    PubMed

    Alinejad, Yasaman; Faucheux, Nathalie; Soucy, Gervais

    2013-11-01

    The effect of radio frequency induction thermal plasma (RFITP) process on the cytotoxicity of materials used for single-walled carbon nanotube production remains unknown. In this study, the influence of RFITP process on physicochemical and cytotoxic properties of commercial Co, Ni, Y?O?, Mo catalysts and carbon black was investigated. The cytotoxic assays (MTS, LDH, neutral red, TUNEL) revealed the strongest effect of commercial Co on murine Swiss 3T3 fibroblasts affecting their viability in a dose-dependent manner within 24 h. The cells contained also less actin stress fibres. Although RFITP affects the properties of each catalyst (size, morphology, chemistry), only cytotoxicity of Ni catalyst was increased. The plasma-treated Ni induced apoptosis. Comparing Ni particles before and after RFITP process with commercial nanoparticles of Ni revealed that the particles with similar surface area have different cytotoxicities. Interestingly, the observed toxicity of the catalysts was not mainly due to the release of ions. PMID:22998219

  4. In vitro cytotoxicity tests of ZnO?Bi{sub 2}O{sub 3}?Mn{sub 2}O{sub 3}-based varistor fabricated from ZnO micro and nanoparticle powders on L929 mouse cells

    SciTech Connect

    Sendi, Rabab Khalid E-mail: shahromx@hotmail.com Mahmud, Shahrom E-mail: shahromx@hotmail.com Munshi, Ayman E-mail: shahromx@hotmail.com; Seeni, Azman

    2014-10-24

    The present study investigated the cytotoxicity of ZnO?Bi{sub 2}O{sub 3}?Mn{sub 2}O{sub 3}-varistors. To this effect, ZnO?Bi{sub 2}O{sub 3}?Mn{sub 2}O{sub 3} varistors fabricated from ZnO micro-and nanoparticle powders are prepared via conventional ceramic processing method. The effects of ZnO particle size on the properties of ZnO varistors are also investigated. The strong solid-state reaction during sintering may be attributed to the high surface area of the 20 nm ZnO nanoparticles that promote strong surface reaction. The intensity of XRD peaks reflected the high degree of crystallinity of the ZnO nanoparticles. However, the width of the peaks in case of ZnO nanoparticles has increased due to the quantum size effect. The cytotoxicity evaluation of ZnO varistor was conducted on mouse connective tissue fibroblast cells (L929) using Trypan Blue Exclusion Assay analysis. The results show that the four types of varistor samples lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the various concentration range and the toxic effects are obviously displayed in high concentration samples. 20nm-VDR is the most toxic materials followed by 40nm-VDR, P8-VDR, and W4-VDR in a descending order.

  5. In vitro cytotoxicity tests of ZnO - Bi2O3- Mn2O3-based varistor fabricated from ZnO micro and nanoparticle powders on L929 mouse cells

    NASA Astrophysics Data System (ADS)

    Sendi, Rabab Khalid; Mahmud, Shahrom; Munshi, Ayman; Seeni, Azman

    2014-10-01

    The present study investigated the cytotoxicity of ZnO - Bi2O3- Mn2O3-varistors. To this effect, ZnO - Bi2O3- Mn2O3 varistors fabricated from ZnO micro-and nanoparticle powders are prepared via conventional ceramic processing method. The effects of ZnO particle size on the properties of ZnO varistors are also investigated. The strong solid-state reaction during sintering may be attributed to the high surface area of the 20 nm ZnO nanoparticles that promote strong surface reaction. The intensity of XRD peaks reflected the high degree of crystallinity of the ZnO nanoparticles. However, the width of the peaks in case of ZnO nanoparticles has increased due to the quantum size effect. The cytotoxicity evaluation of ZnO varistor was conducted on mouse connective tissue fibroblast cells (L929) using Trypan Blue Exclusion Assay analysis. The results show that the four types of varistor samples lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the various concentration range and the toxic effects are obviously displayed in high concentration samples. 20nm-VDR is the most toxic materials followed by 40nm-VDR, P8-VDR, and W4-VDR in a descending order.

  6. Communication: Nanosize-induced restructuring of Sn nanoparticles

    SciTech Connect

    Sabet, Sareh; Kaghazchi, Payam

    2014-05-21

    Stabilities and structures of ?- and ?-Sn nanoparticles are studied using density functional theory. Results show that ?-Sn nanoparticles are more stable. For both phases of Sn, nanoparticles smaller than 1 nm (?48 atoms) are amorphous and have a band gap between 0.4 and 0.7 eV. The formation of band gap is found to be due to amorphization. By increasing the size of Sn nanoparticles (1–2.4 nm), the degree of crystallization increases and the band gap decreases. In these cases, structures of the core of nanoparticles are bulk-like, but structures of surfaces on the faces undergo reconstruction. This study suggests a strong size dependence of electronic and atomic structures for Sn nanoparticle anodes in Li-ion batteries.

  7. A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity.

    PubMed

    Zhou, Xiangyan; Dorn, Marco; Vogt, Jürgen; Spemann, Daniel; Yu, Wei; Mao, Zhengwei; Estrela-Lopis, Irina; Donath, Edwin; Gao, Changyou

    2014-08-01

    Noble-metal nanoparticles (NPs) especially prepared from gold and silver have been combined on the surface of graphene to obtain graphene-based nanocomposites for novel functions in enhanced performance in bio-imaging, cancer detection and therapy. However, little is known about their cellular uptake, especially the intracellular quantity which plays a critical role in determining their functions and safety. Therefore, we prepared covalently conjugated GO/Au and GO/Ag composites by immobilizing Au and Ag nanoparticles on GO sheets pre-functionalized with disulfide bonds, respectively. The cellular uptake of these composites was quantitatively studied by means of an ion beam microscope (IBM) to determine the metal content in human lung cancer cells (A549 cells) and liver hepatocellular carcinoma cells (HepG2 cells). The cell uptake was also studied by inductively coupled plasma mass spectrometry (ICP-MS), which is one of the most sensitive techniques being applied to cell suspensions, for comparison. Toxicity, one of the consequences of cellular uptake of GO based composites, was studied as well. The potential toxicity mechanism was also suggested based on the results of intracellular quantification of the nanomaterials. PMID:24962780

  8. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake.

    PubMed

    Rajeshwari, A; Kavitha, S; Alex, Sruthi Ann; Kumar, Deepak; Mukherjee, Anita; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2015-07-01

    The commercial usage of Al2O3 nanoparticles (Al2O3 NPs) has gone up significantly in the recent times, enhancing the risk of environmental contamination with these agents and their consequent adverse effects on living systems. The current study has been designed to evaluate the cytogenetic potential of Al2O3 NPs in Allium cepa (root tip cells) at a range of exposure concentrations (0.01, 0.1, 1, 10, and 100 ?g/mL), their uptake/internalization profile, and the oxidative stress generated. We noted a dose-dependent decrease in the mitotic index (42 to 28 %) and an increase in the number of chromosomal aberrations. Various chromosomal aberrations, e.g. sticky, multipolar and laggard chromosomes, chromosomal breaks, and the formation of binucleate cells, were observed by optical, fluorescence, and confocal laser scanning microscopy. FT-IR analysis demonstrated the surface chemical interaction between the nanoparticles and root tip cells. The biouptake of Al2O3 in particulate form led to reactive oxygen species generation, which in turn probably contributed to the induction of chromosomal aberrations. PMID:25794585

  9. Anaerobiosis-Induced Loss of Cytotoxicity Is Due to Inactivation of Quorum Sensing in Pseudomonas aeruginosa ? †

    PubMed Central

    Lee, Kang-Mu; Yoon, Mi Young; Park, Yongjin; Lee, Joon-Hee; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, an opportunistic pathogen of clinical importance, causes chronic airway infections in patients with cystic fibrosis (CF). Current literature suggests that pockets with reduced oxygen tension exist in the CF airway mucus. However, virulence features of this opportunistic pathogen under such conditions are largely unknown. Cell-free supernatant of the standard laboratory P. aeruginosa strain PAO1 obtained from anaerobic culture, but not aerobic culture, failed to kill A549 human airway epithelial cells. Further investigation revealed that this reduced cytotoxicity upon anaerobiosis was due to the suppressed secretion of elastase, a virulence factor controlled by P. aeruginosa quorum sensing (QS). Both a lacZ-reporter fusion assay and quantitative real-time PCR (RT-PCR) analysis demonstrated that transcription of the elastase-encoding lasB gene was substantially decreased during anaerobic growth compared with aerobic growth. Moreover, transcription of other genes controlled by the LasI/R QS system, such as rhlR, vqsR, mvfR, and rsaL, was also repressed under the same anaerobic growth conditions. Importantly, synthesis of 3-oxo-C12-HSL (PAI-1), an autoinducer molecule that mediates induction of the LasI/R QS system, was >22-fold decreased during anaerobic growth while C4-HSL (PAI-2), which mediates RhlI/R QS, was nondetectable under the same growth conditions. Transcription of the lasB gene was restored by exogenous supplementation with autoinducers, with PAI-2 more effective than PAI-1 or Pseudomonas quinolone signal (PQS) at restoring transcription of the lasB gene. Together, these results suggest that anaerobiosis deprives P. aeruginosa of the ability to regulate its virulence via QS and this misregulation attenuates the pathogenic potential of this important pathogen. PMID:21555402

  10. Long-term ozone exposure attenuates 1-nitronaphthalene-induced cytotoxicity in nasal mucosa.

    PubMed

    Lee, Myong Gyong; Wheelock, Asa M; Boland, Bridget; Plopper, Charles G

    2008-03-01

    1-Nitronaphthalene (1-NN) and ozone are cytotoxic air pollutants commonly found as components of photochemical smog. The mechanism of toxicity for 1-NN involves bioactivation by cytochrome P450s and subsequent adduction to proteins. Previous studies have shown that 1-NN toxicity in the lung is considerably higher in rats after long-term exposure to ozone compared with the corresponding filtered air-exposed control rats. The aim of the present study was to establish whether long-term exposure to ozone alters the susceptibility of nasal mucosa to the bioactivated toxicant, 1-NN. Adult male Sprague-Dawley rats were exposed to filtered air or 0.8 ppm ozone for 8 hours per day for 90 days, followed by a single treatment with 0, 12.5, or 50.0 mg/kg 1-NN by intraperitoneal injection. The results of the histopathologic analyses show that the nasal mucosa of rats is a target of systemic 1-NN, and that long-term ozone exposure markedly lessens the severity of injury, as well as the protein adduct formation by reactive 1-NN metabolites. The antagonistic effects were primarily seen in the nasal transitional epithelium, which corresponds to the main site of histologic changes attributed to ozone exposure (goblet cell metaplasia and hyperplasia). Long-term ozone exposure did not appear to alter susceptibility to 1-NN injury in other nasal regions. This study shows that long-term ozone exposure has a protective effect on the susceptibility of nasal transitional epithelium to subsequent 1-NN, a result that clearly contrasts with the synergistic toxicological effect observed in pulmonary airway epithelium in response to the same exposure regimen. PMID:17901409

  11. Mitophagy induced by nanoparticle-peptide conjugates enabling an alternative intracellular trafficking route.

    PubMed

    Zhang, Zhaolei; Zhou, Lei; Zhou, Yanqing; Liu, Jinyin; Xing, Xiaoyun; Zhong, Jun; Xu, Guoqiang; Kang, Zhenhui; Liu, Jian

    2015-10-01

    The intracellular behaviors of nanoparticles are fundamentally important for the evaluation of their biosafety and the designs of nano carrier-assisted drug delivery with high therapeutic efficacy. It is still in a great need to discover how functionalized nanoparticles are transported inside the cells, for instance, in a complicated fashion of translocation between different types of cell organelles. Here we report a new understanding of the interactions between nanoparticles and cells by the development of polyoxometalates nanoparticle-peptide conjugates and investigation of their intracellular trafficking behaviors. The as-prepared nanoparticles are featured with a unique combination of fluorescence and high contrast for synchrotron X-ray-based imaging. Functional surface modification with peptides facilitates effective delivery of the nanoparticles onto the target organelle (mitochondria) and subsequent intracellular trafficking in a dynamic mode. Interestingly, our experimental results have revealed that autophagy of mitochondria (mitophagy) can be induced by NP-peptide as a cellular response for recycling the damaged organelles, through molecular mediation associated with the change of mitochondrial membrane potential. The biological effects induced by NP-peptide reciprocally affect the distribution patterns and fates of nanoparticles in the cell metabolism by providing an alternative route of intracellular trafficking. The new understanding of the mutual activities between nanoparticles and cells will enrich our approaches in the development of nanobiotechnology and nano-medicine for disease treatments. PMID:26142776

  12. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

    PubMed Central

    Romero-Urbina, Dulce G; Lara, Humberto H; Velázquez-Salazar, J Jesús; Arellano-Jiménez, M Josefina; Larios, Eduardo; Srinivasan, Anand; Lopez-Ribot, Jose L

    2015-01-01

    Summary Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles.

  13. Dynamics of laser induced metal nanoparticle and pattern formation

    SciTech Connect

    Peláez, R. J. Kuhn, T.; Rodríguez, C. E.; Afonso, C. N.

    2015-02-09

    Discontinuous metal films are converted into either almost round, isolated, and randomly distributed nanoparticles (NPs) or fringed patterns of alternate non transformed film and NPs by exposure to single pulses (20?ns pulse duration and 193?nm wavelength) of homogeneous or modulated laser beam intensity. The dynamics of NPs and pattern formation is studied by measuring in real time the transmission and reflectivity of the sample upon homogeneous beam exposure and the intensity of the diffraction orders 0 and 1 in transmission configuration upon modulated beam exposure. The results show that laser irradiation induces melting of the metal either completely or at regions around intensity maxima sites for homogeneous and modulated beam exposure, respectively, within ?10?ns. The aggregation and/or coalescence of the initially irregular metal nanostructures is triggered upon melting and continues after solidification (estimated to occur at ?80?ns) for more than 1??s. The present results demonstrate that real time transmission rather than reflectivity measurements is a valuable and easy-to-use tool for following the dynamics of NPs and pattern formation. They provide insights on the heat-driven processes occurring both in liquid and solid phases and allow controlling in-situ the process through the fluence. They also evidence that there is negligible lateral heat release in discontinuous films upon laser irradiation.

  14. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation

    PubMed Central

    Nemmar, Abderrahim; Albarwani, Sulayma; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Attoub, Samir; Ali, Badreldin H

    2014-01-01

    Amorphous silica nanoparticles (SiNPs) are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours) systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg). Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1? concentration. However, tumor necrosis factor ? concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane, thiobarbituric acid reactive substances, catalase, and glutathione S-transferase, were not affected by SiNPs. The in vitro exposure of human umbilical vein endothelial cells to SiNPs showed a reduced cellular viability, and more potency was seen with 50 nm SiNPs. Both sizes of SiNPs caused a decrease in endothelium-dependent relaxation of isolated small mesenteric arteries. We conclude that amorphous SiNPs cause systemic inflammation and coagulation events, and alter vascular reactivity. Overall, the effects observed with 50 nm SiNPs were more pronounced than those with 500 nm SiNPs. These findings provide new insight into the deleterious effect of amorphous SiNPs on vascular homeostasis. PMID:24936130

  15. Semihydrophobic nanoparticle-induced disruption of supported lipid bilayers: specific ion effect.

    PubMed

    Jing, Benxin; Abot, Rosary C T; Zhu, Yingxi

    2014-11-20

    The interaction of nanoparticles with cell membranes is critical to understand and control the structural change and molecular transport of cell membranes for medicines and medical diagnostics, in which hydrophobic interaction is often involved. We examine the specific ion effect on the interaction of semihydrophobic nanoparticle with zwitterionic phospholipid bilayer in aqueous media added with different types of salts. Specifically, we compare the effect of different anions or cations on the adsorption of carboxyl-functionalized polystyrene nanoparticle on supported lipid bilayer and its induced bilayer disruption. By adding different anions at the same ionic concentration to the nanoparticle-lipid bilayer interface, we observe that the growth rate of nanoparticle-induced lipid-poor regions follows the exact Hofmeister anion order of CH3COO(-) > Cl(-) > NO3(-) ? SCN(-), suggesting the regulated hydrophobic interaction by anions. In contrast, the specific cation effect on nanoparticle-induced disruption rate of lipid bilayer does not follow the Hofmeister cation order and instead exhibits a trend of Cs(+) ? Rb(+) > Na(+) ? N(CH3)4(+). It is suggested that the effect of specific ions can be exploited as a simple and efficient approach to modify the nanoparticles-biomembrane interactions with the implication from drug delivery to nontoxic nanomaterial design. PMID:25337793

  16. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle

    PubMed Central

    Zhen, Yu-Rong; Neumann, Oara; Polman, Albert; García de Abajo, F. Javier

    2013-01-01

    When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor -a “nanobubble”- surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micron sized bubbles resulting from the coalescence of nanoparticle-“bound” vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications. PMID:23517407

  17. Mitigation of statins-induced cytotoxicity and mitochondrial dysfunction by L-carnitine in freshly-isolated rat hepatocytes

    PubMed Central

    Abdoli, N.; Azarmi, Y.; Eghbal, M.A.

    2015-01-01

    Statins are widely used as anti hyperlipidemic agents. Hepatotoxicity is one of their adverse effects appearing in some patients. No protective agents have yet been developed to treat statins-induced hepatotoxicity. Different investigations have suggested L-carnitine as a hepatoprotective agent against drugs-induced toxicity. This study was designed to evaluate the effect of L-carnitine on the cytotoxic effects of statins on the freshly-isolated rat hepatocytes. Hepatocytes were isolated from male Sprague-Dawley rats by collagenase enzyme perfusion via portal vein. Cells were treated with the different concentrations of statins (simvastatin, lovastatin and atorvastatin), alone or in combination with L-carnitine. Cell death, reactive oxygen species (ROS) formation, lipid peroxidation, and mitochondrial depolarization were assessed as toxicity markers. Furthermore, the effects of statins on cellular reduced and oxidized glutathione reservoirs were evaluated. In accordance with previous studies, an elevation in ROS formation, cellular oxidized glutathione and lipid peroxidation were observed after statins administration. Moreover, a decrease in cellular reduced glutathione level and cellular mitochondrial membrane potential collapse occurred. L-carnitine co-administration decreased the intensity of aforementioned toxicity markers produced by statins treatment. This study suggests the protective role of L-carnitine against statins-induced cellular damage probably through its anti oxidative and reactive radical scavenging properties as well as its effects on sub cellular components such as mitochondria. The mechanism of L-carnitine protection may be related to its capacity to facilitate fatty acid entry into mitochondria; possibly adenosine tri-phosphate or the reducing equivalents are increased, and the toxic effects of statins toward mitochondria are encountered. PMID:26487891

  18. Mitochondrial vulnerability and increased susceptibility to nutrient-induced cytotoxicity in fibroblasts from leigh syndrome French canadian patients.

    PubMed

    Burelle, Yan; Bemeur, Chantal; Rivard, Marie-Eve; Thompson Legault, Julie; Boucher, Gabrielle; Morin, Charles; Coderre, Lise; Des Rosiers, Christine

    2015-01-01

    Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects. PMID:25835550

  19. Mitochondrial Vulnerability and Increased Susceptibility to Nutrient-Induced Cytotoxicity in Fibroblasts from Leigh Syndrome French Canadian Patients

    PubMed Central

    Burelle, Yan; Thompson Legault, Julie; Boucher, Gabrielle; Morin, Charles; Coderre, Lise; Des Rosiers, Christine

    2015-01-01

    Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstra