Sample records for nanoparticles magnetic nanoparticles

  1. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  2. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  3. Cancer hyperthermia using magnetic nanoparticles.

    PubMed

    Kobayashi, Takeshi

    2011-11-01

    Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increased to above 43°C, which causes necrosis of cancer cells, but does not damage surrounding normal tissue. Among magnetic nanoparticles available, magnetite has been extensively studied. Recent years have seen remarkable advances in magnetite-nanoparticle-mediated hyperthermia; both functional magnetite nanoparticles and alternating-magnetic-field generators have been developed. In addition to the expected tumor cell death, hyperthermia treatment has also induced unexpected biological responses, such as tumor-specific immune responses as a result of heat-shock protein expression. These results suggest that hyperthermia is able to kill not only local tumors exposed to heat treatment, but also tumors at distant sites, including metastatic cancer cells. Currently, several research centers have begun clinical trials with promising results, suggesting that the time may have come for clinical applications. This review describes recent advances in magnetite nanoparticle-mediated hyperthermia. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jian, Z. F.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Wu, C. C.; Lee, Y. H.

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  5. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  6. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  7. Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Attaluri, Anilchandra

    Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass

  8. Non-rare earth magnetic nanoparticles

    DOEpatents

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  9. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  10. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

    PubMed

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-04-10

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  11. Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery

    PubMed Central

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-01-01

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release. PMID:25867479

  12. Magnetic nanoparticle temperature estimation.

    PubMed

    Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W

    2009-05-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  13. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  14. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  15. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron

  16. Magnetic nanoparticles based cancer therapy: current status and applications.

    PubMed

    Zhang, Huan; Liu, Xiao Li; Zhang, Yi Fan; Gao, Fei; Li, Ga Long; He, Yuan; Peng, Ming Li; Fan, Hai Ming

    2018-04-01

    Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging (MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.

  17. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  18. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    PubMed

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  19. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to

  1. Blood clot detection using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Friedman, Bruce; Berwin, Brent; Shi, Yipeng; Ness, Dylan B.; Weaver, John B.

    2017-05-01

    Deep vein thrombosis, the development of blood clots in the peripheral veins, is a very serious, life threatening condition that is prevalent in the elderly. To deliver proper treatment that enhances the survival rate, it is very important to detect thrombi early and at the point of care. We explored the ability of magnetic particle spectroscopy (MSB) to detect thrombus via specific binding of aptamer functionalized magnetic nanoparticles with the blood clot. MSB uses the harmonics produced by nanoparticles in an alternating magnetic field to measure the rotational freedom and, therefore, the bound state of the nanoparticles. The nanoparticles' relaxation time for Brownian rotation increases when bound [A.M. Rauwerdink and J. B. Weaver, Appl. Phys. Lett. 96, 1 (2010)]. The relaxation time can therefore be used to characterize the nanoparticle binding to thrombin in the blood clot. For longer relaxation times, the approach to saturation is more gradual reducing the higher harmonics and the harmonic ratio. The harmonic ratios of nanoparticles conjugated with anti-thrombin aptamers (ATP) decrease significantly over time with blood clot present in the sample medium, compared with nanoparticles without ATP. Moreover, the blood clot removed from the sample medium produced a significant MSB signal, indicating the nanoparticles are immobilized on the clot. Our results show that MSB could be a very useful non-invasive, quick tool to detect blood clots at the point of care so proper treatment can be used to reduce the risks inherent in deep vein thrombosis.

  2. Percolation Magnetism in Ferroelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  3. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  4. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  5. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  6. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.

    PubMed

    Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M

    2009-12-22

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

  7. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  8. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  9. Quantitative Characterization of Magnetic Mobility of Nanoparticle in Solution-Based Condition.

    PubMed

    Rodoplu, Didem; Boyaci, Ismail H; Bozkurt, Akif G; Eksi, Haslet; Zengin, Adem; Tamer, Ugur; Aydogan, Nihal; Ozcan, Sadan; Tugcu-Demiröz, Fatmanur

    2015-01-01

    Magnetic nanoparticles are considered as the ideal substrate to selectively isolate target molecules or organisms from sample solutions in a wide variety of applications including bioassays, bioimaging and environmental chemistry. The broad array of these applications in fields requires the accurate magnetic characterization of nanoparticles for a variety of solution based-conditions. Because the freshly synthesized magnetic nanoparticles demonstrated a perfect magnetization value in solid form, they exhibited a different magnetic behavior in solution. Here, we present simple quantitative method for the measurement of magnetic mobility of nanoparticles in solution-based condition. Magnetic mobility of the nanoparticles was quantified with initial mobility of the particles using UV-vis absorbance spectroscopy in water, ethanol and MES buffer. We demonstrated the efficacy of this method through a systematic characterization of four different core-shell structures magnetic nanoparticles over three different surface modifications. The solid nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and saturation magnetization (Ms). The surfaces of the nanoparticles were functionalized with 11-mercaptoundecanoic acid and bovine serum albumin BSA was selected as biomaterial. The effect of the surface modification and solution media on the stability of the nanoparticles was monitored by zeta potentials and hydrodynamic diameters of the nanoparticles. Results obtained from the mobility experiments indicate that the initial mobility was altered with solution media, surface functionalization, size and shape of the magnetic nanoparticle. The proposed method easily determines the interactions between the magnetic nanoparticles and their surrounding biological media, the magnetophoretic responsiveness of nanoparticles and the initial mobilities of the nanoparticles.

  10. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-07

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.

  11. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Maldonado-Camargo, Lorena; Unni, Mythreyi; Rinaldi, Carlos

    2017-01-01

    Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis.

  12. Tailoring magnetic nanoparticle for transformers application.

    PubMed

    Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C

    2010-02-01

    In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.

  13. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths.

    PubMed

    McGill, Shayna L; Cuylear, Carla L; Adolphi, Natalie L; Osiński, Marek; Smyth, Hugh D C

    2009-03-01

    The purpose of this study is to investigate the potential of magnetic nanoparticles for enhancing drug delivery using a low oscillating magnetic field (OMF) strength. We investigated the ability of magnetic nanoparticles to cause disruption of a viscous biopolymer barrier to drug delivery and the potential to induce triggered release of drug conjugated to the surfaces of these particles. Various magnetic nanoparticles were screened for thermal response under a 295-kHz OMF with an amplitude of 3.1 kA/m. Based on thermal activity of particles screened, we selected the nanoparticles that displayed desired characteristics for evaluation in a simplified model of an extracellular barrier to drug delivery, using lambda DNA/HindIII. Results indicate that nanoparticles could be used to induce DNA breakage to enhance local diffusion of drugs, despite low temperatures of heating. Additional studies showed increased diffusion of quantum dots in this model by single-particle tracking methods. Bimane was conjugated to the surface of magnetic nanoparticles. Fluorescence and transmission electron microscope images of the conjugated nanoparticles indicated little change in the overall appearance of the nanoparticles. A release study showed greater drug release using OMF, while maintaining low bulk heating of the samples (T = 30 degrees C). This study indicates that lower magnetic field strengths may be successfully utilized for drug delivery applications as a method for drug delivery transport enhancement and drug release switches.

  14. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  15. Thermal potentiation of chemotherapy by magnetic nanoparticles

    PubMed Central

    Torres-Lugo, Madeline; Rinaldi, Carlos

    2014-01-01

    Clinical studies have demonstrated the effectiveness of hyperthermia as an adjuvant for chemotherapy and radiotherapy. However, significant clinical challenges have been encountered, such as a broader spectrum of toxicity, lack of patient tolerance, temperature control and significant invasiveness. Hyperthermia induced by magnetic nanoparticles in high-frequency oscillating magnetic fields, commonly termed magnetic fluid hyperthermia, is a promising form of heat delivery in which thermal energy is supplied at the nanoscale to the tumor. This review discusses the mechanisms of heat dissipation of iron oxide-based magnetic nanoparticles, current methods and challenges to deliver heat in the clinic, and the current work related to the use of magnetic nanoparticles for the thermal-chemopotentiation of therapeutic drugs. PMID:24074390

  16. Magnetic nanoparticles for medical applications: Progress and challenges

    NASA Astrophysics Data System (ADS)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Hempelmann, R.; Caltun, O. F.

    2013-11-01

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose ZnxCo1-xFe2O4 ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  17. Standardisation of magnetic nanoparticles in liquid suspension

    NASA Astrophysics Data System (ADS)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-09-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.

  18. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  19. Targeted drug delivery to the brain using magnetic nanoparticles.

    PubMed

    Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

    2015-01-01

    Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.

  20. Characterization of Magnetic NiFe Nanoparticles with Controlled Bimetallic Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; Chi, Yanxiu; Shan, Shiyao

    2014-02-25

    The exploration of the magnetic properties of bimetallic alloy nanoparticles for various technological applications requires the ability to control the morphology, composition, and surface properties. In this report, we describe new findings of an investigation of the morphology and composition of NiFe alloy nanoparticles synthesized under controlled conditions. The controllability over the bimetallic composition has been demonstrated by the observation of an approximate linear relationship between the composition in the nanoparticles and in the synthetic feeding. The morphology of the NiFe nanoparticles is consistent with an fcc-type alloy, with the lattice strain increasing linearly with the iron content in themore » nanoparticles. The alloy nanoparticles exhibit remarkable resistance to air oxidation in comparison with Ni or Fe particles. The thermal stability and the magnetic properties of the as-synthesized alloy nanoparticles are shown to depend on the composition. The alloy nanoparticles have also be sown to display low saturation magnetization and coercivity values in comparison with the Ni nanoparticles, in line with the superparamagnetic characteristic. These findings have important implications for the design of stable and controllable magnetic nanoparticles for various technological applications.« less

  1. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  2. Magnetic nanoparticles: In vivo cancer diagnosis and therapy.

    PubMed

    Lima-Tenório, Michele K; Pineda, Edgardo A Gómez; Ahmad, Nasir M; Fessi, Hatem; Elaissari, Abdelhamid

    2015-09-30

    Recently, significant research efforts have been devoted to the finding of efficient approaches in order to reduce the side effects of traditional cancer therapy and diagnosis. In this context, magnetic nanoparticles have attracted much attention because of their unique physical properties, magnetic susceptibility, biocompatibility, stability and many more relevant characteristics. Particularly, magnetic nanoparticles for in vivo biomedical applications need to fulfill special criteria with respect to size, size distribution, surface charge, biodegradability or bio-eliminability and optionally bear well selected ligands for specific targeting. In this context, many routes have been developed to synthesize these materials, and tune their functionalities through intriguing techniques including functionalization, coating and encapsulation strategies. In this review article, the use of magnetic nanoparticles for cancer therapy and diagnosis is evaluated addressing potential applications in MRI, drug delivery, hyperthermia, theranostics and several other domains. In view of potential biomedical applications of magnetic nanoparticles, the review focuses on the most recent progress made with respect to synthetic routes to produce magnetic nanoparticles and their salient accomplishments for in vivo cancer diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  4. Towards magnetic-enhanced cellular uptake, MRI and chemotherapeutics delivery by magnetic mesoporous silica nanoparticles.

    PubMed

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-10-01

    A type of nanoparticle with three functional modalities was prepared with the aim of providing a multifunctional drug delivery system. The nanoparticle was 50 nm in size, with 2.7 nm mesopores and a magnetic nanocrystal core, which was further doped with FITC to enable the tracking of cellular uptake. We demonstrated that the internalization of the nanoparticles in tumor cells could be enhanced by applying an external magnetic field and furthermore, this kind of nanoparticle could be used in magnetic targeted drug delivery. With high transverse relaxivity, the magnetic nanoparticles shortened proton relaxation time and induced high magnetic resonance imaging contrast in tumor cells. Studies on anticancer drug loading and delivery capacity of anticancer drugs also showed that this type of nanoparticles could load water-soluble doxorubicin, and produce a prominent inhibitive effect against tumor cells. Taken together, the presented nanoparticles could become a promising agent in cancer theranostics.

  5. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  6. Magnetic nanoparticles for medical applications: Progress and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.

    2013-11-13

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignantmore » or benign tumors. For this purpose Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.« less

  7. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy

    PubMed Central

    Uthaman, Saji; Cherukula, Kondareddy; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery. PMID:26078971

  8. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  9. Magnetic induced heating of nanoparticle solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S. Hunyadi; Brown, M.; Coopersmith, K.

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  10. Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam

    2011-03-01

    Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).

  11. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage.

    PubMed

    Frey, Natalie A; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-09-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe(2)O(4), Co, Fe, CoFe, FePt and SmCo(5) nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications.

  12. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.

    PubMed

    Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R

    2018-05-25

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  13. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    NASA Astrophysics Data System (ADS)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  14. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles

    PubMed Central

    Mehrmohamamdi, Mohammad; Qu, Min; Ma, Li L.; Romanovicz, Dwight K.; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular trafficking of nanoparticles – an important part of cell-nanoparticle interaction, has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique – pulsed magneto-motive ultrasound (pMMUS), to identify intracellular trafficking of endocytosed magnetic nanoparticles. In pulsed magneto-motive ultrasound imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular aggregation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular trafficking non-invasively and in real-time. PMID:21926454

  15. Simulations of magnetic nanoparticle Brownian motion

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2012-01-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature. PMID:23319830

  16. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  17. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  18. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-05

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  19. Enhanced drug transport through alginate biofilms using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    McGill, Shayna L.; Cuylear, Carla; Adolphi, Natalie L.; Osinski, Marek; Smyth, Hugh

    2009-02-01

    The development of microbiological biofilms greatly reduces the efficacy of antibiotic therapies and is a serious problem in chronic infection and for implantable medical devices. We investigated the potential of superparamagnetic nanoparticles to increase transport through in vitro models of alginate biofilms. An in vitro alginate biofilm model was developed to mimic the composition of in vivo samples of P. aeruginosa infections. Transport through this model biofilm was performed using both bulk diffusion methods and single particle tracking techniques in the presence and absence of an external magnetic field. Bulk diffusion of nanoparticles through the biofilm was significantly enhanced in the presence of a magnetic field, both visually and quantitatively. Nanoparticle trajectories also showed transport increases were significantly higher when magnetic fields were applied. We also showed that surface chemistry (cationic, anioni, or neutral) of the nanoparticles significantly influenced transport rates. Finally, nanoparticle size also influenced the transport rates and variability of transport rates through the biofilm. In these first studies using magnetic nanoparticles in bacterial biofilms, we demonstrate that transport enhancement can be achieved and further studies are warranted.

  20. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  1. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia.

    PubMed

    Kim, Dong-Hyun; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Lee, Yong-Keun

    2009-01-01

    The delivery of hyperthermic thermoseeds to a specific target site with minimal side effects is an important challenge in targeted hyperthermia, which employs magnetic method and functional polymers. An external magnetic field is used to control the site-specific targeting of the magnetic nanoparticles. Polymer-coated magnetic nanoparticles can confer a higher affinity to the biological cell membranes. In this study, uncoated, chitosan-coated, and starch-coated magnetic nanoparticles were synthesized for use as a hyperthermic thermoseed. Each sample was examined with respect to their applications to hyperthermia using XRD, VSM, and FTIR. In addition, the temperature changes under an alternating magnetic field were observed. As in vitro tests, the magnetic responsiveness of chitosan- and starch-coated magnetite was determined by a simple blood vessel model under various intensities of magnetic field. L929 normal cells and KB carcinoma cells were used to examine the cytotoxicity and affinity of each sample using the MTT method. The chitosan-coated magnetic nanoparticles generated a higher DeltaT of 23 degrees C under an AC magnetic field than the starch-coated magnetite, and the capturing rate of the particles was 96% under an external magnetic field of 0.4 T. The highest viability of L929 cells was 93.7%. Comparing the rate of KB cells capture with the rate of L929 cells capture, the rate of KB cells capture relatively increased with 10.8% in chitosan-coated magnetic nanoparticles. Hence, chitosan-coated magnetic nanoparticles are biocompatible and have a selective affinity to KB cells. The targeting of magnetic nanoparticles in hyperthermia was improved using a controlled magnetic field and a chitosan-coating. Therefore, chitosan-coated magnetic nanoparticles are expected to be promising materials for use in magnetic targeted hyperthermia. 2008 Wiley Periodicals, Inc.

  2. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  3. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.

    PubMed

    Jeon, Yoon Tae; Moon, Je Yong; Lee, Gang Ho; Park, Jeunghee; Chang, Yongmin

    2006-01-26

    We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.

  4. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin.

    PubMed

    Gruskiene, Ruta; Krivorotova, Tatjana; Staneviciene, Ramune; Ratautas, Dalius; Serviene, Elena; Sereikaite, Jolanta

    2018-05-08

    Nisin is a known bacteriocin approved as a food additive for food preservation. It exhibits a wide spectrum antimicrobial activity against Gram-positive bacteria. Iron oxide magnetic nanoparticles were synthesized and characterized by X-ray diffraction method. A main part of iron oxide nanoparticles was found to be maghemite though a small quantity of magnetite could also be present. Magnetic nanoparticles were stabilized by citric, ascorbic, gallic or glucuronic acid coating. Stable iron oxide magnetic nanoparticles were functionalized by nisin using a simple and low cost adsorption method. Nisin loading was confirmed by FT-IR spectra, thermogravimetric analysis, dynamic light scattering and atomic force microscopy methods. Nisin-loaded iron oxide magnetic nanoparticles were stable at least six weeks as judged by the measurements of zeta-potential and hydrodynamic diameter. The antimicrobial activity of nisin-loaded iron oxide magnetic nanoparticles was demonstrated toward Gram-positive bacteria. Functionalized nanoparticles could therefore find the application as antimicrobials in innovative and emerging technologies based on the magnetic field. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    PubMed

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  6. Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects

    NASA Astrophysics Data System (ADS)

    Beato-López, J. J.; Pérez-Landazábal, J. I.; Gómez-Polo, C.

    2017-04-01

    In this work, a sensitive tool to detect magnetic nanoparticles (Fe3O4) based on a non-linear Giant Magnetoimpedance (GMI) effect is presented. The GMI sensor is designed with four nearly zero magnetostrictive ribbons connected in series and was analysed as a function of a constant external magnetic field and exciting frequency. The influence of the magnetic nanoparticles deposited on the ribbon surface was characterized using the first (fundamental) and second (non-linear) harmonics of the magnetoinductive voltage. The results show a clear enhancement of the sensor response in the high magnetic field region (H = 1.5 kA/m) as a consequence of the stray field generated by the magnetic nanoparticles on the GMI ribbons' surface. The highest sensitivity ratios are obtained for the non-linear component in comparison with the fundamental response. The results open a new research strategy in magnetic nanoparticle detection.

  7. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamicmore » light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.« less

  8. Functional Nanoparticles for Magnetic Resonance Imaging

    PubMed Central

    Mao, Xinpei; Xu, Jiadi; Cui, Honggang

    2016-01-01

    Nanoparticle-based magnetic resonance imaging (MRI) contrast agents have received much attention over the past decade. By virtue of a high payload of magnetic moieties, enhanced accumulation at disease sites, and a large surface area for additional modification with targeting ligands, nanoparticle-based contrast agents offer promising new platforms to further enhance the high resolution and sensitivity of MRI for various biomedical applications. T2* superparamagnetic iron oxide nanoparticles (SPIONs) first demonstrated superior improvement on MRI sensitivity. The prevailing SPION attracted growing interest in the development of refined nanoscale versions of MRI contrast agents. Afterwards, T1-based contrast agents were developed, and became the most studied subject in MRI due to the positive contrast they provide that avoids the susceptibility associated with MRI signal reduction. Recently, chemical exchange saturation transfer (CEST) contrast agents have emerged and rapidly gained popularity. The unique aspect of CEST contrast agents is that their contrast can be selectively turned “on” and “off” by radiofrequency (RF) saturation. Their performance can be further enhanced by incorporating a large number of exchangeable protons into well-defined nanostructure. Besides activatable CEST contrast agents, there is growing interest in developing nanoparticle-based activatable MRI contrast agents responsive to stimuli (pH, enzyme, etc.), which improves sensitivity and specificity. In this review, we summarize the recent development of various types of nanoparticle-based MRI contrast agents, and have focused our discussions on the key advantages of introducing nanoparticles in MRI. PMID:27040463

  9. Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy

    PubMed Central

    Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyam, Jayanth

    2015-01-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. PMID:23591395

  10. Magnetic Nanoparticles for Multi-Imaging and Drug Delivery

    PubMed Central

    Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

    2013-01-01

    Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

  11. Heating efficiency in magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison E.; Evans, Benjamin A.

    2014-03-01

    Magnetic nanoparticles for hyperthermic treatment of cancers have gained significant attention in recent years. In magnetic hyperthermia, three independent mechanisms result in thermal energy upon stimulation: Néel relaxation, Brownian relaxation, and hysteresis loss. The relative contribution of each is strongly dependent on size, shape, crystalline anisotropy, and degree of aggregation or agglomeration of the nanoparticles. We review the effects of each of these physical mechanisms in light of recent experimental studies and suggest routes for progress in the field.

  12. Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy

    PubMed Central

    Jędrzak, Artur; Szutkowski, Kosma; Grześkowiak, Bartosz F.; Markiewicz, Roksana; Jesionowski, Teofil; Jurga, Stefan

    2018-01-01

    Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine. PMID:29547559

  13. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.

    PubMed

    Tao, Cuilian; Zhu, Yufang

    2014-11-07

    Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient cell uptake ability. MMS nanoparticles exhibited a sustained drug release in the medium of pH 5.0, but a very slow release in the medium of pH 7.4. On the other hand, MMS nanoparticles could controllably generate heat to reach the hyperthermia temperature within a short time upon exposure to an alternating magnetic field due to the superparamagnetic behavior and controllable magnetization. Therefore, MMS nanoparticles could provide a promising multifunctional platform for the combination of chemotherapy and hyperthermia for cancer therapy.

  14. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  15. Understanding the physics of magnetic nanoparticles and their applications in the biomedical field

    NASA Astrophysics Data System (ADS)

    Laha, Suvra Santa

    The study of magnetic nanoparticles is of great interest because of their potential uses in magnetic-recording, medical diagnostic and therapeutic applications. Additionally, they also offer an opportunity to understand the physics underlying the complex behavior exhibited by these materials. Two of the most important relaxation phenomena occurring in magnetic nanoparticles are superparamagnetic blocking and spin-glass-like freezing. In addition to features attributed to superparamagnetism, these nanoparticles can also exhibit magnetic relaxation effects at very low temperatures (≤ 50 K). Our studies suggest that all structural defects, and not just surface spins, are responsible for the low-temperature glass-like relaxation observed in many magnetic nanoparticles. The characteristic dipolar interaction energy existing in an ensemble of magnetic nanoparticles does not apparently depend on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution. Our findings revealed that incorporating a small percentage of boron can stabilize the spinel structure in Mn 3O4 nanoparticles. We have also demonstrated that the dipolar interactions between the magnetic cores can be tuned by introducing non-magnetic nanoparticles. In particular, we studied the magnetic properties of Gd-doped Fe3O4 nanoparticles, a potential applicant for T1--T2 dual-modal MRI contrast agent. We have explored the interactions of BiFeO3 nanoparticles on live cells and the binding of FITC-conjugated Fe3O 4 nanoparticles with artificial lipid membranes to investigate these materials as candidates in medical imaging. Taken together, these studies have advanced our understanding of the fundamental physical principles that governs magnetism in magnetic materials with a focus on developing these nanoparticles for advanced biomedical applications. The materials developed and studied expand the repertoire of tools available for

  16. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Qiang, You; Meyer, Daniel; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald

    2008-04-01

    Nontoxic magnetic nanoparticles (MNPs) have expanded treatment delivery options in the medical world. With a size range from 2to200nm, MNPs can be compiled with most of the small cells and tissues in the living body. Monodispersive iron-iron oxide core-shell nanoparticles were prepared by our novel cluster deposition system. This unique method of preparing core-shell MNPs gives the nanoparticles a very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells. Since core iron enhances the heating effect [L. Baker, Q. Zeing, W. Li, and S. Sullivan, J. Appl. Phys. 99, 08H106 (2006)], the rate of oxidation of iron nanoparticles was also tested in de-ionized water at a certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by x-ray diffraction scan after 0, 24, 48, 96, and 204h. Due to the high magnetic moment offered by MNPs produced in our laboratory, we predict that even at low applied external alternating field, the desired temperature could be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover our MNPs do not require additional transfection agent, providing a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  17. Magnetic nanoparticles as potential candidates for biomedical and biological applications.

    PubMed

    Zeinali Sehrig, Fatemeh; Majidi, Sima; Nikzamir, Nasrin; Nikzamir, Nasim; Nikzamir, Mohammad; Akbarzadeh, Abolfazl

    2016-05-01

    Magnetic iron oxide nanoparticles have become the main candidates for biomedical and biological applications, and the application of small iron oxide nanoparticles in in vitro diagnostics has been practiced for about half a century. Magnetic nanoparticles (MNPs), in combination with an external magnetic field and/or magnetizable grafts, allow the delivery of particles to the chosen target area, fix them at the local site while the medication is released, and act locally. In this review, we focus mostly on the potential use of MNPs for biomedical and biotechnological applications, and the improvements made in using these nanoparticles (NPs) in biological applications.

  18. Magnetic Nanoparticles as Mechanical Actuators of Inner Ear Hair Cells

    DTIC Science & Technology

    2016-01-13

    AFRL-AFOSR-VA-TR-2016-0039 Magnetic nanoparticles as mechanical actuators of inner ear hair cells Dolores Bozovic UNIVERSITY OF CALIFORNIA LOS...4. TITLE AND SUBTITLE Magnetic nanoparticles as mechanical actuators of inner ear hair cells 5a. CONTRACT NUMBER N.A. 5b. GRANT NUMBER FA9550-12...13. SUPPLEMENTARY NOTES 14. ABSTRACT The collaborative project was designed to edevelop the use of magnetic nanoparticles to manipulate auditory hair

  19. Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

    PubMed

    Glover, Amanda L; Bennett, James B; Pritchett, Jeremy S; Nikles, Sarah M; Nikles, David E; Nikles, Jacqueline A; Brazel, Christopher S

    2013-01-01

    The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

  20. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  1. Composite Materials with Magnetically Aligned Carbon Nanoparticles and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Salem, David R. (Inventor); Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor)

    2018-01-01

    The present invention relates to magnetically aligned carbon nanoparticle composites and methods of preparing the same. The composites comprise carbon nanoparticles, host material, magnetically sensitive nanoparticles and surfactant. The composites may have enhanced mechanical, thermal, and/or electrical properties.

  2. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.

    PubMed

    Sadhukha, Tanmoy; Wiedmann, Timothy S; Panyam, Jayanth

    2013-07-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  4. Measuring and controlling the transport of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Stephens, Jason R.

    Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes. Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and

  5. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  6. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.

    PubMed

    Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B

    2016-03-17

    Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.

  7. [Blood detoxification using superparamagnetic nanoparticles (magnetic hemodialysis)].

    PubMed

    Ciochină, Al D; Untu, Alina; Iacob, Gh

    2010-01-01

    The authors present an experimental study realized in order to simulate blood detoxification with the help of supermagnetic nanoparticles. The particles used are red oxide nanoparticles which are considered to be equivalent from a magnetic susceptibility and dynamic diameter point of view to the complex structures of magnetite nanoparticles. Two types of custom HGMS matrices have been used--a threaded one and a micro-spheres one. For testing red oxide particles have been purposefully created to have a lower magnetic susceptibility than magnetite or iron-carbon particles used in other experimental studies. Different concentrations of iron oxide, glycerine and water have been prepared, creating a 3.5 cP viscosity (equivalent to the one of the blood); the concentrations of the prepared solutions varied between 0.16 mg/mL and 2 mg/mL, with the background magnetic field value ranging from 0.25 T to 0.9 T, in order to observer the effectiveness of filtering at different intensities. The efficiency of HGMS filtering in experimental conditions was almost completely successful (99.99%) in all experimental conditions, both with the threaded and micro-spheres matrices. The high gradient magnetic separation system of nanoparticles has maximum efficiency and has the potential of being implemented in a medical blood detoxification device.

  8. Molecules coating magnetic nanoparticles for oil-field applications

    NASA Astrophysics Data System (ADS)

    Zuluaga, Sebastian; Manchanda, Priyanka; Pantelides, Sokrates

    Magnetic nanoparticles have recently attracted significant attention in scientific and industrial communities due to their use in the fields of catalysis, spintronics, biomedical applications, and oil recovery and reservoir characterization. However, these nanoparticles have to be protected with a coating layer of molecules that prevents the nanoparticles from oxidation, which is known to occur in air, and from agglomeration into larger nanoparticles. Therefore, the binding of the molecules to the nanoparticles is critical before a large scale implementation can be done. Here we report results of density functional theory calculations on several molecules (methylamine, acetic acid, boronic acid, ethyl phosphate, and ethyl trihydroxysilane) and magnetic nanoparticles (Fe3O4, NiFe2O4, and Fe3C). We focus on two main points: 1) the bond strength between the organic molecule and the nano particle, and 2) how, H2O and H+ in the oil well may facilitate the desorption of the molecules. The results show that H+ and H2O molecules facilitate the desorption of molecules reducing the bond strength by several eV. On the other hand, the results allow us to identify and design molecules that exhibit the best performance in protecting each nanoparticle. Supported by a Grant from the Petroleum Institute, Abu Dhabi.

  9. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    NASA Astrophysics Data System (ADS)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  10. Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Collantes, Juan-Mari; Garcia, Jose Angel; Plazaola, Fernando; Sandre, Olivier

    2015-09-01

    Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.

  11. NiFe nanoparticles: a soft magnetic material?

    PubMed

    Margeat, Olivier; Ciuculescu, Diana; Lecante, Pierre; Respaud, Marc; Amiens, Catherine; Chaudret, Bruno

    2007-03-01

    Polytetrahedral NiFe nanoparticles with diameters of (2.8+/-0.3) nm have been obtained by hydrogenation of Ni[(COD)(2)] (COD=1,5-cyclooctadiene) and Fe[{N(SiMe(3))(2)}(2)] at 150 degrees C using stearic acid and hexadecylamine as stabilizing ligands. The nanoparticles are superparamagnetic at room temperature and display a blocking temperature of 17.6 K. Their anisotropy (2.7x10(5)J m(-3)) is determined to be more than two orders of magnitude higher than that of the bulk NiFe alloy (10(3)J m(-3)) and is close to that determined for Fe nanoparticles of the same size. Still, they display a magnetization of (1.69+/-0.05) mu(B) per metallic atom, identical to that of the bulk NiFe alloy. Combining the results from X-ray absorption and Mössbauer studies, we evidence a progressive enrichment in iron atoms from the core to the surface of the nanoparticles. These results are discussed in relation to both size and chemical effects. They show the main role played by the enriched Fe surface on the magnetic properties and address the feasibility of soft magnetic materials at the nanoscale.

  12. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery.

    PubMed

    Zhou, Yangbo; Tang, Zhaomin; Shi, Chunli; Shi, Shuai; Qian, Zhiyong; Zhou, Shaobing

    2012-11-01

    Polyethylenimine (PEI) functionalized magnetic nanoparticles were synthesized as a potential non-viral vector for gene delivery. The nanoparticles could provide the magnetic-targeting, and the cationic polymer PEI could condense DNA and avoid in vitro barriers. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, dynamic light scattering measurements, transmission electron microscopy, vibrating sample magnetometer and atomic force microscopy. Agarose gel electrophoresis was used to asses DNA binding and perform a DNase I protection assay. The Alamar blue assay was used to evaluate negative effects on the metabolic activity of cells incubated with PEI modified magnetic nanoparticles and their complexes with DNA both in the presence or absence of an external magnetic field. Flow cytometry and fluorescent microscopy were also performed to investigate the transfection efficiency of the DNA-loaded magnetic nanoparticles in A549 and B16-F10 tumor cells with (+M) or without (-M) the magnetic field. The in vitro transfection efficiency of magnetic nanoparticles was improved obviously in a permanent magnetic field. Therefore, the magnetic nanoparticles show considerable potential as nanocarriers for gene delivery.

  13. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(C o/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  14. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

    PubMed

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  15. Magnetic Nanoparticle Drug Carriers and their Study by Quadrupole Magnetic Field-Flow Fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-01-01

    Magnetic nanoparticle drug carriers continue to attract considerable interest for drug targeting in the treatment of cancers and other pathological conditions. The efficient delivery of therapeutic levels of drug to a target site while limiting nonspecific, systemic toxicity requires optimization of the drug delivery materials, the applied magnetic field, and the treatment protocol. The history and current state of magnetic drug targeting is reviewed. While initial studies involved micron-sized and larger carriers, and work with these microcarriers continues, it is the sub-micron carriers or nanocarriers that are of increasing interest. An aspect of magnetic drug targeting using nanoparticle carriers that has not been considered is then addressed. This aspect involves the variation in the magnetic properties of the nanocarriers. Quadrupole magnetic field-flow fractionation (QMgFFF) is a relatively new technique for characterizing magnetic nanoparticles. It is unique in its capability of determining the distribution in magnetic properties of a nanoparticle sample in suspension. The development and current state of this technique is also reviewed. Magnetic nanoparticle drug carriers have been found by QMgFFF analysis to be highly polydisperse in their magnetic properties, and the strength of response of the particles to magnetic field gradients is predicted to vary by orders of magnitude. It is expected that the least magnetic fraction of a formulation will contribute the most to systemic toxicity, and the depletion of this fraction will result in a more effective drug carrying material. A material that has a reduced systemic toxicity will allow higher doses of cytotoxic drugs to be delivered to the tumor with reduced side effects. Preliminary experiments involving a novel method of refining a magnetic nanoparticle drug carrier to achieve this result are described. QMgFFF is used to characterize the refined and unrefined material. PMID:19591456

  16. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.

    PubMed

    Angelakeris, M

    2017-06-01

    Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    PubMed Central

    2011-01-01

    Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed. PMID:21917152

  18. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine

    PubMed Central

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S.; Khandhar, Amit; Krishnan, Kannan M.

    2015-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body –– an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field. PMID:26586919

  19. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine.

    PubMed

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S; Khandhar, Amit; Krishnan, Kannan M

    2016-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

  20. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

    PubMed Central

    Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.

    2015-01-01

    Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980

  1. Measuring Cytokine Concentrations Using Magnetic Spectroscopy of Nanoparticle Brownian Relaxation

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Shi, Yipeng; Weaver, John

    The magnetic particle spectroscopy is a newly developed non-invasive technique for obtaining information about the nanoparticles' micro environment. In this technique the nanoparticles' magnetization, induced by an alternating magnetic field at various applied frequencies, is processed to analyze rotational freedom of nanoparticles. By analyzing average rotational freedom, it is possible to measure the nanoparticle's relaxation time, and hence get an estimate of the temperature and viscosity of the medium. In molecular concentration sensing, the rotational freedom indicates the number of nanoparticles that are bound by a selected analyte. We have developed microscopic nanoparticles probes to measure the concentration of selected molecules. The nanoparticles are targeted to bind the selected molecule and the resulting reduction in rotational freedom can be quantified remotely. Previously, sensitivity measurements has been reported to be of the factor of 200. However, with our newer perpendicular field setup (US Patent Application Serial No 61/721,378), it possible to sense cytokine concentrations as low as 5 Pico-Molar in-vitro. The excellent sensitivity of this apparatus is due to isolation of the drive field from the signal so the output can be amplified to a higher level. Dartmouth College.

  2. Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    DOE PAGES

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo; ...

    2017-04-10

    We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

  3. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.

    PubMed

    Jun, Young-Wook; Seo, Jung-Wook; Cheon, Jinwoo

    2008-02-01

    Magnetic nanoparticles, which exhibit a variety of unique magnetic phenomena that are drastically different from those of their bulk counterparts, are garnering significant interest since these properties can be advantageous for utilization in a variety of applications ranging from storage media for magnetic memory devices to probes and vectors in the biomedical sciences. In this Account, we discuss the nanoscaling laws of magnetic nanoparticles including metals, metal ferrites, and metal alloys, while focusing on their size, shape, and composition effects. Their fundamental magnetic properties such as blocking temperature (Tb), spin life time (tau), coercivity (Hc), and susceptibility (chi) are strongly influenced by the nanoscaling laws, and as a result, these scaling relationships can be leveraged to control magnetism from the ferromagnetic to the superparamagnetic regimes. At the same time, they can be used in order to tune magnetic values including Hc, chi, and remanence (Mr). For example, life time of magnetic spin is directly related to the magnetic anisotropy energy (KuV) and also the size and volume of nanoparticles. The blocking temperature (Tb) changes from room temperature to 10 K as the size of cobalt nanoparticles is reduced from 13 to 2 nm. Similarly, H c is highly susceptible to the anisotropy of nanoparticles, while saturation magnetization is directly related to the canting effects of the disordered surface magnetic spins and follows a linear relationship upon plotting of ms (1/3) vs r(-1). Therefore, the nanoscaling laws of magnetic nanoparticles are important not only for understanding the behavior of existing materials but also for developing novel nanomaterials with superior properties. Since magnetic nanoparticles can be easily conjugated with biologically important constituents such as DNA, peptides, and antibodies, it is possible to construct versatile nano-bio hybrid particles, which simultaneously possess magnetic and biological functions

  4. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsuhiro; Eloi, Jean-Charles; Jones, Sarah E. Ward; Sarua, Andrei; Richardson, Robert M.; Schwarzacher, Walther

    2012-10-01

    The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe3O4-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe3O4 nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe3O4 nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.

  5. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  7. Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi

    2018-05-01

    Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.

  8. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  9. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  10. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  11. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia

    PubMed Central

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  12. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients

    NASA Astrophysics Data System (ADS)

    Dhavalikar, Rohan; Rinaldi, Carlos

    2016-12-01

    Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.

  13. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    PubMed

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  15. Magnetic Properties of Nanoparticle Matrix Composites

    DTIC Science & Technology

    2015-06-02

    recording materials with large value of Ku are SmCo5 with Ku = 11-20 x 10 7 erg/cm 3 for the minimum stable particle size of 2.45 nm, FePt with Ku...nanoparticles and the matrix compared with the bulk behavior of the soft and hard phases and ferromagnetic coupling. 15. SUBJECT TERMS...Magnetic materials , Ab initio methods, nanoparticles, Nanocomposites, Ferromagnetics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  16. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  17. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  18. Tuning the magnetism of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Viñas, S. Liébana; Simeonidis, K.; Li, Z.-A.; Ma, Z.; Myrovali, E.; Makridis, A.; Sakellari, D.; Angelakeris, M.; Wiedwald, U.; Spasova, M.; Farle, M.

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe2O4 where M=Fe, Co, Mn) and core-shell ferrite nanoparticles consisting of a magnetically softer (MnFe2O4) or magnetically harder (CoFe2O4) core and a magnetite (Fe3O4) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe2O4) by Fe3O4 provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe3O4 outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects.

  19. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.

    PubMed

    Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N

    2012-10-01

    Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).

  20. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in

  1. Taking the temperature of the interiors of magnetically heated nanoparticles.

    PubMed

    Dong, Juyao; Zink, Jeffrey I

    2014-05-27

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.

  2. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.

    PubMed

    LeBrun, Alexander; Joglekar, Tejashree; Bieberich, Charles; Ma, Ronghui; Zhu, Liang

    2016-01-01

    The objective of this study was to identify an injection strategy leading to repeatable nanoparticle deposition patterns in tumours and to quantify volumetric heat generation rate distribution based on micro-CT Hounsfield unit (HU) in magnetic nanoparticle hyperthermia. In vivo animal experiments were performed on graft prostatic cancer (PC3) tumours in immunodeficient mice to investigate whether lowering ferrofluid infusion rate improves control of the distribution of magnetic nanoparticles in tumour tissue. Nanoparticle distribution volume obtained from micro-CT scan was used to evaluate spreading of the nanoparticles from the injection site in tumours. Heating experiments were performed to quantify relationships among micro-CT HU values, local nanoparticle concentrations in the tumours, and the ferrofluid-induced volumetric heat generation rate (q(MNH)) when nanoparticles were subject to an alternating magnetic field. An infusion rate of 3 µL/min was identified to result in the most repeatable nanoparticle distribution in PC3 tumours. Linear relationships have been obtained to first convert micro-CT greyscale values to HU values, then to local nanoparticle concentrations, and finally to nanoparticle-induced q(MNH) values. The total energy deposition rate in tumours was calculated and the observed similarity in total energy deposition rates in all three infusion rate groups suggests improvement in minimising nanoparticle leakage from the tumours. The results of this study demonstrate that micro-CT generated q(MNH) distribution and tumour physical models improve predicting capability of heat transfer simulation for designing reliable treatment protocols using magnetic nanoparticle hyperthermia.

  3. Study of magnetic nanoparticles and overcoatings for biological applications including a sensor device

    NASA Astrophysics Data System (ADS)

    Grancharov, Stephanie G.

    I. A general introduction to the field of nanomaterials is presented, highlighting their special attributes and characteristics. Nanoparticles in general are discussed with respect to their structure, form and properties. Magnetic particles in particular are highlighted, especially the iron oxides. The importance and interest of integrating these materials with biological media is discussed, with emphasis on transferring particles from one medium to another, and subsequent modification of surfaces with different types of materials. II. A general route to making magnetic iron oxide nanoparticles is explained, both as maghemite and magnetite, including properties of the particles and characterization. A novel method of producing magnetite particles without a ligand is then presented, with subsequent characterization and properties described. III. Attempts to coat iron oxide nanoparticles with a view to creating biofunctional magnetic nanoparticles are presented, using a gold overcoating method. Methods of synthesis and characterization are examined, with unique problems to core-shell structures analyzed. IV. Solubility of nanoparticles in both aqueous and organic media is discussed and examined. The subsequent functionalization of the surface of maghemite and magnetite nanoparticles with a variety of biomaterials including block copolypeptides, phospholipids and carboxydextran is then presented. These methods are integral to the use of magnetic nanoparticles in biological applications, and therefore their properties are examined once tailored with these molecules. V. A new type of magnetic nanoparticle sensor-type device is described. This device integrates bio-and DNA-functionalized nanoparticles with conjugate functionalized silicon dioxide surfaces. These techniques to pattern particles to a surface are then incorporated into a device with a magnetic tunnel junction, which measures magnetoresistance in the presence of an external magnetic field. This configuration

  4. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-10-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  5. Magnetic Nanoparticles for Cancer Diagnosis and Therapy

    PubMed Central

    Yigit, Mehmet V.; Moore, Anna

    2013-01-01

    Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline. PMID:22274558

  6. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  7. Magnetism as indirect tool for carbon content assessment in nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Oumellal, Y.; Magnin, Y.; Martínez de Yuso, A.; Aguiar Hualde, J. M.; Amara, H.; Paul-Boncour, V.; Matei Ghimbeu, C.; Malouche, A.; Bichara, C.; Pellenq, R.; Zlotea, C.

    2017-12-01

    We report a combined experimental and theoretical study to ascertain carbon solubility in nickel nanoparticles embedded into a carbon matrix via the one-pot method. This original approach is based on the experimental characterization of the magnetic properties of Ni at room temperature and Monte Carlo simulations used to calculate the magnetization as a function of C content in Ni nanoparticles. Other commonly used experimental methods fail to accurately determine the chemical analysis of these types of nanoparticles. Thus, we could assess the C content within Ni nanoparticles and it decreases from 8 to around 4 at. % with increasing temperature during the synthesis. This behavior could be related to the catalytic transformation of dissolved C in the Ni particles into graphite layers surrounding the particles at high temperature. The proposed approach is original and easy to implement experimentally since only magnetization measurements at room temperature are needed. Moreover, it can be extended to other types of magnetic nanoparticles dissolving carbon.

  8. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    PubMed

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  9. The unusual magnetism of nanoparticle LaCoO3.

    PubMed

    Durand, A M; Belanger, D P; Hamil, T J; Ye, F; Chi, S; Fernandez-Baca, J A; Booth, C H; Abdollahian, Y; Bhat, M

    2015-05-08

    Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ≈ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To≈40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.

  10. The unusual magnetism of nanoparticle LaCoO 3

    DOE PAGES

    Durand, A. M.; Belanger, D. P.; Hamil, T. J.; ...

    2015-04-15

    Bulk and nanoparticle powders of LaCoO 3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T≈85K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To ≈ 40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co 3O 4 impurity phase, which induces tensile strain on the LCO lattice. A core-interfacemore » model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.« less

  11. The unusual magnetism of nanoparticle LaCoO3

    NASA Astrophysics Data System (ADS)

    Durand, A. M.; Belanger, D. P.; Hamil, T. J.; Ye, F.; Chi, S.; Fernandez-Baca, J. A.; Booth, C. H.; Abdollahian, Y.; Bhat, M.

    2015-05-01

    Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ≈ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To≈40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.

  12. Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension

    NASA Astrophysics Data System (ADS)

    Koralewski, Marceli; Pochylski, Mikołaj; Gierszewski, Jacek

    2013-09-01

    We have studied the magnetically induced optical birefringence Δ n of horse spleen ferritin (HSF) and aqueous suspensions of several different-sized iron oxyhydroxide nanoparticles coated with different polysaccharides mimicking ferritin. The structure and dimensions of the akaganeite mineral core were characterized by XRD and TEM, respectively. The stability of the suspensions in the measurement temperature range from 278 to 358 K was confirmed by UV-Vis absorption spectroscopy. The values of optical polarizability anisotropy Δ α, magnetic susceptibility anisotropy Δ χ, and permanent magnetic dipole moment μ m of the akaganeite nanoparticles have been estimated on the basis of the temperature dependence of the Cotton-Mouton (C-M) constant. The magnetic birefringence of Fe-sucrose has been described tentatively by different types of Langevin function allowing another estimation of Δ χ and μ m. The obtained permanent magnetic dipole moment μ m of the studied akaganeite nanoparticles proves small and comparable to that of HSF. The value of μ m is found to increase with decreasing nanoparticle diameter. Observed in a range spanning more than five orders of magnitude, the linear relation between the C-M constant and the iron concentration provides a basis for possible analytical application of the C-M effect in biomedicine. The established relation between the C-M constant and the nanoparticle diameter confirms that the dominant contribution to the measured magnetic birefringence comes from the magnetic susceptibility anisotropy Δ χ. A comparison of the C-M constants of the studied akaganeite nanoparticles with the data obtained for HSF provides evidence that the ferritin core behaves as a non-Euclidian solid.

  13. Application of Magnetic Nanoparticles in Pretreatment Device for POPs Analysis in Water

    NASA Astrophysics Data System (ADS)

    Chu, Dongzhi; Kong, Xiangfeng; Wu, Bingwei; Fan, Pingping; Cao, Xuan; Zhang, Ting

    2018-01-01

    In order to reduce process time and labour force of POPs pretreatment, and solve the problem that extraction column was easily clogged, the paper proposed a new technology of extraction and enrichment which used magnetic nanoparticles. Automatic pretreatment system had automatic sampling unit, extraction enrichment unit and elution enrichment unit. The paper briefly introduced the preparation technology of magnetic nanoparticles, and detailly introduced the structure and control system of automatic pretreatment system. The result of magnetic nanoparticles mass recovery experiments showed that the system had POPs analysis preprocessing capability, and the recovery rate of magnetic nanoparticles were over 70%. In conclusion, the author proposed three points optimization recommendation.

  14. Magnetic Nanoparticles Embedded in a Silicon Matrix

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2011-01-01

    This paper represents a short overview of nanocomposites consisting of magnetic nanoparticles incorporated into the pores of a porous silicon matrix by two different methods. On the one hand, nickel is electrochemically deposited whereas the nanoparticles are precipitated on the pore walls. The size of these particles is between 2 and 6 nm. These particles cover the pore walls and form a tube-like arrangement. On the other hand, rather well monodispersed iron oxide nanoparticles, of 5 and 8 nm respectively, are infiltrated into the pores. From their size the particles would be superparamagnetic if isolated but due to magnetic interactions between them, ordering of magnetic moments occurs below a blocking temperature and thus the composite system displays a ferromagnetic behavior. This transition temperature of the nanocomposite can be varied by changing the filling factor of the particles within the pores. Thus samples with magnetic properties which are variable in a broad range can be achieved, which renders this composite system interesting not only for basic research but also for applications, especially because of the silicon base material which makes it possible for today’s process technology. PMID:28879957

  15. Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient.

    PubMed

    Teste, Bruno; Malloggi, Florent; Gassner, Anne-Laure; Georgelin, Thomas; Siaugue, Jean-Michel; Varenne, Anne; Girault, Hubert; Descroix, Stéphanie

    2011-03-07

    Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 μL h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000.

  16. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  17. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  18. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  19. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.

    PubMed

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-01-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.

  20. Magnetic properties of superparamagnetic β-NaFeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Sarbjit; Tovstolytkin, Alexandr; Lotey, Gurmeet Singh

    2018-07-01

    Superparamagnetic β-NaFeO2 nanoparticles of particle size 37 nm with orthorhombic crystal structure and space group Pn21a have been prepared by sol-gel method. Temperature dependent magnetic study has been performed. Its systematic analysis has been done to calculate the Curie and blocking temperatures along with its magnetic susceptibility. The Langevin fitting of the magnetic data has been carried out. It has been shown that the synthesized nanoparticles exhibit superparamagnetic behavior. The Neel's relaxation time has been calculated to further support its superparamagnetic nature. The synthesized β-NaFeO2 nanoparticles behave like ferromagnets below 80 K; they are superparamagnetic above 80 K-340 K and thereafter as paramagnetic. The possible mechanism of superparamagnetism has been discussed. It has been concluded that these nanoparticles can find wide applications in the area of biomedical sciences.

  1. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst.

    PubMed

    Wu, Chien-Chen; Chen, Dong-Hwang

    2012-06-19

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles.

  2. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst

    PubMed Central

    2012-01-01

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles. PMID:22713480

  3. Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Hon-Tung; Chan, H. L. W.; Hao, J. H.

    2009-07-01

    Multifunctional GdF3:Eu3+ nanoparticles were synthesized using a hydrothermal method. Photoluminescent excitation and emission spectra, and lifetime were measured. The average lifetime of the nanoparticles is about 11 ms. The nanoparticle exhibits paramagnetism at both 293 and 77 K, ascribing to noninteracting localized nature of the magnetic moment in the compound. The magnetic properties of GdF3:Eu3+ is intrinsic to the Gd3+ ions, which is unaffected by the doping concentration of the Eu3+ luminescent centers. A measured magnetization of approximately 2 emu/g is close to reported values of other nanoparticles for bioseparation.

  4. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  5. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  6. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy

    PubMed Central

    Zhu, Lei; Zhou, Zhiyang; Mao, Hui; Yang, Lily

    2017-01-01

    Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles. PMID:27876448

  7. Mechanical manipulation of magnetic nanoparticles by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinyun; Zhang, Wenxiao; Li, Yiquan; Zhu, Hanxing; Qiu, Renxi; Song, Zhengxun; Wang, Zuobin; Li, Dayou

    2017-12-01

    A method has been developed in this work for the mechanical manipulation of magnetic nanoparticles (MNPs). A helical curve was designed as the capture path to pick up and remove the target nanoparticle on a mica surface by a magnetic probe based on the magnetic force microscope (MFM). There were magnetic, tangential and pushing forces acting on the target particle during the approaching process when the tip followed the helical curve as the capture path. The magnetic force was significant when the tip was closer to the particle. The target particle can be attached on the surface of the magnetic probe tip and then be picked up after the tip retracted from the mica surface. Theoretical analysis and experimental results were presented for the pick-up and removal of MNPs. With this method, the precision and flexibility of manipulation of MNPs were improved significantly compared to the pushing or sliding of the target object away from the corresponding original location following a planned path.

  8. Computational studies of steering nanoparticles with magnetic gradients

    NASA Astrophysics Data System (ADS)

    Aylak, Sultan Suleyman

    Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

  9. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza-Navarro, Marco; Torres-Castro, Alejandro, E-mail: alejandro.torrescs@uanl.edu.m; Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon 66600

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behaviormore » attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.« less

  10. Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments

    NASA Astrophysics Data System (ADS)

    Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.

    2018-03-01

    While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.

  11. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  12. Theoretical studies to elucidate the influence of magnetic dipolar interactions occurring in the magnetic nanoparticle systems, for biomedical applications

    NASA Astrophysics Data System (ADS)

    Osaci, M.; Cacciola, M.

    2016-02-01

    In recent years, the study of magnetic nanoparticles has been intensively developed not only for their fundamental theoretical interest, but also for their many technological applications, especially biomedical applications, ranging from contrast agents for magnetic resonance imaging to the deterioration of cancer cells via hyperthermia treatment. The theoretical and experimental research has shown until now that the magnetic dipolar interactions between nanoparticles can have a significant influence on the magnetic behaviour of the system. But, this influence is not well understood. It is clear that the magnetic dipolar interaction intensity is correlated with the nanoparticle concentration, volume fraction and magnetic moment orientations. In this paper, we try to understand the influence of magnetic dipolar interactions on the behaviour of magnetic nanoparticle systems, for biomedical applications. For the model, we considered spherical nanoparticles with uniaxial anisotropy and lognormal distribution of the sizes. The model involves a simulation stage of the spatial distribution and orientation of the nanoparticles and their easy axes of magnetic anisotropy, and an evaluation stage of the Néel relaxation time. To assess the Néel relaxation time, we are going to discretise and adapt, to the local magnetic field, the Coffey analytical solution for the equation Fokker-Planck describing the dynamics of magnetic moments of nanoparticles in oblique external magnetic field. There are three fundamental aspects of interest in our studies on the magnetic nanoparticles: their spatial & orientational distributions, concentrations and sizes.

  13. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  14. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    PubMed Central

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  15. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery.

    PubMed

    Dobson, J

    2006-02-01

    The recent emphasis on the development of non-viral transfection agents for gene delivery has led to new physics and chemistry-based techniques, which take advantage of charge interactions and energetic processes. One of these techniques which shows much promise for both in vitro and in vivo transfection involves the use of biocompatible magnetic nanoparticles for gene delivery. In these systems, therapeutic or reporter genes are attached to magnetic nanoparticles, which are then focused to the target site/cells via high-field/high-gradient magnets. The technique promotes rapid transfection and, as more recent work indicates, excellent overall transfection levels as well. The advantages and difficulties associated with magnetic nanoparticle-based transfection will be discussed as will the underlying physical principles, recent studies and potential future applications.

  16. Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Krycka, K. L.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Borchers, J. A.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Dedon, L. R.; Harris, S.; Rhyne, J. J.; Majetich, S. A.

    2010-05-01

    A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with three-dimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.

  17. Structure and magnetic properties of Fe-Co nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Lam, Nguyen Mau; Thi, Tran Minh; Thanh, Pham Thi; Yen, Nguyen Hai; Dan, Nguyen Huy

    2018-03-01

    Fe100-xCox (x = 25 - 45) nanoparticles have been successfully prepared from FeCl2 and Co(C2H3O2)2 by thermal decomposition process in solution of polyethylene glycol and NaOH (polyol method). The influence of pH level and Co concentration on structure and magnetic properties of the Fe-Co nanoparticles were investigated. The X-Ray Diffraction (XRD) results confirm the formation of a body centered cubic single phase of the Fe(Co) nanoparticles. The Scanning Electron Microscopy (SEM) images show the grain size of the samples is about 60 nm. Saturation magnetization the Fe-Co nanoparticles strongly depends on the Co concentration and pH level in the fabrication process. The optimal pH level and Co concentration for the Fe-Co nanoparticles were found to be 7 and 35 at%, respectively. A quite high saturation magnetization of 228 emu/g has been achieved for the Fe-Co nanoparticles.

  18. Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly.

    PubMed

    Song, Erqun; Han, Weiye; Xu, Hongyan; Jiang, Yunfei; Cheng, Dan; Song, Yang; Swihart, Mark T

    2014-11-03

    Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2 @n Fe3 O4 composite nanoparticles, by using a layer-by-layer self-assembly approach based on electrostatic interactions, is described. Silica-coated CdTe quantum dots (CdTe@SiO2 ) serve as core templates for the deposition of alternating layers of Fe3 O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2 @n Fe3 O4 (n=1, 2, 3, …︁) composite nanoparticles with a defined number (n) of Fe3 O4 layers. Composite nanoparticles were characterized by zeta-potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2 @n Fe3 O4 composite nanoparticles exhibited excellent luminescence properties coupled with well-defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near-simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2 @n Fe3 O4 nanoparticles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.

    2017-03-01

    Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.

  20. Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Gang Ho; Chang, Yongmin

    2015-07-01

    In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.

  1. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  2. Application of biomolecular recognition via magnetic nanoparticle in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Zheng; Cetinel, Sibel; Montemagno, Carlo

    2018-05-01

    The marriage of biomolecular recognition and magnetic nanoparticle creates tremendous opportunities in the development of advanced technology both in academic research and in industrial sectors. In this paper, we review current progress on the magnetic nanoparticle-biomolecule hybrid systems, particularly employing the recognition pairs of DNA-DNA, DNA-protein, protein-protein, and protein-inorganics in several nanobiotechnology application areas, including molecular biology, diagnostics, medical treatment, industrial biocatalysts, and environmental separations.

  3. Mitochondria-Targeting Magnetic Composite Nanoparticles for Enhanced Phototherapy of Cancer.

    PubMed

    Guo, Ranran; Peng, Haibao; Tian, Ye; Shen, Shun; Yang, Wuli

    2016-09-01

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual-modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria-targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria-targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. POLARIZATION OF MAGNETIC DIPOLE EMISSION AND SPINNING DUST EMISSION FROM MAGNETIC NANOPARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem; Lazarian, Alex

    2016-04-20

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flyingmore » magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.« less

  5. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, Alex

    2016-04-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  6. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  7. Magnetic Core-Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery.

    PubMed

    Xiong, Lin; Bi, Jingxu; Tang, Youhong; Qiao, Shi-Zhang

    2016-09-01

    A novel type of magnetic core-shell silica nanoparticles is developed for small interfering RNA (siRNA) delivery. These nanoparticles are fabricated by coating super-paramagnetic magnetite nanocrystal clusters with radial large-pore mesoporous silica. The amine functionalized nanoparticles have small particle sizes around 150 nm, large radial mesopores of 12 nm, large surface area of 411 m(2) g(-1) , high pore volume of 1.13 cm(3) g(-1) and magnetization of 25 emu g(-1) . Thus, these nanoparticles possess both high loading capacity of siRNA (2 wt%) and strong magnetic response under an external magnetic field. An acid-liable coating composed of tannic acid can further protect the siRNA loaded in these nanoparticles. The coating also increases the dispersion stability of the siRNA-loaded carrier and can serve as a pH-responsive releasing switch. Using the magnetic silica nanoparticles with tannic acid coating as carriers, functional siRNA has been successfully delivered into the cytoplasm of human osteosarcoma cancer cells in vitro. The delivery is significantly enhanced with the aid of the external magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  9. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    PubMed

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  10. Maghemite nanoparticles with enhanced magnetic properties: one-pot preparation and ultrastable dextran shell.

    PubMed

    Di Corato, Riccardo; Aloisi, Alessandra; Rella, Simona; Greneche, Jean-Marc; Pugliese, Giammarino; Pellegrino, Teresa; Malitesta, Cosimino; Rinaldi, Rosaria

    2018-05-10

    In the field on nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this paper, a one-pot synthesis of magnetic nanoparticles is presented, with elevated control on particles size from 10 to 40 nm. The monitoring of vacuum level is here introduced as a crucial parameter for achieving a fine particle morphology. Magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by a high resolution XPS analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred in water by a non-derivatized dextran coating. The thermogravimetric analysis confirms that the polysaccharide molecules replace the oleic acid on the surface by stabilizing the particles in aqueous phase and culture media. Preliminary in vitro test reveals as the dextran coated nanoparticles are not passively internalized from the cells. As proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing the cellular internalization.

  11. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer.

    PubMed

    Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P

    2018-05-03

    In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.

  12. Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

    PubMed Central

    Han, Luyang; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul

    2010-01-01

    Summary Monatomic (Fe, Co) and bimetallic (FePt and CoPt) nanoparticles were prepared by exploiting the self-organization of precursor loaded reverse micelles. Achievements and limitations of the preparation approach are critically discussed. We show that self-assembled metallic nanoparticles can be prepared with diameters d = 2–12 nm and interparticle distances D = 20–140 nm on various substrates. Structural, electronic and magnetic properties of the particle arrays were characterized by several techniques to give a comprehensive view of the high quality of the method. For Co nanoparticles, it is demonstrated that magnetostatic interactions can be neglected for distances which are at least 6 times larger than the particle diameter. Focus is placed on FePt alloy nanoparticles which show a huge magnetic anisotropy in the L10 phase, however, this is still less by a factor of 3–4 when compared to the anisotropy of the bulk counterpart. A similar observation was also found for CoPt nanoparticles (NPs). These results are related to imperfect crystal structures as revealed by HRTEM as well as to compositional distributions of the prepared particles. Interestingly, the results demonstrate that the averaged effective magnetic anisotropy of FePt nanoparticles does not strongly depend on size. Consequently, magnetization stability should scale linearly with the volume of the NPs and give rise to a critical value for stability at ambient temperature. Indeed, for diameters above 6 nm such stability is observed for the current FePt and CoPt NPs. Finally, the long-term conservation of nanoparticles by Au photoseeding is presented. PMID:21977392

  13. Multifunctional magnetic nanoparticles for targeted imaging and therapy

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials. PMID:18508157

  14. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadyszak, Krzysztof; Kertmen, Ahmet; Coy, Emerson; Andruszkiewicz, Ryszard; Milewski, Sławomir; Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan; Chybczyńska, Katarzyna

    2017-07-01

    Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  15. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    NASA Astrophysics Data System (ADS)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  16. EDITORIAL: Biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    O'Grady, K.

    2002-07-01

    Magnetic materials have been used with grain sizes down to the nanoscale for longer than any other type of material. This is because of a fundamental change in the magnetic structure of ferro- and ferrimagnetic materials when grain sizes are reduced. In these circumstances, the normal macroscopic domain structure transforms into a single domain state at a critical size which typically lies below 100 nm. Once this transformation occurs the mechanism of magnetisation reversal can only be via the rotation of the magnetisation vector from one magnetic easy axis to another via a magnetically hard direction. This change of reversal mechanism has led to a new class of magnetic materials whose properties and the basic underlying physical mechanism governing them were defined in a seminal work first published by E C Stoner and E P Wolhfarth in 1949. As a consequence of this rotation mechanism, magnetic nanoparticles exist having coercivities which are highly controllable and lie between soft materials and normal permanent magnet materials. This ability to control coercivity in such particles has led to a number of significant technological advances, particularly in the field of information storage. The high value of information storage technology has meant that since the 1950s an enormous research and development effort has gone into techniques for the preparation of magnetic particles and thin films having well defined properties. Hence, certainly since the 1960s, a wide range of techniques to produce both metallic and oxide magnetic nanoparticles with sizes ranging from 4-100 nm has been developed. The availability of this wide range of materials led to speculation from the 1960s onwards that they may have applications in biology and medicine. The fact that a magnetic field gradient can be used to either remotely position or selectively filter biological materials leads to a number of obvious applications. These applications fall broadly into two categories: those

  17. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.

    PubMed

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-07-01

    In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.

  18. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells

    PubMed Central

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-01-01

    Aim: In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Materials & methods: Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. Results: TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Conclusion: Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise. PMID:27388639

  19. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  20. Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hamayun, M. Asif; Abramchuk, Mykola; Alnasir, Hisham; Khan, Mohsin; Pak, Chongin; Lenhert, Steven; Ghazanfari, Lida; Shatruk, Michael; Manzoor, Sadia

    2018-04-01

    We report magnetic and magnetothermal properties of iron boride (FeB) nanoparticles prepared by surfactant-assisted ball milling of arc-melted bulk ingots of this binary alloy. Size-dependent magnetic properties were used to identify the transition to the single domain limit and calculate the anisotropy and exchange stiffness constants for this system. Extended milling is seen to produce coercivity enhancement and exchange bias of up to 270 Ôe at room temperature. The magnetothermal properties were investigated by measuring the response of single domain FeB nanoparticles to externally applied ac magnetic fields. All investigated particle sizes show a significant heating response, demonstrating their potential as candidates for magnetically induced hyperthermia. FeB nanoparticles were encapsulated into lipophilic domains of liposomes as evidenced by TEM. Exposure of HeLa cells to these liposomes did not affect cell viability, suggesting the biocompatibility of these new magnetic nanomaterials.

  1. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.

    PubMed

    Purushotham, S; Chang, P E J; Rumpel, H; Kee, I H C; Ng, R T H; Chow, P K H; Tan, C K; Ramanujan, R V

    2009-07-29

    Thermoresponsive polymer-coated magnetic nanoparticles loaded with anti-cancer drugs are of considerable interest for novel multi-modal cancer therapies. Such nanoparticles can be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release. Gamma-Fe(2)O(3) iron oxide magnetic nanoparticles (MNP) with average sizes of 14, 19 and 43 nm were synthesized by high temperature decomposition. Composite magnetic nanoparticles (CNP) of 43 nm MNP coated with the thermoresponsive polymer poly-n-isopropylacrylamide (PNIPAM) were prepared by dispersion polymerization of n-isopropylacrylamide monomer in the presence of the MNP. In vitro drug release of doxorubicin-(dox) loaded dehydrated CNP at temperatures below and above the lower critical solution temperature of PNIPAM (34 degrees C) revealed a weak dependence of drug release on swelling behavior. The particles displayed Fickian diffusion release kinetics; the maximum dox release at 42 degrees C after 101 h was 41%. In vitro simultaneous hyperthermia and drug release of therapeutically relevant quantities of dox was achieved, 14.7% of loaded dox was released in 47 min at hyperthermia temperatures. In vivo magnetic targeting of dox-loaded CNP to hepatocellular carcinoma (HCC) in a buffalo rat model was studied by magnetic resonance imaging (MRI) and histology. In summary, the good in vitro and in vivo performance of the doxorubicin-loaded thermoresponsive polymer-coated magnetic nanoparticles suggests considerable promise for applications in multi-modal treatment of cancer.

  2. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011

  3. Upward magnetic relaxation in self organizing Fe nanoparticle system

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra Prakash; Sharma, Gyaneshwar; Sen, P.

    2018-04-01

    Study of the thermoremanent magnetic relaxation behavior of Fe nanoparticles and its nanocomposite with activated carbon has been systematically performed. Magnetic relaxation data shows the spontaneous collective periodic oscillations of the spins superimposed on the magnetic decay curves. At sufficiently high temperature, due to thermal noise induced ordering of the magnetic moment an inflexion with an increase in the absolute value of the magnetization takes place. Due to insufficient interaction on account of dilution in the case of nanocomposite, the spin - spin interaction which was responsible for magnetic ordering in the case of bare Fe nanoparticles, collective oscillations of the system do not sustain upto longer times in the case of carbon diluted system.

  4. Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pastor, J. M.

    2013-05-01

    Room-temperature ferromagnetism in non-magnetic doped TiO2 semiconductor nanoparticles is analyzed in the present work. Undoped and N-doped TiO2 nanoparticles were obtained employing sol-gel procedure using urea as the nitrogen source. The obtained gels were first dried at 70 °C and afterwards calcined in air at 300 °C. A residual carbon concentration was retained in the samples as a consequence of the organic decomposition process. Post-annealing treatments at 300 °C under air and vacuum conditions were also performed. The crystallographic structure of nanoparticles was analyzed by X-ray diffraction, obtaining a single anatase crystalline phase after the calcinations (mean nanoparticle diameters around 5-8 nm). SQUID magnetometry was employed to analyze the magnetic response of the samples. Whereas for the undoped samples synthesized with hydrolysis rate h = 6, paramagnetic like behavior is observed at room temperature, the N-doped nanoparticles (h = 3) show a weak ferromagnetic response (saturation magnetization ≈10-3 emu/g). Moreover, a clear reinforcement of the room-temperature ferromagnetism response is found with the post-annealing treatments, in particular that performed in vacuum. Thus, the results indicate the dominant role of the oxygen stoichiometry and the oxygen vacancies in the room temperature ferromagnetic response of these TiO2 nanoparticles.

  5. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  6. Applications of Magnetic Micro- and Nanoparticles in Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Dobson, J.

    2005-12-01

    Magnetic nanoparticles were first proposed for biomedical applications in the 1970s - primarily as targeted drug delivery vehicles and MRI contrast agents. Since that time, such particles have found application in a variety of biomedical techniques. In addition to drug delivery, magnetic nanoparticles are now used routinely as MRI contrast agents as well as for magneto-immunoassay and cell sorting. More recently, magnetic micro- and nanoparticles have been used to investigate and manipulate cellular processes both in vitro and in vivo. In addition, biogenic magnetic nanoparticles are also produced in the human body. The iron storage protein, ferritin, consists of a superparamagnetic ferrihydrite core and biogenic magnetite (a ferrimagnet) has also been found in the brain and other organs. Though the role of ferritin and several other magnetic iron oxides in the body is well understood, the origin and role of biogenic magnetite is only now coming to light - and this may have profound implications for our understanding of neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases. This talk will review applications related to magnetic particle-mediated activation of cellular processes for tissue engineering applications and novel methods of magnetofection which have the potential to provide enhanced transfection for non-viral therapeutic gene delivery. It will also briefly highlight new techniques recently developed for the mapping and characterization of magnetic iron compounds related to neurodegenerative diseases and how rock magnetic techniques have been adapted to study magnetic iron compounds in the brain and other organs.

  7. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Yu, Xia; Zhu, Yufang

    2016-01-01

    We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO2 nanoparticles, but the MCN/mSiO2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy.

  8. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia.

    PubMed

    Yu, Xia; Zhu, Yufang

    2016-01-01

    We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO 2 ), and the rattle-type structured MMS nanoparticles (MCN/mSiO 2 ) were obtained after the removal of the carbon layers from MCN@C/mSiO 2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO 2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO 2 nanoparticles, but the MCN/mSiO 2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy.

  9. Multilayered Magnetic Nanoparticles Fabricated by Nanoimprint Lithography for Magnetomechanical Treatment of Cancer

    NASA Astrophysics Data System (ADS)

    Kwon, Byung Seok

    Fe3O4-magetite nanoparticles have received wide interest as prominent agents for various biomedical applications, ranging from target-specific cancer treatment, gene therapy, and Magnetic Particle Imaging (MPI). However, Fe3O4-magnetite nanoparticles, synthesized by chemical methods beyond a certain size, present challenges in controlling size distribution and shape. Similarly, Fe3O 4-magnetite nanoparticles fabricated by conventional top-down lithographic methods present difficulty of controlling defects and lead to agglomeration due to large size. In order to overcome the difficulties associated with the conventional chemical and top-down lithographic methods, it is critical to develop a fabrication method which produces homogeneous nanoparticles in large quantities with the control of size, defects, and structure. Furthermore, the concept of cell death induced by mechanical perturbation has received wide attention as a way to maximize the cancer cell death with minimal side effects. Previous study has proposed the use of permalloy disk-shaped vortex state microparticles, in order to create cancer cell death by mechanical force. However, insufficient biocompatibility, inadequate mechanical force created by vortex switching, and inability to control the particle size have been critical issues to be further researched and proceeded for in vivo application. Hence, we studied physical and magnetic properties of Fe3O 4 as a material in thin film form and proceeded to develop Fe3 O4 based synthetic antiferromagnetic (SAF) thin films. Then, we combined these favorable physical/magnetic properties with nanoimprint lithography to fabricate homogeneously patterned synthetic antiferromagnetic (SAF) nanoparticles (wafer area >1 x 1 cm2) with the control of size, shape and structure. Then we demonstrated the release of these particles in an aqueous environment. The fabrication process combines a tetrafluoroethylene (ETFE) "working stamp", a bi-layer resist lift-off, defect

  10. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-06-01

    Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  11. Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Brazel, Christopher

    2011-11-01

    This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.

  12. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  13. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru; Ignatenko, A. N.; Irkhin, V. Yu.

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenbergmore » model with various bulk and surface magnetic moments.« less

  14. Highly efficient antibody immobilization with multimeric protein Gs coupled magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choi, H. K.; Chang, J. H.

    2011-10-01

    This work reports the immobilization of monomeric, dimeric and trimer protein Gs onto silica magnetic nanoparticles for self-oriented antibody immobilization. To achieve this, we initially prepared the silica-coated magnetic nanoparticle having about 170 nm diameters. The surface of the silica coated magnetic nanoparticles was modified with 3- aminopropyl-trimethoxysilane (APTMS) to chemically link to multimeric protein Gs. The conjugation of amino groups on the SiO2-MNPs to cysteine tagged in multimeric protein Gs was performed using a sulfo-SMCC coupling procedure. The binding efficiencies of monomer, dimer and trimer were 77 %, 67 % and 55 % respectively. However, the efficiencies of antibody immobilization were 70 %, 83 % and 95 % for monomeric, dimeric and trimeric protein G, respectively. To prove the enhancement of accessibility by using multimeric protein G, FITC labeled goat-anti-mouse IgG was treated to mouse IgG immobilized magnetic silica nanoparticles through multimeric protein G. FITC labeled goat anti-mouse IgGs were more easily bound to mouse IgG immobilized by trimeric protein G than others. Finally protein G bound silica magnetic nanoparticles were utilized to develop highly sensitive immunoassay to detect hepatitis B antigen.

  15. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    PubMed

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  16. X-space MPI: magnetic nanoparticles for safe medical imaging.

    PubMed

    Goodwill, Patrick William; Saritas, Emine Ulku; Croft, Laura Rose; Kim, Tyson N; Krishnan, Kannan M; Schaffer, David V; Conolly, Steven M

    2012-07-24

    One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.

  17. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings.

    PubMed

    Takeno, Yumu; Murakami, Yasukazu; Sato, Takeshi; Tanigaki, Toshiaki; Park, Hyun Soon; Shindo, Daisuke; Ferguson, R Matthew; Krishnan, Kannan M

    2014-11-03

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe 3 O 4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

  18. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    NASA Astrophysics Data System (ADS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise

    2011-03-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.

  19. Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles

    NASA Astrophysics Data System (ADS)

    Baeza, A.; Arcos, D.; Vallet-Regí, M.

    2013-12-01

    The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia.

  20. Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles.

    PubMed

    Baeza, A; Arcos, D; Vallet-Regí, M

    2013-12-04

    The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia.

  1. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy.

    PubMed

    Kempe, Maria; Kempe, Henrik; Snowball, Ian; Wallén, Rita; Arza, Carlos Rodriguez; Götberg, Matthias; Olsson, Tommy

    2010-12-01

    Implant-assisted targeting of magnetic particles under the influence of an external magnetic field has previously been verified through mathematical modeling, in vitro studies, and in vivo studies on rat carotid arteries as a feasible method for localized drug delivery. The present study focuses on the development of nanoparticles for the treatment of in-stent thrombosis. Magnetic nanoparticles in the size-range 10-30 nm were synthesized in a one-pot procedure by precipitation of ferrous hydroxide followed by oxidation to magnetite. The nanoparticles were silanized with tetraethyl orthosilicate in the presence of triethylene glycol and/or polyethylene glycol. The surface coated magnetite nanoparticles were activated with either N-hydroxysulfosuccinimide or tresyl chloride for covalent immobilization of tissue plasminogen activator (tPA). Hysteresis loops showed saturation magnetizations of 55.8, 44.1, and 43.0 emu/g for the naked nanoparticles, the surface coated nanoparticles, and the tPA-nanoparticle conjugates, respectively. The hemolytic activity of the nanoparticles in blood was negligible. An initial in vivo biocompatibility test in pig, carried out by intravascular injection of the nanoparticles in a stented brachial artery, showed no short-term adverse effects. In vitro evaluation in a flow-through model proved that the nanoparticles were captured efficiently to the surface of a ferromagnetic coiled wire at the fluid velocities typical for human arteries. A preliminary test of the tPA-nanoparticle conjugates in a pig model suggested that the conjugates may be used for treatment of in-stent thrombosis in coronary arteries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  3. Nanoparticles for magnetic biosensing systems

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.

  4. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-03-01

    Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  6. Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Zhang, Huan; Chang, Le; Yu, Baozhi; Liu, Qiuying; Wu, Jianpeng; Miao, Yuqing; Ma, Pei; Fan, Daidi; Fan, Haiming

    2015-01-01

    Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

  7. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  8. Magnetism and Mössbauer study of formation of multi-core γ -Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamali, Saeed; Bringas, Eugenio; Hah, Hien-Yoong; Bates, Brian; Johnson, Jacqueline A.; Johnson, Charles E.; Stroeve, Pieter

    2018-04-01

    A systematic investigation of magnetic nanoparticles and the formation of a core-shell structure, consisting of multiple maghemite (γ -Fe2O3) nanoparticles as the core and silica as the shell, has been performed using various techniques. High-resolution transmission electron microscopy clearly shows isolated maghemite nanoparticles with an average diameter of 13 nm and the formation of a core-shell structure. Low temperature Mössbauer spectroscopy reveals the presence of pure maghemite nanoparticles with all vacancies at the B-sites. Isothermal magnetization and zero-field-cooled and field-cooled measurements are used for investigating the magnetic properties of the nanoparticles. The magnetization results are in good accordance with the contents of the magnetic core and the non-magnetic shell. The multiple-core γ -Fe2O3 nanoparticles show similar behavior to isolated particles of the same size.

  9. Superparamagnetic LaSrMnO3 nanoparticles for magnetic nanohyperthermia and their biocompatibility

    NASA Astrophysics Data System (ADS)

    Aneja, Mohit; Tovstolytkin, Alexandr; Singh Lotey, Gurmeet

    2017-11-01

    The nanohyperthermia investigation of superparamagnetic La0.77Sr0.23MnO3 nanoparticles synthesized by hydrothermal method has been carried out. The synthesized nanoparticles are found to be highly uniform in size and shape with average particle size 18 nm. Structural analysis confirms the pseudo-cubic perovskite crystal structure with space group of (R3c). The magnetization versus applied magnetic field (M-H) hysteresis loops measurements revealed the superparmagnetic nature of the synthesized nanoparticles. The induction heating of synthesized nanoparticles for their applications in nanohyperthermia has been studied. The in vitro cytotoxicity test of the synthesized superparamagnetic nanoparticles has been probed by evaluating the viability of HeLa (Human Negroid Cervix Epitheloid Carcinoma) cell lines. The mechanism responsible for nanohyperthermia heating of the synthesized nanoparticles has been discussed.

  10. Selective and directional actuation of elastomer films using chained magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet R.; Dickey, Michael D.; Velev, Orlin D.; Tracy, Joseph B.

    2016-01-01

    We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. Electronic supplementary information (ESI) available: Two videos for actuation while rotating the sample, experimental details of nanoparticle synthesis, polymer composite preparation, and alignment and bending studies, details of the theoretical model of actuation, and supplemental figures for understanding the behavior of rotating samples and results from modelling. See DOI: 10.1039/c5nr07410j

  11. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Peterson, G.P. (Bud) (Inventor); Hong, Haiping (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  12. Analytical modeling of hyperthermia using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bensenane, Mohamed Nassim; Senoudi, Assia Rachida; Benmouna, Reda; Ould-Kaddour, Fouzia

    2018-06-01

    Hyperthermia using magnetic nanoparticles (MNPs) is one of many techniques to treat cancer causing minimal damage to healthy tissues. In the present work we give an analytical resolution of the bio-heat equation (based on Pennes model) providing the temperature rise as a function of the characteristics of the magnetic nanoparticles, the applied magnetic field and the biological properties of the tissue. The temperature inside the tumor was found to be very sensitive to the frequency f of alternating magnetic field, magnetic field amplitude H0 and volume fraction φ. This study optimizes the intensity of magnetic field to reach ideal hyperthermia conditions. When f varies between 50 and 150 KHz, temperature increases from 39 °C until 53 °C; when H0 is ranged from 5 - 15 kA/m, it increases from 39.5 °C until 49 °C, and when volume fraction φ of MNPs is ranged from 2 × 10-4 to 3 × 10-4 it increases from 44 °C until 48 °C.

  13. Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer-carbon nanotube layer-by-layer films.

    PubMed

    Siqueira, José R; Gabriel, Rayla C; Zucolotto, Valtencir; Silva, Anielle C A; Dantas, Noelio O; Gasparotto, Luiz H S

    2012-11-07

    Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

  14. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity

    PubMed Central

    Wydra, Robert J.; Rychahou, Piotr G.; Evers, B. Mark; Anderson, Kimberly W.; Dziubla, Thomas D.; Hilt, J. Zach

    2015-01-01

    Monosaccharide coated iron oxide nanoparticles were developed to selectively target colon cancer cell lines for magnetically mediated energy delivery therapy. The nanoparticles were prepared using a coupling reaction to attach the glucose functional group to the iron oxide core, and functionality was confirmed with physicochemical characterization techniques. The targeted nanoparticles were internalized into CT26 cells at a greater extent than non-targeted nanoparticles, and the nanoparticles were shown to be localized within lysosomes. Cells with internalized nanoparticles were exposed to an AMF to determine the potential to delivery therapy. Cellular ROS generation and apoptotic cell death was enhanced with field exposure. The nanoparticle coatings inhibit the Fenton-like surface generation of ROS suggesting a thermal or mechanical effect is more likely the source of the intracellular effect. PMID:26143604

  15. Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms

    DOE PAGES

    Stone, R. C.; Fellows, B. D.; Qi, B.; ...

    2015-08-05

    Magnetic nanoparticles are the next tool in medical diagnoses and treatment in many different biomedical applications, including magnetic hyperthermia as alternative treatment for cancer and bacterial infections, as well as the disruption of biofilms. The colloidal stability of the magnetic nanoparticles in a biological environment is crucial for efficient delivery. A surface that can be easily modifiable can also improve the delivery and imaging properties of the magnetic nanoparticle by adding targeting and imaging moieties, providing a platform for additional modification. The strategy presented in this paper includes multiple nitroDOPA anchors for robust binding to the surface tied to themore » same polymer backbone as multiple poly(ethylene oxide) chains for steric stability. This approach provides biocompatibility and enhanced stability in fetal bovine serum (FBS) and phosphate buffer saline (PBS). As a proof of concept, these polymer-particles complexes were then modified with a near infrared dye and utilized in characterizing the integration of magnetic nanoparticles in biofilms. Finally, the work presented in this manuscript describes the synthesis and characterization of a nontoxic platform for the labeling of near IR-dyes for bioimaging.« less

  16. Synthesis and characterization of electro-explosive magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bakina, O. V.; Glazkova, E. A.; Svarovskaya, N. V.; Lerner, M. I.; Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nowadays there are new magnetic nanostructures based on bioactive metals with low toxicity and high efficiency for a wide range of biomedical applications including drugs delivery, antimicrobial drugs design, cells' separation and contrasting. For such applications it is necessary to develop highly magnetic particles with less than 100 nm in size. In the present study magnetic nanoparticles Fe, Fe3O4 and bimetallic Cu/Fe with the average size of 60-90 nm have been synthesized by electrical explosion of wire in an oxygen or argon atmosphere. The produced nanoparticles have been characterized with transmission electron microscopy, X-ray phase analysis, and nitrogen thermal desorption. The synthesized particles have shown antibacterial activity to gram-positive (S. aureus, MRSA) and gramnegative (E. coli, P. aeruginosa) bacteria. According to the cytological data Fe, Fe3O4 and Cu/Fe nanoparticles have effectively inhibited viability of cancer cell lines Neuro-2a and J774. The obtained nanoparticles are promising for new antimicrobial drugs and antitumor agents' development.

  17. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  18. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Yallapu, Murali M; Othman, Shadi F; Curtis, Evan T; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C

    2011-03-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. [Preparation and characterization of magnetic nano-particles with radiofrequency-induced hyperthermia for cancer treatment].

    PubMed

    Fan, Xiangshan; Zhang, Dongsheng; Zheng, Jie; Gu, Ning; Ding, Anwei; Jia, Xiupeng; Qing, Hongyun; Jin, Liqiang; Wan, Meiling; Li, Qunhui

    2006-08-01

    Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.

  20. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  1. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  2. Magnetic Nanoparticles in Cancer Theranostics

    PubMed Central

    Gobbo, Oliviero L.; Sjaastad, Kristine; Radomski, Marek W.; Volkov, Yuri; Prina-Mello, Adriele

    2015-01-01

    In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research. PMID:26379790

  3. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  4. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  5. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer

    NASA Astrophysics Data System (ADS)

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

    2012-10-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

  6. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer.

    PubMed

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G; Yun, Dong Soo; Belcher, Angela M; Kelly, Kimberly A

    2012-10-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

  7. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  8. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection

    PubMed Central

    Kim, Min-Ho; Yamayoshi, Itsukyo; Mathew, Steven; Liln, Hubert; Nayfach, Joseph; Simon, Scott I.

    2013-01-01

    The incidence of wound infections that do not adequately respond to standard-of-care antimicrobial treatment has been increasing. To address this challenge, a novel antimicrobial magnetic thermotherapy platform has been developed in which a high-amplitude, high-frequency, alternating magnetic field (AMF) is used to rapidly heat magnetic nanoparticles that are bound to Staphylococcus aureus (S. aureus). The antimicrobial efficacy of this platform was evaluated in the treatment of both an in vitro culture model of S. aureus biofilm and a mouse model of cutaneous S. aureus infection. We demonstrated that an antibody-targeted magnetic nanoparticle bound to S. aureus was effective at thermally inactivating S. aureus and achieving accelerated wound healing without causing tissue injury. PMID:23149904

  9. Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,; Singh, Jasvir; Sharma, Sandeep

    2016-05-23

    The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm{sup −1} of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interactionmore » that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.« less

  10. Magnonics: Selective heat production in nanocomposites with different magnetic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Yu; Kornev, Konstantin G.

    2016-03-07

    We theoretically study Ferromagnetic Resonance (FMR) in nanocomposites focusing on the analysis of heat production. It is demonstrated that at the FMR frequency, the temperature of nanoparticles can be raised at the rate of a few degrees per second at the electromagnetic (EM) irradiation power equivalent to the sunlight power. Thus, using FMR, one can initiate either surface or bulk reaction in the vicinity of a particular magnetic inclusion by purposely delivering heat to the nanoscale at a sufficiently fast rate. We examined the FMR features in (a) the film with a mixture of nanoparticles made of different materials; (b)more » the laminated films where each layer is filled with a particular type of magnetic nanoparticles. It is shown that different nanoparticles can be selectively heated at the different bands of EM spectrum. This effect opens up new exciting opportunities to control the microwave assisted chemical reactions depending on the heating rate.« less

  11. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  12. Electronic measurements in an alternating magnetic field (AMF) for studying magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Hussein, Z. A.; Hartzell, S.

    Magnetic nanoparticle hyperthermia is a promising cancer treatment in which magnetic nanoparticles are injected into a tumor and then exposed to an alternating magnetic field (AMF). This process releases heat and damages tumor cells, but the exact mechanisms behind the effectiveness of this therapy are still unclear. Accurate sensors are required to monitor the temperature and, potentially, other parameters such as magnetic field or mechanical stress during clinical therapy or lab research. Often, optical rather than electronic temperature sensors are used to avoid eddy current self-heating in conducting parts in the AMF. However, eddy current heating is strongly dependent on the size and geometry of the conducting part, thus micro- and nano-scale electronics are a promising possibility for further exploration into magnetic nanoparticle hyperthermia. This presentation quantitatively discusses the eddy current self-heating of thin wires (thermocouples) and will also present a proof of concept thin film resistive thermometer and magnetic field sensor along with measurements of their eddy current self-heating. The results show that electronic measurements are feasible in an AMF with both thin wires and patterned thin film sensors under certain conditions.

  13. Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Krajewski, Marcin; Brzozka, Katarzyna; Tokarczyk, Mateusz; Kowalski, Grzegorz; Lewinska, Sabina; Slawska-Waniewska, Anna; Lin, Wei Syuan; Lin, Hong Ming

    2018-07-01

    The main objective of this work is to study the influence of thermal oxidation on the chemical composition and magnetic properties of iron nanoparticles which were manufactured in a simple chemical reduction of Fe3+ ions coming from iron salt with sodium borohydride. The annealing processing was performed in an argon atmosphere containing the traces of oxygen to avoid spontaneous oxidation of iron at temperatures ranging from 200 °C to 800 °C. The chemical composition and magnetic properties of as-prepared and thermally-treated nanoparticles were determined by means of X-ray diffractometry, Raman spectroscopy, Mössbauer spectroscopy and vibrating sample magnetometry. Due to the magnetic interactions, the investigated iron nanoparticles tended to create the dense aggregates which were difficult to split even at low temperatures. This caused that there was no empty space between them, which led to their partial sintering at elevated temperatures. These features hindered their precise morphological observations using the electron microscopy techniques. The obtained results show that the annealing process up to 800 °C resulted in a progressive change in the chemical composition of as-prepared iron nanoparticles which was associated with their oxidation. As a consequence, their magnetic properties also depended on the annealing temperature. For instance, considering the values of saturation magnetization, its highest value was recorded for the as-prepared nanoparticles at 1 T and it equals 149 emu/g, while the saturation point for nanoparticles treated at 600 °C and higher temperatures was not reached even at the magnetic field of about 5 T. Moreover, a significant enhancement of coercivity was observed for the iron nanoparticles annealed over 600 °C.

  14. Magnetic properties of iron nanoparticles prepared by exploding wire technique.

    PubMed

    Alqudami, Abdullah; Annapoorni, S; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2007-06-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to the normal bulk material. The room temperature hysteresis measurements upto a field of 1.0 tesla were performed on a suspension of iron particles in the solution as well as in the powders obtained by filtration. The hysteresis loops indicate that the particles are superparamagnetic in nature. The saturation magnetizations was approximately 60 emu/gm. As these iron particles are very sensitive to oxygen a coating of non-magnetic iron oxide tends to form around the particles giving it a core-shell structure. The core particle size is estimated theoretically from the magnetization measurements. Suspensions of iron nanoparticles in water have been proposed to be used as an effective decontaminant for ground water.

  15. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment.

    PubMed

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan

    2017-12-04

    Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia.

  16. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment

    PubMed Central

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia. PMID:29207552

  17. Development of novel magnetic nanoparticles for hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2011-03-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values.

  18. Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities.

    PubMed

    Li, Yuncong; Hu, Xiaoyi; Xia, Yang; Ji, Yadong; Ruan, Jianping; Weir, Michael D; Lin, Xiaoying; Nie, Zhihong; Gu, Ning; Masri, Radi; Chang, Xiaofeng; Xu, Hockin H K

    2018-06-20

    A nanoparticle-doped adhesive that can be controlled with magnetic forces was recently developed to deliver drugs to the pulp and improve adhesive penetration into dentin. However, it did not have bactericidal and remineralization abilities. The objectives of this study were to: (1) develop a magnetic nanoparticle-containing adhesive with dimethylaminohexadecyl methacrylate (DMAHDM), amorphous calcium phosphate nanoparticles (NACP) and magnetic nanoparticles (MNP); and (2) investigate the effects on dentin bond strength, calcium (Ca) and phosphate (P) ion release and anti-biofilm properties. MNP, DMAHDM and NACP were mixed into Scotchbond SBMP at 2%, 5% and 20% by mass, respectively. Two types of magnetic nanoparticles were used: acrylate-functionalized iron nanoparticles (AINPs); and iron oxide nanoparticles (IONPs). Each type was added into the resin at 1% by mass. Dentin bonding was performed with a magnetic force application for 3min, provided by a commercial cube-shaped magnet. Dentin shear bond strengths were measured. Streptococcus mutans biofilms were grown on resins, and metabolic activity, lactic acid and colony-forming units (CFU) were determined. Ca and P ion concentrations in, and pH of biofilm culture medium were measured. Magnetic nanoparticle-containing adhesive using magnetic force increased the dentin shear bond strength by 59% over SBMP Control (p<0.05). Adding DMAHDM and NACP did not adversely affect the dentin bond strength (p>0.05). The adhesive with MNP+DMAHDM+NACP reduced the S. mutans biofilm CFU by 4 logs. For the adhesive with NACP, the biofilm medium became a Ca and P ion reservoir. The biofilm culture medium of the magnetic nanoparticle-containing adhesive with NACP had a safe pH of 6.9, while the biofilm medium of commercial adhesive had a cariogenic pH of 4.5. Magnetic nanoparticle-containing adhesive with DMAHDM and NACP under a magnetic force yielded much greater dentin bond strength than commercial control. The novel adhesive

  19. Methotrexate-conjugated magnetic nanoparticles for thermochemotherapy and magnetic resonance imaging of tumor

    NASA Astrophysics Data System (ADS)

    Gao, Fuping; Yan, Zixing; Zhou, Jing; Cai, Yuanyuan; Tang, Jintian

    2012-10-01

    There is significant interest in recent years in developing magnetic nanoparticles (MNPs) having multifunctional characteristics with complimentary roles. In this study, methotrexate (MTX) was conjugated on the iron oxide magnetic nanoparticles surface via a poly(ethyleneimine) self-assembled monolayer (MTX-MNPs). The novel platform combined cancer chemotherapy, hyperthermia and potential monitoring of the progression of disease through magnetic resonance imaging (MRI). The conjugation of MTX on the magnetite surface was confirmed by Fourier transform infrared spectroscopy and change of zeta potential. Transmission electron microscope (TEM) showed that MTX-MNPs were morphologically spherical. The average diameter of MTX-MNPs was 30.1 ± 5.2 nm determined by dynamic light scattering. Magnetic measurements revealed that the saturation magnetization of MTX-MNPs reached 68.8 emu/g and the nanoparticles were superparamagnetic. The MTX-MNPs had good heating properties in an alternating magnetic field. TEM results showed that a larger number of MTX-MNPs were internalized into the MCF-7 cellular cytoplasm compared with the MNPs. The MTX-MNPs demonstrated highly synergistic antiproliferative effects of simultaneous chemotherapy and hyperthermia in MCF-7 breast cancer cells. A significant negative contrast enhancement was observed with magnetic resonance phantom imaging for MCF-7 cells over L929cells, when both were cultured with the nanoconjugate. The MTX-MNPs with combined characteristics of thermochemotherapy and MRI could be of high clinical significance in the treatment of tumor.

  20. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  1. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  2. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  3. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  4. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  5. Magnetic hydrogel nanocomposites and composite nanoparticles--a review of recent patented works.

    PubMed

    Daniel-da-Silva, Ana L; Carvalho, Rui S; Trindade, Tito

    2013-06-01

    Magnetic hydrogel nanocomposites and composite nanoparticles form a class of soft materials with remote controllable properties that have attracted great attention due to their potential use in diverse applications. These include medical applications such as controlled drug delivery, clinical imaging and cancer hyperthermia and ecological applications as well, such as wastewater treatment. The present review provides an overview of the patents disclosed and research work developed in the last decade on magnetic hydrogel nanocomposites and magnetic hydrogel composite nanoparticles envisaging the above mentioned applications. In this context, recent patented advances on chemical methods for the preparation of bulk hydrogel nanocomposites and composite nanoparticles will be reviewed.

  6. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer

    NASA Astrophysics Data System (ADS)

    Hervault, Aziliz; Thanh, Nguyêl; N. Thé, Kim

    2014-09-01

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  7. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.

    PubMed

    Hervault, Aziliz; Thanh, Nguyen Th Kim

    2014-10-21

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  8. Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation

    NASA Astrophysics Data System (ADS)

    Hilger, Ingrid; Kießling, Andreas; Romanus, Erik; Hiergeist, Robert; Hergt, Rudolf; Andrä, Wilfried; Roskos, Martin; Linss, Werner; Weber, Peter; Weitschies, Werner; Kaiser, Werner A.

    2004-08-01

    The minimally invasive elimination of tumours using heating as a therapeutic agent is an emerging technology in medical applications. Particularly, the intratumoural application of magnetic nanoparticles as potential heating sources when exposed to an alternating magnetic field has been demonstrated. The present work deals with the estimation of the basic relationships when the magnetic material has access and binds to structures on cell membranes of target cells at the tumour region, particularly as a consequence of administration through tumour supplying vessels. Therefore, using mouse endothelial cells in culture, the binding of dextran coated magnetic nanoparticles (mean hydrodynamic particle diameter 65 nm) was modelled using the periodate method. The efficacy of cell labelling was demonstrated by magnetorelaxometry (MRX)—a selective method for the detection of only those magnetic nanoparticles that were immobilized—as well as by electron microscopy and iron staining. The amount of iron immobilized on cells was found to be 153 ± 56 µg Fe per 1 × 107 cells as determined by atomic absorption spectrometry. Moreover, after exposure of those 1 × 107 labelled cells to an alternating magnetic field (frequency 410 kHz, amplitude 11 kA m-1) for 5 min, temperature increases of 2 °C were achieved. The consequences of particle immobilization are reflected by the results of the measurements related to the specific heating power (SHP) of the magnetic material. Basically, the heating potential is explained by the superposition of Brown and Neél relaxation while for immobilized nanoparticles the Brown contribution is absent. In the long term the data could open the door to targeted magnetic heating after further optimization of the heating potential of magnetic material as well as after functionalization with biomolecules which recognize specific structures on the surface of cells at the target region.

  9. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning.

    PubMed

    Burke, Luke; Mortimer, Chris J; Curtis, Daniel J; Lewis, Aled R; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G G; Wright, Chris J

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125±18nm (PEO) and 1.58±0.28μm (PVP); Free-surface electrospun: 155±31nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8±3nm to 27±5nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn

    2011-03-01

    Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.

  11. Magnetic Resonance Imaging of Tumors with the Use of Iron Oxide Magnetic Nanoparticles as a Contrast Agent.

    PubMed

    Semkina, A S; Abakumov, M A; Grinenko, N F; Lipengolts, A A; Nukolova, N V; Chekhonin, V P

    2017-04-01

    We studied the possibility of using BSA-coated magnetic iron oxide nanoparticles for magnetic resonance imaging diagnosis of C6 glioblastoma, 4T1 mammary adenocarcinoma, and RS-1 hepatic mucous carcinoma. In all three cases, magnetic nanoparticles accumulated in the tumor and its large vessels. Magnetic resonance imaging with contrast agent allows visualization of the tumor tissue and its vascularization.

  12. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer

    PubMed Central

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

    2014-01-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment1. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression2. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand3,4,5 and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells6. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection. PMID:22983492

  13. Study of magnetic silk fibroin nanoparticles for massage-like transdermal drug delivery

    PubMed Central

    Chen, Ai-Zheng; Chen, Lin-Qing; Wang, Shi-Bin; Wang, Ya-Qiong; Zha, Jun-Zhe

    2015-01-01

    A synergistic approach by the combination of magnetic nanoparticles with an alternating magnetic field for transdermal drug delivery was investigated. Methotrexate-loaded silk fibroin magnetic nanoparticles were prepared using suspension-enhanced dispersion by supercritical CO2. The physiochemical properties of the magnetic nanoparticles were characterized. In vitro studies on drug permeation across skin were performed under different magnetic fields in comparison with passive diffusion. The permeation flux enhancement factor was found to increase under a stationary magnetic field, while an alternating magnetic field enhanced drug permeation more effectively; the combination of stationary and alternating magnetic fields, which has a massage-like effect on the skin, achieved the best result. The mechanistic studies using attenuated total reflection Fourier-transform infrared spectroscopy demonstrate that an alternating magnetic field can change the ordered structure of the stratum corneum lipid bilayers from the gel to the lipid-crystalline state, which can increase the fluidity of the stratum corneum lipids, thus enhancing skin penetration. Compared with the other groups, the fluorescence signal with a bigger area detected in deeper regions of the skin also reveals that the simulated massage could enhance the drug permeation across the skin by increasing the follicular transport. The combination of magnetic nanoparticles with stationary/alternating magnetic fields has potential for effective massage-like transdermal drug delivery. PMID:26229467

  14. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    PubMed

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  15. Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices.

    PubMed

    Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta

    2009-04-09

    Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.

  16. Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming

    2015-06-24

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

  17. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    PubMed

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  18. Bare Magnetic Nanoparticles: Sustainable Synthesis and Applications in Catalytic Organic Transformations

    EPA Science Inventory

    Magnetic nanoparticles have become increasingly prominent in the field of catalysis over the last decade as they combine interesting reactivity with an easy, economical and environmentally benign mode of recovery. Early strategies focused on the use of such nanoparticles only as ...

  19. Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Kim, Min Jun

    2015-03-01

    Micro- and nanoscale robotic swimmers are very promising to significantly enhance the performance of particulate drug delivery by providing high accuracy at extremely small scales. Here, we introduce micro- and nanoswimmers fabricated using self-assembly of nanoparticles and control via magnetic fields. Nanoparticles self-align into parallel chains under magnetization. The swimmers exhibit flexibility under a rotating magnetic field resulting in chiral structures upon deformation, thereby having the prerequisite for non-reciprocal motion to move about at low Reynolds number. The swimmers are actuated wirelessly using an external rotating magnetic field supplied by approximate Helmholtz coils. By controlling the concentration of the suspended magnetic nanoparticles, the swimmers can be modulated into different sizes. Nanoscale swimmers are largely influenced by Brownian motion, as observed from their jerky trajectories. The microswimmers, which are roughly three times larger, are less vulnerable to the effects from Brownian motion. In this paper, we demonstrate responsive directional control of micro- and nanoswimmers and compare their respective diffusivities and trajectories to characterize the implications of Brownian disturbance on the motions of small and large swimmers. We then performed a simulation using a kinematic model for the magnetic swimmers including the stochastic nature of Brownian motion.

  20. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  1. Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics.

    PubMed

    Chandra, Sudeshna; Nigam, Saumya; Bahadur, Dhirendra

    2014-01-01

    Magnetic nanoparticles (MNPs) are a well explored class of nanomaterials, known for their high magnetization and biocompatibility thus finding their way in several biomedical applications viz., drug delivery, magnetic resonance imaging contrast agent, immunoassay, detoxification of biological fluids and cell separation, biosensing and hyperthermia. On other hand, dendrimers are a class of hyperbranched, mostly symmetrical polymers that originate from a central core with repetitive branching units, called monomers, thus forming a globular structure. Due to their structural properties and controlled size, dendrimers have emerged as an attractive material for biomedical applications particularly as carriers for therapeutic cargo. Of late, researchers have started attempting to combine the unique features of dendrimer chemistry with the versatile magnetic nanoparticles to provide a facile platform for enhanced therapeutics and biomedical applications. This review intends to present the advances made towards fabrication of dendrimer based magnetic nanoparticles with varied surface architecture and their contribution towards theranostics, particularly for cancer.

  2. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    PubMed

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  3. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  4. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  5. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    PubMed

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles.

    PubMed

    Wang, Mingqi; Zhang, Jixi; Yuan, Ziming; Yang, Wenzhi; Wu, Qiang; Gu, Hongchen

    2012-08-01

    Thrombolytics inevitably led to the risk of hemorrhagic complications due to their non-specific plasminogen activation in treatment of thrombosis. The aim of this study was to determine whether a kind of superparamagnetic mesoporous silica nanoparticle with expanded pore size could achieve effectively targeted thrombolysis. The magnetic mesoporous silica nanoparticles (M-MSNs) with the pore size of 6 nm were prepared by method of the surfactant templating on nano magnetic particles. We investigated the feasibility and efficacy of target thrombolysis with the resultant spheres through fibrin agarose plate assay (FAPA) and a dynamic flow system in vitro. It displayed a 30-fold enhancement of urokinase (UK) loading capacity over the particles without mesoporous layer or the magnetic spheres with mesopores of 3.7 nm. A sustained release behavior was observed due to its larger pore size, higher surface area and narrow mesopore channals contrast to non-mesoporous and small mesopore of 3.7 nm controls. Meanwhile, fibrin agarose plate assay revealed that UK/M-MSNs exhibited a more rapid growth rate of thrombolysis even lasting for 3 days. Additionally, flow model test in vitro suggested this kind of nanoparticle complex enhanced the thrombolysis efficacy by 3.5 fold over the same amount of native UK in 30 min. When compared to non-mesoporous and small mesopore controls, it also represented an extremely higher lysis efficiency (ANOVA, P < 0.01) and a shorter reperfusion time (ANOVA, P < 0.001). Such a magnetic mesoporous silica nanoparticle carrier was expected to be further studied for targeted thrombolytic therapy.

  7. Magnetic circular dichroism of CdTe nanoparticles

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Sokolov, A. E.; Tsipotan, A. S.; Zharkov, S. M.; Zabluda, V. N.

    2018-04-01

    Magnetic circular dichroism (MCD) of water-soluble CdTe nanoparticles was observed in the visible spectral range for the first time. Diameter of nanoparticles varied from 2.3 to 4.5 nm. Absorption and photoluminescence spectra were also recorded. Absorption line at 19400 cm-1 and luminescent line at 18200 cm-1 were observed. Splitting of value 960 cm-1 was revealed in the MCD spectrum. Approximately the same splitting was extracted from the absorption spectrum. The MCD was identified as the temperature independent paramagnetic mixing effect. Nature of the absorption line and of its splitting are discussed.

  8. Magnetic domain formation in monolayer nanoparticle films

    NASA Astrophysics Data System (ADS)

    Maranville, Brian; Krycka, Kathryn; Borchers, Julie; Hogg, Charles; Majetich, Sara; Ijiri, Yumi

    2009-03-01

    Self-assembled magnetic nanoparticle films offer promise as data storage media, but an understanding of the interactions is missing. Modified Langmuir-Blodgett methods were used to prepare monolayer films of 7 and 11 nm diameter Fe3O4 nanoparticles with large structural domains. Small-angle neutron scattering (SANS) shows a peak at a wavevector Q corresponding to the particle size and spacing, and scattering at intermediate Q indicating possible long-range correlations. We extend to lower Q with off-specular neutron reflectivity, achieving high intensity by sacrificing resolution along one in-plane direction y while retaining high resolution in the other in-plane direction x and the normal direction z. We measure in saturation and zero field to extract magnetic scattering. In high fields, the specular scattering (Qx=0) is increased, consistent with aligned moments. Preliminary results show weak magnetic scattering for nonzero Qx . Since the maximal Qx roughly corresponds to the lowest Q in SANS, the combination of these techniques allows us to quantify field-dependent magnetic domain size.

  9. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

  10. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    NASA Astrophysics Data System (ADS)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  11. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.

    PubMed

    de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  12. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser

  13. Preparation and characterization of APTES modified magnetic MMT capable of using as anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingjun; Chen, Hua; Wu, Jie; He, Qin; Li, Yintao; Yang, Wenbin; Zhou, Yuanlin

    2018-07-01

    Montmorillonite (MMT) based anisotropic magnetic nanoparticles (Fe3O4/APTES/MMT) with high anisotropy and reliable magnetism were prepared by using Fe3O4 as magnetic nanoparticles and γ-aminopropyltriethoxysilane (ATPES) as modifier. The characterization indicated that the interactions between Fe3O4 nanoparticles and MMT in Fe3O4/APTES/MMT were stronger than that of directly deposited on to MMT (Fe3O4-MMT) because APTES was chemically bonded to both Fe3O4 and MMT. Fe3O4/APTES/MMT had a greater Ms value (25.16 emu/g) than Fe3O4-MMT (23.71 emu/g). Also, ultrasonication was used to test the interactions between Fe3O4 and MMT. With 30 min of ultrasonication, the amount of Fe3O4 nanoparticles on the surface of Fe3O4/APTES/MMT was more than that of Fe3O4-MMT, and Fe3O4/APTES/MMT had a faster magnetic response to a magnetic field than that of Fe3O4-MMT because of enhanced interactions between Fe3O4 and MMT in Fe3O4/APTES/MMT. In addition, Fe3O4 nanoparticles were densely immobilized onto Fe3O4/APTES/MMT with a smaller average diameter, and the distribution of Fe3O4 nanoparticles on the surface of MMT was more uniform than that of Fe3O4-MMT. Fe3O4/APTES/MMT possessed stable and high magnetism, in ease of orientation and recycling in the magnetic field, and this makes it a promising candidate as anisotropic nanoparticles for use in preparing anisotropic inorganic/polymer composites and anisotropic adsorbents used in wastewater treatment. Finally, the mechanism of ATPES-modified magnetic MMT was investigated.

  14. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  15. Preparation and characterization of magnetic core-shell iron oxide@glycyrrhizic acid nanoparticles in ethanol-water mixed solvent

    NASA Astrophysics Data System (ADS)

    Saeedi, Mostafa; Vahidi, Omid

    2018-06-01

    In this research, we used the co-precipitation method to synthesize glycyrrhizic acid coated iron oxide magnetic nanoparticles. The aim of this study is to investigate how different amounts of glycyrrhizic acid affect the structural, biological, magnetic, and hyperthermic characteristics of the synthesized magnetic nanoparticles. The synthesis was conducted under different glycyrrhizic acid concentrations in water with the presence of ethanol to generate coated nanoparticles with different amounts of coating agent. The characteristics of the synthesized nanoparticles were examined by several devices including X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra, and thermal gravimetric analyzer. The cytotoxicity of synthesized nanoparticles was examined by MTT assay using L929 fibroblast cell line. The results indicated the enhanced biocompatibility of the coated iron oxide nanoparticles due to the presence of glycyrrhizic acid. The comparison of the coated samples shows that the samples with higher amounts of coating agent were more biocompatible. The possibility of using the synthesized magnetic nanoparticles for medical hyperthermia was examined by performing hyperthermia process on a nanofluid made up of the nanoparticles dispersed in water using a high-frequency alternating magnetic field generator and the results confirm the effectiveness of the synthesized nanoparticles in the elevation of the solutions temperature.

  16. Study of Co0.5Zn0.5Fe2O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Kamzin, A. S.; Nikam, D. S.; Pawar, S. H.

    2017-01-01

    The structural characteristics, magnetic properties, and processes of magnetic heating in an alternating magnetic field of magnetic nanoparticles (MNPs) Co0.5Zn0.5Fe2O4 (cobalt-zinc ferrite, CZF) are studied to explore the possibilities of their application in medicine, namely, for magnetic hyperthermia treatment (the heating of particles with external alternating magnetic field). CZF magnetic nanoparticles were obtained by coprecipitation using sodium hydroxide (NaOH) as a precipitating agent. Based on the data obtained by transmission electron microscopy in the transmission geometry, it is found that CZF magnetic nanoparticles have an almost spherical shape with an average particle size of 13 nm. X-ray diffraction and Mössbauer studies showed that CZF magnetic nanoparticles are single-phase, and their structure corresponds to a cubic spinel structure. The saturation magnetization M s of CZF nanoparticles is measured at room temperature using a vibrating sample magnetometer. The possibility of heating CZF magnetic nanoparticles with an external alternating magnetic field was studied using an induction heating system. The specific absorption rate is determined by applying an external alternating magnetic field in the range of 167.5 to 335.2 Oe at a fixed frequency of 265 kHz. It is found that the maximum amount of heat (114.98 W/g) is produced at a concentration of 5 mg/L under a field of 335.2 Oe.

  17. The Stability and Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation

    DTIC Science & Technology

    2005-01-01

    imaging, drug delivery, and hyperthermia treatment for cancer . Ideal magnetic nanoparticle fluids have well-separated, biocompatible nanoparticles with a...Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation DISTRIBUTION: Approved for public release, distribution unlimited This paper...Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation Nguyen H. Hail, Raymond Lemoine’, Shaina

  18. Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Bayukov, O. A.; Balaev, D. A.; Krasikov, A. A.; Iskhakov, R. S.; Vorotynov, A. M.; Ladygina, V. P.; Purtov, K. V.; Volochaev, M. N.

    2018-03-01

    Superparamagnetic ferrihydrite powders with average nanoparticle sizes of 2.5 nm produced by the chemical deposition method. Static and dynamic magnetic properties are measured. As a result of ultrasonic treatment in the cavitation regime of suspensions of ferrihydrite powders in a solution of the albumin protein, the Fe ions are reduced to the metallic state. A sol of ferrihydrite nanoparticles is prepared in an aqueous solution of arabinogalactan polysaccharide.

  19. Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai

    2016-05-01

    In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.

  20. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    PubMed

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  1. Size-controlled, magnetic, and core-shell nanoparticles synthesized by inert-gas condensation

    NASA Astrophysics Data System (ADS)

    Koten, Mark A.

    Interest in nanoparticles (2 to 100 nm in diameter) and clusters of atoms (0.5 to 2 nm in diameter) has heightened over the past two and a half decades on both fundamental and functional levels. Nanoparticles and clusters of atoms are an exciting branch of materials science because they do not behave like normal bulk matter, nor do they act like molecules. They can have shockingly different physical, chemical, optical, or magnetic properties from the same material at a larger scale. In the case of nanoparticles, the surface-to-volume ratio can change fundamental properties like melting temperature, binding energy, or electron affinity. The definitions of markers used to distinguish between metallic, semiconducting, and insulating bulk condensed matter, such as the band gap and polarizability, can even be blurred or confused on the nanoscale. Similarly, clusters of atoms can form in structures that are only stable at finite sizes, and do not translate to bulk condensed matter. Thermodynamics of finite systems changes dramatically in nanovolumes such as wires, rods, cubes, and spheres, which can lead to complex core-shell and onion-like nanostructures. Consequently, these changes in properties and structure have led to many new possibilities in the field of materials engineering. Inert-gas condensation (IGC) is a well-established method of producing nanoparticles that condense from the gas phase. Its first use dates back to the early 1990s, and it has been used to fabricate nanoparticles both commercially and in research and development for applications in magnetism, biomedicine, and catalysts. In this dissertation, IGC was used to produce a wide variety of nanoparticles. First, control over the size distributions of Cu nanoparticles and how it relates to the plasma properties inside the nucleation chamber was investigated. Next, the formation of phase pure WFe2 nanoparticles revealed that this Laves phase is ferromagnetic instead of non-magnetic. Finally, core

  2. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  3. Investigation on the structures and magnetic properties of carbon or nitrogen doped cobalt ferrite nanoparticles.

    PubMed

    Cao, Derang; Pan, Lining; Li, Jianan; Cheng, Xiaohong; Zhao, Zhong; Xu, Jie; Li, Qiang; Wang, Xia; Li, Shandong; Wang, Jianbo; Liu, Qingfang

    2018-05-21

    Carbon or nitrogen doped cobalt ferrite nanoparticles were synthesized in the air by a facile calcination process. X-ray diffraction, mapping, X-ray photoelectron spectroscopy, and mössbauer spectra results indicate that the nonmetal elements as the interstitial one are doped into cobalt ferrite nanoparticles. The morphologies of doped cobalt ferrite nanoparticles change from near-spherical to irregular cubelike shapes gradually with the increased carbon or nitrogen concentration, and their particles sizes also increase more than 200 nm. Furthermore, the saturation magnetization of carbon doped cobalt ferrite is improved. Although the saturation magnetization of N-doped cobalt ferrite is not enhanced obviously due to the involved hematite, they also do not drop drastically. The results reveal an approach to synthesize large scale ferrite nanoparticles, and improve the magnetic properties of ferrite nanoparticles, and also provide the potential candidates to synthesis co-doped functional magnetic materials.

  4. Exceptionally large magneto-optical response in dispersions of plate-like nanocrystallites and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    May, Kathrin; Eremin, Alexey; Stannarius, Ralf; Szabó, Balázs; Börzsönyi, Tamás; Appel, Ingo; Behrens, Silke; Klein, Susanne

    2017-06-01

    We introduce a binary colloidal system with an exceptionally strong magneto-optical response. Its induced optical birefringence at even low magnetic fields (in the mT range) reaches a value with the same order of magnitude as that of nematic liquid crystals. This system is based on a binary mixture of plate-like, non-magnetic pigment nanoparticles and a small volume fraction (< 1 v %) of spherical magnetic nanoparticles. In the field-free state, the suspension is isotropic. Birefringence is caused by an alignment of the pigment platelets, commanded by shape-anisotropic agglomerates of the magnetic nanoparticles in an external magnetic field. We give a semiquantitative discussion about this.

  5. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release.

    PubMed

    Kong, Seong Deok; Sartor, Marta; Hu, Che-Ming Jack; Zhang, Weizhou; Zhang, Liangfang; Jin, Sungho

    2013-03-01

    Stimuli-responsive nanoparticles (SRNPs) offer the potential of enhancing the therapeutic efficacy and minimizing the side-effects of chemotherapeutics by controllably releasing the encapsulated drug at the target site. Currently controlled drug release through external activation remains a major challenge during the delivery of therapeutic agents. Here we report a lipid-polymer hybrid nanoparticle system containing magnetic beads for stimuli-responsive drug release using a remote radio frequency (RF) magnetic field. These hybrid nanoparticles show long-term stability in terms of particle size and polydispersity index in phosphate-buffered saline (PBS). Controllable loading of camptothecin (CPT) and Fe(3)O(4) in the hybrid nanoparticles was demonstrated. RF-controlled drug release from these nanoparticles was observed. In addition, cellular uptake of the SRNPs into MT2 mouse breast cancer cells was examined. Using CPT as a model anticancer drug the nanoparticles showed a significant reduction in MT2 mouse breast cancer cell growth in vitro in the presence of a remote RF field. The ease of preparation, stability, and controllable drug release are the strengths of the platform and provide the opportunity to improve cancer chemotherapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  7. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat

  8. Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.

    2018-05-01

    The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.

  9. Magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis.

    PubMed

    Houhoula, Dimitra; Papaparaskevas, Joseph; Zatsou, Katerina; Nikolaras, Nikolaos; Malkawi, Hanan I; Mingenot-Leclercq, Marie-Paule; Konteles, Spyros; Koussisis, Stamatis; Tsakris, Athanassios; Charvalos, Ekatherina

    2017-07-01

    This paper evaluated magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis. Two different types of magnetic nanoparticles designated MPIO (iron concentration 2.5 mg/ml, size 1 µm) and NP (iron concentration 8.7 mg/ml, size 60 nm), both conjugated with S. aureus or S. enteritidis antibodies were evaluated as an enrichment procedure for PCR-detection of the pathogens in Trypticase Soy Broth, milk, blood and meat broth. Bacterial suspensions (1.5x108 cfu/ml) were prepared and serial diluted 10-1. The MPIO and NP nanoparticles were added, followed by incubation for 1 hour at room temperature, magnetic separation of the pellet, DNA extraction and PCR, targeting the femA and invA sequences. The nanoparticle-free and the NP-supplemented dilutions were positive down to the 1.5x102 cfu/ml concentration for both bacteria. The MPIO-supplemented dilutions were positive down to approx. 2x100 cfu/ml concentration, respectively. Bacteria-free TSB was negative by PCR. MPIO nanoparticles (size 1 µm) enhanced the detection of S. aureus and S. enteritidis by PCR, whilst NP nanoparticles (size 60 nm) did not, thus indicating that the size of the magnetic nanoparticles play a significant role in the enrichment procedure.

  10. Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor.

    PubMed

    Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji

    2016-05-01

    Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.

  11. Magnetic imaging of cyanide-bridged co-ordination nanoparticles grafted on FIB-patterned Si substrates.

    PubMed

    Ghirri, Alberto; Candini, Andrea; Evangelisti, Marco; Gazzadi, Gian Carlo; Volatron, Florence; Fleury, Benoit; Catala, Laure; David, Christophe; Mallah, Talal; Affronte, Marco

    2008-12-01

    Prussian blue CsNiCr nanoparticles are used to decorate selected portions of a Si substrate. For successful grafting to take place, the Si surface needs first to be chemically functionalized. Low-dose focused ion beam patterning on uniformly functionalized surfaces selects those portions that will not participate in the grafting process. Step-by-step control is assured by atomic force and high-resolution scanning electron microscopy, revealing a submonolayer distribution of the grafted nanoparticles. By novel scanning Hall-probe microscopy, an in-depth investigation of the magnetic response of the nanoparticles to varying temperature and applied magnetic field is provided. The magnetic images acquired suggest that low-temperature canted ferromagnetism is found in the grafted nanoparticles, similar to what is observed in the equivalent bulk material.

  12. Discrete Spin Vector Approach for Monte Carlo-based Magnetic Nanoparticle Simulations

    NASA Astrophysics Data System (ADS)

    Senkov, Alexander; Peralta, Juan; Sahay, Rahul

    The study of magnetic nanoparticles has gained significant popularity due to the potential uses in many fields such as modern medicine, electronics, and engineering. To study the magnetic behavior of these particles in depth, it is important to be able to model and simulate their magnetic properties efficiently. Here we utilize the Metropolis-Hastings algorithm with a discrete spin vector model (in contrast to the standard continuous model) to model the magnetic hysteresis of a set of protected pure iron nanoparticles. We compare our simulations with the experimental hysteresis curves and discuss the efficiency of our algorithm.

  13. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering.

    PubMed

    Zhang, Heng; Xia, JiYi; Pang, XianLun; Zhao, Ming; Wang, BiQiong; Yang, LingLin; Wan, HaiSu; Wu, JingBo; Fu, ShaoZhi

    2017-04-01

    Magnetic nanoparticles have been one of the most attractive nanomaterials for various biomedical applications including magnetic resonance imaging (MRI), diagnostic contrast enhancement, magnetic cell separation, and targeted drug delivery. Three-dimensional (3-D) fibrous scaffolds have broad application prospects in the biomedical field, such as drug delivery and tissue engineering. In this work, a novel three-dimensional composite membrane composed of the tri-block copolymer poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) and magnetic iron oxide nanoparticles (Fe 3 O 4 NPs) were fabricated using electrospinning technology. The physico-chemical properties of the PCEC/Fe 3 O 4 membranes were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Morphological observation using scanning electron microscopy (SEM) showed that the composite fibers containing 5% Fe 3 O 4 nanoparticles had a diameter of 250nm. In vitro cell culture of NIH 3T3 cells on the PCEC/Fe 3 O 4 membranes showed that the PCEC/Fe 3 O 4 fibers might be a suitable scaffold for cell adhesion. Moreover, MTT analysis also demonstrated that the membranes possessed lower cytotoxicity. Therefore, this study revealed that the magnetic PCEC/Fe 3 O 4 fibers might have great potential for using in skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles.

    PubMed

    Mariappan, Leo; Shao, Qi; Jiang, Chunlan; Yu, Kai; Ashkenazi, Shai; Bischof, John C; He, Bin

    2016-04-01

    Nanoparticles are widely used as contrast and therapeutic agents. As such, imaging modalities that can accurately estimate their distribution in-vivo are actively sought. We present here our method Magneto Acoustic Tomography (MAT), which uses magnetomotive force due to a short pulsed magnetic field to induce ultrasound in the magnetic nanoparticle labeled tissue and estimates an image of the distribution of the nanoparticles in-vivo with ultrasound imaging resolution. In this study, we image the distribution of superparamagnetic iron oxide nanoparticles (IONP) using MAT method. In-vivo imaging was performed on live, nude mice with IONP injected into LNCaP tumors grown subcutaneously within the hind limb of the mice. Our experimental results indicate that the MAT method is capable of imaging the distribution of IONPs in-vivo. Therefore, MAT could become an imaging modality for high resolution reconstruction of MNP distribution in the body. Many magnetic nanoparticles (MNPs) have been used as contrast agents in magnetic resonance imaging. In this study, the authors investigated the use of ultrasound to detect the presence of MNPs by magneto acoustic tomography. In-vivo experiments confirmed the imaging quality of this new approach, which hopefully would provide an alternative method for accurate tumor detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and -coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Le Thi, Thao Nguyen; Nguyen, Thi Hiep; Hoang, Dong Quy; Tran, Tuong, Vi; Nguyen, Ngoc Thuy; Nguyen, Dai Hai

    2017-11-01

    Oligochitosan (OCS) have been utilized as a potential bioactive material for improving food quality and human health. In this study, superparamagnetic iron oxide (Fe3O4) nanoparticles were originally coated with OCS irradiated by gamma rays for their possible biomedical applications. The formation of Fe3O4@OCS was characterized by Fourier transform infrared (FT-IR), X-ray diffraction patterns (XRD), energy dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). In addition, the superparamagnetic properties and sizes and morphologies of Fe3O4 and Fe3O4@OCS nanoparticles were demonstrated by vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM), respectively. These results indicated that Fe3O4@OCS nanoparticles still maintained their superparamagnetic properties after polymeric coating, and were nearly spherical in shape with average diameter of 14.4 ± 0.31 nm, compared with 11.8 ± 0.52 nm of bare Fe3O4 nanoparticles, respectively. As a result, Fe3O4@OCS nanoparticles may serve as a promising platform for the development of new magnetic materials, which could be useful for biomedical applications.

  16. Investigation of magnetic properties of Fe{sub 3}O{sub 4} nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemala, H.; Thakur, J. S.; Lawes, G.

    2014-07-21

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles, subjected to external magnetic fields of various frequencies (188–375 kHz) and amplitudes (140–235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (∼65 emu/g) comparedmore » to the bulk value of Fe{sub 3}O{sub 4} (∼95 emu/g). This is due to the presence of a finite surface layer (∼1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe{sub 3}O{sub 4} core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m{sup 3}) of Fe{sub 3}O{sub 4} nanoparticles.« less

  17. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging

    PubMed Central

    Cabrera-García, Alejandro; Vidal-Moya, Alejandro; Bernabeu, Ángela; Pacheco-Torres, Jesús; Checa-Chavarria, Elisa; Fernández, Eduardo; Botella, Pablo

    2016-01-01

    We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images. PMID:28335240

  18. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    PubMed

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  19. Study of static and dynamic magnetic properties of Fe nanoparticles composited with activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Satyendra Prakash, E-mail: sppal85@gmail.com; Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge city, Sector81, SAS Nagar, Manauli-140306, Punjab; Kaur, Guratinder

    2016-05-23

    Nanocomposite of Fe nanoparticles with activated carbon has been synthesized to alter the magnetic spin-spin interaction and hence study the dilution effect on the static and dynamic magnetic properties of the Fe nanoparticle system. Transmission electron microscopic (TEM) image shows the spherical Fe nanoparticles dispersed in carbon matrix with 13.8 nm particle size. Temperature dependent magnetization measurement does not show any blocking temperature at all, right up to the room temperature. Magnetic hysteresis curve, taken at 300 K, shows small value of the coercivity and this small hysteresis indicates the presence of an energy barrier and inherent magnetization dynamics. Langevinmore » function fitting of the hysteresis curve gives almost similar value of particle size as obtained from TEM analysis. Magnetic relaxation data, taken at a temperature of 100 K, were fitted with a combination of two exponentially decaying function. This diluted form of nanoparticle system, which has particles size in the superparamagnetic limit, behaves like a dilute ensemble of superspins with large value of the magnetic anisotropic barrier.« less

  20. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  1. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  2. Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function

    NASA Astrophysics Data System (ADS)

    Zhao, Aijie; Yao, Peng; Kang, Chunshang; Yuan, Xubo; Chang, Jin; Pu, Peiyu

    2005-08-01

    This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix—O-carboxylmethylated chitosan (O-CMC) as drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-tat as drug carriers, MTX was incorporated as a model drug and MTX-loaded O-MNPs-tat with an average diameter of 45-60 nm were prepared and characterized by TEM, AFM and VSM. The cytotoxicity of MTX-loaded O-MNPs-tat was investigated with U-937 tumor cells. The results showed that the MTX-loaded O-MNPs-tat retained significant antitumor toxicity; additionally, sustained release of MTX from O-CMC nanoparticles was observed in vitro, suggesting that the tat-O-MNPs could be a novel magnetic targeting carrier.

  3. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkov, A. A.; The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology; Rakov, I. I.

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction withmore » magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.« less

  4. Magnetic field gradient driven self-assembly of superparamagnetic nanoparticles using programmable magnetically-recorded templates

    NASA Astrophysics Data System (ADS)

    Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.

    2013-03-01

    Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.

  5. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    PubMed

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  6. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    PubMed

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging.

    PubMed

    Zeinali Sehrig, Fatemeh; Majidi, Sima; Asvadi, Sahar; Hsanzadeh, Arash; Rasta, Seyed Hossein; Emamverdy, Masumeh; Akbarzadeh, Jamshid; Jahangiri, Sahar; Farahkhiz, Shahrzad; Akbarzadeh, Abolfazl

    2016-11-01

    Today, technologies based on magnetic nanoparticles (MNPs) are regularly applied to biological systems with diagnostic or therapeutic aims. Nanoparticles made of the elements iron (Fe), gadolinium (Gd) or manganese (Mn) are generally used in many diagnostic applications performed under magnetic resonance imaging (MRI). Similar to molecular-based contrast agents, nanoparticles can be used to increase the resolution of imaging while offering well biocompatibility, poisonousness and biodistribution. Application of MNPs enhanced MRI sensitivity due to the accumulation of iron in the liver caused by discriminating action of the hepatobiliary system. The aim of this study is about the use, properties and advantages of MNPs in MRI.

  8. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  9. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles.

    PubMed

    Pinto, Suyene Rocha; Helal-Neto, Edward; Paumgartten, Francisco; Felzenswalb, Israel; Araujo-Lima, Carlos Fernando; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph

    2018-04-24

    Whether in the cosmetic or as therapeutic, the use of nanoparticles has been increasing and taking on global proportion. However, there are few studies about the physical potential of long-term use or use in special conditions such as chronic, AIDS, pregnant women and other special health circumstances. In this context, the study of the mutagenicity and the transplacental passage represents an important and reliable model for the primary evaluation of potential health risks, especially maternal and child health. In this study we performed mutagenicity, cytotoxic and transplacental evaluation of magnetic core mesoporous silica nanoparticles, radiolabeled with 99m Tc for determination of toxicogenic and embryonic/fetuses potential risk in animal model. Magnetic core mesoporous silica nanoparticles were produced and characterized by obtaining nanoparticles with a size of (58.9 ± 8.1 nm) in spherical shape and with intact magnetic core. The 99 m Tc radiolabeling process demonstrated high efficacy and stability in 98% yield over a period of 8 hours of stability. Mutagenicity assays were performed using Salmonella enteric serovar Typhimurium standard strains TA98, TA100 and TA102. Cytotoxicity assays were performed using WST-1. The transplacental evaluation assays were performed using the in vivo model with rats in two periods: embryonic and fetal stage. The results of both analyzes corroborate that the nanoparticles can i) generate DNA damage; ii) generate cytotoxic potential and iii) cross the transplantation barrier in both stages and bioaccumulates in both embryos and fetuses. The results suggest that complementary evaluations should be conducted in order to attest safety, efficacy and quality of nanoparticles before unrestricted approval of their use.

  10. Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.

    2010-09-01

    Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.

  11. Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range

    PubMed Central

    2013-01-01

    We report an adjustable magnetic resonance frequency from 1.45 to 2.54 GHz for NiFe2O4 nanoparticles which were prepared by a sol–gel process. X-ray diffraction and scanning electron microscopy results indicate that the samples are polycrystalline nanoparticles, and the size of the particles increases obviously with the thermal treatment temperature. The consequence of the surface composition suggests that the oxygen defects are present in the nanoparticle surface, and this surface magnetic state can show a strong surface anisotropy. With decreasing size of the particle, the surface magnetic effect is predominant, resulting in an increase of resonance frequency for NiFe2O4 nanoparticles. This finding provides a new route for NiFe2O4 materials that can be used in the gigahertz range. PMID:24083340

  12. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.

    PubMed

    Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke

    2017-01-18

    Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.

  13. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J; Geisel School of Medicine, Dartmouth College, Hanover, NH

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissuemore » and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.« less

  14. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  15. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.

    PubMed

    Zywietz, Urs; Evlyukhin, Andrey B; Reinhardt, Carsten; Chichkov, Boris N

    2014-03-04

    Silicon nanoparticles with sizes of a few hundred nanometres exhibit unique optical properties due to their strong electric and magnetic dipole responses in the visible range. Here we demonstrate a novel laser printing technique for the controlled fabrication and precise deposition of silicon nanoparticles. Using femtosecond laser pulses it is possible to vary the size of Si nanoparticles and their crystallographic phase. Si nanoparticles produced by femtosecond laser printing are initially in an amorphous phase (a-Si). They can be converted into the crystalline phase (c-Si) by irradiating them with a second femtosecond laser pulse. The resonance-scattering spectrum of c-Si nanoparticles, compared with that of a-Si nanoparticles, is blue shifted and its peak intensity is about three times higher. Resonant optical responses of dielectric nanoparticles are characterized by accumulation of electromagnetic energy in the excited modes, which can be used for the realization of nanoantennas, nanolasers and metamaterials.

  16. Preparation of highly fluorescent magnetic nanoparticles for analytes-enrichment and subsequent biodetection.

    PubMed

    Zhang, Bingbo; Chen, Bingdi; Wang, Yilong; Guo, Fangfang; Li, Zhuoquan; Shi, Donglu

    2011-01-15

    Bifunctional nanoparticles with highly fluorescence and decent magnetic properties have been widely used in biomedical application. In this study, highly fluorescent magnetic nanoparticles (FMNPs) with uniform size of ca. 40 nm are prepared by encapsulation of both magnetic nanoparticles (MNPs) and shell/core quantum dots (QDs) with well-designed shell structure/compositions into silica matrix via a one-pot reverse microemulsion approach. The spectral analysis shows that the FMNPs hold high fluorescent quantum yield (QY). The QYs and saturation magnetization of the FMNPs can be regulated by varying the ratio of the encapsulated QDs to MNPs. Moreover, the surface of the FMNPs can be modified to offer chemical groups for antibody conjugation for following use in target-enrichment and subsequent fluorescent detection. The in vitro immunofluorescence assay and flow cytometric analysis indicate that the bifunctional FMNPs-antibody bioconjugates are capable of target-enrichment, magnetic separation and can also be used as alternative fluorescent probes on flow cytometry for biodetection. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Exploring Reaction Conditions to Improve the Magnetic Response of Cobalt-Doped Ferrite Nanoparticles

    PubMed Central

    Galarreta, Itziar; Gil de Muro, Izaskun; Lezama, Luis

    2018-01-01

    With the aim of studying the influence of synthesis parameters in structural and magnetic properties of cobalt-doped magnetite nanoparticles, Fe3−xCoxO4 (0 < x < 0.15) samples were synthetized by thermal decomposition method at different reaction times (30–120 min). The Co ferrite nanoparticles are monodisperse with diameters between 6 and 11 nm and morphologies depending on reaction times, varying from spheric, cuboctahedral, to cubic. Chemical analysis and X-ray diffraction were used to confirm the composition, high crystallinity, and pure-phase structure. The investigation of the magnetic properties, both magnetization and electronic magnetic resonance, has led the conditions to improve the magnetic response of doped nanoparticles. Magnetization values of 86 emu·g−1 at room temperature (R.T.) have been obtained for the sample with the highest Co content and the highest reflux time. Magnetic characterization also displays a dependence of the magnetic anisotropy constant with the varying cobalt content. PMID:29370104

  18. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2017-06-01

    Biocompatible ferrofluids based on dextran coated iron oxide nanoparticles were fabricated by conventional co-precipitation method. The experimental results show that the presence of dextran in reaction medium not only causes to the appearance of superparamagnetic behavior but also results in significant suppression in saturation magnetization of dextran coated samples. These results can be attributed to size reduction originated from the role of dextran as a surfactant. Moreover, weight ratio of dextran to magnetic nanoparticles has a remarkable influence on size and magnetic properties of nanoparticles, so that the sample prepared with a higher weight ratio of dextran to nanoparticles has the smaller size and saturation magnetization compare with the other samples. In addition, the ferrofluids containing such nanoparticles have an excellent stability at physiological pH for several months. Furthermore, the biocompatibility studies reveal that surface modification of nanoparticles by dextran dramatically decreases the cytotoxicity of bare nanoparticles and consequently improves their potential application for diagnostic and therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

    PubMed

    Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

    2013-12-15

    Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses. © 2013 Elsevier B.V. All rights reserved.

  20. Bioinspired synthesis of magnetic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Anand

    2009-01-01

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambientmore » temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The

  1. The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle.

    PubMed

    Hu, Zhengyan; Zhao, Liang; Zhang, Hongyan; Zhang, Yi; Wu, Ren'an; Zou, Hanfa

    2014-03-21

    Proteins interacting with nanoparticles would form the protein coronas on the surface of nanoparticles in biological systems, which would critically impact the biological identities of nanoparticles and/or result in the physiological and pathological consequences. The enzymatic digestion of protein corona was the primary step to achieve the identification of protein components of the protein corona for the bottom-up proteomic approaches. In this study, the investigation on the tryptic digestion of protein corona by the immobilized trypsin on a magnetic nanoparticle was carried out for the first time. As a comparison with the usual overnight long-time digestion and the severe self-digestion of free trypsin, the on-bead digestion of protein corona by the immobilized trypsin could be accomplished within 1h, along with the significantly reduced self-digestion of trypsin and the improved reproducibility on the identification of proteins by the mass spectrometry-based proteomic approach. It showed that the number of identified bovine serum (BS) proteins on the commercial Fe3O4 nanoparticles was increased by 13% for the immobilized trypsin with 1h digestion as compared to that of using free trypsin with even overnight digestion. In addition, the on-bead digestion of using the immobilized trypsin was further applied on the identification of human plasma protein corona on the commercial Fe3O4 nanoparticles, which leads the efficient digestion of the human plasma proteins and the identification of 149 human plasma proteins corresponding to putative critical pathways and biological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The investigation of smart magnetic nanoparticles for use in the hyperthermia treatment of cancer

    NASA Astrophysics Data System (ADS)

    Allyn, Megan; Kharel, Parashu; Vaishnava, Prem; Tackett, Ronald

    The magnetic fluid hyperthermia (MFH) treatment of cancer has emerged as a possible low-side-effect alternative to traditional chemotherapy- and radiation-based therapy. As the nanoparticles absorb energy from a low amplitude RF magnetic field they heat up; however, currently used hyperthermia systems require external temperature monitoring as the nanoparticles can easily heat to temperature greater than the desired window between 42C and 46C. To combat this, we are investigating ``smart'' magnetic nanoparticles whose Curie temperatures fall within the desired range. In order to do this, we have doped non-magnetic cations onto the structure of the AFM LaMnO3. We report synthesis of LaxM1-xMnO3 (M = Ba, Ca, Sr; x = 0.10 - 0.25) nanoparticles via sol-gel method for use in temperature-controlled MFH. These nanoparticles were characterized via powder x-ray diffraction and found to have the expected R -3 c perovskite structure. For elemental analysis, energy dispersive spectroscopy was performed using scanning electron microscopy. The temperature dependence of the magnetization was investigated using vibrating sample magnetometry (VSM) to determine the Curie temperature of the ensembles. The results of the change in temperature vs time and SAR values will be presented.

  3. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Li, Q.; Zu, X. T.; Xiang, X.; Liu, W.; Li, S.

    2016-12-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M2+ ion active sites were coordinated by -OH of the water molecules except for EDTA anions. The MFe2O4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe2O4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly.

  4. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

    PubMed

    Makridis, A; Chatzitheodorou, I; Topouridou, K; Yavropoulou, M P; Angelakeris, M; Dendrinou-Samara, C

    2016-06-01

    The application of ferrite magnetic nanoparticles (MNPs) in medicine finds its rapidly developing emphasis on heating mediators for magnetic hyperthermia, the ever-promising "fourth leg" of cancer treatment. Usage of MNPs depends largely on the preparation processes to select optimal conditions and effective routes to finely tailor MNPs. Microwave heating, instead of conventional heating offers nanocrystals at significantly enhanced rate and yield. In this work, a facile mass-production microwave hydrothermal synthetic approach was used to synthesize stable ferromagnetic manganese and cobalt ferrite nanoparticles with sizes smaller than 14 nm from metal acetylacetonates in the presence of octadecylamine. Prolonging the reaction time from 15 to 60 min, led to ferrites with improved crystallinity while the sizes are slight increased. The high crystallinity magnetic nanoparticles showed exceptional magnetic heating parameters. In vitro application was performed using the human osteosarcoma cell line Saos-2 incubated with manganese ferrite nanoparticles. Hyperthermia applied in a two cycle process, while AC magnetic field remained on until the upper limit of 45 °C was achieved. The comparative results of the AC hyperthermia efficiency of ferrite nanoparticles in combination with the in vitro study coincide with the magnetic features and their tunability may be further exploited for AC magnetic hyperthermia driven applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    NASA Astrophysics Data System (ADS)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  6. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    PubMed Central

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  7. Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Kaczmarek, K.; Hornowski, T.; Kubovčíková, M.; Rozynek, Z.; Timko, M.; Skumiel, A.

    2016-06-01

    Ultrasonic hyperthermia is a method of cancer treatment in which tumors are exposed to an elevated cytotoxic temperature using ultrasound (US). In conventional ultrasonic hyperthermia, the ultrasound-induced heating in the tumor is achieved through the absorption of wave energy. However, to obtain appropriate temperature in reasonable time, high US intensities, which can have a negative impact on healthy tissues, are required. The effectiveness of US for medical purposes can be significantly improved by using the so-called sonosensitizers, which can enhance the thermal effect of US on the tissue by increasing US absorption. One possible candidate for such sonosensitizers is magnetic nanoparticles with mean sizes of 10-300 nm, which can be efficiently heated because of additional attenuation and scattering of US. Additionally, magnetic nanoparticles are able to produce heat in the alternating magnetic field (magnetic hyperthermia). The synergetic application of ultrasonic and magnetic hyperthermia can lead to a promising treatment modality.

  8. Physical Justification for Negative Remanent Magnetization in Homogeneous Nanoparticles

    PubMed Central

    Gu, Shuo; He, Weidong; Zhang, Ming; Zhuang, Taisen; Jin, Yi; ElBidweihy, Hatem; Mao, Yiwu; Dickerson, James H.; Wagner, Michael J.; Torre, Edward Della; Bennett, Lawrence H.

    2014-01-01

    The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations. PMID:25183061

  9. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    PubMed Central

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  10. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream

    NASA Astrophysics Data System (ADS)

    Reza Habibi, Mohammad; Ghassemi, Majid; Hossien Hamedi, Mohammad

    2012-04-01

    Magnetic nanoparticles are widely used in a wide range of applications including data storage materials, pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro valve applications. The purpose of the current study is to investigate the effect of a non-uniform magnetic field on bio-fluid (blood) with magnetic nanoparticles. The effect of particles as well as mass fraction on flow field and volume concentration is investigated. The governing non-linear differential equations, concentration and Navier-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. A real pulsatile velocity is utilized as inlet boundary condition. This velocity is extracted from an actual experimental data. Three percent nanoparticles volume concentration, as drug carrier, is steadily injected in an unsteady, pulsatile and non-Newtonian flow. A power law model is considered for the blood viscosity. The results show that during the systole section of the heartbeat when the blood velocity increases, the magnetic nanoparticles near the magnetic source are washed away. This is due to the sudden increase of the hydrodynamic force, which overcomes the magnetic force. The probability of vein blockage increases when the blood velocity reduces during the diastole time. As nanoparticles velocity injection decreases (longer injection time) the wall shear stress (especially near the injection area) decreases and the retention time of the magnetic nanoparticles in the blood flow increases.

  12. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  13. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  14. Magnetic dynamic properties of electron-doped La(0.23)Ca(0.77)MnO3 nanoparticles.

    PubMed

    Dolgin, B; Puzniak, R; Mogilyansky, D; Wisniewski, A; Markovich, V; Jung, G

    2013-02-20

    Magnetic properties of basically antiferromagnetic La(0.23)Ca(0.77)MnO(3) particles with average sizes of 12 and 60 nm have been investigated in a wide range of magnetic fields and temperature. Particular attention has been paid to magnetization dynamics through measurements of the temperature dependence of ac-susceptibility at various frequencies, the temperature and field dependence of thermoremanent and isothermoremanent magnetization originating from nanoparticles shells, and the time decay of the remanent magnetization. Experimental results and their analysis reveal the major role in magnetic behaviour of investigated antiferromagnetic nanoparticles played by the glassy component, associated mainly with the formation of the collective state formed by ferromagnetic clusters in frustrated coordination at the surfaces of interacting antiferromagnetic nanoparticles. Magnetic behaviour of nanoparticles has been ascribed to a core-shell scenario. Magnetic transitions have been found to play an important role in determining the dynamic properties of the phase separated state of coexisting different magnetic phases.

  15. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed S.; Decorse, Philippe; Perruchot, Christian; Novak, Sophie; Lion, Claude; Ammar, Souad; El Hage Chahine, Jean-Michel; Hémadi, Miryana

    2016-05-01

    Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs) with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD), was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC). SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES). The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS), X-Ray Fluorescence spectrometry (XRF) and Superconducting QUantum Interference Device (SQUID) magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  16. Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels

    NASA Astrophysics Data System (ADS)

    Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon

    2017-04-01

    Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo.

  17. FEM numerical model study of heating in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew

    2011-03-01

    Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.

  18. The synthesis, characterization, and application of multifunctional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tackett, Ronald J.

    In recent years, the field of nanotechnology has been one of extreme activity. Among other things, this activity is driven by the push for consumer technologies that are lighter, stronger, and most importantly smaller. With this push from the everyday consumer, the need for a basic understanding of the underlying physics of nanoscale materials has never been more evident. In this dissertation, the author investigates the many physical differences, in particular the differences in the magnetic properties, between nanoscale materials and their bulk counterparts. Starting out with a brief overview of magnetism, the author sets out to explore the fantastic changes in the magnetic properties of materials that occur when the physical dimensions of the materials become smaller than typical magnetic length scales. Among the first differences noticed arises when nanoscale ferromagnets are investigated. While the magnetic properties of bulk ferromagnets are governed by magnetic domain dynamics, when a material becomes small enough that only one domain is possible, a new type of magnetic behavior known as superparamagnetism arises. While this superparamagnetic behavior is well understood in terms of thermally activated spin reversal through an energy barrier, many factors, such as interactions between separate nanoparticles, cause deviations from this simple picture. The effects of these factors are investigated. In addition to the effects of interactions, the relation of nanoscale magnetics and its coupling to the dielectric properties of nanoparticles is investigated. This investigation, motivated by recent research focusing on the search for materials whose magnetic and electronic properties are influenced by each other, shows that nanomaterials can show a coupling between these properties that isn't necessarily the intrinsic coupling of the two properties, but an effect from the surface layers of nanoparticles, which are generally ignored in bulk systems due to the fact

  19. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.

    PubMed

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.

  20. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

    PubMed Central

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer. PMID:22287840

  1. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions

    NASA Astrophysics Data System (ADS)

    Shipunova, V. O.; Nikitin, M. P.; Nikitin, P. I.; Deyev, S. M.

    2016-06-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method

  2. Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.

    PubMed

    Tseng, H-Y; Lee, G-B; Lee, C-Y; Shih, Y-H; Lin, X-Z

    2009-06-01

    This study reports an investigation of hyperthermia cancer therapy utilising an alternating magnetic field to induce a localised temperature increase on tumours by using injectable magnetic nanoparticles. In-vitro and in-vivo experiments represent the feasibility of hyperthermia cancer therapy. A feedback temperature control system was first developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumours such that a safer and more precise cancer therapy becomes feasible. By using the feedback temperature control system, magnetic nanoparticles can be heated up to the specific constant temperatures, 37, 40, 42, 45, 46 and 47 degrees C, respectively, with a variation less than 0.2 degrees C. With this approach, the in-vitro survival rate of tumour cells at different temperatures can be systematically explored. It was experimentally found that the survival rate of cancer cells can be greatly reduced while CT-26 cancer cells were heated above 45 degrees C. Besides, localised temperatures increase as high as 59.5 degrees C can be successfully generated in rat livers by using the proposed method. Finally, complete regression of tumour was achieved. The developed method used injectable magnetic nanoparticles and may provide a promising approach for hyperthermia cancer therapy.

  3. Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy.

    PubMed

    Wang, Ranran; Hu, Yang; Zhao, Nana; Xu, Fu-Jian

    2016-05-11

    Due to their unique properties, one-dimensional (1D) magnetic nanostructures are of great significance for biorelated applications. A facile and straightforward strategy to fabricate 1D magnetic structure with special shapes is highly desirable. In this work, well-defined peapod-like 1D magnetic nanoparticles (Fe3O4@SiO2, p-FS) are readily synthesized by a facile method without assistance of any templates, magnetic string or magnetic field. There are few reports on 1D gene carriers based on Fe3O4 nanoparticles. BUCT-PGEA (ethanolamine-functionalized poly(glycidyl methacrylate) is subsequently grafted from the surface of p-FS nanoparticles by atom transfer radical polymerization to construct highly efficient gene vectors (p-FS-PGEA) for effective biomedical applications. Peapod-like p-FS nanoparticles were proven to largely improve gene transfection performance compared with ordinary spherical Fe3O4@SiO2 nanoparticles (s-FS). External magnetic field was also utilized to further enhance the transfection efficiency. Moreover, the as-prepared p-FS-PGEA gene carriers could combine the magnetic characteristics of p-FS to well achieve noninvasive magnetic resonance imaging (MRI). We show here novel and multifunctional magnetic nanostructures fabricated for biomedical applications that realized efficient gene delivery and real-time imaging at the same time.

  4. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    NASA Astrophysics Data System (ADS)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  5. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  6. The magnetic introduction of magnetite nanoparticles into live cells for radiosensibility enhancement

    NASA Astrophysics Data System (ADS)

    Yurenya, Anton Y.; Polikarpov, Mikhail A.; Chukalova, Aynur A.; Moskaleva, Elizaveta Y.; Taldenkov, Alexander N.; Panchenko, Vladislav Y.

    2017-04-01

    Earlier we proposed a new radiotherapy enhancement method that entails the administration of 57Fe iron-oxide nanoparticles into the cells [5]. Within this work we were prompt to investigate the capability of iron oxide nanoparticles with monolayer coating to penetrate into live cells. Magnetite particle samples were synthesized and stabilized with HCl or citric acid. The cells were incubated in the presence of nanoparticles for 1 h, washed and dried. To distinguish inside-cell particles from outside ones a set of experiments with low temperature incubation was carried out. Several cell samples were prepared in the presence of an external magnetic field in order to study the possibility of the nanoparticle uptake enhancement. To evaluate the amount of particles in each cell sample we used a SQUID-magnetometer. The nanoparticle suspension with HCl stabilization turned to be inadequate for intracellular introduction. Approximately 2·105 particles with citric acid covering conjugated with each cell after incubation at normal conditions. An application of an external magnetic field increased this amount up to 107 particles/cell. Most probably much of these particles penetrated into cells.

  7. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst

    EPA Science Inventory

    A conceptually novel nanoparticle-supported and magnetically recoverable organocatalyst has been developed, which is readily prepared from inexpensive starting materials in a truly sustainable manner; which catalyzes Paal-Knorr reaction with high yield in pure aqueous medium that...

  8. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  9. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for ²⁹Si Magnetic Resonance Imaging.

    PubMed

    Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok

    2018-05-20

    Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Elimination of iron-containing magnetic nanoparticles from the site of injection in mice: a magnetic-resonance imaging study.

    PubMed

    Inzhevatkin, E V; Morozov, E V; Khilazheva, E D; Ladygina, V P; Stolyar, S V; Falaleev, O V

    2015-04-01

    Suspension of magnetic nanoparticles (0.7 g/liter) obtained from Klebsiella oxytoca culture was injected intraperitoneally (1 ml), intramuscularly (in the hip; 100 μl), and subcutaneously (200 μl) or administered orally instead of drinking water for 2 days. The presence of magnetic nanoparticles was evaluated detected by MRI in 15 min and 2 h after injections and in 1 and 2 days after the beginning of oral consumption of the suspension. Magnetic nanoparticles were eliminated from the site of intramuscular and intraperitoneal injections and after oral consumption. The period of elimination after intramuscular and intraperitoneal injections did not exceed 2 h, while after oral consumption it corresponded to the time of gastrointestinal tract contents evacuation.

  11. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging.

    PubMed

    Chauhan, Ram Prakash; Mathur, Rashi; Singh, Gurjaspreet; Kaul, Ankur; Bag, Narmada; Singh, Sweta; Kumar, Hemanth; Patra, Manoj; Mishra, Anil K

    2013-03-01

    The physical and chemical properties of the nanoparticles influence their pharmacokinetics and ability to accumulate in tumors. In this paper we report a facile method to conjugate folic acid molecule to iron oxide nanoparticles to increase the specific uptake of these nanoparticles by the tumor, which will be useful in targeted imaging of the tumor. The iron oxide nanoparticles were synthesized by alkaline co precipitation method and were surface modified with dextranto make them stable. The folic acid is conjugated to the dextran modified iron oxide nanoparticles by reductive amination process after the oxidation of the dextran with periodate. The synthesized folic acid conjugated nanoparticles were characterized for size, phase, morphology and magnetization by using various physicochemical characterization techniques such as transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, vibrating sample magnetometry, dynamic light scattering and zetasizer etc. The quantification of the generated carbonyl groups and folic acid conjugated to the surface of the magnetic nanoparticles was done by colorimetric estimations using UV-Visible spectroscopy. The in vitro MR studies were carried out over a range of concentrations and showed significant shortening of the transverse relaxation rate, showing the ability of the nanoconjugate to act as an efficient probe for MR imaging. The biodistribution studies and the scintigraphy done by radiolabeling the nanoconjugate with 99mTc show the enhanced uptake at the tumor site showing its enhanced specificity.

  12. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange

    NASA Astrophysics Data System (ADS)

    Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul

    2018-05-01

    In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.

  13. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  14. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

    PubMed

    Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang

    2017-04-01

    Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Magnetic multicore nanoparticles for hyperthermia--influence of particle immobilization in tumour tissue on magnetic properties.

    PubMed

    Dutz, Silvio; Kettering, Melanie; Hilger, Ingrid; Müller, Robert; Zeisberger, Matthias

    2011-07-01

    When using magnetic nanoparticles as a heating source for magnetic particle hyperthermia it is of particular interest to know if the particles are free to move in the interstitial fluid or are fixed to the tumour tissue. The immobilization state determines the relaxation behaviour of the administered particles and thus their specific heating power. To investigate this behaviour, magnetic multicore nanoparticles were injected into experimentally grown tumours in mice and magnetic heating treatment was carried out in an alternating magnetic field (H = 25 kA m(-1), f = 400 kHz). The tested particles were well suited for magnetic heating treatment as they heated a tumour of about 100 mg by about 22 K within the first 60 s. Upon sacrifice, histological tumour examination showed that the particles form spots in the tissue with a mainly homogeneous particle distribution in these spots. The magnetic ex vivo characterization of the removed tumour tissue gave clear evidence for the immobilization of the particles in the tumour tissue because the particles in the tumour showed the same magnetic behaviour as immobilized particles. Therefore, the particles are not able to rotate and a temperature increase due to Brown relaxation can be neglected. To accurately estimate the heating potential of magnetic materials, the respective environments influencing the nanoparticle mobility status have to be taken into account.

  16. Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography.

    PubMed

    Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Sanghi, Pramod; Do, Dat; Mancuso, J Jacob; Kemp, Nate; Cilingiroglu, Mehmet; Milner, Thomas E

    2008-01-01

    We demonstrate the detection of iron oxide nanoparticles taken up by macrophages in atherosclerotic plaque with differential phase optical coherence tomography (DP-OCT). Magneto mechanical detection of nanoparticles is demonstrated in hyperlipidemic Watanabe and balloon-injured fat-fed New Zealand white rabbits injected with monocrystalline iron oxide nanoparticles (MIONs) of < 40 nm diam. MIONs taken up by macrophages was excited by an oscillating magnetic flux density and resulting nanometer tissue surface displacement was detected by DP-OCT. Frequency response of tissue surface displacement in response to an externally applied magnetic flux density was twice the stimulus frequency as expected from the equations of motion for the nanoparticle cluster.

  17. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents.

    PubMed

    Kainz, Quirin M; Reiser, Oliver

    2014-02-18

    The work-up of chemical reactions by standard techniques is often time consuming and energy demanding, especially when chemists have to guarantee low levels of metal contamination in the products. Therefore, scientists need new ideas to rapidly purify reaction mixtures that are both economically and environmentally benign. One intriguing approach is to tether functionalities that are required to perform organic reactions to magnetic nanoparticles, for example, catalysts, reagents, scavengers, or chelators. This strategy allows researchers to quickly separate active agents from reaction mixtures by exploiting the magnetic properties of the support. In this Account, we discuss the main attributes of magnetic supports and describe how we can make the different nanomagnets accessible by surface functionalization. Arguably the most prominent magnetic nanoparticles are superparamagnetic iron oxide nanoparticles (SPIONs) due to their biologically well-accepted constituents, their established size-selective synthesis methods, and their diminished agglomeration (no residual magnetic attraction in the absence of an external magnetic field). However, nanoparticles made of pure metal have a considerably higher magnetization level that is useful in applications where high loadings are needed. A few layers of carbon can efficiently shield such highly reactive metal nanoparticles and, equally important, enable facile covalent functionalization via diazonium chemistry or non-covalent functionalization through π-π interactions. We highlight carbon-coated cobalt (Co/C) and iron (Fe/C) nanoparticles in this Account and compare them to SPIONs stabilized with surfactants or silica shells. The graphene-like coating of these nanoparticles offers only low loadings with functional groups via direct surface modification, and the resulting nanomagnets are prone to agglomeration without effective steric stabilization. To overcome these restrictions and to tune the dispersibility of the

  18. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Robles, J.; Das, R.; Glassell, M.; Phan, M. H.; Srikanth, H.

    2018-05-01

    We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (˜1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  19. The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging

    PubMed Central

    HERRANZ, FERNANDO; ALMARZA, ELENA; RODRÍGUEZ, IGNACIO; SALINAS, BEATRIZ; ROSELL, YAMILKA; DESCO, MANUEL; BULTE, JEFF W.; RUIZ-CABELLO, JESÚS

    2012-01-01

    The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application. PMID:21484943

  20. Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Nisha; Thirupathi, Gadipelly; Singh, Rajender

    2016-05-23

    The nanoparticles of CuFe{sub 2}O{sub 4} (CF) and Cu{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (CZF) were synthesized using co-precipitation method to study the effect of Zn doping in Cu-ferrite. The X-ray diffraction (XRD) patterns were well fitted with two-phase structure using Rietveld analysis as Fd-3 m space group (spinel system) and C12/c1 space group (monoclinic system CuO-phase). The average crystallite size of the CF and CZF nanoparticles for spinel structure are 6 and 7 nm respectively. The spinel phase fraction is increased from 56% to 71% with Zn-doping of 20% in CF. The transmission electron micrograph analysis showed the narrow size distribution formore » CZF nanoparticles. The magnetization plots as a function of magnetic field (M (H)) of CF and CZF nanoparticles indicate superparamagnetic behavior. The magnetization is increased with Zn-doping in CF. The stable spinel Cu-ferrite can be obtained with Zn-doping in CF.« less

  1. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  2. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian

    2017-11-01

    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

  3. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Mahdavi, Mahnaz; Ahmad, Mansor Bin; Haron, Md Jelas; Namvar, Farideh; Nadi, Behzad; Rahman, Mohamad Zaki Ab; Amin, Jamileh

    2013-06-27

    Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size.

  4. Functional Magnetic Nanoparticles for Highly Efficient Cholesterol Removal.

    PubMed

    Sun, Jun; Xu, Bin; Mu, Yaoyao; Ma, Haile; Qu, Wenjuan

    2018-01-01

    In this study, magnetic nanoparticles functionalized with carboxylated β-cyclodextrin (CM-β-CD; referred to Fe 3 O 4 @CM-β-CD) were synthesized and used for the efficient removal of cholesterol from milk and egg yolk via host-guest interactions. The results of Fourier-transform infrared, X-ray photoelectron spectroscopy, and thermogravimetric analysis indicated that the CM-β-CD was successfully conjugated to the surface of Fe 3 O 4 , and the amount of CM-β-CD attached on Fe 3 O 4 @CM-β-CD was determined to be 9.164%. The X-ray diffraction and transmission electron microscopy data revealed that the process of CM-β-CD coating did not result in a phase change of the Fe 3 O 4 , and the Fe 3 O 4 @CM-β-CD nanoparticles were determined to have an average size of about 15 nm. The results of isotherm adsorption and kinetic properties indicated that CM-β-CD functionalization increased the cholesterol removal efficiency, and the characteristics of cholesterol adsorption on Fe 3 O 4 @CM-β-CD were fitted well with the Langmuir adsorption model and Lagergren pseudo-1st-order kinetic models. Furthermore, compared with the Fe 3 O 4 nanoparticles, the functionalized Fe 3 O 4 @CM-β-CD nanoparticles exhibited greater cholesterol removal efficiency, and saponification of the milk and egg yolk was found to be beneficial for the cholesterol removal; using the Fe 3 O 4 @CM-β-CD nanoparticles, 98.8% and 94.6% of the cholesterol was extracted in 1 h from saponified milk and egg yolk, respectively, and the Fe 3 O 4 @CM-β-CD nanoparticles still displayed efficient cholesterol removal after 6 reuses. © 2017 Institute of Food Technologists®.

  5. Synthesis of SrFe12O19 magnetic nanoparticles by EDTA complex method

    NASA Astrophysics Data System (ADS)

    Wang, Shifa; Li, Danming; Xiao, Yuhua; Dang, Wenqiang; Feng, Jie

    2017-10-01

    A modified polyacrylamide gel route was used to prepare SrFe12O19 magnetic nanoparticles; ethylenediaminetetraacetic acid (EDTA) was used as a carboxyl chelating agent. The phase purity, morphology and magnetic properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometery (VSM). XRD analysis indicates that high-purity SrFe12O19 magnetic nanoparticles can be synthesized at 700°C in air. The characteristic peaks of as-prepared sample at 210, 283, 321, 340, 381, 411, 432, 475, 532, 618, 686, and 726 cm-1 were observed in Raman spectra. SEM and TEM show that the synthesized SrFe12O19 magnetic nanoparticles are uniform with the mean particle size of 60 nm. VSM measurement shows that the maximum magnetic energy product (BH)max of sample prepared using EDTA as a chelating agent is higher than that of sample prepared using citric acid as a chelating agent.

  6. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to

  7. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.

    PubMed

    Johannsen, M; Gneveckow, U; Eckelt, L; Feussner, A; Waldöfner, N; Scholz, R; Deger, S; Wust, P; Loening, S A; Jordan, A

    2005-11-01

    The aim of this pilot study was to evaluate whether the technique of magnetic fluid hyperthermia can be used for minimally invasive treatment of prostate cancer. This paper presents the first clinical application of interstitial hyperthermia using magnetic nanoparticles in locally recurrent prostate cancer. Treatment planning was carried out using computerized tomography (CT) of the prostate. Based on the individual anatomy of the prostate and the estimated specific absorption rate (SAR) of magnetic fluids in prostatic tissue, the number and position of magnetic fluid depots required for sufficient heat deposition was calculated while rectum and urethra were spared. Nanoparticle suspensions were injected transperineally into the prostate under transrectal ultrasound and flouroscopy guidance. Treatments were delivered in the first magnetic field applicator for use in humans, using an alternating current magnetic field with a frequency of 100 kHz and variable field strength (0-18 kA m(-1)). Invasive thermometry of the prostate was carried out in the first and last of six weekly hyperthermia sessions of 60 min duration. CT-scans of the prostate were repeated following the first and last hyperthermia treatment to document magnetic nanoparticle distribution and the position of the thermometry probes in the prostate. Nanoparticles were retained in the prostate during the treatment interval of 6 weeks. Using appropriate software (AMIRA), a non-invasive estimation of temperature values in the prostate, based on intra-tumoural distribution of magnetic nanoparticles, can be performed and correlated with invasively measured intra-prostatic temperatures. Using a specially designed cooling device, treatment was well tolerated without anaesthesia. In the first patient treated, maximum and minimum intra-prostatic temperatures measured at a field strength of 4.0-5.0 kA m(-1) were 48.5 degrees C and 40.0 degrees C during the 1st treatment and 42.5 degrees C and 39.4 degrees C

  8. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia.

    PubMed

    Chung, Ren-Jei; Shih, Hui-Ting

    2014-01-24

    Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.

  9. Internal magnetic structure of magnetite nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Krycka, K. L.; Borchers, J. A.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Harris, S.; Dedon, L. R.; Rhyne, J. J.; Majetich, S. A.

    2010-05-01

    Small-angle neutron scattering with polarization analysis reveals that Fe3O4 nanoparticles with 90 Å diameters have ferrimagnetic moments significantly reduced from that of bulk Fe3O4 at 10 K, nominal saturation. Combined with previous results for an equivalent applied field at 200 K, a core-disordered shell picture of a spatially reduced ferrimagnetic core emerges, even well below the bulk blocking temperature. Zero-field cooling suggests that this magnetic morphology may be intrinsic to the nanoparticle, rather than field induced, at 10 K.

  10. Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel

    NASA Astrophysics Data System (ADS)

    Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.

    2014-08-01

    Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.

  11. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat, M E; Patel, Ronak; Sookoor, Jason

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less

  12. An Electrochemiluminescence Immunosensor Based on Gold-Magnetic Nanoparticles and Phage Displayed Antibodies

    PubMed Central

    Mu, Xihui; Tong, Zhaoyang; Huang, Qibin; Liu, Bing; Liu, Zhiwei; Hao, Lanqun; Dong, Hua; Zhang, Jinping; Gao, Chuan

    2016-01-01

    Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility. PMID:26927130

  13. LSMO Nanoparticles Coated by Hyaluronic Acid for Magnetic Hyperthermia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanwei; Wang, Ying; Liu, Xi; Lu, Mai; Cao, Jiangwei; Wang, Tao

    2016-12-01

    Magnetic hyperthermia with the treating temperature range of 41-46 °C is an alternative therapy for cancer treatment. In this article, lanthanum strontium manganates (La1- x Sr x MnO3, 0.25 ≤ × ≤ 0.35) magnetic nanoparticles coated by hyaluronic acid (HA) which possesses the ability of targeting tumor cells were prepared by a simple hydrothermal method combined with a high-energy ball milling technique. The crystal structure, morphology, magnetic properties of the HA-coated magnetic nanoparticles (MNPs), and their heating ability under alternating magnetic field were investigated. It was found the HA-coated La0.7Sr0.3MnO3, with particle diameter of 100 nm, Curie temperature of 45 °C at a concentration 6 mg/ml, gave the optimal induction heating results. The heating temperature saturates at 45.7 °C, and the ESAR is 5.7 × 10-3 W/g · kHz · (kA/m2) which is much higher than other reported results.

  14. Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles.

    PubMed

    Mazumder, Jahirul Ahmed; Ahmad, Razi; Sardar, Meryam

    2016-12-01

    In the present work, we describe a simple procedure for the biosynthesis of nanosilver and gold by the reduction of silver nitrate and auric chloride respectively using a nanobiocatalyst. The nanobiocatalyst was prepared by covalent coupling of alpha amylase on (3-aminopropyl)triethoxysilane (APTES) modified iron oxide magnetic nanoparticles. The nanobiocatalyst retains 77% of its activity as compared to free alpha amylase. The nanobiocatalyst can be used up to three consecutive cycles for the synthesis of nano silver and gold. The biosynthesized nanoparticles after each cycle were characterized by UV-vis spectrophotometer, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscope (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Silver and gold nanoparticles of same morphology and dimensions were formed in each cycle. The procedure for synthesis of nanoparticles using an immobilized enzyme is eco-friendly and can be used repeatedly. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    PubMed Central

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  16. The effect of magnetic nanoparticle concentration on the structure organisation of a microferrogel

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. V.; Melenev, P. V.; Balasoiu, M.; Raikher, Yu L.

    2018-03-01

    Coarse-grained molecular dynamics simulation is applied to study the structural response of micro-sized magnetopolymer objects – microferrogels (MFG). The results for MFGs with different magnetic properties and concentrations of magnetic filler nanoparticles are analysed to detect the transition between non-aggregated configurations and the states with pronounced chains. The nanoparticles are assumed to be either magnetically isotropic or to possess infinite magnetic anisotropy. It is shown that, depending on the type of the particle anisotropy, an applied field in rather different ways affects the MFG structure and shape. Diagrams describing the degree of aggregation as a function of the parameter of the interparticle magnetodipolar interaction and concentration are presented. In particular, it is found that in the case of infinitely anisotropic nanoparticles the aggregation transitions undergoes via a non-trivial scenario. The effect of the structure transformations on the volume change of the MFG objects is studied as well.

  17. Nucleic acid delivery using magnetic nanoparticles: the Magnetofection technology.

    PubMed

    Laurentt, Nicolas; Sapet, Cédric; Le Gourrierec, Loic; Bertosio, Elodie; Zelphati, Olivier

    2011-04-01

    In recent years, gene therapy has received considerable interest as a potential method for the treatment of numerous inherited and acquired diseases. However, successes have so far been hampered by several limitations, including safety issues of viral-based nucleic acid vectors and poor in vivo efficiency of nonviral vectors. Magnetofection has been introduced as a novel and powerful tool to deliver genetic material into cells. This technology is defined as the delivery of nucleic acids, either 'naked' or packaged (as complexes with lipids or polymers, and viruses) using magnetic nanoparticles under the guidance of an external magnetic field. This article first discusses the principles of the Magnetofection technology and its benefits as compared with standard transfection methods. A number of relevant examples of its use, both in vitro and in vivo, will then be highlighted. Future trends in the development of new magnetic nanoparticle formulations will also be outlined.

  18. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions.

    PubMed

    Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping

    2013-12-10

    Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.

  19. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  20. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    NASA Astrophysics Data System (ADS)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  1. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  2. Synthesis and magnetic properties of nickel nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer, E-mail: jaiveer24singh@gmail.com, E-mail: netramkaurav@yahoo.co.uk; Patel, Tarachand; Okram, Gunadhor S.

    2016-05-23

    Monodisperse nickel nanoparticles (Ni-NPs) were synthesized via a thermal decomposition process. The NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). They were spherical with mean diameter of 4 nm. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data displayed interesting magnetic interactions. ZFC showed a peak at 4.49 K, indicating the super paramagnetic behavior. Magnetic anisotropic constant was estimated to be 4.62×10{sup 5} erg/cm{sup 3} and coercive field was 168 Oe at 3 K.

  3. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

    PubMed Central

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  4. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia.

    PubMed

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems.

  5. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Urries, Inmaculada; Muñoz, Cristina; Gomez, Leyre; Marquina, Clara; Sebastian, Victor; Arruebo, Manuel; Santamaria, Jesus

    2014-07-01

    PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as ``theranostic'' nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).

  6. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications.

    PubMed

    Urries, Inmaculada; Muñoz, Cristina; Gomez, Leyre; Marquina, Clara; Sebastian, Victor; Arruebo, Manuel; Santamaria, Jesus

    2014-08-07

    PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as "theranostic" nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).

  7. Effects of dipolar interactions in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Ruta, Sergiu; Hovorka, Ondrej; Chantrell, Roy

    2014-03-01

    Understanding the effects of magnetostatic interactions in magnetic nanoparticle systems is of importance in magnetic recording, biomedical applications such as in hyperthermia cancer treatment, or for sensing approaches in biology and chemistry, for example. In this talk we discuss the macroscopic and microscopic effects of dipole-dipole interactions in three-dimensional assemblies of magnetic nanoparticles in various spatial arrangements, including the BCC, FCC, or randomized lattices. Our study is based on the kinetic Monte-Carlo modelling and concentrates on exploring the effect of the particle arrangement, distributions of particle volumes and anisotropy axes, and the role of thermal effects on the overall behaviour of hysteresis loops, ZFC/FC temperature scans and the magnetization decay data computed during the relaxation to equilibrium. In the case of the FCC lattice we find a counter-intuitive effect where increasing the interaction strength enhances/suppresses the hysteresis loop coercivity at high/low temperatures. The analysis of the domain pattern formation and pair correlation functions suggests for the observed behaviour to be a result of the phenomenon of frustration. We also discuss the possibility of observing the super-ferromagnetic phases on similar syste

  8. Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support.

    PubMed

    Lee, Su Seong; Riduan, Siti Nurhanna; Erathodiyil, Nandanan; Lim, Jaehong; Cheong, Jian Liang; Cha, Junhoe; Han, Yu; Ying, Jackie Y

    2012-06-11

    γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chul; Kim, Eunjoo; Jeong, Sang Won; Ha, Tae-Lin; Park, Sang-Im; Lee, Se Guen; Lee, Sung Jun; Lee, Seung Woo

    2015-10-01

    Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia.Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia. Electronic

  10. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.

    2014-03-01

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α ≥2), the Brownian motion seems not to affect the cloud behavior.

  11. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.

    PubMed

    Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Nave, S; Zubarev, A; Lomenech, C; Bashtovoi, V

    2014-03-01

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces-the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α≥2), the Brownian motion seems not to affect the cloud behavior.

  12. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles

    PubMed Central

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2011-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell’s equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm3), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. PMID:23335834

  13. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    PubMed

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  14. Interaction of inorganic nanoparticles with graphene.

    PubMed

    Das, Barun; Choudhury, Biswajit; Gomathi, A; Manna, Arun K; Pati, S K; Rao, C N R

    2011-04-04

    The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO(2) and with magnetic nanoparticles such as Fe(3)O(4), CoFe(2)O(4), and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid

  16. Development of device for quantifying magnetic nanoparticle tracers accumulating in sentinel lymph nodes

    NASA Astrophysics Data System (ADS)

    Kuwahata, Akihiro; Kaneko, Miki; Chikaki, Shinichi; Kusakabe, Moriaki; Sekino, Masaki

    2018-05-01

    The developed device with electromagnetic coils and small permanent magnets quantifies the iron contents of superparamagnetic iron oxide nanoparticles for sentinel lymph node (SLN) biopsy. To remove diamagnetic and paramagnetic components and detect only superparamagnetic components, a 2nd harmonics signal is detected by a gradiometer under a moderate AC magnetic field (1-2 mT) with the fundamental frequency (2.944 kHz) of the coils and DC magnetic field (1-2 mT) of the magnets. The detection limit with a signal-to-noise ratio of 5 is approximately 0.28 μg of iron, and the device has a wide dynamic range of 104, 0.28 μg-2.8 mg. Additional coils and permanent magnets play an important role producing the optimum distribution of AC/DC magnetic fields for an iron distribution-independent and SLN size-independent quantification. We demonstrated the quantification of the iron in phantoms, which have a size of 3-20 mm with varied iron distributions and contain magnetic nanoparticles numerically. These results indicate that the developed device is useful for quantifying the magnetic nanoparticles accumulating in SLNs.

  17. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. PMID

  18. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  19. Exchange bias for core/shell magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Figueiredo, W.; Santos, M.

    2015-09-01

    We study the properties of a finite magnetic system to model a magnetic nanoparticle, which is formed by a reduced number of magnetic dipole moments due to the spin of the atoms. The nanoparticle is of the type core/shell where the shell is formed by spins interacting through an antiferromagnetic exchange coupling while for the spins belonging to the core the coupling is ferromagnetic. The interaction between the spins at the interface core/shell can be either ferro or antiferromagnetic. To describe the states of the spins we used the XY model in which the spins are considered as continuous variables, free to point in any direction of the xy plane. We also consider a magnetocrystalline anisotropy, exchange anisotropy and the Zeeman effect. Our model is studied in a lattice with square symmetry, using the Monte Carlo method along with the Metropolis prescription. The results show that in the absence of an external magnetic field and exchange anisotropy, the system continuously goes to a disordered state from an ordered state at a well defined temperature. In the presence of external magnetic fields the system displays the exchange bias phenomenon, that is, the displacement of the hysteresis loops, due to the introduction of the exchange anisotropy term. However, this displacement depends on the core and shell sizes, as well as on the magnitude of the coupling between the shell and the core moments.

  20. Clinical applications of magnetic nanoparticles for hyperthermia.

    PubMed

    Thiesen, Burghard; Jordan, Andreas

    2008-09-01

    Magnetic fluids are increasingly used for clinical applications such as drug delivery, magnetic resonance imaging and magnetic fluid hyperthermia. The latter technique that has been developed as a cancer treatment for several decades comprises the injection of magnetic nanoparticles into tumors and their subsequent heating in an alternating magnetic field. Depending on the applied temperature and the duration of heating this treatment either results in direct tumor cell killing or makes the cells more susceptible to concomitant radio- or chemotherapy. Numerous groups are working in this field worldwide, but only one approach has been tested in clinical trials so far. Here, we summarize the clinical data gained in these studies on magnetic fluid induced hyperthermia.

  1. Light-induced covalent immobilization of monolayers of magnetic nanoparticles on hydrogen-terminated silicon.

    PubMed

    Leem, Gyu; Zhang, Shishan; Jamison, Andrew C; Galstyan, Eduard; Rusakova, Irene; Lorenz, Bernd; Litvinov, Dmitri; Lee, T Randall

    2010-10-01

    Specifically tailored ω-alkenyl-1-carboxylic acids were synthesized for use as surfactants in the single-step preparation of manganese ferrite (MnFe2O4) nanoparticles (NPs). Monodisperse manganese ferrite NPs terminated with ω-alkenyl moieties were prepared via a one-pot reaction at high temperature without the need of ligand exchange. Using this approach, simple adjustment of the rate of heating allowed precise tuning of the size of the nanoparticles, which were characterized in bulk form by transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). These surfactant-coated magnetic nanoparticles were then deposited onto hydrogen-terminated silicon(111) wafers and covalently anchored to the surface by UV-initiated covalent bonding. Analysis by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed that the UV treatment led to covalent immobilization of the NPs on the silicon surface with a consistent packing density across the surface. The magnetic properties of the stable, surface-bound nanoparticle arrays were characterized using a superconducting quantum interference device (SQUID) magnetometer. The materials and methods described here are being developed for use in bit-patterned ultrahigh density magnetic recording media and nanoscale biomagnetic sensing.

  2. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer.

    PubMed

    Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan

    2013-11-01

    The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.

  3. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  4. Size effect on the magnetic properties of antiferromagnetic La0.2Ca0.8MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Martin, C.; Gorodetsky, G.

    2010-03-01

    Magnetic properties of electron-doped La0.2Ca0.8MnO3 manganite nanoparticles with average particle size ranging from 15 to 37 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. A monotonous enhancement of weak ferromagnetism linked to the reduction in the particle size was observed for all nanoparticles. Magnetic hysteresis loops also indicate size-dependent exchange bias effect displayed by horizontal and vertical shifts in field-cooled processes. The magnetization data reveal two ferromagnetic components: first one appears at T˜200K and may be attributed to surface magnetization and second one appears as a result of spin canting of antiferromagnetic core or is developed at some interfaces inside nanoparticles. Time evolution of magnetization recorded in magnetic fields after the field cooling to low temperatures exhibits a very noisy behavior that may be caused by formation of collective state of nanoparticles with no clear tendency to reach equilibrium state. Magnetic properties of the nanoparticle samples are compared with those of the bulk La0.2Ca0.8MnO3 .

  5. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.

  6. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    PubMed Central

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility. PMID:28045082

  7. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Chudasama, Bhupendra; Mehta, R. V.; Upadhyay, R. V.

    2011-04-01

    The use of nanoparticles as drug delivery systems for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The aim of this study is to construct a novel drug delivery platform comprising a magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer. Oleic acid-coated Fe3O4 nanoparticles and hydrophilic anticancer drug "doxorubicin" are encapsulated with PEO-PLGA-PEO (polyethylene oxide-poly d, l lactide-co-glycolide-polyethylene oxide) tri-block-copolymer. Structural, magnetic, and physical properties of Fe3O4 core are determined by X-ray diffraction, vibrating sample magnetometer, and transmission electron microscopy techniques, respectively. The hydrodynamic size of composite nanoparticles is determined by dynamic light scattering and is found to be 36.4 nm at 25 °C. The functionalization of magnetic core with various polymeric chain molecules and their weight proportions are determined by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Encapsulation of doxorubicin into the polymeric magnetic nanoparticles, its loading efficiency, and kinetics of drug release are investigated by UV-vis spectroscopy. The loading efficiency of drug is 89% with a rapid release for the initial 7 h followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in response to the physiological temperature by deswelling of thermoresponsive PEO-PLGA-PEO block-copolymer. This study demonstrates that temperature can be exploited successfully as an external parameter to control the release of drug.

  8. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.

    PubMed

    Cowger, Taku A; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E; Todd, Trever J; Wang, Geoffrey D; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.

  9. Effects of core/shell structure on magnetic induction heating promotion in Fe3O4/γ-Fe2O3 magnetic nanoparticles for hyperthermia

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chi; Fu, Chao-Ming; Chang, Fu-Hsiung

    2013-10-01

    Fe3O4/γ-Fe2O3 core-shell magnetic nanoparticles have demonstrated superior heating efficiency by applying the alternating magnetic field. The magnetic induction heating properties of core-shell magnetic nanoparticles were analyzed by the rate-dependent hysteresis model, taken into account the magnetic anisotropies and actual size distribution of particles. The analyzed results have disclosed the significance of magnetic anisotropies and shell-thickness to the promotion of magnetic induction heating performance. Further experiments about the cancer cells with uptake of these core-shell magnetic nanoparticles conjugated biocompatible cationic liposomes have achieved in vitro intracellular magnetically induced hyperthermia under a weak alternating magnetic field.

  10. Magnetic properties of Magneto-Rheological fluids with uniformly dispersed Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Wilson, J. L.; Srikanth, H.; Wereley, N. M.; Radhakrishnan, R.

    2003-03-01

    A systematic study of the magnetic properties of MR fluids containing micron-size and nano-size iron particles is presented. Nano-particles with a size range of 15-20 nm were prepared using microwave plasma technique. The MR-fluids were prepared with hydraulic oil as the carrier liquid and lecithin as an effective surfactant medium that promotes uniform particle dispersion. Static and dynamic magnetic measurements clearly indicate that the replacement of the micron-size particles by nano-particles results in a much better suspension. The magnetization in the nanoparticulate MR fluid is dominated by superparamagnetic particle response. In addition, collective behavior due to strong dipolar interactions associated with chaining of the particles in the field direction was also observed. A sharp drop in susceptibility at 250K was noted and this is ascribed to the carrier fluid freezing transition. We also present optical micrographs of showing chain formation and rheological performance as measured by field-dependent yield stress experiments. Sharper magnetic response to applied fields and lower field requirement for saturation make nano-particles attractive candidates for improved MR-fluid based sensors, actuators and microfluidics for clinical diagnostics. HS acknowledges support from NSF through grants ECS-0140047 and ECS-0102622. NMW and RR acknowledge support from NSF grant DMI-0110447.

  11. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.

    PubMed

    Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos

    2017-02-28

    Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.

  12. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    PubMed Central

    Krystofova, Olga; Sochor, Jiri; Zitka, Ondrej; Babula, Petr; Kudrle, Vit; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis—total protein content, thiols—reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The

  13. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles.

    PubMed

    Smith, Carol-Anne M; de la Fuente, Jesus; Pelaz, Beatriz; Furlani, Edward P; Mullin, Margaret; Berry, Catherine C

    2010-05-01

    Magnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. A review on hyperthermia via nanoparticle-mediated therapy.

    PubMed

    Sohail, Ayesha; Ahmad, Zaki; Bég, O Anwar; Arshad, Sarmad; Sherin, Lubna

    2017-05-01

    Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is its reaction and modulation by a magnetic force basically responsible for enabling its potential as heating mediators for cancer therapy. In magnetic nanoparticle hyperthermia, a tumour is preferentially loaded with systemically administered nanoparticles with high-absorption cross-section for transduction of an extrinsic energy source to heat. To maximize the energy deposited in the tumour while limiting the exposure to healthy tissues, the heating is achieved by exposing the region of tissue containing magnetic nanoparticles to an alternating magnetic field. The magnetic nanoparticles dissipate heat from relaxation losses thereby heating localized tissue above normal physiological ranges. Besides thermal efficiency, the biocompatibility of magnetite nanoparticles assisted its deployment as efficient drug carrier for targeted therapeutic regimes. In the present article, we provide a state-of-the-art review focused on progress in nanoparticle induced hyperthermia treatments that have several potential advantages over both global and local hyperthermia treatments achieved without nanoparticles. Green bio-nanotechnology has attracted substantial attention and has demonstrable abilities to improve cancer therapy. Furthermore, we have listed the challenges associated with this treatment along with future prospective that could attract the interest of biomedical engineers, biomaterials scientists, medical researchers and pharmacological research groups. Copyright © 2017 Société Française du Cancer. All rights reserved.

  15. [Characteristics of electroosmotic flow in open-tubular capillary electrochromatography with magnetic nanoparticle coating as mixed-mode stationary phase].

    PubMed

    Qin, Sasa; Zhou, Chaoran; Zhu, Yaxian; Ren, Zhiyu; Zhang, Lingyi; Fu, Honggang; Zhang, Weibing

    2011-09-01

    A novel open-tubular capillary electrochromatography (OT-CEC) column with magnetic nanoparticle coating as mixed-mode stationary phase was prepared. The mixed-mode stationary phases were obtained by mixing C18 and amino modified magnetic nanoparticles with different ratios. The mixed modified magnetic nanoparticles as stationary phase were introduced into the capillary by using external magnetic force. The magnetic nanoparticle coating can be easily regenerated by removing the external magnetic field, and applied to other separation modes. The characteristics of electroosmotic flow (EOF) were theoretically investigated through the effect of physicochemical properties of different stationary phases on EOF. The experiment was conducted under different ratios of mixed-mode stationary phases and coating lengths, and it was verified that the theoretical conclusions accorded with the experimental results. It was shown that the EOF can be easily adjusted by changing the ratio of stationary phases or the number of permanent magnets.

  16. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi

  17. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  18. Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties.

    PubMed

    Ghunaim, Rasha; Scholz, Maik; Damm, Christine; Rellinghaus, Bernd; Klingeler, Rüdiger; Büchner, Bernd; Mertig, Michael; Hampel, Silke

    2018-01-01

    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

  19. Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures.

    PubMed

    Dumestre, Fréderic; Martinez, Susana; Zitoun, David; Fromen, Marie-Claire; Casanove, Marie-José; Lecante, Pierre; Respaud, Marc; Serres, Arnaud; Benfield, Robert E; Amiens, Catherine; Chaudret, Bruno

    2004-01-01

    Co and NiFe nanoparticles (2.7 to 3.3 nm mean diameter) of narrow size distribution have been obtained through the decomposition of organometallic precursors in organic solutions of long alkyl chain ligands, namely oleic acid and hexadecylamine. Materials of various volume fractions were produced. The particles have been structurally characterised by WAXS. Both adopt the bulk structure: HCP in the case of cobalt; a mixture of FCC and BCC for NiFe. Their aptitude to self-assemble either on flat supports or in bulk solid state has been investigated by means of TEM and SAXS. This study suggests the crystallisation of the nanoparticles upon solvent evaporation, especially a local FCC arrangement was observed for the NiFe material. Magnetic measurements (SQUID) confirm this tendency. The blocking temperature depends on the metal volume fraction, i.e. on the anisotropy generated by the dipolar couplings (Ki). We show that, for dense samples, the particles of high intrinsic anisotropy, Ku, (Co) still display an individual behaviour while the soft ones (NiFe) display a collective behaviour.

  20. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  1. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles.

    PubMed

    Granitzer, P; Rumpf, K; Gonzalez-Rodriguez, R; Coffer, J L; Reissner, M

    2015-12-21

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.

  2. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement

    USDA-ARS?s Scientific Manuscript database

    Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...

  3. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  4. On the defect origin of the room-temperature magnetism universally exhibited by metal-oxide nanoparticles.

    PubMed

    Panchakarla, L S; Sundarayya, Y; Manjunatha, S; Sundaresan, A; Rao, C N R

    2010-06-07

    The occurrence of ferromagnetism in nanoparticles of otherwise non-magnetic oxides seems to be well established. It is, however, necessary to understand the origin of ferromagnetism in these materials. Herein, we present a combined study of the magnetic properties and photoluminescence (PL) behavior of nanoparticles of ZnO, ZrO(2), and MgO annealed at different temperatures (and therefore of different sizes). We find that the magnetization and the intensity of the bands due to defects vary parallel in all these materials. The adsorption of ethanol leads to a decrease in the magnetization and to a reduced intensity of the defect PL band of ZnO nanoparticles whereas UV irradiation has the opposite effect. We have also examined the effect of the morphology of the ZnO on the properties.

  5. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  6. Magnetic Nanoparticles and microNMR for Diagnostic Applications

    PubMed Central

    Shao, Huilin; Min, Changwook; Issadore, David; Liong, Monty; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho

    2012-01-01

    Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings. PMID:22272219

  7. High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria

    NASA Astrophysics Data System (ADS)

    Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc

    2014-10-01

    The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.

  8. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    NASA Astrophysics Data System (ADS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  9. The Effect of Ligands on FePt–Fe 3O 4 Core–Shell Magnetic Nanoparticles

    DOE PAGES

    Kim, Dong-Hyun; Tamada, Yoshinori; Ono, Teruo; ...

    2014-03-01

    FePt–Fe 3O 4 core–shell nanoparticles functionalized with 3,4-dihydroxyphenylacetic acid (DOPAC) and dimercaptosuccinic acid (DMSA) ligands were synthesized and characterized. We also found that the DOPAC ligand enhances the magnetic properties of the FePt–Fe 3O 4 particles, in comparison with the DMSA ligand, which induces the oxidation of the shell layer that causes a significant reduction of the saturation magnetization. We evaluated the synthesized magnetic nanoparticles for applications in magnetic hyperthermia and magnetic resonance imaging contrast enhancement.

  10. Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles.

    PubMed

    Zhou, Shuai; Chen, Qianwang

    2011-09-14

    Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011

  11. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Wang, Jian-Ping

    2017-05-01

    The heating performance of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.

  12. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    NASA Astrophysics Data System (ADS)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  13. Investigation of magnetic nanoparticle targeting in a simplified model of small vessel aneurysm

    NASA Astrophysics Data System (ADS)

    Mirzababaei, S. N.; Gorji, Tahereh B.; Baou, M.; Gorji-Bandpy, M.; Fatouraee, Nasser

    2017-03-01

    An in simulacra study was conducted to investigate the capture efficiency (CE) of magnetic nanoparticles (MNPs) in aneurysm model, under the effect of a bipolar permanent magnetic system positioned at the vicinity of the model vessel. The bipolar magnetic system with an active space of 9 cm was designed by FEMM software. The MNPs were magnetite nanoparticles synthesized by the hydrothermal method which were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and magnetometer measurements. Ferrofluid velocity, magnetic field strength, and aneurysm volume all proved to be important parameters which affect the capturing of MNPs. Overall, the results of this in simulacra study confirmed the effectiveness of magnetic targeting for possible aneurysm embolization.

  14. Monitoring of magnetic nano-particles in EOR by using the CSEM modeling and inversion.

    NASA Astrophysics Data System (ADS)

    Heo, J. Y.; KIM, S.; Jeong, G.; Hwang, J.; Min, D. J.

    2016-12-01

    EOR, which injects water, CO2, or other chemical components into reservoirs to increase the production rate of oil and gas, has widely been used. To promote efficiency of EOR, it is important to monitor distribution of injected materials in reservoirs. Using nano-particles in EOR has advantages that the size of particles is smaller than the pore and particles can be characterized by various physical properties. Specifically, if we use magnetic nano-particles, we can effectively monitor nano-particles by using the electromagnetic survey. CSEM, which can control the frequency range of source, is good to monitor magnetic nano-particles under various reservoir circumstances. In this study, we first perform numerical simulation of 3D CSEM for reservoir under production. In general, two wells are used for EOR: one is for injection, and the other is for extraction. We assume that sources are applied inside the injection well, and receivers are deployed inside the extraction well. To simulate the CSEM survey, we decompose the total fields into primary and secondary fields in Maxwell's equations. For the primary fields, we calculate the analytic solutions of the layered earth. With the calculated primary fields, we compute the secondary fields due to anomalies using the edge-based finite-element method. Finally, we perform electromagnetic inversion for both conductivity and permeability to trace the distribution of magnetic nano-particles. Since these two parameters react differently according to the frequency range of sources, we can effectively describe the distribution of magnetic nano-particles by considering two parameters at the same time. Acknowledgements This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830), and by the International Cooperation (No. 2012-8510030010) of KETEP, and by the Dual Use Technology Program, granted

  15. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  16. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  17. Detection of magnetic nanoparticles with a large scale AC superconducting susceptometer

    NASA Astrophysics Data System (ADS)

    Hincapie Ladino, E. A.; Zufelato, N.; Bakuzis, A. F.; Oliveira Carneiro, A. A.; Covas, D. T.; Baffa, O.

    2017-08-01

    Magnetic nanoparticles (MNPs) are being used in several applications in medicine such as hyperthermia, magnetic particle imaging, in vitro and in vivo bioassay, and still there are many other possibilities for use of these particles to come as research progress in this field. One crucial step of its use is the detection of these particles when present in a certain tissue. For in vitro bioassay, the sample can be harvested and placed inside the detector in optimal conditions to favor sensitivity. However, for in vivo human measurements the system must be noninvasive and conform to the anatomic restrictions requiring sensitive detectors and dedicated setups. In this study, we detect nanoparticles with an AC biosusceptometer having an excitation homogeneous magnetic field with 145 μT, provided by a set of rectangular large Rubens coils driven at 10 Hz. The magnetization induced in the sample was detected by a second-order axial gradiometer (20 mm in diameter and 40 mm of baseline) coupled to an RF Superconducting Quantum Interference Device (SQUID) model 330X (BTi). The MNPs used were manganese ferrite-based surface-coated with citric acid ({{M}}{{n}}{{F}}{{{e}}}2{{{O}}}4-{{C}}{{i}}{{t}}{{r}}{{a}}{{t}}{{e}}), dissolved in water at various concentrations. The colloid is stable at physiological conditions. X-ray diffraction confirmed the spinel structure and using Scherrer’s relation revealed a particle size of 17.3 nm. The magnetization curve showed a typical superparamagnetic behavior with a specific saturation magnetization of 51.2 emu g-1. The stock solution of nanoparticles had a concentration of 23.17 mg ml-1, corresponding to 1.7 × 1015 NPs ml-1. Measurements were made in a volume of 30 ml with 20 × 103-100 × 103 dilutions of the stock solution of nanoparticles and performed at distances of 1.1, 1.5 and 2.5 cm from the top of the sample vial to the closest coil of the gradiometer. The limits of detection were 8.1 × 109 NP ml-1, 9.5 × 109 NP ml-1 and 11

  18. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Abyaneh, Majid K.; Kulkarni, Sulabha K.

    2017-11-01

    Oleic acid capped CoFe2O4 nanoparticles which exhibit a high coercivity of ∼9.47 kOe at room temperature were coated with a robust coating of SiO2. We have used chemical synthesis method to obtain SiO2 coated CoFe2O4 nanoparticles with different weight percentages of CoFe2O4 in SiO2 (1.5, 3.1 and 4.8 wt.%). The morphological investigation of the coated nanoparticles by transmission electron microscopy shows that the particles are spherical with average size ∼160 nm. Infrared spectroscopy reveals that oleic acid capping on the surface of CoFe2O4 nanoparticles is retained after silica coating process. The complete coating of SiO2 on CoFe2O4 nanoparticles is confirmed by X-ray photoelectron spectroscopy as there is no signature of cobalt or iron ions on the surface. Magnetic measurements show that coercivity of SiO2 coated CoFe2O4 particles remains more or less unaffected as in CoFe2O4 nanoparticles at room temperature. In addition, the temperature dependent magnetic measurements show that at 5 K the CoFe2O4 and SiO2 coated 1.5 wt.% CoFe2O4 samples exhibit a very high value of coercivity (∼20 kOe) which is more than twice as compared to room temperature coercivity value (∼9.47 kOe). We conclude that silica coating in our study does not significantly affect the coercivity of CoFe2O4 nanoparticles.

  19. Improved delivery of magnetic nanoparticles with chemotherapy cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Giustini, Andrew J.; Gottesman, Rachel E.; Hoopes, P. Jack

    2013-02-01

    Most nanoparticle-based cancer therapeutic strategies seek to develop an effective individual cancer cell or metastatic tumor treatment. Critical to the success of these therapies is to direct as much of the agent as possible to the targeted tissue while avoiding unacceptable normal tissue complications. In this light, three different cisplatinum/magnetic nanoparticle (mNP) administration regimens were investigated. The most important finding suggests that clinically relevant doses of cisplatinum result in a significant increase in the tumor uptake of systemically delivered mNP. This enhancement of mNP tumor uptake creates the potential for an even greater therapeutic ratio through the addition of mNP based, intracellular hyperthermia.

  20. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?

    NASA Astrophysics Data System (ADS)

    Carrião, Marcus S.; Bakuzis, Andris F.

    2016-04-01

    The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer

  1. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    PubMed

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-10-17

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid

  2. Torque undergone by assemblies of single-domain magnetic nanoparticles submitted to a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Carrey, J.; Hallali, N.

    2016-11-01

    In the last 10 years, it has been shown in various types of experiments that it is possible to induce biological effects in cells using the torque generated by magnetic nanoparticles submitted to an alternating or a rotating magnetic field. In biological systems, particles are generally found under the form of assemblies because they accumulate at the cell membrane, are internalized inside lysosomes, or are synthesized under the form of beads containing several particles. The torque undergone by assemblies of single-domain magnetic nanoparticles has not been addressed theoretically so far and is the subject of the present article. The results shown in the present article have been obtained using kinetic Monte Carlo simulations, in which thermal activation is taken into account, so the torque undergone by ferromagnetic and superparamagnetic nanoparticles could both be simulated. The first system under study is a single ferromagnetic particle with its easy axis in the plane of the rotating magnetic field. Then, elements adding complexity to the problem are introduced progressively and the properties of the resulting system presented and analyzed: random anisotropy axes, thermal activation, assemblies, and finally magnetic interactions. The most complex studied systems are particularly relevant for applications and are assemblies of interacting superparamagnetic nanoparticles with randomly oriented anisotropy axes. Whenever it is possible, analytical equations describing the torque properties are provided, as well as their domain of validity. Although the properties of an assembly naturally derive from those of single particles, it is shown here that several of them were unexpected and are particularly interesting with regard to the maximization of torque amplitude in biological applications. In particular, it is shown that, in a given range of parameters, the torque of an assembly increases dramatically in the direction perpendicular to the plane of the rotating

  3. Structural and Magnetic Studies of Thermally Treated NiFe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, Surajit; Patel, Prayas Chandra; Gangopadhyay, Debraj; Sharma, Poornima; Singh, Ranjan K.; Srivastava, P. C.

    2017-12-01

    The heat treatment of nanoparticles can have a direct effect on their particle sizes, which, in turn, can influence many of their structural and magnetic properties. Here, we report the effect of sintering temperature on the chemically synthesized high-quality NiFe2O4 nanoparticles. The structural studies show the formation of pure NiFe2O4 nanoparticles with the space group Fd{\\bar{3}}m . The inverse spinel structure was also confirmed from the lattice vibrations analyzed from Raman and Fourier transform infrared spectroscopy (FTIR) spectra. The presence of strong exchange interactions was detected from the temperature-dependent magnetization study. Moreover, at higher sintering temperatures, the grain growth due to fusion of several smaller particles by coalescing their surfaces enhances the crystallinity and its magnetocrystalline anisotropy. Coercivity and saturation magnetization were found to depend significantly on the sintering temperature, which was understood in the realm of the formation of single-domain-like structure and change in magnetocrystalline anisotropy at higher sintering temperatures.

  4. Structural and magnetic properties of sol-gel derived CaFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, Arnab Kumar; Govindaraj, Ramanujan; Srinivasan, Ananthakrishnan

    2018-04-01

    Calcium ferrite nanoparticles with average crystallite size of ∼11 nm have been synthesized by sol-gel method by mixing calcium and ferric nitrates in stoichiometric ratio in the presence of ethylene glycol. As-synthesized nanoparticles were annealed at different temperatures and their structural and magnetic properties have been evaluated. X-ray diffraction studies showed that unlike most ferrites, as-synthesized cubic calcium ferrite showed a slow transformation to orthorhombic structure when annealed above 400 °C. Single phase orthorhombic CaFe2O4 was obtained upon annealing at 1100 °C. Divergence of zero field cooled and field cooled magnetization curves at low temperatures indicated superparamagnetic behavior in cubic calcium ferrite particles. Superparamagnetism persisted in cubic samples annealed up to 500 °C. As-synthesized nanoparticles heat treated at 1100 °C exhibited mixed characteristics of antiferromagnetic and paramagnetic grains with saturation magnetization of 0.4 emu/g whereas nanoparticles calcined at 400 °C exhibited superparamagnetic characteristics with saturation magnetization of 22.92 emu/g. An antiferromagnetic to paramagnetic transition was observed between 170 and 190 K in the sample annealed at 1100 °C, which was further confirmed by Mössbauer studies carried out at different temperatures across the transition.

  5. Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles.

    PubMed

    Lin, Zhenkun; Zhang, Yanfang; Su, Yu; Qi, Jinxia; Jia, Yinhang; Huang, Changjiang; Dong, Qiaoxiang

    2018-01-15

    One-monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi-functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial-and-error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid-phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid-phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one-monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Khmara, I.; Koneracka, M.; Kubovcikova, M.; Zavisova, V.; Antal, I.; Csach, K.; Kopcansky, P.; Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M.

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe3O4 content were prepared and tested to define the optimal PLL/Fe3O4 weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe3O4 weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe3O4 magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies.

  7. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol

    2018-02-01

    Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.

  9. Magnetic spectroscopy of nanoparticle Brownian motion measurement of microenvironment matrix rigidity.

    PubMed

    Weaver, John B; Rauwerdink, Kristen M; Rauwerdink, Adam M; Perreard, Irina M

    2013-12-01

    The rigidity of the extracellular matrix and of the integrin links to the cytoskeleton regulates signaling cascades, controlling critical aspects of cancer progression including metastasis and angiogenesis. We demonstrate that the matrix stiffness can be monitored using magnetic spectroscopy of nanoparticle Brownian motion (MSB). We measured the MSB signal from nanoparticles bound to large dextran polymers. The number of glutaraldehyde induced cross-links was used as a surrogate for material stiffness. There was a highly statistically significant change in the MSB signal with the number of cross-links especially prominent at higher frequencies. The p-values were all highly significant. We conclude that the MSB signal can be used to identify and monitor changes in the stiffness of the local matrix to which the nanoparticles are bound.

  10. Monte Carlo study of magnetic nanoparticles adsorbed on halloysite Al2Si2O5(OH) 4 nanotubes

    NASA Astrophysics Data System (ADS)

    Sotnikov, O. M.; Mazurenko, V. V.; Katanin, A. A.

    2017-12-01

    We study properties of magnetic nanoparticles adsorbed on the halloysite surface. For that a distinct magnetic Hamiltonian with a random distribution of spins on a cylindrical surface was solved by using a nonequilibrium Monte Carlo method. The parameters for our simulations, the anisotropy constant, nanoparticle size distribution, saturated magnetization, and geometrical characteristics of the halloysite template, were taken from recent experiments. We calculate the hysteresis loops and temperature dependence of the zero-field-cooling (ZFC) susceptibility, the maximum of which determines the blocking temperature. It is shown that the dipole-dipole interaction between nanoparticles moderately increases the blocking temperature and weakly increases the coercive force. The obtained hysteresis loops (e.g., the value of the coercive force) for Ni nanoparticles are in reasonable agreement with the experimental data. We also discuss the sensitivity of the hysteresis loops and ZFC susceptibilities to the change in anisotropy and dipole-dipole interaction, as well as the 3 d -shell occupation of the metallic nanoparticles; in particular we predict larger coercive force for Fe than for Ni nanoparticles.

  11. γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application

    NASA Astrophysics Data System (ADS)

    Kılınç, Ersin

    2016-03-01

    In recent years, magnetic nanoparticles attained special interest in nanobiotechnology and nanomedicine due to their uniqe properties and biocompatibilities. From this perspective, hybride nanostructure composed from γ-Fe2O3 magnetic nanoparticle and carboxylated multi walled carbon nanotube was synthesized and characterized by FT-IR, VSM, SEM, HR-TEM and ICP-OES. Microscopy images showed that magnetic nanoparticles were nearly spherical structure that arranged on the axis of carboxylated MWCNT. Particle size was found lower than 10 nm. VSM results showed that the obtained magnetic nanoparticles presented superparamagnetic properties at room temperature. The magnetic saturation value was determined as 35.2 emu/g. It was used for the adsorption and controlled release of harmane, a potent tremor-producing neurotoxin. Maximum adsorption capacity was calculated as 151.5 mg/g from Langmuir isotherm. Concentration of harmane was determined by HPLC with fluorescence detection. The antimicrobial activity of synthesized magnetic nanoparticle was investigated against gram-negative and gram-positive bacteria. However, no activity was observed.

  12. Immobilization of Magnetic Nanoparticles onto Amine-Modified Nano-Silica Gel for Copper Ions Remediation

    PubMed Central

    Elkady, Marwa; Hassan, Hassan Shokry; Hashim, Aly

    2016-01-01

    A novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles. The synthesized magnetic amine nano-silica gel (MANSG) was established and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). The feasibility of MANSG for copper ions’ remediation from wastewater was examined. MANSG achieves a 98% copper decontamination from polluted water within 90 min. Equilibrium sorption of copper ions onto MANSG nanoparticles obeyed the Langmuir equation compared to the Freundlich, Temkin, Elovich and Dubinin-Radushkevich (D-R) equilibrium isotherm models. The pseudo-second-order rate kinetics is appropriate to describe the copper sorption process onto the fabricated MANSG. PMID:28773583

  13. Introduction to metallic nanoparticles

    PubMed Central

    Mody, Vicky V.; Siwale, Rodney; Singh, Ajay; Mody, Hardik R.

    2010-01-01

    Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe3O4), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe3O4), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer. PMID:21180459

  14. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  15. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo

    2017-02-01

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  16. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Skaat, Hadas; Belfort, Georges; Margel, Shlomo

    2009-06-01

    Maghemite (γ-Fe2O3) magnetic nanoparticles of 15.0 ± 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic γ-Fe2O3/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (γ-Fe2O3/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the γ-Fe2O3/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from α-helix to β-sheets during insulin fibril formation is observed in the presence of the γ-Fe2O3/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the γ-Fe2O3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  17. Graphene Quantum Dots-Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy.

    PubMed

    Yao, Xianxian; Niu, Xingxing; Ma, Kexin; Huang, Ping; Grothe, Julia; Kaskel, Stefan; Zhu, Yufang

    2017-01-01

    A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo-photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.

    2015-04-01

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  19. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    NASA Astrophysics Data System (ADS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  20. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    NASA Astrophysics Data System (ADS)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  1. Development of multifunctional nanoparticles towards applications in non-invasive magnetic resonance imaging and axonal tracing.

    PubMed

    Du, Yan; Qin, Yubo; Li, Zizhen; Yang, Xiuying; Zhang, Jingchang; Westwick, Harrison; Tsai, Eve; Cao, Xudong

    2017-12-01

    A multifunctional nanobiomaterial has been developed by deliberately combining functions of superparamagnetism, fluorescence, and axonal tracing into one material. Superparamagnetic iron oxide nanoparticles were first synthesized and coated with a silica layer to prevent emission quenching through core-dye interactions; a fluorescent molecule, fluorescein isothiocyanate, was doped inside second layer of silica shell to improve photo-stability and to enable further thiol functionalization. Subsequently, biotinylated dextran amine, a sensitive axonal tracing reagent, was immobilized on the thiol-functionalized nanoparticle surfaces. The resulting nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, magnetic resonance imaging and fluorescence confocal microscopy. In vitro cell experiments using both undifferentiated and differentiated Neuro-2a cells showed that the cells were able to take up the nanoparticles intracellularly and that the nanoparticles showed good biocompatibilities. In summary, this new material demonstrated promising performances for both optical and magnetic resonance imaging modalities, suggesting its promising potentials in applications such as in non-invasive imaging, particularly in neuronal tracing.

  2. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  3. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

    NASA Astrophysics Data System (ADS)

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-09-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  4. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing.

    PubMed

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-12-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  5. The feasibility of using magnetic nanoparticles modified as gene vector.

    PubMed

    Chen, D; Tang, Q; Xue, W; Wang, X

    2010-06-01

    To evaluate the feasibility of using magnetic nanoparticles (MNPs) as gene vector and the effect of magnetic field on efficiency of transfection. Magnetic nanoparticles were prepared by controlling some chemical reaction parameters through a partially reduction precipitation method with ferric chloride aqueous solution as precursor material. The surface of particles was modified by polyethyleneimine (PEI) agents. The appearance, the size distribution, structure and phase constitute of MNPs were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD); the potential of absorbing DNA of MNPs was analysed by electrophoresis. Transfection was determined by delivering reporter gene, PGL2-control encoding luciferase, to different cell lines using MNPs-PLL as vector. The effect of magnetic field on the efficiency of transfection was determined using Nd-Fe-B permanent magnet. Foreign gene could be delivered to various cell lines by MNPs-PLL and expressed with high efficiency but the transfection efficiency and time course varied in the different cell lines studied. Magnetic field could enhance the efficiency of transfection by 5-10 fold. MNPs- PLL can be used as a novel non-viral gene vector in vitro, which offers a basis for gene delivery in vivo.

  6. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  7. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis.

    PubMed

    Kim, Hyung Joon; Lee, Sun-Mi; Park, Kyu-Hyung; Mun, Chin Hee; Park, Yong-Beom; Yoo, Kyung-Hwa

    2015-08-01

    We have developed methotrexate (MTX)-loaded poly(lactic-co-glycolic acid, PLGA) gold (Au)/iron (Fe)/gold (Au) half-shell nanoparticles conjugated with arginine-glycine-aspartic acid (RGD), which can be applied for magnetic targeted chemo-photothermal treatment, and in vivo multimodal imaging of rheumatoid arthritis (RA). Upon near-infrared (NIR) irradiation, local heat is generated at the inflammation region due to the NIR resonance of Au half-shells and MTX release from PLGA nanoparticles is accelerated. The Fe half-shell layer embedded between the Au half-shell layers enables in vivo T2-magnetic resonance (MR) imaging in addition to NIR absorbance imaging. Furthermore, the delivery of the nanoparticles to the inflammation region in collagen-induced arthritic (CIA) mice, and their retention can be enhanced under external magnetic field. When combined with consecutive NIR irradiation and external magnetic field application, these nanoparticles provide enhanced therapeutic effects with an MTX dosages of only 0.05% dosage compared to free MTX therapy for the treatment of RA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synthesis and surface modification of magnetic nanoparticles for in vivo biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Conroy Ghin Chee

    Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform to serve as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to engineer the features and properties of MNPs allowing them to be tailored specifically for these biomedical applications. MNPs composed of metallic, oxide, and nanoalloy cores and a variety of protective coatings are being investigated for applications in the detection, diagnosis, and treatment of malignant tumors, cardiovascular disease, and neurological disease. To better address specific clinical needs, MNPs with higher magnetic moments, non-fouling surfaces, and increased functionalities are now being developed. The goal of this interdisciplinary research is to develop novel superparamagnetic nanoprobes for non-invasive cancer diagnosis and treatment. This strategy utilizes iron oxide nanoparticles coated with various biocompatible polymers, such as poly(ethylene glycol) (PEG) and chitosan, to serve as both a contrast agent for MRI and a carrier for drug delivery. In this project, we have conjugated various targeting agents, such as folic acid (FA) and chlorotoxin (CTX), to these iron oxide nanoparticles to improve their tumor specific accumulation. The folate receptor is known to be overexpressed on the surfaces of many human tumor cells, including ovarian, lung, breast, endometrial, renal, and colon cancers, while CTX binds with high affinity to gliomas, medulloblastomas, and other tumors of the neuroectodermal origin. To evaluate its effectiveness as a targeted drug carrier, methotrexate (MTX), a convention chemotherapeutic agent, was conjugated to iron oxide nanoparticles in combination with CTX. Specific tumor cell targeting of our nanoparticle system has been demonstrated through increased contrast

  9. A novel DNA nanosensor based on CdSe/ZnS quantum dots and synthesized Fe3O4 magnetic nanoparticles.

    PubMed

    Hushiarian, Roozbeh; Yusof, Nor Azah; Abdullah, Abdul Halim; Ahmad, Shahrul Ainliah Alang; Dutse, Sabo Wada

    2014-04-09

    Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.

  10. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Xing, Meiying; Liu, J. Ping

    2018-05-01

    We demonstrate magnetic and hyperthermia properties of CoxFe3-xO4 (x = 0, 0.1, 0.3 and 0.5) nanoparticles synthesized via a simple cation exchange reaction of ˜12 nm Fe3O4 nanoparticles. The substitution of Fe cations with Co2+ ions leads to enhanced magnetocrystalline anisotropy and coercivity of the pristine superparamagnetic Fe3O4 nanoparticles. Hyperthermia measurement shows that by controlling the Co content (x = 0 to 0.5) in CoxFe3-xO4 nanoparticles, their specific absorption rate (SAR) can be greatly improved from 132 to 534 W/g. The strong enhancement in SAR value is attributed to the increased anisotropy and coercivity. Moreover, with the increase of ac magnetic field from 184 to 491 Oe, the SAR values of Fe3O4 and Co0.5Fe2.5O4 nanoparticles increase from 81 to 132 W/g and 220 to 534 W/g, respectively.

  11. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  12. Detection of IL-6 by magnetic nanoparticles grown with the assistance of mid-infrared lighting.

    PubMed

    Jiang, Xiufeng; Zhang, Ye; Miao, Xiaofei; Li, Zenghui; Bao, Zengtao; Wang, Tong

    2013-01-01

    Nanomedical systems have attracted considerable attention primarily due to suitability in applications for specific cell selection through biomolecular targeting and rare cell detection enhancement in a diverse, multicellular population. In the present study, magnetic nanoparticles were prepared for use in high accuracy cell sensing. Magnetic nanoparticle growth was assisted by mid-infrared lighting. By this mechanism, a narrow window, estimated to be 2%, was achieved for the dimension distribution of grown nanoparticles. Combined with silicon nanowire (SiNW) transistors, a sensor with ultra high sensitivity for the detection of specific potential low abundance biomarkers has been achieved, which has been specifically used to detect interleukin-6 (IL-6) at extremely low concentrations. A novel biosensor with high sensitivity has been fabricated and utilized in the detection of IL-6 at 75 fM to 50 pM. The system consists of an SiNW transistor and magnetic nanoparticles with even dimension distribution. The novel sensor system is suitable for quantifying IL-6 at low concentrations in protein samples.

  13. A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Wu, Steven Yueh-Hsiu; Tseng, Ching-Li; Lin, Feng-Huei

    2010-05-01

    In this study, a magnetic iron-doped calcium sulfide (Fe-CaS) nanoparticle was newly developed and studied for the purpose of hyperthermia due to its promising magnetic property, adequate biodegradation rate, and relatively good biocompatibility. Fe-CaS nanoparticles were synthesized by a wet chemical co-precipitation process with heat treatment in a N2 atmosphere, and were subsequently cooled in N2 and exposed to air at a low temperature. The crystal structure of the Fe-CaS nanoparticles was similar to that of the CaS, which was identified by an X-ray diffractometer (XRD). The particle size was less than 40 nm based on a Debye-Scherrer equation and transmission electron microscope (TEM) examination. Magnetic properties obtained from the SQUID magnetometer demonstrated that the synthesized CaS was a diamagnetic property. Once the Fe ions were doped, the synthesized Fe-CaS converted into paramagnetism which showed no hysteresis loop. Having been heated above 600 °C in N2, the Fe-CaS showed a promising magnetic property to produce enough energy to increase the temperature for hyperthermia. 10 mg/ml of the Fe-CaS was able to generate heat to elevate the media temperature over 42.5 °C within 6 min. The area of the hysteresis loop increased with the increasing of the treated temperature, especially at 800 °C for 1 h. This is because more Fe ions replaced Ca ions in the lattice at the higher heat treatment temperature. The heat production was also increasing with the increasing of heat treatment temperature, which resulted in an adequate specific absorption ratio (SAR) value, which was found to be 45.47 W/g at 37 °C under an alternative magnetic field of f = 750 KHz , H = 10 Oe. The in vitro biocompatibility test of the synthesized Fe-CaS nanoparticles examined by the LDH assay showed no cytotoxicity to 3T3 fibroblast. The result of in vitro cell hyperthermia shows that under magnetic field the Fe-CaS nanoparticles were able to generate heat and kill the CT-26 cancer

  14. Enhanced magnetization in VxFe3-xO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pool, V. L.; Kleb, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y. U.

    2015-12-01

    Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions.

  15. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens.

    PubMed

    Wang, Chungang; Irudayaraj, Joseph

    2010-01-01

    Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.

  16. Effect of annealing on magnetic properties of Ni80Fe20 permalloy nanoparticles prepared by polyol method.

    PubMed

    Qin, G W; Pei, W L; Ren, Y P; Shimada, Y; Endo, Y; Yamaguchi, M; Okamoto, S; Kitakami, O

    2011-12-01

    Ni80Fe20 permalloy nanoparticles with narrow size distribution and homogeneous composition have been prepared by the polyol processing at 180 degrees C for 2 h and their particle sizes can be tunable in the size range of 20-440 nm by proper addition of K2PtCI4 agent. X-ray diffraction results show that the NiFe nanoparticles are of face centered cubic structure. The addition of K2PtCl4 does not affect the composition of NiFe NPs but decreases the particle size remarkably. Both saturation magnetization and coercivity of the as-prepared NiFe nanoparticles decrease with decreasing particle size. Annealed at 280 degrees C, however, the saturation magnetization of various sized NiFe nanoparticles increases drastically and approaches to the bulk for the -440 nm NiFe particles, and a maximum coercivity (-270 Oe) happens at a critical size of -50 nm. The magnetic property dependency of these NiFe nanoparticles on annealing has been discussed by considering the surface chemistry.

  17. Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants.

    PubMed

    Ul-Islam, Mazhar; Ullah, Muhammad Wajid; Khan, Shaukat; Manan, Shehrish; Khattak, Waleed Ahmad; Ahmad, Wasi; Shah, Nasrullah; Park, Joong Kon

    2017-05-01

    Nanotechnology is a fast-emerging field and has received applications in almost every field of life. Exploration of new synthetic technologies for size and shape control of nanomaterials is getting immense consideration owing to their exceptional properties and applications. Magnetic nanoparticles (MNPs) are among the most important group of nanoparticles thanks to their diverse applications in medical, electronic, environmental, and industrial sectors. There have been numerous synthetic routes of MNPs including thermal decomposition, co-precipitation, microemulsion, microwave assisted, chemical vapor deposition, combustion synthesis, and laser pyrolysis synthesis. The synthesized MNPs have been successfully applied in medical fields for therapy, bioimaging, drug delivery, and so on. Among environmental aspects, there has been great intimidation of organic pollutants in air and water. Utilization of various wastes as adsorbents has removed 80 to 99.9% of pollutants from contaminated water. MNPs as adsorbents compared to coarse-grained counterparts have seven times higher capacity in removing water pollutants and degrading organic contaminants. This study is focused to introduce and compile various routes of MNP synthesis together with their significant role in water purifications and degradation of organic compounds. The review has compiled recent investigation, and we hope it will find the interest of researchers dealing with nanoparticles and environmental research. Graphical abstract Synthesis and applications of magnetic nanoparticles.

  18. Synthesis and characterization of magnetic semiconducting Cu{sub 2}CoSnS{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Aman; Mokurala, Krishnaiah; Kamble, Anvita

    2015-06-24

    Multifunctional wurtzite Cu{sub 2}CoSnS{sub 4} (CCoTS) nanoparticles were successfully synthesized by facile hot-injection method using elemental sulfur as sulfur source. As-synthesized CCoTS nanoparticles were characterized using X-ray diffraction (XRD) for phase identification. Morphology of as-prepared nanoparticles was examined using FEG-SEM and FEG-TEM. Resistivity of film was measured using four probe method and it’s value (0.8 Ωcm) lies in the range of semiconductors. Magnetization curve of Cu{sub 2}CoSnS{sub 4} nanoparticles (at room temperature) indicates weak ferromagnetic behavior.

  19. Structural, morphological and magnetic properties of pure and Ni-doped ZnO nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.

    2018-05-01

    In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.

  20. Optimizing the application of magnetic nanoparticles in Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos

    2013-04-01

    The presence of heavy metals in aqueous systems is an intense health and environmental problem as implied by their harmful effects on human and other life forms. Among them, chromium is considered as an acutely hazardous compound contaminating the surface water from industrial wastes or entering the groundwater, the major source of drinking water, by leaching of chromite rocks. Chromium occurs in two stable oxidation states, Cr(III) and Cr(VI), with the hexavalent form being much more soluble and mobile in water having the ability to enter easily into living tissues or cells and thus become more toxic. Despite the established risks from Cr(VI)-containing water consumption and the increasing number of incidents, the E.U. tolerance limit for total chromium in potable water still stands at 50 μg/L. However, in the last years a worldwide debate concerning the establishment of a separate and very strict limit for the hexavalent form takes place. In practice, Cr(VI) is usually removed from water by various methods such as chemical coagulation/filtration, ion exchange, reverse osmosis and adsorption. Adsorption is considered as the simplest method which may become very effective if the process is facilitated by the incorporation of a Cr(VI) to Cr(III) reduction stage. This work studies the potential of using magnetic nanoparticles as adsorbing agents for Cr(VI) removal at the concentration levels met in contaminated drinking water. A variety of nanoparticles consisting of ferrites MFe2O4 (M=Fe, Co, Ni, Cu, Mn, Mg, Zn) were prepared by precipitating the corresponding bivalent or trivalent sulfate salts under controlled acidity and temperature. Electron microscopy and X-ray diffraction techniques were used to verify their crystal structure and determine the morphological characteristics. The mean particle size of the samples was found in the range 10-50 nm. Batch Cr(VI) removal tests were performed in aqueous nanoparticles dispersions showing the efficiency of ferrite

  1. Nanoparticles for Biomedical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less

  2. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  3. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics

    PubMed Central

    Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.

    2016-01-01

    Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493

  4. Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues

    PubMed Central

    Singh, Dhirender; McMillan, JoEllyn M; Liu, Xin-Ming; Vishwasrao, Hemant M; Kabanov, Alexander V; Sokolsky-Papkov, Marina; Gendelman, Howard E

    2015-01-01

    Magnetic nanoparticles (MNPs) accumulate at disease sites with the aid of magnetic fields; biodegradable MNPs can be designed to facilitate drug delivery, influence disease diagnostics, facilitate tissue regeneration and permit protein purification. Because of their limited toxicity, MNPs are widely used in theranostics, simultaneously facilitating diagnostics and therapeutics. To realize therapeutic end points, iron oxide nanoparticle cores (5–30 nm) are encapsulated in a biocompatible polymer shell with drug cargos. Although limited, the toxic potential of MNPs parallels magnetite composition, along with shape, size and surface chemistry. Clearance is hastened by the reticuloendothelial system. To surmount translational barriers, the crystal structure, particle surface and magnetic properties of MNPs need to be optimized. With this in mind, we provide a comprehensive evaluation of advancements in MNP synthesis, functionalization and design, with an eye towards bench-to-bedside translation. PMID:24646020

  5. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    PubMed Central

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  6. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  7. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    PubMed Central

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936

  8. Engineered magnetic nanoparticles for biomedical applications.

    PubMed

    Canfarotta, Francesco; Piletsky, Sergey A

    2014-02-01

    In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    PubMed

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  11. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    PubMed

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field.

    PubMed

    Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu

    2017-01-01

    Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.

  13. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field

    PubMed Central

    Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu

    2017-01-01

    Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648

  14. Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Jung, G.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Kohn, A.; Wu, X. D.; Suzuki, K.; Gorodetsky, G.

    2012-09-01

    Magnetic properties of electron-doped La0.23Ca0.77MnO3 manganite nanoparticles, with average size of 12 and 60 nm, prepared by the glycine-nitrate method, have been investigated in the temperature range 5-300 K and magnetic fields up to 90 kOe. It is suggested that weak ferromagnetic moment results from ferromagnetic shells of the basically antiferromagnetic nanoparticles and from domains of frustrated disordered phase in the core. Assumption of two distinct sources of ferromagnetism is supported by the appearance of two independent ferromagnetic contributions in the fit of the T 3/2 Bloch law to spontaneous magnetization. The ferromagnetic components, which are more pronounced in smaller particles, occupy only a small fraction of the nanoparticle volume and the antiferromagnetic ground state remains stable. It is found that the magnetic hysteresis loops following field cooled processes, display size-dependent horizontal and vertical shifts, namely, exhibiting exchange bias effect. Time-dependent magnetization dynamics demonstrating two relaxation rates were observed at constant magnetic fields upon cooling to T < 100 K.

  15. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  16. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?

    PubMed

    Carrião, Marcus S; Bakuzis, Andris F

    2016-04-21

    The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.

  17. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aaron, Jesse S.; Oh, Junghwan; Larson, Timothy A.; Kumar, Sonia; Milner, Thomas E.; Sokolov, Konstantin V.

    2006-12-01

    We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker. The gold portion resonantly scatters visible light giving a strong optical signal and the superparamagnetic core provides a means to externally modulate the optical signal. The combination of bright plasmon resonance scattering and magnetic actuation produces a dramatic increase in contrast in optical imaging of cells labeled with hybrid gold/iron oxide nanoparticles.

  18. Bioassay using blocking temperature: Interparticle interactions between biofunctionalized magnetic nanoparticles conjugated with biotargets

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Yang, T. W.; Shen, D.; Chen, K. L.; Chen, J. M.; Liao, S. H.; Chieh, J. J.; Yang, H. C.; Wang, L. M.

    2017-03-01

    This paper reports a bioassay of alpha-fetoprotein (AFP) concentration achieved via the measurement of blocking temperature (TB). Biofunctionalized magnetic nanoparticles (BMNs) consisting of anti-alpha-fetoprotein coated onto dextran-coated magnetic nanoparticles composed of Fe3O4 were prepared and then conjugated with AFP biotargets. It was found that both the saturation magnetization and value of TB increased with the concentration of the associated AFP. Furthermore, the dependence of TB of the samples on magnetic field agreed with the interparticle interaction model. Thus, this study demonstrated a platform to detect biomarkers by characterizing TB with a sensitivity limit of 20 ppb of AFP. The promising results obtained for this bioassay can be attributed to the interparticle interactions and Néel motions of magnetic moments in the BMNs.

  19. Coercivity and Exchange Bias Study of Polycrystalline Hollow Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bah, Mohamed Alpha

    Magnetic nanoparticles (NPs) have the potential to be useful in a variety of applications such as biomedical instruments, catalysis, sensing, recording information, etc. These nanoparticles exhibit remarkably different properties compared to their bulk counter parts. Synthesis of magnetic NPs with the right morphology, phase, size and surface functionality, as well as their usage for specific applications are challenging in terms of efficiency and safety. Morphology wise, there have been numerous reports on magnetic nanoparticles where morphologies such as core/shell, hollow, solid, etc., have been explored. It has been shown that morphology affects the magnetic response. Achieving the right crystal structure with required morphology and the magnetic behavior of the nanoparticle phases determines the magnetic response of the structure. For example, in the case of core/shell NPs various ferromagnetic (FM), ferrimagnetic (FiM), and antiferromagnetic (AFM) core and shell combinations have been reported. In these cases, interesting and strikingly different features, such as unusually high spin glass transition temperature, large exchange bias, finite size effects, magnetic proximity effects, unusual trend of blocking temperature as function of average crystal size, etc., have been reported. More specifically, the morphology of core/shell nanoparticles provides added degrees of freedom compared to conventional solid magnetic nanoparticles, including variations in the size, phase and material of the core and shell of the particle, etc. which helps enhance their magnetic properties. Similar to traditional core/shell nanoparticles, inverted core/shell having a FiM or FM order above the Curie temperature (TC) of the shell has been reported where the Neel temperature (TN) is comparable with the bulk value and there is nonmonotonic dependence of the coercive field (HC) and exchange bias (HEB) on the core diameter. In addition to the core/shell morphology, nanoparticles with

  20. Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells.

    PubMed

    Amirsaadat, Soumaye; Pilehvar-Soltanahmadi, Younes; Zarghami, Faraz; Alipour, Shahriar; Ebrahimnezhad, Zohreh; Zarghami, Nosratollah

    2017-12-01

    Nanoparticle-based targeted drug delivery has the potential for rendering silibinin specifically at the favorite site using an external magnetic field. Also, it can circumvent the pitfalls of poor solubility. For this purpose, silibinin-loaded magnetic nanoparticles are fabricated, characterized and evaluated cytotoxicity and hTERT gene expression in A549 lung cancer cell line. silibinin-loaded PLGA-PEG-Fe 3 O 4 had dose- and time-dependent cytotoxicity than pure silibinin. Additionally, hTERT expression is more efficiently reduced with increasing concentrations of nanosilibinin than pure silibinin. The present study indicates that PLGA-PEG-Fe 3 O 4 nanoparticles, as an effective targeted carrier, can make a promising horizon in targeted lung cancer therapy.