Sample records for nanoparticles pd nps

  1. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community.

    PubMed

    Nuzzo, Andrea; Hosseinkhani, Baharak; Boon, Nico; Zanaroli, Giulio; Fava, Fabio

    2017-01-01

    Biogenic palladium nanoparticles (bio-Pd NPs) represent a promising catalyst for organohalide remediation in water and sediments. However, the available information regarding their possible impact in case of release into the environment, particularly on the environmental microbiota, is limited. In this study the toxicity of bio-Pd NPs on the model marine bacterium V. fischeri was assessed. The impacts of different concentrations of bio-Pd NPs on the respiratory metabolisms (i.e. organohalide respiration, sulfate reduction and methanogenesis) and the structure of a PCB-dechlorinating microbial community enriched form a marine sediment were also investigated in microcosms mimicking the actual sampling site conditions. Bio-Pd NPs had no toxic effect on V. fischeri. In addition, they had no significant effects on PCB-dehalogenating activity, while showing a partial, dose-dependent inhibitory effect on sulfate reduction as well as on methanogenesis. No toxic effects by bio-Pd NPs could be also observed on the total bacterial community structure, as its biodiversity was increased compared to the not exposed community. In addition, resilience of the microbial community to bio-Pd NPs exposure was observed, being the final community organization (Gini coefficient) of samples exposed to bio-Pd NPs similar to that of the not exposed one. Considering all the factors evaluated, bio-Pd NPs could be deemed as non-toxic to the marine microbiota in the conditions tested. This is the first study in which the impact of bio-Pd NPs is extensively evaluated over a microbial community in relevant environmental conditions, providing important information for the assessment of their environmental safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Green synthesis of Pd NPs from Pimpinella tirupatiensis plant extract and their application in photocatalytic activity dye degradation

    NASA Astrophysics Data System (ADS)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The present report the synthesis of palladium nanoparticles through the green method route offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we reported synthesis of Pd NPs by using the Pimpinella tirupatiensis plant Extract (PTPE). The synthesized Pd NPs was characterization using different technique such as UV-Visible for the formation of Pd NPs. FT-IR spectroscopy was performed to detect the bio-active molecules liable for reduction and capping of biogenic Pd NPs. Crystallinity of Pd NPs conformed by powder - XRD. In the present study performed photo catalytic activity of synthesized Pd NPs using organic dye such as Congo red (CR). Hence, this study concludes the PTPE aqueous extract produced Pd NPs can be act as promising material for the degradation of organic pollutants.

  3. Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest.

    PubMed

    Elango, Ganesh; Mohana Roopan, Selvaraj; Abdullah Al-Dhabi, Naif; Arasu, Mariadhas Valan; Irukatla Damodharan, Kasinathan; Elumalai, Kuppuswamy

    2017-12-01

    In recent decades, several scientists focused their process towards nanoparticles synthesis by using various sustainable approaches. Cocos nucifera (C. nucifera) was one of the versatile trees in tropical regions which also can act as a thrust quencher in all over the world. Cocos nucifera coir was one of the waste by-products in all coconut-refining industries and with the help C. nucifera coir, Palladium nanoparticles (Pd NPs) were synthesized. Green-synthesized spherical-shape Pd NPs were over layered by secondary metabolites from C. nucifera coir extract and with an average particle size of 62 ± 2 nm, which were confirmed by morphological analysis. Eco-friendly mediated Pd NPs were further subjected to several biological applications like larvicidal against Aedes aegypti (A. aegypti) and anti-feedent, ovicidal, and oviposition deterrent against agricultural pest Callasobruchus maculates (C. maculates) and compared with C. nuciferacoir methanolic extract, which results in LC 50 value of 288.88 ppm and LC 90 value of 483.06 ppm using LSD-Tukey's test against dengue vector (A. aegypti). Cocos nucifera coir methanolic extract shows significant output while compared with Pd NPs towards anti-feedent assays; ovicidal activity and oviposition deterrent were discussed here.

  4. Templated Growth of Pd Nanoparticles Using Sputtering Deposition Process and Its Catalytic Activities.

    PubMed

    Eberhardt, Dario; Migowski, Pedro; Teixeira, Sérgio R; Feil, Adriano F

    2018-03-01

    A simple method based on sputtering deposition of Pd onto mesoporous SiO2 (SBA-15) was employed to produce supported Pd nanoparticles (NPs) that can be used as hydrogenation catalysts. The use of sputtering deposition eliminates contaminants and avoids additional drawbacks of traditional chemical methods applied to prepare heterogeneous supported metal catalysts. A mechanical resonant stirrer was used to revolve the SBA-15 powder and ensure homogeneous distribution of the Pd NPs over the support. The SBA-15 pores act as templates for Pd NPs and drive nanostructure growth. Consequently, the NPs obtained have the same diameter as that of the SBA-15 channels (~5 nm) and elongated particles are formed as sputtering deposition increases. The SBA-15 supported Pd NPs (Pd NPs/SBA-15) were tested in a probe hydrogenation of cyclohexene reaction to evaluate the catalytic activity of the Pd NPs. Turnover frequency (TOF) of 2000 min-1 were achieved with the lower Pd NPs concentration (0.15 wt%) catalyst.

  5. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe 3O 4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO 4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly,more » our study offers a general approach to enhance Pd catalysis in acid for ORB.« less

  6. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; ...

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe 3O 4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO 4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly,more » our study offers a general approach to enhance Pd catalysis in acid for ORB.« less

  7. Ultrasound-accelerated synthesis of biphenyl compounds using novel Pd(0) nanoparticles immobilized on bio-composite.

    PubMed

    Baran, Talat

    2018-07-01

    This study describes (i) an eco-friendly approach for design of Pd(0) nanoparticles on a natural composite, which is composed of carboxymethyl cellulose/agar polysaccharides (CMC/AG), without using any toxic reducing agents and (ii) development of ultrasound assisted simple protocol for synthesis of biphenyl compounds. Chemical characterization studies of Pd(0) nanoparticles (Pd NPs@CMC/AG) revealed that size of the particles were in the range of 37-55 nm. Catalytic performance of Pd NPs@CMC/AG was evaluated in synthesis of various biphenyl compounds by using the ultrasound-assisted method that was developed in this study. Pd NPs@CMC/AG exhibited excellent catalytic performance by producing high reaction yields. In addition, Pd NPs@CMC/AG was successfully used up to six reaction cycles without losing its catalytic activity, indicating high reproducibility of Pd NPs@CMC/AG. Additionally, compared to conventional the methods, new ultrasound-assisted synthesis technique that was followed in this study exhibited some advantages such as shorter reaction time, greener reaction conditions, higher yields and easier work-up. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the

  9. Synthesis, characterization, and electrochemical behavior of Au@Pd core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wicaksono, W. P.; Ivandini, T. A.

    2017-04-01

    Au@Pd core shell nanoparticles (Au@Pd CSNPs) were successfully synthesized using a seed-mediated growth method. Firstly, a pale pink gold seed solution was used to produce a pale purple gold nanoparticles (AuNPs) core solution. Then, three series of Pd shell thickness using 20μ, 100 μL, and 500 μL of PdCl2 produced purple, brown, and deep brown of Au@Pd CSNPs respectively. A strong absorbance UV-Visible spectrum with peaks at 285 nm and 535 nm was identified for AuNPs formation. The disappearance of the peak at 535 nm was indicated the Au@Pd CSNPs formation. The electrochemical properties were examined in phosphate buffer pH 7 using cyclic voltammetry technique with boron-doped diamond (BDD) as working electrode showed a couple oxidation and reduction peak of gold at 0.67 V and at 0.33 V, respectively. The Au@Pd CNPs will be used for modification of BDD electrodes.

  10. Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications

    NASA Astrophysics Data System (ADS)

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-09-01

    The present manuscript presents a convenient method for the synthesis of iron/carbon (Fe/C) nanoparticles (NPs) coated with much smaller Pd NPs for the removal of halogenated organic pollutants. For this purpose, iron oxide/polyvinylpyrrolidone (IO/PVP) NPs were first prepared by the thermal decomposition of ferrocene mixed with PVP at 350 °C under an inert atmosphere. IO,Fe/C and Fe/C NPs coated with graphitic and amorphous carbon layers were then produced by annealing the IO/PVP NPs at 500 and 600 °C, respectively, under an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area and magnetic properties of the IO/PVP, IO,Fe/C and Fe/C NPs has been elucidated. Air-stable Fe/C/Pd NPs were produced by mixing the precursor palladium acetate with the air-stable Fe/C NPs in ethanol. The obtained Fe/C/Pd NPs demonstrated significantly higher environmental activity than the Fe/C NPs on eosin Y, a model halogenated organic pollutant. The environmental activity of the Fe/C/Pd NPs also increased with their increasing Pd content.

  11. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-09-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  12. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction.

    PubMed

    Berillo, Dmitriy; Cundy, Andrew

    2018-07-15

    3D-macroporous chitosan-based scaffolds (cryogels) were produced via growth of metal-polymer coordinated complexes and electrostatic interactions between oppositely charged groups of chitosan and metal ions under subzero temperatures. A mechanism of reduction of noble metal complexes inside the cryogel walls by glutaraldehyde is proposed, which produces discrete and dispersed noble metal nanoparticles. 3D-macroporous scaffolds prepared under different conditions were characterised using TGA, FTIR, nitrogen adsorption, SEM, EDX and TEM, and the distribution of platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) in the material assessed. The catalytic activity of the in situ synthesised PdNPs, at 2.6, 12.5 and 21.0 μg total mass, respectively, was studied utilising a model system of 4-nitrophenol reduction. The kinetics of the reaction under different conditions (temperature, concentration of catalyst) were examined, and a decrease of catalytic activity was not observed over 17 treatment cycles. Increasing the temperature of the catalytic reaction from 10 to 22 and 35 °C by PdNPs supported within the cryogel increased the kinetic rate by 44 and 126%, respectively. Turnover number and turnover frequency of the PdNPs catalysts at room temperature were in the range 0.20-0.53 h -1 . The conversion degree of 4-nitrophenol at room temperature reached 98.9% (21.0 μg PdNPs). Significantly less mass of palladium nanoparticles (by 30-40 times) was needed compared to published data to obtain comparable rates of reduction of 4-nitrophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. PdCo nanoparticles supported on carbon fibers derived from cotton: Maximum utilization of Pd atoms for efficient reduction of nitroarenes.

    PubMed

    Yang, Jin; Wang, Wei David; Dong, Zhengping

    2018-08-15

    In the present work, a facile and environment-friendly route is illustrated for the efficient fabrication of highly dispersed PdCo nanoparticles (NPs) by modified cotton-derived carbon fibers (PdCo/CCF). Firstly, commercial cotton was impregnated with CoCl 2 , followed by pyrolysis under high calcination temperature to obtain the Co NPs modified CCF sample (Co/CCF). Secondly, Co/CCF was treated with Pd(AcO) 2 aqueous solution, wherein, through a spontaneous replacement reaction process, Pd 2+ is reduced to metallic Pd and mostly covered on the surface of the Co NPs. Thus, the PdCo/CCF catalyst was obtained avoiding the use of toxic reductants like NaBH 4 , NH 2 NH 2 and HCHO. The PdCo/CCF catalyst exhibits excellent catalytic activity and recyclability for the reduction of 4-nitrophenol and other nitroarenes compared with Pd/CCF, PdCo NPs and many other noble metals based catalysts. The reasons could be attributed to the uniformly dispersed and accessible PdCo NPs on the surface of the CCF, and the Pd atoms deposited on the Co NPs surface that makes the Pd active sites available for optimum use. The PdCo/CCF catalyst also exhibits potential application for catalytic reduction of nitroarenes in a fixed bed reactor under mild reaction conditions. Furthermore, the PdCo/CCF catalyst can be magnetically recycled and reused for at least ten cycles without either losing catalytic activity or leaching of Pd active sites, thereby confirming its superior stability. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst

    PubMed Central

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability. PMID:24790945

  15. Stabilizing CuPd Nanoparticles via CuPd Coupling to WO 2.72 Nanorods in Electrochemical Oxidation of Formic Acid

    DOE PAGES

    Xi, Zheng; Li, Junrui; Su, Dong; ...

    2017-10-05

    Stabilizing a 3d-transition metal component M from an MPd alloy structure in an acidic environment is key to the enhancement of MPd catalysis for various reactions. Here we show a strategy to stabilize Cu in 5 nm CuPd nanoparticles (NPs) by coupling the CuPd NPs with perovskite-type WO 2.72 nanorods (NRs). The CuPd NPs are prepared by controlled diffusion of Cu into Pd NPs and the coupled CuPd/WO 2.72 are synthesized by growing WO 2.72 NRs in the presence of CuPd NPs. The CuPd/WO 2.72 can stabilize Cu in 0.1 M HClO4 solution and, as a result, they show Cu,more » Pd composition dependent activity for the electrochemical oxidation of formic acid in 0.1 M HClO 4 + 0.1 M HCOOH. Among three different CuPd/WO 2.72 studied, the Cu 48Pd 52/WO 2.72 is the most efficient catalyst with its mass activity reaching 2086 mA/mgPd in a broad potential range of 0.40 to 0.80 V (vs. RHE) and staying at this value after the 12 h chronoamperometry test at 0.40 V. The synthesis can be extended to obtain other MPd/WO 2.72 (M = Fe, Co, Ni), making it possible to study MPd-WO 2.72 interactions and MPd stabilization on enhancing MPd catalysis for various chemical reactions.« less

  16. Ordered PdCu-Based Nanoparticles as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts

    DOE PAGES

    Jiang, Kezhu; Wang, Pengtang; Guo, Shaojun; ...

    2016-06-02

    Here, the development of superior non-platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen-reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells,but still agreat challenge.Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu-based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo.Under the dual tuning on the composition and intermetallic phase,the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol-oxidation reaction (EOR)than those of disordered PdCuM NPs,the commercial Pt/Cand Pd/C catalysts.The density functional theory (DFT)calculations reveal that themore » improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on thePd surface owing to the smaller atomic size of Cu, Co,and Ni.« less

  17. Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes.

    PubMed

    Zhang, Jin; Cheng, Yi; Lu, Shanfu; Jia, Lichao; Shen, Pei Kang; Jiang, San Ping

    2014-11-18

    The inner tubes of carbon nanotubes (CNTs) have a significant promotion effect on the electrocatalytic activity of Pd nanoparticles (NPs) for the ethanol oxidation of direct alcohol fuel cells (DAFCs) and Pd NPs supported on CNTs with 3-7 walls show a much higher activity as compared to that supported on typical single-walled and multi-walled CNTs.

  18. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers.

    PubMed

    Ranjith, Kugalur Shanmugam; Celebioglu, Asli; Uyar, Tamer

    2018-06-15

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH 4 ) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min -1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH 4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  19. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers

    NASA Astrophysics Data System (ADS)

    Shanmugam Ranjith, Kugalur; Celebioglu, Asli; Uyar, Tamer

    2018-06-01

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min‑1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  20. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.

    PubMed

    Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing

    2017-05-24

    Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.

  1. Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light.

    PubMed

    Raza, Faizan; Yim, DaBin; Park, Jung Hyun; Kim, Hye-In; Jeon, Su-Ji; Kim, Jong-Ho

    2017-10-18

    Effective photocatalysts and their surface engineering are essential for the efficient conversion of solar energy into chemical energy in photocatalyzed organic transformations. Herein, we report an effective approach for structuring Pd nanoparticles (NPs) on exfoliated 2H-WS 2 nanosheets (WS 2 /PdNPs), resulting in hybrids with extraordinary photocatalytic activity in Suzuki reactions under visible light. Pd NPs of different sizes and densities, which can modulate the photocatalytic activity of the as-prepared WS 2 /PdNPs, were effectively structured on the basal plane of 2H-WS 2 nanosheets via a sonic wave-assisted nucleation method without any reductants at room temperature. As the size of Pd NPs on WS 2 /PdNPs increased, their photocatalytic activity in Suzuki reactions at room temperature increased substantially. In addition, it was found that protic organic solvents play a crucial role in activating WS 2 /PdNPs catalysts in photocatalyzed Suzuki reactions, although these solvents are generally considered much less effective than polar aprotic ones in the conventional Suzuki reactions promoted by heterogeneous Pd catalysts. A mechanistic investigation suggested that photogenerated holes are transferred to protic organic solvents, whereas photogenerated electrons are transferred to Pd NPs. This transfer makes the Pd NPs electron-rich and accelerates the rate-determining step, i.e., the oxidative addition of aryl halides under visible light. WS 2 /PdNPs showed the highest turnover frequency (1244 h -1 ) for photocatalyzed Suzuki reactions among previously reported photocatalysts.

  2. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid.

    PubMed

    Yu, Yiseul; Jung, Hyeon Jin; Je, Mingyu; Choi, Hyun Chul; Choi, Myong Yong

    2016-07-01

    In this work, the zero valent Fe (ZVI) and graphite-encapsulated Fe (Fe@C) nanoparticles (NPs) were easily and selectively prepared by a pulsed laser ablation (PLA) method in an aqueous sodium borohydride solution and ascorbic acid dissolved in methanol, respectively. Here, the Fe@C NPs were uniquely synthesized by PLA in methanol, where the solvent is used as both a carbon source for the graphitic layers and solvent, which is very unique. Furthermore, Pd NPs were loaded onto the surface of the Fe@C NPs to prepare bimetallic (Fe@C/Pd) NPs for the enhancement of the degradation efficiency of m-dichlorobenzene (m-DCB). The morphology, crystallinity, and surface composition of the prepared NPs were carefully characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The degradation rate of m-DCB using single (Fe and Pd) or bimetallic (Fe/Pd and Fe@C/Pd) NPs were compared by using gas chromatography. Among these NPs produced in this work, the Fe@C/Pd NPs with 1.71 wt % of Pd showed an excellent dechlorination efficiency for m-DCB with 100% degradation within 75 min. The graphitic layer on the Fe NPs played as not only an oxidation resistant for the Fe NPs to surroundings, but also a supporter of the Pd NPs for the enhanced degradation efficiency of m-DCB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Chen, Xue-jiao; Liao, Kai-ming; Wang, Guang-hou; Han, Min

    2015-08-01

    A hydrogen peroxide (H2O2) sensor based on Pd nanoparticles (NPs) and glassy carbon electrodes (GCEs) is fabricated. Pd NPs are deposited on GCEs by using a gas phase cluster beam deposition technique. The NP-deposited electrodes show enhanced electrocatalytic activity in reduction of H2O2. The electrode with an optimized NP coverage of 85 % has a high selective and stable nonenzymatic sensing ability of H2O2 with a low detection limit (3.4 × 10-7 M), high sensitivity (50.9 μA mM-1), and a wide linear range (from 1.0 × 10-6 to 6.0 × 10-3 M). The reduction peak potential of the electrode is close to -0.12 V, which enables high selective amperometric detection of H2O2 at a low applied potential.

  4. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  5. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO2 to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles.

    PubMed

    Mori, Kohsuke; Sano, Taiki; Kobayashi, Hisayoshi; Yamashita, Hiromi

    2018-06-22

    The hydrogenation of carbon dioxide (CO 2 ) to formic acid (FA; HCOOH), a renewable hydrogen storage material, is a promising means of realizing an economical CO 2 -mediated hydrogen energy cycle. The development of reliable heter-ogeneous catalysts is an urgent yet challenging task associated with such systems, although precise catalytic site design protocols are still lacking. In the present study, we demonstrate that PdAg alloy nanoparticles (NPs) supported on TiO 2 promote the efficient selective hydrogenation of CO 2 to give FA even under mild reaction conditions (2.0 MPa, 100 °C). Specimens made using surface engineering with atomic precision reveal a strong correlation between increased cata-lytic activity and decreased electron density of active Pd atoms resulting from a synergistic effect of alloying with Ag atoms. The isolated and electronically promoted surface-exposed Pd atoms in Pd@Ag alloy NPs exhibit a maximum turnover number of 14,839 based on the quantity of surface Pd atoms, which represents a more than ten-fold increase compared to the activity of monometallic Pd/TiO 2 . Kinetic and density functional theory (DFT) calculations show that the attack on the C atom in HCO 3 - by a dissociated H atom over an active Pd site is the rate-determining step during this reaction, and this step is boosted by PdAg alloy NPs having a low Pd/Ag ratio.

  7. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    EPA Science Inventory

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  8. One-Pot Anchoring of Pd Nanoparticles on Nitrogen-Doped Carbon through Dopamine Self-Polymerization and Activity in the Electrocatalytic Methanol Oxidation Reaction.

    PubMed

    Li, Xin; Niu, Xiangheng; Zhang, Wenchi; He, Yanfang; Pan, Jianming; Yan, Yongsheng; Qiu, Fengxian

    2017-03-09

    Exploration of advanced electrocatalysts to promote the sluggish methanol oxidation reaction (MOR) is of vital importance for developing high efficiency and low-cost direct methanol fuel cells. Highly dispersed palladium nanoparticles (Pd NPs) anchored on a nitrogen-doped carbon support were fabricated using a facile one-pot dopamine self-polymerization mediated redox strategy, in which dopamine not only acted as a moderate reductant to induce the formation of Pd NPs during self-polymerization but was also the precursor of the nitrogen-doped carbon support for Pd. The synthesized hybrid features the following characteristics: 1) High dispersity of Pd NPs, which exposed a high abundance of active surfaces and sites for heterogeneous electrocatalysis; 2) metal-support interactions, which may affect the surface chemistry and electron distribution of active Pd NPs; 3) the Pd NPs were partially imbedded or encapsulated into the support, thus reducing the possible agglomeration of Pd NPs during cyclic measurements. The electrocatalyst with such favorable features provided higher mass activity (2.2 times that of commercial Pd/C) and better durability (reduced loss of activity during simulated frequent startup-shutdown operations) for the MOR in alkaline media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

    PubMed

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-03-15

    For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd 2+ ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd 2+ ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choi, Yoonho; Kang, Sehyeon; Cha, Song-Hyun; Kim, Hyun-Seok; Song, Kwangho; Lee, You Jeong; Kim, Kyeongsoon; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2018-01-01

    A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively. No other chemicals were introduced during the reduction reactions, providing an entirely green, eco-friendly, and sustainable method. UV-visible spectra showed the surface plasmon resonance bands of PD-AuNPs at 536 nm and PD-AgNPs at 427 nm. Spherically shaped nanoparticles were observed from high-resolution transmission electron microscopy with average diameters of 14.94 ± 2.14 nm for PD-AuNPs and 18.40 ± 3.20 nm for PD-AgNPs. Minor triangular and other polygonal shapes were also observed for PD-AuNPs along with spherical ones. Atomic force microscopy (AFM) images also demonstrated that both nanoparticles were mostly spherical in shape. Curvature-dependent evolution was employed to enhance the AFM images and precisely measure the sizes of the nanoparticles. The sizes were measured as 19.14 nm for PD-AuNPs and 29.93 nm for PD-AgNPs from the enhanced AFM images. Face-centered cubic structures for both nanoparticles were confirmed by strong diffraction patterns from high-resolution X-ray diffraction analyses. Fourier transform infrared spectra revealed the contribution of -OH, aromatic C=C, C-O, and C-H functional groups to the synthesis. Furthermore, the catalytic activity of PD-AuNPs was assessed with a reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The catalytic activity results suggest the potential application of these gold nanoparticles as catalysts in the future. The green strategy reported in this

  11. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Liu, Huijing; Liao, Yuhong; Zhuo, Ying

    2013-09-15

    An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on an amplified cathodic ECL of luminol at low potential. Firstly, Au nanoparticles (AuNPs) were electrodeposited onto single walled carbon nanotube-graphene composites (CNTs-Gra) coated glass carbon electrode (GCE) with enhanced surface area and good biocompatibility to capture primary antibody (Ab1) and then bind the antigen analytes. Secondly, Pd and Pt nanoparticles (Pd&PtNPs) decorated reduced graphene oxide (Pd&PtNPs@rGO) and glucose oxidase (GOD) labeled secondary antibody (Pd&PtNPs@ rGO-GOD-Ab2) could be captured onto the electrode surface by a sandwich immunoassay protocol to generate amplified cathodic ECL signals of luminol in the presence of glucose. The Pd&PtNPs@rGO composites and loaded GOD promoted luminol cathodic ECL response by efficiently catalyzing glucose to in-situ produce amount of hydrogen peroxide (H2O2) working as a coreactant of luminol. Then in turn Pd&PtNPs catalyzed H2O2 to generate various reactive oxygen species (ROSs), which accelerated the cathodic ECL reaction of luminol, enhanced the cathodic ECL intensity of luminol and improved the sensitivity of the immunosensor. The as-proposed ECL immunosensor exhibited sensitive response on the detection of CEA ranging from 0.0001 ng mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (S/N=3). Moreover, the stability, specificity, lifetime and reproducibility tests demonstrated the feasibility of the developed immunoassay, which can be further extended to the detection of other disease biomarkers. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles.

    PubMed

    Ahmed, Iman S; El-Hosary, Rania; Shalaby, Samia; Abd-Rabo, Marwa M; Elkhateeb, Dalia G; Nour, Samia

    2016-05-17

    In this work lyophilized poly-ε-caprolactone nanoparticles (NPs) loaded with atorvastatin calcium (AC) were developed in an attempt to improve the in-vivo performance of AC following oral administration. The individual and combined effects of several formulation variables were previously investigated using step-wise full factorial designs in order to produce optimized AC-NPs with predetermined characteristics including particle size, drug loading capacity, drug release profile and physical stability. Four optimized formulations were further subjected in this work to lyophilization to promote their long-term physical stability and were fully characterized. The pharmacodynamics (PD)/pharmacokinetics (PK) properties of two optimized freeze-dried AC-NPs formulations showing acceptable long-term stability were determined and compared to a marketed AC immediate release tablet (Lipitor(®)) in albino rats. PD results revealed that the two tested formulations were equally effective in reducing low density lipoproteins (LDL) and triglycerides (TG) levels when given in reduced doses compared to Lipitor(®) and showed no adverse effects. PK results, on the other hand, revealed that the two freeze-dried AC-NPs formulations were of significantly lower bioavailability compared to Lipitor(®). Taken together the PD and PK results demonstrate that the improved efficacy obtained at reduced doses from the freeze-dried AC-NPs could be due to increased concentration of AC in the liver rather than in the plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

    PubMed Central

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm−1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm−1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. PMID:26719690

  14. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  15. Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit

    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level.more » Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy

  16. Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    DOE PAGES

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit; ...

    2017-03-23

    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level.more » Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy

  17. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  18. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  19. Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract

    NASA Astrophysics Data System (ADS)

    Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.

    2017-06-01

    Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.

  20. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less

  1. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    PubMed

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  2. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  3. Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir; Raoof, Jahan-Bakhsh; Ghasemi, Shahram

    Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was usedmore » as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.« less

  4. Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

    PubMed Central

    Alvisi, Marco; Rossi, Riccardo; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa

    2017-01-01

    Multiwalled carbon nanotube (MWCNT)-based chemiresistors were electrochemically decorated with Au and Pd nanoparticles (NPs), resulting in an improvement in the detection of gaseous pollutants as compared to sensors based on pristine MWCNTs. Electrophoresis was used to decorate MWCNTs with preformed Au or Pd NPs, thus preserving their nanometer-sized dimensions and allowing the metal content to be tuned by simply varying the deposition time. The sensing response of unmodified and metal-decorated MWCNTs was evaluated towards different gaseous pollutants (e.g., NO2, H2S, NH3 and C4H10) at a wide range of concentrations in the operating temperature range of 45–200 °C. The gas sensing results were related to the presence, type and loading of metal NPs used in the MWCNT functionalization. Compared to pristine MWCNTs, metal-decorated MWCNTs revealed a higher gas sensitivity, a faster response, a better stability, reversibility and repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs with the highest Pd loading showed the highest sensitivity when operated at 100 °C. Finally, considering the reported gas sensing results, sensing mechanisms have been proposed, correlating the chemical composition and gas sensing responses. PMID:28382249

  5. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Lingzhi; Chen, Mingxi; Huang, Guanbo; Yang, Nian; Zhang, Li; Wang, Huan; Liu, Yu; Wang, Wei; Gao, Jianping

    2014-10-01

    Bimetallic palladium-silver nanoparticles (NPs) supported on reduced oxide graphene (RGO) with different Pd/Ag ratios (Pd-Ag/RGO) were prepared by an easy green method which did not use any additional reducing agents or a dispersing agent. During the process, simultaneous redox reactions between AgNO3, K2PdCl4 and graphene oxide (GO) led to bimetallic Pd-Ag NPs. The morphology and composition of the Pd-Ag/RGO were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman spectroscopy. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of these Pd-Ag/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. Among the different Pd/Ag ratios, the Pd-Ag (1:1)/RGO had the best catalytic activities and stability. So it is a promising catalyst for direct alcohol fuel cell applications.

  6. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis.

    PubMed

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC-MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-03-01

    A green synthesis process was developed for production of the Pd/TiO2 nanoparticles (NPs) without using toxic, hazardous and dangerous materials. Myrtus communis L. leaf extract serves as a mild, renewable and non-toxic reducing agent. The advantages of this biosynthesis method include use of cheap, clean, nontoxic and environmentally benign precursors and simple procedures without time-consuming polymerization and problems with treatment of a highly viscous polymeric resin. More importantly, the synthesized Pd/TiO2 NPs presented excellent catalytic activity for ligand-free Suzuki-Miyaura coupling which could be easily separated from the reaction mixture and reused many times with no loss of activity. Therefore, these properties indicate demonstrative benefits of the catalyst. The Pd/TiO2 NPs was characterized by FESEM, TEM, FT-IR, UV-vis spectroscopy and EDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation

    NASA Astrophysics Data System (ADS)

    Mao, Bao-Hua; Liu, Chang-Hai; Gao, Xu; Chang, Rui; Liu, Zhi; Wang, Sui-Dong

    2013-10-01

    The room-temperature ionic liquid assisted sputtering method is utilized to achieve the Pd-nanoparticle (NP)-graphene hybrid. The supported Pd NPs possess uniformly small sizes of 1-2 nm, which create huge surface area with ultralow Pd consumption and high NP stability. The Pd-NP-graphene hybrid is in situ characterized by the ambient pressure X-ray photoelectron spectroscopy using synchrotron radiation, and the results demonstrate high catalytic activity of the hybrid for CO oxidation. The catalytic behavior is reproducible for several catalytic cycles. The present simple and clean approach is promising to produce metal-NP-based high-efficiency catalysts for CO oxidation.

  9. Fabrication of PdCo Bimetallic Nanoparticles Anchored on Three-Dimensional Ordered N-Doped Porous Carbon as an Efficient Catalyst for Oxygen Reduction Reaction.

    PubMed

    Xue, Hairong; Tang, Jing; Gong, Hao; Guo, Hu; Fan, Xiaoli; Wang, Tao; He, Jianping; Yamauchi, Yusuke

    2016-08-17

    PdCo bimetallic nanoparticles (NPs) anchored on three-dimensional (3D) ordered N-doped porous carbon (PdCo/NPC) were fabricated by an in situ synthesis. Within this composite, N-doped porous carbon (NPC) with an ordered mesoporous structure possesses a high surface area (659.6 m(2) g(-1)), which can facilitate electrolyte infiltration. NPC also acts as a perfect 3D conductive network, guaranteeing fast electron transport. In addition, homogeneously distributed PdCo alloy NPs (∼15 nm) combined with the doping of the N element can significantly improve the electrocatalytic activity for the oxygen reduction reaction (ORR). Due to the structural and material superiority, although the weight percentage of PdCo NPs (∼8 wt%) is much smaller than that of commercial Pt/C (20 wt%), the PdCo/NPC catalyst exhibits similar excellent electrocatalytic activity; however, its superior durability and methanol-tolerance ability of the ORR are as great as those of commercial Pt/C in alkaline media.

  10. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst.

    PubMed

    Zhao, Ming; Ji, Yuan; Wang, Mengyue; Zhong, Ning; Kang, Zinan; Asao, Naoki; Jiang, Wen-Jie; Chen, Qiang

    2017-10-11

    Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H 2 or O 2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.

  11. Pd Nanoparticles Coupled to WO 2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Zheng; Erdosy, Daniel P.; Mendoza-Garcia, Adriana

    We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of formic acid in 0.1 M HClO4; it has a mass activity of ~1600 mA/mgPd in a broad potential range of 0.4–0.85 V (vs RHE) and shows no obvious activity loss after a 12 h chronoamperometry test at 0.4 V. Ourmore » work demonstrates an important strategy to enhance Pd NP catalyst efficiency for energy conversion reactions.« less

  12. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    PubMed

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH 4 ) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH 4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  13. Improving gold catalysis of nitroarene reduction with surface Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.

    2016-04-01

    Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPsmore » and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.« less

  14. Pd nanoparticles encapsulated in magnetic carbon nanocages: an efficient nanoenzyme for the selective detection and multicolor imaging of cancer cells

    NASA Astrophysics Data System (ADS)

    Chen, Gaosong; Song, Jingjing; Zhang, Haoli; Jiang, Yuntian; Liu, Weisheng; Zhang, Wei; Wang, Baodui

    2015-08-01

    Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH as a fluorescent and color change reporter molecule for the multicolor imaging and colorimetric detection of cancer cells was developed. We envision that this nanomaterial can be used as a power tool for a wide range of potential applications in biotechnology and medicine.Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH

  15. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    PubMed

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  16. The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Domekeli, U.; Sengul, S.; Celtek, M.; Canan, C.

    2018-02-01

    The melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd-Ni NP including core-related solid-like regions melts at once.

  17. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  18. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal therapy of prostate solid tumors.

    PubMed

    Thapa, Raj Kumar; Soe, Zar Chi; Ou, Wenquan; Poudel, Kishwor; Jeong, Jee-Heon; Jin, Sung Giu; Ku, Sae Kwang; Choi, Han-Gon; Lee, You Mie; Yong, Chul Soon; Kim, Jong Oh

    2018-05-23

    Intratumoral injection of nanoparticles is a viable alternative for treating solid tumors. In this study, we used intratumorally-injected palladium nanoparticle (Pd NP)-decorated graphene oxide (GO) (GO-Pd NPs) for the treatment of solid prostate tumors. GO was synthesized using the modified Hummer's method and GO-Pd NPs were prepared using the one pot synthesis method. Studies on physicochemical characterization and in vitro/in vivo anticancer properties were performed using GO-Pd NPs. Successful preparation of GO-Pd NPs was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Compared to GO or Pd NPs alone, GO-Pd NPs showed higher cytotoxic effects in prostate cancer 3 (PC3) cells. Irradiation of treated cells with near infrared (NIR) laser considerably enhanced apoptosis induced by synergistic photothermal effect and reactive oxygen species (ROS) generation. Intratumorally-injected GO-Pd NPs showed promising in vivo localized distribution, photothermal ablation, and anti-tumor effects in the PC3 xenograft mouse model. Furthermore, the minimal organ toxicity of GO-Pd NPs was an added advantage. Hence, GO-Pd NPs could be a potential formulation for localized treatment of prostate solid tumors. Copyright © 2018. Published by Elsevier B.V.

  19. Synthesis and characterization of Pd(0), PdS, and Pd-PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, Deepa; Jagirdar, Balaji R., E-mail: jagirdar@ipc.iisc.ernet.i

    2010-09-15

    Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8{+-}0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC{sub 12}H{sub 25}){sub 2}]{sub 6} but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS,more » and Pd-PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. - Graphical abstract: Solventless thermolysis of a single palladium-thiolate cluster affords various Pd systems such as Pd(0), Pd-PdO core-shell, and PdS nanoparticles demonstrating the versatility of the precursor and the methodology.« less

  20. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

    PubMed

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su

    2012-03-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

  1. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    PubMed Central

    2011-01-01

    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures. PMID:21831273

  2. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Alizadeh, Mohammad; Bagherzadeh, Mojtaba

    2016-03-15

    Through this manuscript the green synthesis of palladium nanoparticles supported on reduced graphene oxide (Pd NPs/RGO) under the mild conditions through reduction of the graphene oxide and Pd(2+) ions using barberry fruit extract as reducing and stabilizing agent is reported. The as-prepared Pd NPs/RGO was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd NPs/RGO could be used as an efficient and heterogeneous catalyst for reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  4. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties.

    PubMed

    Anand, K; Tiloke, C; Phulukdaree, A; Ranjan, B; Chuturgoon, A; Singh, S; Gengan, R M

    2016-12-01

    The biosynthesis of nanostructured biopalladium nanoparticles (PdNPs) from an aqueous solution of crystalline palladium acetate is reported. For the synthesised PdNPs in solution, an agroforest biomass waste petal of Moringa oleifera derived bis-phthalate was used as natural reducing and biocapping agents. Continuous absorption in the UV region and subsequent brown colour change confirmed the formation of PdNPs. A strong surface plasmon peak for PdNPs occurred at 460nm. PdNPs were characterized by SEM with EDX, FTIR, TEM and DLS. The chemical composition of the aqueous extract was determined by GC-MS coupled with FTIR and 1 NMR. The catalytic degradation effect by PdNPs on industrial organic toxic effluents p-nitrophenol (PNP) and methylene blue dye was monitored by UV Spectroscopy. On the other hand PdNPs catalysed the base mediated suzuki coupling reaction for biphenyl synthesis, in water. Moreover, PdNPs were found to be reusable catalysts. Toxicity studies of PdNPs showed that the death of brine shrimp to be <50%. Therefore, PdNPs displayed potential for further anticancer studies via tumour cell lines. The in vitro cytotoxicity evaluation of the extract capped nanoparticles was carried out using human lung carcinoma cells (A549) and peripheral lymphocytes normal cells by MTT cell viability assay. Also, PdNPs showed antibacterial activity against Enterococcus faecalis among the different tested strains, including Bacillus cereus, Staphylococcus aureus, Esherichia coli and Candida albicans, Candida utilis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Green Chemistry Approach for Synthesis of Effective Anticancer Palladium Nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Kim, EunSu; Han, Jae Woong; Park, Jung Hyun; Kim, Jin-Hoi

    2015-12-15

    The purpose of this study was to design and synthesize Palladium nanoparticles (PdNPs) using an environmentally friendly approach and evaluate the in vitro efficacy of PdNPs in human ovarian cancer A2780 cells. Ultraviolet-Visible (UV-Vis) spectroscopy was used to monitor the conversion of Pd(II) ions to Pd(0)NPs. X-ray diffraction (XRD) revealed the crystallinity of the as-synthesized PdNPs and Fourier transform infrared spectroscopy (FTIR) further confirmed the role of the leaf extract of Evolvulus alsinoides as a reducing and stabilizing agent for the synthesis of PdNPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed that the average size of the NPs was 5 nm. After a 24-h exposure to PdNPs, cell viability and light microscopy assays revealed the dose-dependent toxicity of the PdNPs. Furthermore, the dose-dependent cytotoxicity of the PdNPs was confirmed by lactate dehydrogenase (LDH), increased reactive oxygen species (ROS) generation, activation of PdNPs-induced autophagy, impairment of mitochondrial membrane potential (MMP), enhanced caspase-3 activity, and detection of TUNEL-positive cells. Our study demonstrates a single, simple, dependable and green approach for the synthesis of PdNPs using leaf extracts of Evolvulus alsinoides. Furthermore, the in vitro efficacy of PdNPs in human ovarian cancer cells suggests that it could be an effective therapeutic agent for cancer therapy.

  6. Facile synthesis of bacitracin-templated palladium nanoparticles with superior electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei

    2017-02-01

    Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.

  7. Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour

    NASA Astrophysics Data System (ADS)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2018-06-01

    In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.

  8. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  9. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time

    PubMed Central

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa. PMID:29253017

  10. Solution Plasma-assisted Bimetallic Oxide Alloy Nanoparticles of Pt and Pd Embedded within Two-dimensional Ti3C2Tx Nanosheets as Highly Active Electrocatalysts for Overall Water-splitting.

    PubMed

    Cui, Bingbing; Hu, Bin; Liu, Jiameng; Wang, Minghua; Song, Yingpan; Tian, Kuan; Zhang, Zhihong; He, Linghao

    2018-06-25

    Exploiting high-efficiency and low-cost bifunctional electrocatalysts for hydrogen evolution (HER) and oxygen evolution reactions (OER) has been actively encouraged because of their potential applications in the field of clean energy. In this paper, we reported a novel electrocatalyst based on an exfoliated two-dimensional (2D) MXene (Ti3C2Tx) loaded with bimetallic oxide alloy nanoparticles (NPs) of Pt and Pd (represented by PtOaPdObNPs@Ti3C2Tx), which was synthesized via solution plasma (SP) modification. The prepared materials were then utilized as highly efficient bifunctional electrocatalysts toward HER and OER in alkaline solution. At a high plasma input power (200 W), bimetallic oxide alloy nanoparticles of Pt and Pd or nanoclusters with different metallic valence states deposited onto the Ti3C2Tx nanosheets. Due to the synergism of the noble metal NPs and the Ti3C2Tx nanosheets, the electrocatalytic results revealed that the as-prepared PtOaPdObNPs@Ti3C2Tx nanosheets under the plasma input power of 200 W for 3 min catalyst only required a low overpotential to attain 10 mA cm-2 for HER (57 mV) in 0.5 M H2SO4 solution and OER (1.63 V) in 0.1 M KOH sollution. Moreover, water electrolysis using this catalyst achieved a water splitting current density of 10 mA cm-2 at a low cell voltage of 1.53 V in 1.0 M KOH solution. These results suggested that the hybridization of the ultra-extremely low usage of PtOa/PdOb NPs (1.07 μg cm-2) and Ti3C2Tx nanosheets by SP will expand the applications of other clean energy reactions to achieve sustainable energy.

  11. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  12. High-Precision Photothermal Ablation Using Biocompatible Palladium Nanoparticles and Laser Scanning Microscopy

    PubMed Central

    2018-01-01

    Herein, we report a straightforward method for the scalable preparation of Pd nanoparticles (Pd-NPs) with reduced inherent cytotoxicity and high photothermal conversion capacity. These Pd-NPs are rapidly taken up by cells and able to kill labeled cancer cells upon short exposure to near-infrared (NIR) light. Following cell treatment with Pd-NPs, ablated areas were patterned with high precision by laser scanning microscopy, allowing one to perform cell migration assays with unprecedented accuracy. Using coherent Raman microscopy, cells containing Pd-NPs were simultaneously ablated and imaged. This novel methodology was combined with intravital imaging to mediate microablation of cancerous tissue in tumor xenografts in mice. PMID:29320154

  13. Novel yolk-shell-structured Fe3O4@γ-AlOOH nanocomposite modified with Pd nanoparticles as a recyclable catalyst with excellent catalytic activity

    NASA Astrophysics Data System (ADS)

    Cui, Xueliang; Zheng, Yunfeng; Tian, Meng; Dong, Zhengping

    2017-09-01

    A novel yolk-shell-structured material (Fe3O4@γ-AlOOH-YSMs) with hierarchical γ-AlOOH flakes as the mesoporous shell and Fe3O4 nanoparticles (NPs) in the hollow core was prepared by using Fe3O4@SiO2 NPs as the seeds as well as NaAlO2 and urea as the precursor. The prepared Fe3O4@γ-AlOOH-YSMs were used as a catalyst support for fabricating a Pd/Fe3O4@γ-AlOOH-YSMs nanocatalyst with no obvious aggregation of the Pd NPs. The Pd/Fe3O4@γ-AlOOH-YSMs nanocatalyst was utilized for the catalytic reduction of the widely used and highly toxic 4-nitrophenol, rhodamine B, methylene blue, and methyl orange; and showed excellent catalytic activity as compared with other noble-metal-based catalysts. Furthermore, the Pd/Fe3O4@γ-AlOOH-YSMs nanocatalyst also can be easily separated from the reaction mixture and reused for at least ten times without any obvious decrease in the catalytic activity, indicating its reusability and stability.

  14. Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects.

    PubMed

    Tuli, Hardeep Singh; Kashyap, Dharambir; Bedi, Simranjeet Kaur; Kumar, Pardeep; Kumar, Gaurav; Sandhu, Sardul Singh

    2015-12-15

    Metal oxide nanoparticles (MO-NPs) are the multidisciplinary nano-scaled molecules which are being used in the diagnosis and treatment of the challenging diseases including cancer. Evidence suggest that antimicrobial formulations in the form of MO-NPs can be possibly used as effective antimicrobial agents. In addition, MO-NPs are known to target various cellular signaling pathways associated with apoptosis, angiogenesis, metastasis and inflammation of cancer. In combination with other chemotherapeutic/anticancer agents, MO-NPs not only increase their bioavailability and efficacy but also lower down the requirement of active dosages. To date, to our knowledge there is no single comprehensive report on cellular and molecular interactions of MO-NPs which have been well elaborated in this review. Also we highlight various action mechanisms through which MO-NPs act as antimicrobial, anticancer, antioxidant and anti-inflammatory agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-12-01

    The present work deals with Pd/ZnO nanoparticles based Schottky diode for detection of NO2 at room temperature (298 K). To fabricate Pd/ZnO Schottky diode, zinc oxide (ZnO) nanoparticles (NPs) based film was developed on glass substrate using sol-gel spin coating process. Subsequently; Pd was deposited on ZnO using thermal evaporation technique. The structural properties of developed ZnO film were studied using energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The particles size of the developed film was in range of ~25 to ~110 nm. The response of fabricated Pd/ZnO Schottky diode was studied upon exposure to NO2 in terms of change in I-V characteristics. The magnitude of barrier height and ideality factor has been evaluated with concentration of NO2 ranging from 10 to 50 ppm. The developed sensor has good sensitivity of ~45.2%, with fast response and recovery time; 67 s and 250 s respectively for 50 ppm concentration of NO2 with excellent repeatability. The obtained results have been explained in terms of surface and subsurface adsorption of NO2 on Pd, subsequently dissociation of NO2 and its diffusion, which creates dipole moment at the Pd/ZnO interface.

  16. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    PubMed

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Role of silver nanoparticles (AgNPs) on the cardiovascular system.

    PubMed

    Gonzalez, Carmen; Rosas-Hernandez, Hector; Ramirez-Lee, Manuel Alejandro; Salazar-García, Samuel; Ali, Syed F

    2016-03-01

    With the advent of nanotechnology, the use and applications of silver nanoparticles (AgNPs) have increased, both in consumer products as well as in medical devices. However, little is known about the effects of these nanoparticles on human health, more specific in the cardiovascular system, since this system represents an important route of action in terms of distribution, bioaccumulation and bioavailability of the different circulating substances in the bloodstream. A collection of studies have addressed the effects and applications of different kinds of AgNPs (shaped, sized, coated and functionalized) in several components of the cardiovascular system, such as endothelial cells, isolated vessels and organs as well as integrative animal models, trying to identify the underlying mechanisms involved in their actions, to understand their implication in the field of biomedicine. The purpose of the present review is to summarize the most relevant studies to date of AgNPs effects in the cardiovascular system and provide a broader picture of the potential toxic effects and exposure risks, which in turn will allow pointing out the directions of further research as well as new applications of these versatile nanomaterials.

  18. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  19. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  20. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  1. Synthesis, characterization, and photocatalytic application of Pd/ZrO2 and Pt/ZrO2

    NASA Astrophysics Data System (ADS)

    Saeed, Khalid; Sadiq, Mohammad; Khan, Idrees; Ullah, Saleem; Ali, Nauman; Khan, Adnan

    2018-05-01

    Zirconia-supported palladium (Pd/ZrO2) and Zirconia-supported platinum (Pt/ZrO2) nanoparticles (NPs) are synthesized from their precursors via impregnation technique. The Pd/ZrO2 and Pt/ZrO2 NPs were analyzed via SEM and EDX, while the study of indigo disulfonate dye degradation was carried out by UV/VIS spectrophotometer. The SEM micrographs illustrated that the Pd and Pt NPs were well placed on ZrO2 surface. The Pd/ZrO2 and Pt/ZrO2 NPs were also employed as photocatalysts for the photodegradation of indigo disulfonate in an aqueous medium under UV-light irradiation. The photodegradation study presented that Pd/ZrO2 and Pt/ZrO2 NPs degraded 96 and 94% of indigo disulfonate in 14 h, respectively. The effect of pH of medium and catalyst dosage and efficiency of recovered Pd/ZrO2 and Pt/ZrO2 NPs on the photocatalytic degradation were also studied. It was also found that the maximum degradation of dye was found at pH 10 (95-97%) and at 0.02 g weight (40.28%).

  2. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  3. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line.

    PubMed

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Rahman, Heshu Sulaiman; Rahim, Raha Abdul; Rasedee, Abdullah; Mohamad, Rosfarizan

    2017-01-01

    Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs) are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis ) extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV-vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The Pd@W.tea NPs were spherical (size 6-18 nm) and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH), OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli . MTT assay showed that Pd@W.tea NPs (IC 50 =0.006 μM) were more antiproliferative toward the human leukemia (MOLT-4) cells than the W.tea extract (IC 50 =0.894 μM), doxorubicin (IC 50 =2.133 μM), or cisplatin (IC 50 =0.013 μM), whereas they were relatively innocuous for normal human fibroblast (HDF-a) cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis and G2/M cell-cycle arrest.

  4. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE PAGES

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  5. Improved battery performance using Pd nanoparticles synthesized on the surface of LiFePO4/C by ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Saliman, Muhammad Ali; Okawa, Hirokazu; Takai, Misaki; Ono, Yuki; Kato, Takahiro; Sugawara, Katsuyasu; Sato, Mineo

    2016-07-01

    LiFePO4 has been attracting interest as a cathode material for Li-ion batteries due to its high energy density, low cost, and eco-friendliness. The electrochemical performance of LiFePO4 is limited because it exhibits low Li-ion diffusivity and low electronic conductivity. Numerous solutions have been considered, such as carbon coating, which is widely known to improve the electronic conductivity of LiFePO4. The deposition of metal nanoparticles (NPs) on the surface of carbon-coated LiFePO4 further enhances the electronic conductivity. In this study, we deposited Pd NPs onto the surface of LiFePO4/C and investigated the resulting electrochemical performance. Sonochemical synthesis was used to prepare the metal NPs; the procedure did not require any surfactants and the reaction was rapid.

  6. Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.

    2010-10-01

    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

  7. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  8. Fabrication of Ternary AgPdAu Alloy Nanoparticles on c-Plane Sapphire by the Systematical Control of Film Thickness and Deposition Sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-06-01

    In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.

  9. A perspective of mitochondrial dysfunction in rats treated with silver and titanium nanoparticles (AgNPs and TiNPs).

    PubMed

    Pereira, Lilian Cristina; Pazin, Murilo; Franco-Bernardes, Mariana Furio; Martins, Airton da Cunha; Barcelos, Gustavo Rafael Mazzaron; Pereira, Márcio Cesar; Mesquita, João Paulo; Rodrigues, Jairo Lisboa; Barbosa, Fernando; Dorta, Daniel Junqueira

    2018-05-01

    Nanotechnology is a growing branch of science that deals with the development of structural features bearing at least one dimension in the nano range. More specifically, nanomaterials are defined as objects with dimensions that range from 1 to 100 nm, which give rise to interesting properties. In particular, silver and titanium nanoparticles (AgNPs and TiNPs, respectively) are known for their biological and biomedical properties and are often used in consumer products such as cosmetics, food additives, kitchen utensils, and toys. This situation has increased environmental and occupational exposure to AgNPs and TiNPs, which has placed demand for the risk assessment of NPs. Indeed, the same properties that make nanomaterials so attractive could also prove deleterious to biological systems. Of particular concern is the effect of NPs on mitochondria because these organelles play an essential role in cellular homeostasis. In this scenario, this work aimed to study how AgNPs and TiNPs interact with the mitochondrial respiration chain and to analyze how this interaction interferes in the bioenergetics and oxidative state of the organelles after sub-chronic exposure. Mitochondria were exposed to the NPs by gavage treatment for 21 days to check whether co-exposure of the organelles to the two types of NPs elicited any mitochondrion-NP interaction. More specifically, male Wistar rats were randomly assigned to four groups. Groups I, II, III, and IV received mineral oil, TiNPs (100 μg/kg/day), AgNPs (100 μg/kg/day), and TiNPs + AgNPs (100 μg/kg/day), respectively, by gavage. The liver was immediately removed, and the mitochondria were isolated and used within 3 h. Exposure of mitochondria to TiNPs + AgNPs lowered the respiratory control ratio, causing an uncoupling effect in the oxidative phosphorylation system. Moreover, both types of NPs induced mitochondrial swelling. Extended exposure of mitochondria to the NPs maintained increased ROS levels and

  10. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  11. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  12. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    NASA Astrophysics Data System (ADS)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  13. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  14. Bovine serum albumin nanoparticles loaded with Photosens photosensitizer for effective photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Khanadeev, Vitaly; Khlebtsov, Boris; Packirisamy, Gopinath; Khlebtsov, Nikolai

    2017-03-01

    Polymeric nanoparticles (NPs) are widely used for drug delivery applications due to high biodegradability, low toxicity and high loading capacity. The focus of this study is the development of photosensitizer Photosens (PS) loaded albumin NPs for efficient photodynamic therapy (PDT). To fabricate PS-loaded bovine serum albumin nanoparticles (BSA-PS NPs), we used a coacervation method with glutaraldehyde followed by passive loading of PS. Successful loading of PS was confirmed by appearance of characteristic peak in absorption spectrum which allows to determine the PS loading in BSA NPs. The synthesized BSA-PS NPs demonstrated low toxicity to HeLa cells at therapeutic concentrations of loaded PS. Compared to free PS solution, the synthesized BSA-PS NPs generated the singlet oxygen more effectively under laser irradiation at 660 nm. In addition, due to presence of various chemical groups on the surface of BSA-PS NPs, they are capable to adsorb on cell surface and accumulate in cells due to cellular uptake mechanisms. Owing to combination of PD and cell uptake advantages, BSA-PS NPs demonstrated higher efficacy of photodynamic damage to cancer cells as compared to free PS at equivalent concentrations. These results suggest that non-targeted BSA-PS NPs with high PD activity and low-fabrication costs of are promising candidates for transfer to PD clinic treatments.

  15. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects.

    PubMed

    Yan, Xiuju; Xu, Lixiao; Bi, Chenchen; Duan, Dongyu; Chu, Liuxiang; Yu, Xin; Wu, Zimei; Wang, Aiping; Sun, Kaoxiang

    2018-01-01

    Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson's disease (PD). Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs) and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD. The biodistribution of rotigotine nanoparticles (R-NPs) and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs. Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum) than R-NPs. The pharmacodynamic study revealed a significant difference ( P <0.05) in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf-R-NPs significantly alleviated nigrostriatal dopaminergic neurodegeneration in the rat model of 6-hydroxydopamine-induced PD. Our findings show that Lf-R-NPs deliver rotigotine more efficiently to the brain, thereby enhancing efficacy. Therefore, Lf-R-NPs might have therapeutic potential for the treatment of PD.

  16. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd-Pt alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing

    2017-05-01

    Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.

  17. An efficient photochemical route to Pd nanoparticles; application to the one-step synthesis of Pd@polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Wolak, Séverine; Vidal, Loïc; Becht, Jean-Michel; Michelin, Laure; Balan, Lavinia

    2016-08-01

    We have developed a facile, efficient, low cost and ‘green’ photochemical approach to preparing surfactant-free Pd nanoparticles and Pd-immobilized@acrylate photo-polymer films at room temperature, under air and without any additional treatment. The reaction system only includes a photo-initiator used as a generator of free radicals and a Pd(II) salt. In ethanol solution, the photochemical reduction of Pd(II) to Pd(0) generates very small metal particles with a narrow size distribution (2-4 nm). Furthermore, we have shown that the formation of Pd nanoparticles from a Pd(II) salt can be reversible thus allowing easy handling and safe storage with the possibility of generating the nanoparticles just before use. In the presence of an acrylate bifunctional monomer, Pd@polymer film was obtained through a ‘one-pot, one-step’ process resulting from a simultaneous photo-reduction of Pd(II) and photo-polymerization of acrylate units. The simultaneous generation of a 3D polymer network and of metal particles leads to a homogeneous distribution of Pd nanoparticles in the photo-polymer matrix with an average diameter of approximately 3.7 ± 1.1 nm. Such as-prepared Pd@polymer films were found to efficiently catalyze the Mizoroki-Heck reaction in the presence of only 0.9 mequiv. of supported palladium. The major interest of this arrangement is its recoverability and reusability, which makes it very attractive both from a practical and economical viewpoint. Finally, it is worth noting that this innovation offers a great advantage over concurrent methods in that it is simply generated within minutes, it is highly stable, and there is sharp monodispersity in the size of the Pd nanoparticles that can be stored for months without alteration of their physico-chemical properties and catalytic activity.

  18. A Facile Synthesis of MPd (M=Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Vismadeb; Chi, Miaofang; Mankin, Max

    2012-01-01

    Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)2 (acac = acetylacetonate) and PdBr2 at 260 C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co10Pd90 to Co60Pd40) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO4 and 2 M HCOOH solution, their catalytic activities followed the trend of Co50Pd50 > Co60Pd40 > Co10Pd90 > Pd. The Co50Pd50 NPs hadmore » an oxidation peak at 0.4 V with a peak current density of 774 A/gPd. As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/gPd. The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)2 was replaced by Cu(ac)2 (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO4 solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.« less

  19. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  20. Monocrystalline solar cells performance coated by silver nanoparticles: Effect of NPs sizes from point of view Mie theory

    NASA Astrophysics Data System (ADS)

    Elnoby, Rasha M.; Mourad, M. Hussein; Elnaby, Salah L. Hassab; Abou Kana, Maram T. H.

    2018-05-01

    Solar based cells coated by nanoparticles (NPs) acknowledge potential utilizing as a part of photovoltaic innovation. The acquired silicon solar cells (Si-SCs) coated with different sizes of silver nanoparticles (Ag NPs) as well as uncoated were fabricated in our lab. The sizes and optical properties of prepared NPs were characterized by spectroscopic techniques and Mie theory respectively. The reflectivity of Si-SCs showed reduction of this property as the size of NPs increased. Electrical properties as open circuit current, fill factor and output power density were assessed and discussed depending on point of view of Mie theory for the optical properties of NPs. Also, photostabilities of SCs were assessed using diode laser of wavelength 450 nm and power 300 mW. Coated SCs with the largest Ag NPs size showed the highest Photostability due to its highest scattering efficiency according to Mie theory concept.

  1. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    NASA Astrophysics Data System (ADS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  2. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung H. A.; Padil, Vinod Vellora Thekkae; Slaveykova, Vera I.; Černík, Miroslav; Ševců, Alena

    2018-05-01

    Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga ( Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll ( Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.

  3. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation.

    PubMed

    Chen, Xiao-mei; Lin, Zhi-jie; Jia, Tian-tian; Cai, Zhi-min; Huang, Xiao-li; Jiang, Ya-qi; Chen, Xi; Chen, Guo-nan

    2009-09-14

    In this study, a novel material, palladium nanoparticles-carboxylic functional carbon nanotubes (PdNPs-CFCNTs), based on PdNPs supported on CFCNTs was synthesized by a facile spontaneous redox method. The material reveals high electrochemical activity and excellent catalytic characteristic for alcohol electrooxidation on a glassy carbon electrode (GCE) in an alkaline medium. The preparation mechanism was studied by the galvanic cell effect between PdCl(4)(2-) and functional defect sites on CFCNTs. Results from UV-visible absorption spectroscopy and electrochemical impedance spectroscopy revealed that the reduction of PdCl(4)(2-) to metallic Pd was successfully achieved. Morphologies of PdNPs supporting on CFCNTs (PdNPs-CFCNTs) were also characterized by transmission electron micrograph. PdNPs-CFCNTs with the best electrocatalytic characteristics were obtained under the condition as: the weight ratio of Pd to CFCNTs was kept at 2:1, the temperature was kept at 70 degrees C in the synthesis, and the scan rate of the applied potential was selected at 60 mV s(-1). The results indicate that PdNPs-CFCNTs could be a great potential material in direct ethanol fuel cells and ethanol sensors.

  4. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    PubMed Central

    Bi, Chenchen; Duan, Dongyu; Chu, Liuxiang; Yu, Xin; Wu, Zimei; Wang, Aiping; Sun, Kaoxiang

    2018-01-01

    Introduction Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD). Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs) and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD. Materials and methods The biodistribution of rotigotine nanoparticles (R-NPs) and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs. Results Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum) than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05) in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf-R-NPs significantly alleviated nigrostriatal dopaminergic neurodegeneration in the rat model of 6-hydroxydopamine-induced PD. Conclusion Our findings show that Lf-R-NPs deliver rotigotine more efficiently to the brain, thereby enhancing efficacy. Therefore, Lf-R-NPs might have therapeutic potential for the treatment of PD. PMID:29391788

  5. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-05-25

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents.

  6. Assembly of multiple components in a hybrid microcapsule: designing a magnetically separable Pd catalyst for selective hydrogenation.

    PubMed

    Amali, Arlin Jose; Sharma, Bikash; Rana, Rohit Kumar

    2014-09-15

    In analogy to the role of long-chain polyamines in biosilicification, poly-L-lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The effect of nanoparticles (NPs) on sorption and suspension stability of technology critical elements (TCEs) in soil/sand solutions.

    NASA Astrophysics Data System (ADS)

    Dror, I.; Stepka, Z.; Berkowitz, B.

    2016-12-01

    As a consequence of their growing use in a range of electronic and industrial applications, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently, little is known about their fate and potential environmental impact. We report here on the adsorption of TCEs on sand and soil in the presence of selected nanoparticles (NPs). TCEs were tested within three different mixtures containing (i) rare earth elements (REEs), (ii) Ge, Pd, Ru and Ir together with Mo, Sb, Sn and Ti, and (iii) In, Sc, Th, Y and Yb together with a variety of other metals. The NPs examined for their suspending properties were: Al2O3, SiO2, CeO2, ZnO, Ag, Au, carbon dots and montmorillonite. Each NP was examined with each TCE solution mixture separately and with added humic acid. A clear difference was observed between REEs (and In, Sc), and the other TCEs. All REEs (and In, Sc) completely adsorb on soil and sand. For sand and soil, the presence of most NPs, alone, does not increase TCE concentrations in solution. For sand, addition of humic acid, with or without NPs, yields approximately the same increase in TCE concentration in solution (>80%). For soil solutions, presence of both NPs and humic acid increases TCE concentrations up to 500% more than any other combination tested, yielding 20% of added TCE amount. The other TCEs tested (mixtures (ii) and (iii)) adsorb less strongly to soil and sand, and unlike the REEs no general trend can be identified. For Al2O3, SiO2, CeO2, ZnO, carbon dots and montmorillonite, the increased concentrations of TCEs in the presence of NPs and humic acid were similar. This indicates that the observed effect depends on the presence of NPs and their surface coating rather than on the type of NP. Ag and Au NPs, however, reduce adsorption of TCEs to sand even when humic acid is absent. For example, Ag NPs reduce adsorption of REEs by >90% and Au NPs by 10%. For REEs, increased solution concentrations are correlated

  8. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  9. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    NASA Astrophysics Data System (ADS)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  10. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction.

    PubMed

    Wang, Deli; Xin, Huolin L; Yu, Yingchao; Wang, Hongsen; Rus, Eric; Muller, David A; Abruña, Hector D

    2010-12-22

    A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.

  11. Exploring the Behavior and Metabolic Transformations of SeNPs in Exposed Lactic Acid Bacteria. Effect of Nanoparticles Coating Agent

    PubMed Central

    Palomo-Siguero, Maria; Madrid, Yolanda

    2017-01-01

    The behavior and transformation of selenium nanoparticles (SeNPs) in living systems such as microorganisms is largely unknown. To address this knowledge gap, we examined the effect of three types of SeNP suspensions toward Lactobacillus delbrueckii subsp. bulgaricus LB-12 using a variety of techniques. SeNPs were synthesized using three types of coating agents (chitosan (CS-SeNPs), hydroxyethyl cellulose (HEC-SeNPs) and a non-ionic surfactant, surfynol (ethoxylated-SeNPs)). Morphologies of SeNPs were all spherical. Transmission electron microscopy (TEM) was used to locate SeNPs in the bacteria. High performance liquid chromatography (HPLC) on line coupled to inductively coupled plasma mass spectrometry (ICP-MS) was applied to evaluate SeNP transformation by bacteria. Finally, flow cytometry employing the live/dead test and optical density measurements at 600 nm (OD600) were used for evaluating the percentages of bacteria viability when supplementing with SeNPs. Negligible damage was detected by flow cytometry when bacteria were exposed to HEC-SeNPs or CS-SeNPs at a level of 10 μg Se mL−1. In contrast, ethoxylated-SeNPs were found to be the most harmful nanoparticles toward bacteria. CS-SeNPs passed through the membrane without causing damage. Once inside, SeNPs were metabolically transformed to organic selenium compounds. Results evidenced the importance of capping agents when establishing the true behavior of NPs. PMID:28783048

  12. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry

    PubMed Central

    Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.

    2012-01-01

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790

  13. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  14. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  15. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE PAGES

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan; ...

    2018-01-18

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  16. Synthesis and characterization of ZnO nanoparticles: effect of solvent and antifungal capacity of NPs obtained in ethylene glycol

    NASA Astrophysics Data System (ADS)

    López, Cenayda; Rodríguez-Páez, Jorge E.

    2017-12-01

    In this work, nanoparticles of zinc oxide (ZnO-NPs) were synthesized using acetic acid, ethanol and ethylene glycol as solvents. To determine the physicochemical and structural characteristics of the synthesized nanoparticles, IR spectroscopy, X-ray diffraction, UV-Vis spectroscopy and transmission electron microscopy were used. The characterization results indicated that the particles obtained were of nanometers size (< 100 nm) with different morphologies: needle-type when using acetic acid, nanoribbons using ethanol, and spheroidal using ethylene glycol. The results of this work show that on using solvents with a lower dielectric constant value a preferential direction of nanoparticle growth would be favored, leading to the formation of nanoribbons, in ethanol ( ɛ r = 24.3), and needles in acetic acid ( ɛ r = 6.2). The band gap of ZnO-Nps depends of synthesis solvent used: 3.37 eV for acetic acid, 3.3 eV to ethanol and 3.28 eV to ethylene glycol, indicating that the optical properties of these nanoparticles are affected by the synthesis medium. Based on the information from the characterization of the ZnO-NPs synthesized, the spheroidal nanoparticles were selected, to determine their antifungal capacity on cultures of Aspergillus niger strains. The concentrations of ZnO-NPs that showed the greatest antifungal effect were those from 9 mmol L-1.

  17. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.

    PubMed

    Krittayavathananon, Atiweena; Srimuk, Pattarachai; Luanwuthi, Santamon; Sawangphruk, Montree

    2014-12-16

    Although metal nanoparticle/graphene composites have been widely used as the electrode in electrochemical sensors, two effects, consisting of the particle size of the nanoparticles and the hydrodynamic diffusion of analytes to the electrodes, are not yet fully understood. In this work, palladium nanoparticles/reduced graphene oxide (PdNPs/rGO) composites were synthesized using an in situ polyol method. Palladium(II) ions and graphene oxide were reduced together with a reducing agent, ethylene glycol. By varying the concentration of palladium(II) nitrate, PdNPs with different sizes were decorated on the surface of rGO sheets. The as-fabricated PdNPs/rGO rotating disk electrodes (RDEs) were investigated toward hydrazine detection. Overall, a 3.7 ± 1.4 nm diameter PdNPs/rGO RDE exhibits high performance with a rather low limit of detection of about 7 nM at a rotation speed of 6000 rpm and provides a wide linear range of 0.1-1000 μM with R(2) = 0.995 at 2000 rpm. This electrode is highly selective to hydrazine without interference from uric acid, glucose, ammonia, caffeine, methylamine, ethylenediamine, hydroxylamine, n-butylamine, adenosine, cytosine, guanine, thymine, and l-arginine. The PdNPs/rGO RDEs with larger sizes show lower detection performance. Interestingly, the detection performance of the electrodes is sensitive to the hydrodynamic diffusion of hydrazine. The as-fabricated electrode can detect trace hydrazine in wastewater with high stability, demonstrating its practical use as an electrochemical sensor. These findings may lead to an awareness of the effect of the hydrodynamic diffusion of analyte that has been previously ignored, and the 3.7 ± 1.4 nm PdNPs/rGO RDE may be useful toward trace hydrazine detection, especially in wastewater from related chemical industries.

  18. In-situ deposition of Pd nanoparticles on tubular halloysite template for initiation of metallization.

    PubMed

    Fu, Yubin; Zhang, Lide; Zheng, Jiyong

    2005-04-01

    Halloysite template has a tubular microstructure; its wall has a multi-layer aluminosilicate structure. A new catalytic method is adopted here, through the in-situ reduction of Pd ions on the surface of tubular halloysite by methanol to initiate electroless plating; the detailed deposition features of Pd nanoparticles are investigated for the first time. The results indicate that an in-situ reduction and deposition of Pd occurs at room temperature, in which the halloysite template plays an important role. Impurities in halloysite (such as ferric oxide) influence the formation and distribution of the Pd nanoparticles. The Pd nanoparticles are of a non-spherical shape in most cases, which would be caused by the irregular appearance of halloysite. No intercalation of the nanoparticles occurs between the aluminosilicate layers in the halloysite. The diameter of Pd nanoparticles increases with time; the average diameter ranges from 1 nm to 4 nm. Pd nanoparticles on a halloysite template can catalyze electroless deposition of Ni to prepare a novel nano-sized cermet at low cost. This practicable catalytic method could also be used on other clay substrates for the initiation of metallization.

  19. Pt-Decorated PdCo@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Deli; Xin, Huolin L.; Yu, Yingchao

    2010-11-24

    A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuelmore » cell applications.« less

  20. Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie

    2014-07-01

    Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.

  1. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells.

    PubMed

    Zhang, Xi-Feng; Yan, Qi; Shen, Wei; Gurunathan, Sangiliyandi

    2016-08-19

    Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs), using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA) and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP), caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells.

  2. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells

    PubMed Central

    Zhang, Xi-Feng; Yan, Qi; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs), using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA) and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP), caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells. PMID:27548148

  3. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  4. Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles.

    PubMed

    Li, Sisi; Tang, Lin; Zeng, Guangming; Wang, Jiajia; Deng, Yaocheng; Wang, Jingjing; Xie, Zhihong; Zhou, Yaoyu

    2016-11-01

    Hexavalent chromium Cr(VI) is a toxic water pollutant which can cause serious influence to the health of the human and animals. Therefore, developing new methods to remove hexavalent chromium in water attracts great attention of scholars. In our research, we successfully synthesized a new type of magnetic mesoporous carbon hybrid nitrogen (Fe-NMC) loaded with catalyst Pd nanoparticles (NPs), which performed excellent catalytic reduction efficiency toward Cr(VI). The characterization of Pd/Fe-NMC composite was investigated in detail using scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption measurements. According to the experimental results, we dealt with in-depth discussion and studied on the mechanism of hexavalent chromium removed by Pd/Fe-NMC composite. Furthermore, the batch experiments were conducted to investigate the catalytic reduction ability of composite. It was found that the chromium reduction process conforms to pseudo-first-order reaction kinetics model when the concentrations of chromium and sodium formate were low. It took only 20 min for the Pd/Fe-NMC composite to reach 99.8 % reduction of Cr(VI) (50 mg/L). The results suggested that the Pd/Fe-NMC composite may exhibit significantly improved catalytic activity for the hexavalent chromium reduction at industrial wastewater.

  5. Development of polyethersulfone (PES)/silver nanoparticles (AgNPs)/polyethylene glycol (PEG) nanofiltration membrane

    NASA Astrophysics Data System (ADS)

    Johary, Fasihah; Jamaluddin, Nur Adibah; Rohani, Rosiah; Hassan, Abdul Rahman; Sharifuddin, Syazrin Syima; Isa, Mohd Hafez Mohd

    2018-06-01

    Nanofiltration is a membrane-based separation process that has been used widely in the separation and purification fields for various applications such as dye desalting, applications of water softening, pharmaceuticals and wastewater treatment. In this research, polyethersulfone (PES), polyethylene glycol (PEG), Pluronic F108 and silver nanoparticles (AgNPs) nanofiltration membrane was prepared using casting solution technique with N-methyl-2-pyrrolidone (NMP) was used as a solvent. The effects of Pluronic F108 and silver nanoparticles (AgNPs) concentrations in the casting solutions on the membrane performance/properties were also studied. The membrane pure water permeation (PWP) and salt rejection tests were carried out for membrane performance analysis. Scanning electron microscopy (SEM) was used for the membrane morphology characterization. Fourier transform infrared spectroscopy was utilized to identify functional groups in the membrane. Membrane with 2.0 wt.% of Pluronic F108 and 0.05 wt.% of AgNPs showed the best performances for both PWP (40.89 L/m2h) as well as permeation flux of salts solution of NaCl (43.95 L/m2h), Na2SO4 (21.16 L/m2h), MgCl2 (26.46 L/m2h) and MgSO4 (20.41 L/m2h). All fabricated membranes with different formulation of dope composition obtained high salts rejection in the range of 79% to 91%. SEM images showed addition of AgNPs has improved fabricated membrane morphology with higher pore density and larger macro-void structure.

  6. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    PubMed

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. © 2011 American Chemical Society

  7. Hydrogen sorption in Pd-decorated Mg-MgO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Piscopiello, E.; Montone, A.; Antisari, M. Vittori; Bonetti, E.

    2009-06-01

    Mg nanoparticles with metal-oxide core-shell morphology were synthesized by inert-gas condensation and decorated by in situ Pd deposition. Transmission electron microscopy and x-ray diffraction underline the formation of a noncontinuous layer with Pd clusters on top of the MgO shell. Even in the presence of a thick MgO interlayer, a modest (2 at. %) Pd decoration deeply enhances the hydrogen sorption properties: previously inert nanoparticles exhibit metal-hydride transformation with fast kinetics and gravimetric capacity above 5 wt %.

  8. Generation and oxidation of aerosol deposited PdAg nanoparticles

    NASA Astrophysics Data System (ADS)

    Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.

    2013-10-01

    PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.

  9. Synthesis of Supported Pd 0 Nanoparticles from a Single-Site Pd 2+ Surface Complex by Alkene Reduction

    DOE PAGES

    Mouat, Aidan R.; Whitford, Cassandra L.; Chen, Bor-Rong; ...

    2018-02-02

    Here, a surface metal–organic complex, (-AlO x)Pd(acac) (acac = acetylacetonate), is prepared by chemically grafting the precursor Pd(acac) 2 onto γ-Al 2O 3 in toluene at 25 °C. The resulting surface complex is characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and dynamic nuclear polarization surface-enhanced solid-state nuclear magnetic resonance spectroscopy (DNP SENS). This surface complex is a precursor in the direct synthesis of size-controlled Pd nanoparticles under mild reductive conditions and in the absence of additional stabilizers or pretreatments. Indeed, upon exposure to gaseous ethylene or liquid 1-octene at 25more » °C, the Pd 2+ species is reduced to form Pd 0 nanoparticles with a mean diameter of 4.3 ± 0.6 nm, as determined by scanning transmission electron microscopy (STEM). These nanoparticles are catalytically relevant using the aerobic 1-phenylethanol oxidation as a probe reaction, with rates comparable to a conventional Pd/Al 2O 3 catalyst but without an induction period. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction mass spectrometry (TPR-MS) reveal that the surface complex reduction with ethylene coproduces H 2, acetylene, and 1,3-butadiene. This process reasonably proceeds via an olefin activation/coordination/insertion pathway, followed by β-hydride elimination to generate free Pd 0. Lastly, the well-defined nature of the single-site supported Pd 2+ precursor provides direct mechanistic insights into this unusual and likely general reductive process.« less

  10. Synthesis of Supported Pd 0 Nanoparticles from a Single-Site Pd 2+ Surface Complex by Alkene Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouat, Aidan R.; Whitford, Cassandra L.; Chen, Bor-Rong

    Here, a surface metal–organic complex, (-AlO x)Pd(acac) (acac = acetylacetonate), is prepared by chemically grafting the precursor Pd(acac) 2 onto γ-Al 2O 3 in toluene at 25 °C. The resulting surface complex is characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and dynamic nuclear polarization surface-enhanced solid-state nuclear magnetic resonance spectroscopy (DNP SENS). This surface complex is a precursor in the direct synthesis of size-controlled Pd nanoparticles under mild reductive conditions and in the absence of additional stabilizers or pretreatments. Indeed, upon exposure to gaseous ethylene or liquid 1-octene at 25more » °C, the Pd 2+ species is reduced to form Pd 0 nanoparticles with a mean diameter of 4.3 ± 0.6 nm, as determined by scanning transmission electron microscopy (STEM). These nanoparticles are catalytically relevant using the aerobic 1-phenylethanol oxidation as a probe reaction, with rates comparable to a conventional Pd/Al 2O 3 catalyst but without an induction period. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction mass spectrometry (TPR-MS) reveal that the surface complex reduction with ethylene coproduces H 2, acetylene, and 1,3-butadiene. This process reasonably proceeds via an olefin activation/coordination/insertion pathway, followed by β-hydride elimination to generate free Pd 0. Lastly, the well-defined nature of the single-site supported Pd 2+ precursor provides direct mechanistic insights into this unusual and likely general reductive process.« less

  11. Theoretical insights into the energetics and electronic properties of MPt12 (M = Fe, Co, Ni, Cu, and Pd) nanoparticles supported by N-doped defective graphene

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Tian, Yu; Chen, Guangju; Zhao, Jingxiang

    2017-03-01

    Enhancing the catalytic activity and decreasing the usage of Pt catalysts has been a major target in widening their applications for developing proton-exchange membrane fuel cells. In this work, the adsorption energetics, structural features, and electronic properties of several MPt12 (M = Fe, Co, Ni, Cu, and Pd) nanoparticles (NPs) deposited on N-doped defective graphene were systemically explored by means of comprehensive density functional theory (DFT) computations. The computations revealed that the defective N-doped graphene substrate can provide anchoring site for these Pt-based alloying NPs due to their strong hybridization with the sp2 dangling bonds at the defect sites of substrate. Especially, these deposited MPt12 NPs exhibit reduced magnetic moment and their average d-band centers are shifted away from the Fermi level, as compared with the freestanding NPs, leading to the reduction of the adsorption energies of the O species. Thus, the defective N-doped graphene substrate not only enhances the stability of the deposited MPt12 NPs, but also endows them higher catalytic performance for the oxygen reduction reaction.

  12. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  13. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson's disease treatment.

    PubMed

    Bi, Chenchen; Wang, Aiping; Chu, Yongchao; Liu, Sha; Mu, Hongjie; Liu, Wanhui; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    Sustainable and safe delivery of brain-targeted drugs is highly important for successful therapy in Parkinson's disease (PD). This study was designed to formulate biodegradable poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NPs), which were surface-modified with lactoferrin (Lf), for efficient intranasal delivery of rotigotine to the brain for the treatment of PD. Rotigotine NPs were prepared by nanoprecipitation, and the effect of various independent process variables on the resulting properties of NPs was investigated by a Box-Behnken experimental design. The physicochemical and pharmaceutical properties of the NPs and Lf-NPs were characterized, and the release kinetics suggested that both NPs and Lf-NPs provided continuous, slow release of rotigotine for 48 h. Neither rotigotine NPs nor Lf-NPs reduced the viability of 16HBE and SH-SY5Y cells; in contrast, free rotigotine was cytotoxic. Qualitative and quantitative cellular uptake studies demonstrated that accumulation of Lf-NPs was greater than that of NPs in 16HBE and SH-SY5Y cells. Following intranasal administration, brain delivery of rotigotine was much more effective with Lf-NPs than with NPs. The brain distribution of rotigotine was heterogeneous, with a higher concentration in the striatum, the primary region affected in PD. This strongly suggested that Lf-NPs enable the targeted delivery of rotigotine for the treatment of PD. Taken together, these results demonstrated that Lf-NPs have potential as a carrier for nose-to-brain delivery of rotigotine for the treatment of PD.

  14. Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.

    PubMed

    Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2012-08-07

    The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range.

  15. PdNP Decoration of Halloysite Lumen via Selective Grafting of Ionic Liquid onto the Aluminol Surfaces and Catalytic Application.

    PubMed

    Dedzo, Gustave K; Ngnie, Gaëlle; Detellier, Christian

    2016-02-01

    The synthesis of selectively deposited palladium nanoparticles (PdNPs) inside tubular halloysite lumens is reported. This specific localization was directed by the selective modification of the aluminol surfaces of the clay mineral through stable Al-O-C bonds. An ionic liquid (1-(2-hydroxyethyl)-3-methylimidazolium) was grafted onto halloysite following the guest displacement method (generally used for kaolinite) using halloysite-DMSO preintercalate. The characterization of this clay nanohybrid material (XRD, NMR, TGA) showed characteristics reminiscent of similar materials synthesized from kaolinite. The grafting on halloysite lumens was also effective without using the DMSO preintercalate. The presence of these new functionalities in halloysite directs the synthesis of uniform PdNPs with size ranging between 3 and 6 nm located exclusively in the lumens. This results from the selective adsorption of PdNPs precursors in functionalized lumens through an anion exchange mechanism followed by in situ reduction. In contrast, the unmodified clay mineral displayed nanoparticles both inside and outside the tubes. These catalysts showed significant catalytic activity for the reduction of 4-nitrophenol (4-NP). The most efficient catalysts were recycled up to three times without reducing significantly the catalytic activities.

  16. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs

    PubMed Central

    Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert

    2017-01-01

    Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707

  17. Ecotoxicity of halloysite nanotube-supported palladium nanoparticles in Raphanus sativus L.

    PubMed

    Bellani, Lorenza; Giorgetti, Lucia; Riela, Serena; Lazzara, Giuseppe; Scialabba, Anna; Massaro, Marina

    2016-10-01

    Halloysite nanotubes (HNTs) are natural nanomaterials that are biocompatible and available in large amounts at low prices. They are emerging nanomaterials with appealing properties for applications like support for metal nanoparticles (NPs). The potential environmental impacts of NPs can be understood in terms of phytotoxicity. Current research has been focusing on HNT applications in cell or animal models, while their use in plants is limited so their ecotoxicological impact is poorly documented. To date there are no studies on the phytotoxic effects of functionalized halloysites (functionalized-HNTs). To develop a quantitative risk assessment model for predicting the potential impact of HNT-supported palladium nanoparticles (HNT-PdNPs) on plant life, an investigation was undertaken to explore their effects on seed germination, seedling development, and mitotic division in root tip cells of 2 lots of Raphanus sativus L. with different vigor. The results showed that exposure to 1500 mg/L of HNTs, functionalized-HNTs, and HNT-PdNPs had no significant influence on germination, seedling development, xylem differentiation, or mitotic index in both lots. Cytogenetic analyses revealed that treatments with functionalized-HNT significantly increased the number of aberrations in low-vigor seeds. These results suggest that low-vigor seeds represent a model for a stress test that would be useful to monitor the effects of NPs. Moreover the present study offers scientific evidence for the use of halloysite for environmental purposes, supporting the biological safety of HNT-PdNPs. Environ Toxicol Chem 2016;35:2503-2510. © 2016 SETAC. © 2016 SETAC.

  18. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag(+).

    PubMed

    Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael

    2014-01-07

    For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).

  19. Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract

    USDA-ARS?s Scientific Manuscript database

    The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...

  20. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment

    PubMed Central

    Bi, Chenchen; Wang, Aiping; Chu, Yongchao; Liu, Sha; Mu, Hongjie; Liu, Wanhui; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2016-01-01

    Sustainable and safe delivery of brain-targeted drugs is highly important for successful therapy in Parkinson’s disease (PD). This study was designed to formulate biodegradable poly(ethylene glycol)–poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NPs), which were surface-modified with lactoferrin (Lf), for efficient intranasal delivery of rotigotine to the brain for the treatment of PD. Rotigotine NPs were prepared by nanoprecipitation, and the effect of various independent process variables on the resulting properties of NPs was investigated by a Box–Behnken experimental design. The physicochemical and pharmaceutical properties of the NPs and Lf-NPs were characterized, and the release kinetics suggested that both NPs and Lf-NPs provided continuous, slow release of rotigotine for 48 h. Neither rotigotine NPs nor Lf-NPs reduced the viability of 16HBE and SH-SY5Y cells; in contrast, free rotigotine was cytotoxic. Qualitative and quantitative cellular uptake studies demonstrated that accumulation of Lf-NPs was greater than that of NPs in 16HBE and SH-SY5Y cells. Following intranasal administration, brain delivery of rotigotine was much more effective with Lf-NPs than with NPs. The brain distribution of rotigotine was heterogeneous, with a higher concentration in the striatum, the primary region affected in PD. This strongly suggested that Lf-NPs enable the targeted delivery of rotigotine for the treatment of PD. Taken together, these results demonstrated that Lf-NPs have potential as a carrier for nose-to-brain delivery of rotigotine for the treatment of PD. PMID:27994458

  1. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  2. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  3. Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.

    2018-02-01

    In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (< 95 °C). The samples were doped with Pd (0.17 at% Pd) and functionalized with PdO nanoparticles (NPs) using the PdCl2 aqueous solution and subsequent thermal annealing at 650 °C for 30 min. The morphological, micro-Raman and optical properties of Pd modified samples were investigated in detail and were demonstrated to have high crystallinity. Gas sensing studies unveiled that compared to pure ZnO films, the Pd-doped ZnO (ZnO:Pd) nanostructured films showed a decrease in ethanol vapor response and slight increase in H2 response with low selectivity. However, the PdO-functionalized samples showed excellent H2 gas sensing properties with possibility to detect H2 gas even at room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.

  4. Simultaneous introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu3-xPdx(BTC)2]n.

    PubMed

    Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A

    2016-10-14

    Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).

  5. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications.

    PubMed

    Wen, Tao; He, Weiwei; Chong, Yu; Liu, Yi; Yin, Jun-Jie; Wu, Xiaochun

    2015-10-14

    Recently, because of the great advances in tailoring their shape and structure, palladium nanoparticles (Pd NPs) have been receiving increasing attention in biomedical fields apart from their traditional application as industrial catalysts. When considering the potential uses of Pd NPs in biomedicine, their catalytic properties need to be evaluated under physiologically relevant conditions. In this article, we demonstrate that Pd nanostructures (NSs, both commercial Pd NPs and in-house-prepared Au@Pd nanorods) can induce O2 or ˙OH production depending on pH values in the presence of H2O2. We observed that O2 is produced under neutral and alkaline conditions but ˙OH under acidic conditions. We also found that Pd NSs can scavenge superoxide and singlet oxygen, which may provide protection in biological systems. On the other hand, their oxidase-like activity may accelerate the oxidation of ascorbic acid and thus may produce negative biological effects. The presented study will provide useful guidance for designing noble metal nanostructures with desired catalytic and biological properties in biomedical applications.

  6. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

    NASA Astrophysics Data System (ADS)

    Oshima, Keisuke; Inoue, Junta; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2017-05-01

    Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high "apparent" thermoelectric performance ( ZT ˜ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

  7. Pd(0)-CMC@Ce(OH)(4) organic/inorganic hybrid as highly active catalyst for the Suzuki-Miyaura reaction.

    PubMed

    Lin, Bijin; Liu, Xiaoping; Zhang, Zhuan; Chen, Yang; Liao, Xiaojian; Li, Yiqun

    2017-07-01

    A very easy sequential metathesis for the synthesis of Pd(II)-CMC@Ce(OH) 4 organic/inorganic hybrid and its application as effective pre-catalyst for the Suzuki-Miyaura reaction have been reported. It was found that the Pd nanoparticles (Pd NPs) were formed in situ in the course of the Suzuki-Miyaura couplings when Pd(II)-CMC@Ce(OH) 4 was used as a pre-catalyst. The activity of the Pd NPs in the reaction was enhanced synergistically by the unique redox properties (Ce 3+ /Ce 4+ ) of Ce(OH) 4 and coordination with carboxyl groups as well as free hydroxyl groups of the hybrid of CMC@Ce(OH) 4 . The results exhibit the Pd(0)-CMC@Ce(OH) 4 is super over Pd(II)@CMC, Pd(II)@CeO 2 , and Pd(II)@Ce(OH) 4 catalysts in the Suzuki-Miyaura reaction. Moreover, the catalyst could be easily separated by simple filtration and reused at least seven runs without losing its activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  9. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp.

    PubMed Central

    Vishwakarma, Kanchan; Shweta; Upadhyay, Neha; Singh, Jaspreet; Liu, Shiliang; Singh, Vijay P.; Prasad, Sheo M.; Chauhan, Devendra K.; Tripathi, Durgesh K.; Sharma, Shivesh

    2017-01-01

    Continuous formation and utilization of nanoparticles (NPs) have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs) were biosynthesized from silver nitrate (AgNO3) by green synthesis approach using Aloe vera extract. Mustard (Brassica sp.) seedlings were grown hydroponically and toxicity of both AgNP and AgNO3 (as ionic Ag+) was assessed at various concentrations (1 and 3 mM) by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX) and catalase (CAT) were inhibited by AgNPs and AgNO3. Interestingly, damaging impact of AgNPs was lesser than AgNO3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO3 on crop plants. PMID:29075270

  10. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  11. 3,4-Ethylenedioxythiophene functionalized graphene with palladium nanoparticles for enhanced electrocatalytic oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Choe, Ju Eun; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    Poly(3,4-ethylenedioxythiophene) functionalized graphene with palladium nanoparticles (denoted as Pd/PEDOT/rGO) has been synthesized for electrochemical oxygen reduction reaction (ORR) in alkaline solution. The structural features of catalyst are characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The TEM images suggest a well dispersed PdNPs onto PEDOT/rGO film. The ORR activity of Pd/PEDOT/rGO has been investigated via cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in 0.1 M KOH aqueous solution. Comparative CV analysis suggests a general approach of intermolecular charge-transfer in between graphene sheet and PdNPs via PEDOT which leads to the better PdNPs dispersion and subsequently superior ORR kinetics. The results from ORR measurements show that Pd/PEDOT/rGO has remarkable electrocatalytic activity and stability compared to Pd/rGO and state-of-the-art Pt/C. The Koutecky-Levich and Tafel analysis suggest that the proposed main path in the ORR mechanism has direct four-electron transfer process with faster transfer kinetic rate on the Pd/PEDOT/rGO.

  12. Microenvironment effects in electrocatalysis: ionic-liquid-like coating on carbon nanotubes enhances the Pd-electrocatalytic alcohol oxidation.

    PubMed

    Li, Shuwen; Dong, Zhengping; Yang, Honglei; Guo, Shujing; Gou, Galian; Ren, Ren; Zhu, Zhejun; Jin, Jun; Ma, Jiantai

    2013-02-11

    A new catalyst consisting of ionic liquid (IL)-functionalized carbon nanotubes (CNTs) obtained through 1,3-dipolar cycloaddition support-enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl(-))-CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl(-))-CNTs were systematic characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL-CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl(-))-CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    PubMed

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  15. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor

    NASA Astrophysics Data System (ADS)

    Arciniegas-Grijalba, P. A.; Patiño-Portela, M. C.; Mosquera-Sánchez, L. P.; Guerrero-Vargas, J. A.; Rodríguez-Páez, J. E.

    2017-06-01

    In this work, a methodology of synthesis was designed to obtain ZnO nanoparticles (ZnO NPs) in a controlled and reproducible manner. The nanoparticles obtained were characterized using infrared spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). Also, we determined the antifungal capacity in vitro of zinc oxide nanoparticles synthesized, examining their action on Erythricium salmonicolor fungy causal of pink disease. To determine the effect of the quantity of zinc precursor used during ZnO NPs synthesis on the antifungal capacity, 0.1 and 0.15 M concentrations of zinc acetate were examined. To study the inactivation of the mycelial growth of the fungus, different concentrations of ZnO NPs of the two types of synthesized samples were used. The inhibitory effect on the growth of the fungus was determined by measuring the growth area as a function of time. The morphological change was observed with high-resolution optical microscopy (HROM), while TEM was used to observe changes in its ultrastructure. The results showed that a concentration of 9 mmol L-1 for the sample obtained from the 0.15 M and at 12 mmol L-1 for the 0.1 M system significantly inhibited growth of E. salmonicolor. In the HROM images a deformation was observed in the growth pattern: notable thinning of the fibers of the hyphae and a clumping tendency. The TEM images showed a liquefaction of the cytoplasmic content, making it less electron-dense, with the presence of a number of vacuoles and significant detachment of the cell wall.

  16. Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes.

    PubMed

    Thangavelu, Kokulnathan; Raja, Nehru; Chen, Shen-Ming; Liao, Wei-Cheng

    2017-09-01

    Amalgamation of noble metal nanomaterials on graphene flakes potentially paves one way to improve their physicochemical properties. This paper deals with the simultaneous electrochemical deposition of gold and palladium nanoparticles on graphene flakes (Au/PdNPs-GRF) for the sensitive determination of caffeic acid (CA). The physiochemical properties of the prepared Au/PdNPs-GRF was characterized by using numerous analytical techniques such as scanning electron microscopy, electron dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, Raman spectroscopy and electrochemical impedance spectroscopy. The enhanced electrochemical determination of CA at Au/PdNPs deposition on GRF were studied by using cyclic voltammetry and differential pulse voltammetry. In results, Au/PdNPs-GRF electrode exhibited an excellent electrocatalytic activity towards CA with wide linear range and low limit of detection of 0.03-938.97µM and 6nM, respectively. Eventually, the Au/PdNPs-GRF was found as a selective and stable active material for the sensing of CA. In addition, the proposed sensor showed the adequate results in real sample analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts.

    PubMed

    Xie, Shaohua; Liu, Yuxi; Deng, Jiguang; Zang, Simiao; Zhang, Zhenhua; Arandiyan, Hamidreza; Dai, Hongxing

    2017-02-21

    To overcome deactivation of Pd-based catalysts at high temperatures, we herein design a novel pathway by introducing a certain amount of CoO to the supported Au-Pd alloy nanoparticles (NPs) to generate high-performance Au-Pd-xCoO/three-dimensionally ordered macroporous (3DOM) Co 3 O 4 (x is the Co/Pd molar ratio) catalysts. The doping of CoO induced the formation of PdO-CoO active sites, which was beneficial for the improvement in adsorption and activation of CH 4 and catalytic performance. The Au-Pd-0.40CoO/3DOM Co 3 O 4 sample performed the best (T 90% = 341 °C at a space velocity of 20 000 mL g -1 h -1 ). Deactivation of the 3DOM Co 3 O 4 -supported Au-Pd, Pd-CoO, and Au-Pd-xCoO nanocatalysts resulting from water vapor addition was due to the formation and accumulation of hydroxyl on the catalyst surface, whereas deactivation of the Pd-CoO/3DOM Co 3 O 4 catalyst at high temperatures (680-800 °C) might be due to decomposition of the PdO y active phase into aggregated Pd 0 NPs. The Au-Pd-xCoO/3DOM Co 3 O 4 nanocatalysts exhibited better thermal stability and water tolerance ability compared to the 3DOM Co 3 O 4 -supported Au-Pd and Pd-CoO nanocatalysts. We believe that the supported Au-Pd-xCoO nanomaterials are promising catalysts in practical applications for organic combustion.

  18. Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd-Ir and Au-Rh systems and influence of a TiO2 support.

    PubMed

    Demiroglu, Ilker; Fan, Tian-E; Li, Z Y; Yuan, Jun; Liu, Tun-Dong; Piccolo, Laurent; Johnston, Roy L

    2018-05-24

    The relative stabilities of different chemical arrangements of Pd-Ir and Au-Rh nanoalloys (and their pure metal equivalents) are studied, for a range of compositions, for fcc truncated octahedral 38- and 79-atom nanoparticles (NPs). For the 38-atom NPs, comparisons are made of pure and alloy NPs supported on a TiO2(110) slab. The relative energies of different chemical arrangements are found to be similar for Pd-Ir and Au-Rh nanoalloys, and depend on the cohesive and surface energies of the component metals. For supported nanoalloys on TiO2, the interaction with the surface is greater for Ir (Rh) than Pd (Au): most of the pure NPs and nanoalloys preferentially bind to the TiO2 surface in an edge-on configuration. When Au-Rh nanoalloys are bound to the surface through Au, the surface binding strength is lower than for the pure Au NP, while the Pd-surface interaction is found to be greater for Pd-Ir nanoalloys than for the pure Pd NP. However, alloying leads to very little difference in Ir-surface and Rh-surface binding strength. Comparing the relative stabilities of the TiO2-supported NPs, the results for Pd-Ir and Au-Rh nanoalloys are the same: supported Janus NPs, whose Ir (Rh) atoms bind to the TiO2 surface, bind most strongly to the surface, becoming closer in energy to the core-shell configurations (Ir@Pd and Rh@Au) which are favoured for the free particles.

  19. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells.

    PubMed

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-01-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  20. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  1. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens.

    PubMed

    Manukumar, H M; Umesha, S; Kumar, H N Naveen

    2017-09-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made an exciting area of drug delivery research. The present study investigated novel and simple route for synthesis of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) using chitosan and thymol as reducing, capping agent respectively to understand the therapeutic efficacy. The UV-vis spectroscopy, DLS, FT-IR, SEM, EDS, XRD used for characterization and radical scavenging activity, anti-microbial and biocompatibility was taken to ascertain an efficacy of novel T-C@AgNPs. The T-C@AgNPs intense peak at 490nm indicates the formation of nanoparticles and had average particle size of 28.94nm with spherical shape, monodisperse state in water, also exhibited excellent biocompatibility of cubic shaped pure silver element containing T-C@AgNPs. The antibacterial activity was studied for gram positive and gram negative food-borne pathogens and effective inhibition at 100μgmL -1 to S. aureus, S. epidermidis, S. haemolyticus (10.08, 10.00, 11.23mm) and S. typhimurium, P. aeruginosa and S. flexneri (9.28, 9.33, 12.03mm) compared to antibiotic Streptomycin. This study revealed the efficacy against multiple food-borne pathogens and therapeutic efficacy of T-C@AgNPs offers a valuable contribution in the area of nanotechnology. This proved to be a first-class novel antimicrobial material for the first time in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    PubMed

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  3. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath.

    PubMed

    Koo, Won-Tae; Yu, Sunmoon; Choi, Seon-Jin; Jang, Ji-Soo; Cheong, Jun Young; Kim, Il-Doo

    2017-03-08

    The increase of surface area and the functionalization of catalyst are crucial to development of high-performance semiconductor metal oxide (SMO) based chemiresistive gas sensors. Herein, nanoscale catalyst loaded Co 3 O 4 hollow nanocages (HNCs) by using metal-organic framework (MOF) templates have been developed as a new sensing platform. Nanoscale Pd nanoparticles (NPs) were easily loaded on the cavity of Co based zeolite imidazole framework (ZIF-67). The porous structure of ZIF-67 can restrict the size of Pd NPs (2-3 nm) and separate Pd NPs from each other. Subsequently, the calcination of Pd loaded ZIF-67 produced the catalytic PdO NPs functionalized Co 3 O 4 HNCs (PdO-Co 3 O 4 HNCs). The ultrasmall PdO NPs (3-4 nm) are well-distributed in the wall of Co 3 O 4 HNCs, the unique structure of which can provide high surface area and high catalytic activity. As a result, the PdO-Co 3 O 4 HNCs exhibited improved acetone sensing response (R gas /R air = 2.51-5 ppm) compared to PdO-Co 3 O 4 powders (R gas /R air = 1.98), Co 3 O 4 HNCs (R gas /R air = 1.96), and Co 3 O 4 powders (R gas /R air = 1.45). In addition, the PdO-Co 3 O 4 HNCs showed high acetone selectivity against other interfering gases. Moreover, the sensor array clearly distinguished simulated exhaled breath of diabetics from healthy people's breath. These results confirmed the novel synthesis of MOF templated nanoscale catalyst loaded SMO HNCs for high performance gas sensors.

  4. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    PubMed

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-27

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  5. Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Rajesh, Dhanushkotti; Indra Neel, Pulidindi; Pandurangan, Arumugam; Mahendiran, Chinnathambi

    2018-06-01

    The synthesis of Pd-NiO nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) on reduced graphene oxide (rGO) for ethanol electrooxidation is reported. NiO nanoparticles (NPs) were deposited on functionalized MWCNTs by wet impregnation method. Pd nanoparticles were formed on NiO-MWCNTs by the addition of PdCl2 and its reduction using NaBH4. The Pd-NiO/MWCNTs nanocomposite then deposited on rGO support using ultrasound irradiation which led to the formation of the Pd-NiO/MWCNTs/rGO electrocatalyst. The prepared electrocatalysts were characterized by XRD, SEM, HR-TEM and XPS analysis. Electrochemical measurements demonstrate that as synthesized Pd-NiO/MWCNTs/rGO electrocatalyst exhibit higher catalytic activity (90.89 mA/cm2) than either Pd/MWCNTs/rGO (43.05 mA/cm2) or Pd/C (28.0 mA/cm2) commercial catalyst. Chronoamperometry study of Pd-NiO/MWCNTs/rGO electrocatalyst showed long-term electrochemical stability. The enhanced catalytic activity of Pd-NiO/MWCNTs/rGO electrocatalyst for electrooxidation of ethanol can be attributed to the synergistic effect between Pd & NiO active sites.

  6. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  7. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang

    2015-01-01

    To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.

  8. Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects.

    PubMed

    Mastrorilli, Piero; Dell'Anna, Maria M; Rizzuti, Antonino; Mali, Matilda; Zapparoli, Mauro; Leonelli, Cristina

    2015-10-14

    An insight into the nano- and micro-structural morphology of a polymer supported Pd catalyst employed in different catalytic reactions under green conditions is reported. The pre-catalyst was obtained by copolymerization of the metal-containing monomer Pd(AAEMA)₂ [AAEMA-=deprotonated form of 2-(acetoacetoxy) ethyl methacrylate] with ethyl methacrylate as co-monomer, and ethylene glycol dimethacrylate as cross-linker. This material was used in water for the Suzuki-Miyaura cross-coupling of aryl bromides, and for the reduction of nitroarenes and quinolines using NaBH₄ or H₂, as reductants. TEM analyses showed that in all cases the pristine Pd(II) species were reduced in situ to Pd(0), which formed metal nanoparticles (NPs, the real active species). The dependence of their average size (2-10 nm) and morphology on different parameters (temperature, reducing agent, presence of a phase transfer agent) is discussed. TEM and micro-IR analyses showed that the polymeric support retained its porosity and stability for several catalytic cycles in all reactions and Pd NPs did not aggregate after reuse. The metal nanoparticle distribution throughout the polymer matrix after several recycles provided precious information about the catalytic mechanism, which was truly heterogeneous in the hydrogenation reactions and of the so-called "release and catch" type in the Suzuki coupling.

  9. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE PAGES

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  10. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Nabraj; Prozorov, Tanya

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  11. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.

    PubMed

    Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P

    2008-04-01

    We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.

  12. Rapid visual detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) based on hydrophobic effect.

    PubMed

    Zheng, Li-Qing; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2014-01-01

    In this work, a rapid, sensitive and low-cost colorimetric method for detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) was developed. The quaternary ammonium surfactants induce the aggregation of Ag NPs through the hydrophobic effect, which is a novel aggregation mechanism of Ag NPs. The addition of cationic surfactant results in color change of Ag NPs solution from yellow to red and finally to colorless, which is due to the broadening of the surface plasmon band. The color change was monitored using a UV-vis spectrophotometer. The LOD of different cationic surfactants was in the range of 0.5-5 µM. More importantly, this detection method was successfully utilized to the disinfectant residual sample. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  13. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    DOE PAGES

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; ...

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms aremore » the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.« less

  14. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  15. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study

    PubMed Central

    Raj, Akanksha; Shah, Prasanna

    2017-01-01

    Silver nanoparticles (AgNPs) containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs. PMID:28542630

  16. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study.

    PubMed

    Raj, Akanksha; Shah, Prasanna; Agrawal, Namita

    2017-01-01

    Silver nanoparticles (AgNPs) containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs.

  17. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    PubMed

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  18. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes.

    PubMed

    Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo

    2015-10-07

    In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.

  19. Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbons derived from ZIF-67: Role of dicyandiamide

    NASA Astrophysics Data System (ADS)

    Ding, Shuaishuai; Zhang, Chunhua; Liu, Yefei; Jiang, Hong; Chen, Rizhi

    2017-12-01

    Highly efficient Pd@CN catalysts for selective hydrogenation of phenol to cyclohexanone in water were successfully fabricated by loading Pd nanoparticles (NPs) in N-doped carbons (CN) derived from ZIF-67 with dicyandiamide (DICY) as the additional nitrogen source. For comparison, polyvinylpyrrolidone (PVP) was also used as the additional nitrogen source during the ZIF-67 synthesis. The results showed that the PVP and DICY had significantly different impacts on the microstructures of as-obtained CN materials and the catalytic performance of Pd@CN catalysts in the phenol hydrogenation. The addition of DICY had the positive promotion effect on the surface area of the obtained CN materials. Moreover, the introduction of DICY could increase the nitrogen content of CN and then prevent the re-oxidation of Pd NPs during air contact, resulting in higher Pd0 ratio. In comparison with PVP, the DICY was more suitable as the additional nitrogen source for the formation of CN and Pd@CN (Pd@CND, Pd@CNP). The Pd@CND exhibited superior catalytic activity as compared to Pd@CNP (phenol conversion 96.9% vs. 67.4%). More importantly, the as-prepared Pd@CND catalyst could be reused for four times without catalytic performance reduction. The work would aid the development of Pd@CN catalysts with superior catalytic properties.

  20. Zwitterionic-surfactant-stabilized palladium nanoparticles as catalysts in the hydrogen transfer reductive amination of benzaldehydes.

    PubMed

    Drinkel, Emma E; Campedelli, Roberta R; Manfredi, Alex M; Fiedler, Haidi D; Nome, Faruk

    2014-03-21

    Palladium nanoparticles (NPs) stabilized by a zwitterionic surfactant are revealed here to be good catalysts for the reductive amination of benzaldehydes using formate salts as hydrogen donors in aqueous isopropanol. In terms of environmental impact and economy, metallic NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. NPs usually display greater activity due to the increased metal surface area and sometimes exhibit enhanced selectivity. Thus, it is possible to use very low loadings of expensive metal. The methodology eliminates the use of a hydrogen gas atmosphere or toxic or expensive reagents. A range of aromatic aldehydes were converted to benzylamines when reacted with primary and secondary amines in the presence of the Pd NPs, which also displayed good activity when supported on alumina. In every case, the Pd NPs could be easily recovered and reused up to three more times, and at the end of the process, the product was metal-free.

  1. Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting.

    PubMed

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-12-01

    Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.

  2. Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-05-01

    Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.

  3. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chandramohan, Subburaman; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2018-02-01

    Selenium is one of the essential elements involved in antioxidative and antiinflammatory effects in human body. By naturally, selenium ions are metabolised and converted into nano selenium. Now a days there is an increasing attention on applications of nanoparticles in therapeutic field. In the present study Bacillus subtilis was used to convert sodium selenite to SeNPs. The synthesized SeNPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X ray spectroscopy (EDX). The presence of SeNPs was confirmed by the formation of red colour. The bands were sharp with broad absorption peaks at 3562 cm-1 and 1678-1 cm in FTIR which showed that the bacterial proteins were responsible for the reduction of sodium selenite to SeNPs. The average size of the SeNPs was 334 nm and were spherical in shape with uniform distribution. The XRD data confirmed that SeNPs were of amorphous in nature. The zeta potential of SeNPs was negative in charge which indicated high stability. In the present study zebrafish embryos were used to study the toxicity of SeNPs and the results showed that the concentration beyond 10 μg ml-1 leads to toxic effects in embryos/hatchlings. The lesser concentration of SeNPs can be useful in various biomedical applications.

  4. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal-organic frameworks.

    PubMed

    Sun, Qi; Chen, Meng; Aguila, Briana; Nguyen, Nicholas; Ma, Shengqian

    2017-09-08

    In this work, the influence of the hydrophilic/hydrophobic nature of metal-organic framework (MOF) materials on the catalytic performance of supported Pd nanoparticles for biofuel upgrade was studied. We show that the introduction of hydrophilic groups on a MOF can greatly enhance the performance of the resultant catalyst. Specifically, Pd nanoparticles supported on MIL-101-SO 3 Na with superhydrophilicity (Pd/MIL-101-SO 3 Na) far outperforms pristine MIL-101 and the benchmark catalyst Pd/C in the hydrodeoxygenation reaction of vanillin, a model component of pyrolysis oil derived from the lignin fraction. This is attributed to a favorable mode of adsorption of the highly water soluble reactants on the more hydrophilic support in the vicinity of the catalytically active Pd nanoparticles, thereby promoting their transformation.

  5. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    PubMed Central

    Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N; Zhong, Chuan-Jian; Malis, Oana

    2014-01-01

    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering. PMID:27877663

  6. Nonlinear absorption enhancement of AuNPs based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.

    2018-07-01

    Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.

  7. Mixed Phytochemicals Mediated Synthesis of Multifunctional Ag-Au-Pd Nanoparticles for Glucose Oxidation and Antimicrobial Applications.

    PubMed

    Rao, K Jagajjanani; Paria, Santanu

    2015-07-01

    The growing awareness toward the environment is increasing commercial demand for nanoparticles by green route syntheses. In this study, alloy-like Ag-Au-Pd trimetallic nanoparticles have been prepared by two plants extracts Aegle marmelos leaf (LE) and Syzygium aromaticum bud extracts (CE). Compositionally different Ag-Au-Pd nanoparticles with an atomic ratio of 5.26:2.16:1.0 (by LE) and 11.36:13.14:1.0 (by LE + CE) of Ag:Au:Pd were easily synthesized within 10 min at ambient conditions by changing the composition of phytochemicals. The average diameters of the nanoparticles by LE and LE + CE are ∼8 and ∼11 nm. The catalytic activity of the trimetallic nanoparticles was studied, and they were found to be efficient catalysts for the glucose oxidation process. The prepared nanoparticles also exhibited efficient antibacterial activity against a model Gram-negative bacteria Escherichia coli. The catalytic and antimicrobial properties of these readymade trimetallic nanoparticles have high possibility to be utilized in diverse fields of applications such as health care to environmental.

  8. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

    PubMed

    Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M

    2017-08-01

    The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  9. Relative evaluation of micronutrients (MN) and its respective nanoparticles (NPs) as additives for the enhanced methane generation.

    PubMed

    Juntupally, Sudharshan; Begum, Sameena; Allu, Sarat Kumar; Nakkasunchi, Shalini; Madugula, Mrudula; Anupoju, Gangagni Rao

    2017-08-01

    In the present work, effect of micro nutrients (MN) (NiCl 2 , Fe 2 O 3 , CoCl 2 , (NH 4 ) 6 Mo 7 O 24 ) was compared with nanoparticles (NPs) of respective MN with cattle manure (CM) slurry in single and bi-phasic anaerobic digestion (AD) at a hydraulic residence time (HRT) of 20days at a mesophilic temperature of 37±2°C for the generation of biogas with enhanced methane (70-80%). Experiments were also carried out with CM slurry as control. During single phase AD, highest biogas production of 0.16L/(gVS reduced) and 0.14L/(gVS reduced) was obtained from Fe 3 O 4 NPs and CoCl 2 MN respectively whereas in bi-phasic AD 0.3L/(gVS reduced) and 0.2L/(gVS reduced) was obtained from NiO NPs and NiCl 2 MN correspondingly. The results elucidated that NiCl 2 (either as MN or NPs) yielded highest biogas in comparison with either control or other MN and NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Facile and Green Synthesis of Palladium Nanoparticles-Graphene-Carbon Nanotube Material with High Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Sun, Tai; Zhang, Zheye; Xiao, Junwu; Chen, Chen; Xiao, Fei; Wang, Shuai; Liu, Yunqi

    2013-08-01

    We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K2PdCl4 solution, the spontaneous redox reaction between the GO-CNT and PdCl42- led to the formation of nanohybrid materials consisting rGO-CNT decorated with 4 nm Pd NPs, which exhibited excellent and stable catalytic activity: the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a catalyst was completed in only 20 s at room temperature, even when the Pd content of the catalyst was 1.12 wt%. This method does not require rigorous conditions or toxic agents and thus is a rapid, efficient, and green approach to the fabrication of highly active catalysts.

  11. Synthesis of Pd 9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, Pd xRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of Pd xRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in anmore » oxygen-saturated 0.1 M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  12. Gold-nanoparticle-based theranostic agents for radiotherapy of malignant solid tumors

    NASA Astrophysics Data System (ADS)

    Moeendarbari, Sina

    Radiation therapy is one of the three major methods of cancer treatment. The fundamental goal of radiotherapy is to deliver high radiation doses to targets while simultaneously minimizing doses to critical structures and healthy normal tissues. The aim of this study is to develop a general, practical, and facile method to prepare nanoscale theranostic agents for more efficacious radiation therapy with less adverse side effects. First, a novel type of gold nanoparticle, hollow Au nanoparticles (HAuNPs) which was synthesized using the unique bubble template synthesis method developed in our lab, are studied in vitro and in vivo to investigate their effect as radiosensitizing agents to enhance the radiation dose during external radiotherapy. The results showed the promising potential of using HAuNPs as radiosensitization agents for efficacious treatment of breast cancer. Second, a novel radiolabeling method is developed to incorporate medical radioisotopes to gold nanoparticles. We incorporate palladium-103 (103Pd), a radioisotope currently in clinical brachytherapy, into a hollow gold nanoparticle. The resulting 103Pd Au nanoparticles in the form of a colloidal suspension can be administered by direct injection into tumors, serving as internal radiation sources (nanoseeds) for radiation therapy. The size of the nanoseed, 150nm in diameter, is large enough to prevent nanoseeds from diffusing into other areas while still small enough to allow them to homogeneously distribute inside the tumor. The therapeutic efficacy of 103Pd Au nanoseeds have been tested when intratumorally injected into a prostate cancer xenograft model. The findings showed that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors. Finally, to make real clinical application more plausible, multi-functional magnetic nanoseeds nanoparticles for imaging-guided radiotherapy are synthesized and characterized.

  13. Lightweight magnesium nanocomposites: electrical conductivity of liquid magnesium doped by CoPd nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, Andriy; Slabon, Adam; Plevachuk, Yuriy; Sklyarchuk, Vasyl; Sokoliuk, Bohdan

    2018-04-01

    The effect of monodisperse bimetallic CoPd NP admixtures on the electrical conductivity of liquid magnesium was studied. Temperature dependence of the electrical conductivity of liquid Mg98(CoPd)2, Mg96(CoPd)4, and Mg92(CoPd)8 alloys was measured in a wide temperature range above the melting point by a four-point method. It was shown that the addition of even small amount of CoPd nanoparticles to liquid Mg has a significant effect on the electrical properties of the melts obtained.

  14. One-step Synthesis of Ordered Pd@TiO2 Nanofibers Array Film as Outstanding NH3 Gas Sensor at Room Temperature.

    PubMed

    Wu, Hongyuan; Huang, Haitao; Zhou, Jiao; Hong, Dahai; Ikram, Muhammad; Rehman, Afrasiab Ur; Li, Li; Shi, Keying

    2017-11-07

    The one dimensional (1D) ordered porous Pd@TiO 2 nanofibers (NFs) array film have been fabricated via a facile one-step synthesis of the electrospinning approach. The Pd@TiO 2 NFs (PTND3) contained Pd (2.0 wt %) and C, N element (16.2 wt %) display high dispersion of Pd nanoparticles (NPs) on TiO 2 NFs. Adding Pd meshed with C, N element to TiO 2 based NFs might contribute to generation of Lewis acid sites and Brønsted acid sites, which have been recently shown to enhance NH 3 adsorption-desorption ability; Pd NPs could increase the quantity of adsorbed O 2 on the surface of TiO 2 based NFs, and accelerated the O 2 molecule-ion conversion rate, enhanced the ability of electron transmission. The response time of PTND3 sensor towards 100 ppm NH 3 is only 3 s at room temperature (RT). Meantime, the response and response time of the PTND3 to the NH 3 is 1 and 14s even at the concentration of 100 ppb. Therefore, the ordered Pd@TiO 2 NFs array NH 3 sensor display great potential for practical applications.

  15. Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in Cyprinus carpio

    NASA Astrophysics Data System (ADS)

    Noureen, Aasma; Jabeen, Farhat; Tabish, Tanveer A.; Yaqub, Sajid; Ali, Muhammad; Shakoor Chaudhry, Abdul

    2018-04-01

    Recently, Cu-based nanoparticles have drawn considerable attention for their various fascinating roles in multiple biological systems. It is recognized that their frequent use can create compatibility challenges for the recipient systems. Nevertheless, it is unclear how various biological interactions affect the compatibility of Cu oxide II (CuO) and Cu oxide nanoparticles (Cu-NPs) for different organisms. Consequently, it has been difficult to perform structured risk assessments for their use in biological systems. Therefore, this study compared the effects of different doses of waterborne Cu-NPs and CuO on the blood and liver of selected groups of Cyprinus (C) carpio. These fish while housed in suitable water tanks were exposed to one of the following treatments for 14 d: control (no added Cu) or 0.5 or 1 or 1.5 mg Cu as Cu-NPs or CuO l-1 of water. We found significant changes in all assessed blood parameters of fish in response to increasing doses from 0 to 1.5 mg of Cu-NPs or CuO. Similarly, increased levels of lipid peroxide and reduced glutathione (GSH) were also observed in the livers of C. carpio in Cu-NPs or CuO treated groups. Enhanced levels of lipid peroxidation and GSH were also recorded in the Cu-NP treated groups compared with the CuO treated groups in a dose dependent manner. The lowest catalase activity was observed in the liver of C. carpio treated with the higer dose of Cu-NPs. Cu-NP or CuO exposure induced significant histological alterations in the liver of C. carpio including focal necrosis, cloudy swelling of hepatocytes, degenerative hepatocytes, vacuolization, pyknotic nuclei, damaged central vein, nuclear hypertrophy, dilated sinusoid, vacuolated degeneration, congestion, and complete degeneration in a dose dependent manner. Substantial alterations in blood and liver specimens were observed in the Cu-NP treated fish when compared with the CuO treated fish. It appeared that the Cu-NPs were more toxic than the CuO as shown by the hemato- and

  16. Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta).

    PubMed

    Nyoka, Ngitheni Winnie-Kate; Kanyile, Sthandiwe Nomthandazo; Bredenhand, Emile; Prinsloo, Godfried Jacob; Voua Otomo, Patricks

    2018-04-01

    The present study investigated the use of biochar for the alleviation of the toxic effects of a nanosilver colloidal dispersion and a chloronicotinyl insecticide. The survival and reproduction of the potworm Enchytraeus albidus were assessed after exposure to imidacloprid and silver nanoparticles (AgNPs). E. albidus was exposed to 0, 25, 50, 100, 200, and 400 mg imidacloprid/kg and 0, 5, 25, 125, and 625 mg Ag/kg for 21 days in 10% biochar amended and non-biochar amended OECD artificial soil. In both exposure substrates, the effects of imidacloprid on survival were significant in the two highest treatments (p < 0.01). No biochar effect was observed as survival was statistically similar in both soils after exposure to imidacloprid. In the case of AgNPs, significant mortality was only observed in the highest AgNP treatments in both the amended and non-amended soils (p < 0.05). Nevertheless, statistically greater survival occurred in the biochar-amended treatment (p < 0.05). Reproduction results showed a more pronounced biochar effect with an EC 50  = 22.27 mg imidacloprid/kg in the non-amended soil and a higher EC 50  = 46.23 mg imidacloprid/kg in the biochar-amended soil. This indicated a 2-fold decrease in imidacloprid toxicity due to biochar amendment. A similar observation was made in the case of AgNPs where a reproduction EC 50  = 166.70 mg Ag/kg soil in the non-amended soil increased to an EC 50  > 625 mg Ag/kg soil (the highest AgNP treatment) in the amended soil. This indicated at least a 3.7-fold decrease in AgNPs toxicity due to biochar amendment. Although more studies may be needed to optimize the easing effects of biochar on the toxicity of these chemicals, the present results show that biochar could be useful for the alleviation of the toxic effects of imidacloprid and silver nanoparticles in the soil.

  17. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jeon, Young Pyo; Woo, Sung Jun; Kim, Tae Whan

    2018-03-01

    Transparent and flexible photodetectors (PDs) based on CH3NH3PbI3 perovskite nanoparticles (NPs) were fabricated by using co-evaporation of methyl ammonium iodide and lead iodide. X-ray diffraction patterns and high-resolution transmission electron microscopy images demonstrated the formation of perovskite NPs. The optical transmittance of the perovskite NPs/glass was above 80% over the entire range of visible wavelengths, indicative of high transparency. The PDs based on CH3NH3PbI3 perovskite NPs were sensitive to a broad range of visible light from 450 to 650 nm. The currents in the PDs under exposure to red, green, and blue light-emitting diodes were enhanced to 5, 10, and 20 times that of the PD in the dark, respectively. The rise and the decay times of the PDs were 50 and 120 μs. The current in the perovskite NP PD on a polyethylene terephthalate substrate was enhanced by approximately 69% when the NP PD was exposed to a blue LED emitting at a wavelength of 459 nm. Despite multiple bending, the transparent and flexible PDs based on methyl ammonium iodide and lead iodide NPs showed reproducibility and high stability in performance.

  18. Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite

    NASA Astrophysics Data System (ADS)

    Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Arumugam, Sangili; Mahalingam, Sundrarajan

    2018-03-01

    Multifunctional biologically active materials have approached for antibiofilm, anticancer and osteoblast adhesion activities with significant biomedical applications, owing to this MWCNT modified with polypyrrole (PPy) matrix with the incorporation of palladium nanoparticles (NPs). The synthesized composite displays a tube-shaped morphology with highly dispersed crystalline Pd NPs, which are established through XRD, SEM, TEM and SAED studies. The pyridinic-N(∼402.7), pyrrolic sbnd N (∼400.8) peak in XPS spectra evidenced the interaction of PPy with Pd and MWCNT. Polymer stretching frequencies in FTIR and Raman spectroscopy proves successful formation of PPy and the Pd-N (1609 cm-1) interaction. In the stability aspect, it is up to 58.73% mass withstood at 800 °C in TGA analysis. The composite exhibits an efficient Anti-biofilm against a set of bacterial stain with planktonic cell growth. In vitro cytotoxicity of Vero and HeLa cell line assess the composites toxicity and anticancer activity up to 100 μg. The outcome of cell adhesions showed that human osteosarcoma cells (HOS) can adhere and to develop on the MWCNT/PPy/Pd composites. Furthermore, the proliferation of cells on MWCNT/PPy/Pd composites was also proved the biocompatibility of the composites against HOS cells. These results suggest that Pd-doped MWCNT/PPy composites are promising materials for biomedical applications.

  19. Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles.

    PubMed

    Sanoj Rejinold, N; Thomas, Reju George; Muthiah, Muthunarayanan; Chennazhi, K P; Manzoor, K; Park, In-Kyu; Jeong, Yong Yeon; Jayakumar, R

    2015-03-01

    The curcumin-encapsulated chitosan-graft-poly(N-vinyl caprolactam) nanoparticles containing gold nanoparticles (Au-CRC-TRC-NPs) were developed by ionic cross-linking method. After "optimum RF exposure" at 40 W for 5 min, Au-CRC-TRC-NPs dissipated heat energy in the range of ∼42°C, the lower critical solution temperature (LCST) of chitosan-graft-poly(N-vinyl caprolactam), causing controlled curcumin release and apoptosis to cancer cells. Further, in vivo PK/PD studies on swiss albino mice revealed that Au-CRC-TRC-NPs could be sustained in circulation for a week with no harm to internal organs. The colon tumor localization studies revealed that Au-CRC-TRC-NPs were retained in tumor for a week. These results throw light on their feasibility as multi-responsive nanomedicine for RF-assisted cancer treatment modalities. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    PubMed

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  1. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    NASA Astrophysics Data System (ADS)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  2. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications.

    PubMed

    Ramkumar, V Sri; Pugazhendhi, A; Prakash, S; Ahila, N K; Vinoj, G; Selvam, S; Kumar, G; Kannapiran, E; Rajendran, R Babu

    2017-08-01

    In the recent years, synthesis of nanomaterials using seaweeds and their diverse applications is escalating research in modern era. Among the noble metals, platinum nanoparticles (PtNPs) are of great importance owing to their catalytic property and less toxicity. The significance of this work is a simple one-step synthesis of PtNPs using aqueous extract of Indian brown seaweed Padina gymnospora and their catalytic activity with a polymer Polyvinylpyrrolidone (PVP) as PVP/PtNPs nanocomposite towards antimicrobial, haemolytic, cytotoxic (Artemia salina) and antioxidant properties. Fourier Transform Infrared (FT-IR) spectrum results showed diversified functional groups (biomoeities such as carbohydrates and proteins) present in the seaweed extract is responsible for the reduction of platinum ions (Pt + ) to PtNPs. The seaweed mediated PtNPs was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) pattern, Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy Dispersive X-ray (EDX) spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM) analysis. The synthesized PtNPs was found to be truncated octahedral in shape with the range of 5-50nm. Crystalline nature of the nanoparticles was evidenced by Selected Area Electron Diffraction (SAED) pattern with bright circular spots corresponding to (111), (200), (220) and (311) Bragg's reflection planes. The size of the PtNPs was further evidenced by Dynamic Light Scattering (DLS) analysis and it is originate to be stable at -22.5mV through Zeta Potential (ZP) analysis. The present study shows that the catalytic behavior of PtNPs as polymer/metal nanocomposite (PVP/PtNPs) preparation for an antibacterial activity against seven disease causing pathogenic bacterial strains with the maximum activity against Escherichia coli (15.6mm) followed by Lactococcus lactis (14.8mm) and Klebsiella pneumoniae (14.4mm). But no haemolytic activity was seen at their effective bactericidal

  3. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin.

    PubMed

    Bagheri, Nafiseh; Khataee, Alireza; Habibi, Biuck; Hassanzadeh, Javad

    2018-03-01

    Here, Ag nanoparticle/flake-like Zn-based MOF nanocomposite (AgNPs@ZnMOF) with great peroxidase-like activity was applied as an efficient support for molecularly imprinted polymer (MIP) and successfully used for selective determination of patulin. AgNPs@ZnMOF was simply synthesized by creating Ag nanoparticles (Ag NPs) inside the nano-pores of flake-like (Zn)MOF. The high surface area of MOF remarkably improved the catalytic activity of Ag NPs which was assessed by fluorometric, colorimetric and electrochemical techniques. Furthermore, it was observed that patulin could strangely reduce the catalytic activity of AgNPs@ZnMOF, probably due to its electron capturing features. This outcome was the motivation to design an assay for patulin detection. In order to make a selective interaction with patulin molecules, MIP layer was created on the surface of AgNPs@ZnMOF by co-polymerization reaction of 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) monomers wherein patulin was applied as template agent. Combination between the selective identifying feature of MIP and outstanding peroxidase-like activity of novel AgNPs@ZnMOF nanocomposite as well as the sensitive fluorescence detection system was led to the design of a reliable probe for patulin. The prepared MIP-capped AgNPs@ZnMOF catalyzed the H 2 O 2 -terephthalic acid reaction which produced a high florescent product. In the presence of patulin, the fluorescence intensity was decreased proportional to its concentration in the range of 0.1-10µmolL -1 with a detection limit of 0.06µmolL -1 . The proposed method was able to selectively measure patulin in a complex media without significant interfering effects from analogue compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Study of energy transfer between riboflavin (vitamin B2) and AgNPs

    NASA Astrophysics Data System (ADS)

    Mokashi, Vidya V.; Walekar, Laxman S.; Anbhule, Prashant V.; Lee, Sang Hak; Patil, Shivajirao R.; Kolekar, Govind B.

    2014-03-01

    Here, we report the studies on the interaction and formation of nanobiocomplex between silver nanoparticle (AgNPs) and vitamin B2, i.e., riboflavin (RF). The binding study of AgNP to RF was studied by fluorescence, UV-Vis, and TEM techniques. AgNPs were prepared by reducing AgNO3 with trisodium citrate. Prepared nanoparticles size obtained at 20 nm having surface Plasmon resonance band at 426 nm. The absorbance band of RF at 264, 374, and 444 nm changes significantly in the presence of AgNPs suggests that there is change in the chemical environment surrounding AgNPs. A fluorescence spectral change for a solution of RF upon the addition of AgNPs and rapid quenching is suggestive of a rapid adsorption of RF on AgNPs.

  5. Anthelmintic Effect of Biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a Neglected Parasite of Indian Water Buffalo

    PubMed Central

    Khan, Yasir Akhtar; Singh, Braj Raj; Ullah, Rizwan; Shoeb, Mohd; Naqvi, Alim H.; Abidi, Syed M. A.

    2015-01-01

    Helminth parasites of veterinary importance cause huge revenue losses to agrarian economy worldwide. With the emergence of drug resistance against the current formulations, there is a need to focus on the alternative approaches in order to control this menace. In the present study, biocompatible zinc oxide nanoparticles (ZnO NPs) were used to see their in vitro effect on the biliary amphistomes, Gigantocotyle explanatum, infecting Bubalus bubalis because these nanoparticles are involved in generation of free radicals that induce oxidative stress, resulting in disruption of cellular machinery. The ZnO NPs were synthesized by using egg albumin as a biotemplate and subsequently characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction and Spectrophotometrical, which showed that ZnO NPs were highly purified wurtzite type polycrystals, with a mean size of 16.7 nm. When the parasites were treated with lower concentrations (0.004% and 0.008%) of the ZnO NPs, the worms mounted a protective response by stimulating the antioxidant system but the treatment of G. explanatum with 0.012% ZnO NPs produced significant inhibition of the antioxidant enzymes like superoxide dismutase (SOD) (p< 0.05) and glutathione S- transferase (GST) (p<0.01), while the level of malondialdehyde (MDA), a lipid peroxidation marker, was significantly (p< 0.01) elevated. SEM and histopathology revealed pronounced tegumental damage showing the disruption of surface papillae and the annulations, particularly in the posterior region near acetabulum. The under expression of a number of polypeptides, loss of worm motility in a time dependent manner, further reflect strong anthelmintic potential of ZnO NPs. It can be concluded that the anthelmintic effect might be due to the production of reactive oxygen species that target a variety of macromolecules such as nucleic acid, protein and lipids which are involved in different cellular processes. PMID:26177503

  6. Anthelmintic Effect of Biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a Neglected Parasite of Indian Water Buffalo.

    PubMed

    Khan, Yasir Akhtar; Singh, Braj Raj; Ullah, Rizwan; Shoeb, Mohd; Naqvi, Alim H; Abidi, Syed M A

    2015-01-01

    Helminth parasites of veterinary importance cause huge revenue losses to agrarian economy worldwide. With the emergence of drug resistance against the current formulations, there is a need to focus on the alternative approaches in order to control this menace. In the present study, biocompatible zinc oxide nanoparticles (ZnO NPs) were used to see their in vitro effect on the biliary amphistomes, Gigantocotyle explanatum, infecting Bubalus bubalis because these nanoparticles are involved in generation of free radicals that induce oxidative stress, resulting in disruption of cellular machinery. The ZnO NPs were synthesized by using egg albumin as a biotemplate and subsequently characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction and Spectrophotometrical, which showed that ZnO NPs were highly purified wurtzite type polycrystals, with a mean size of 16.7 nm. When the parasites were treated with lower concentrations (0.004% and 0.008%) of the ZnO NPs, the worms mounted a protective response by stimulating the antioxidant system but the treatment of G. explanatum with 0.012% ZnO NPs produced significant inhibition of the antioxidant enzymes like superoxide dismutase (SOD) (p< 0.05) and glutathione S- transferase (GST) (p<0.01), while the level of malondialdehyde (MDA), a lipid peroxidation marker, was significantly (p< 0.01) elevated. SEM and histopathology revealed pronounced tegumental damage showing the disruption of surface papillae and the annulations, particularly in the posterior region near acetabulum. The under expression of a number of polypeptides, loss of worm motility in a time dependent manner, further reflect strong anthelmintic potential of ZnO NPs. It can be concluded that the anthelmintic effect might be due to the production of reactive oxygen species that target a variety of macromolecules such as nucleic acid, protein and lipids which are involved in different cellular processes.

  7. Gas-liquid interface-mediated room-temperature synthesis of "clean" PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation.

    PubMed

    Wang, Rongfang; Ma, Yuanyuan; Wang, Hui; Key, Julian; Ji, Shan

    2014-11-04

    PdNiP alloy nanoparticle networks (PdNiP NN) were prepared by simultaneous reduction of PdCl2, NiCl2 and NaH2PO2 with NaBH4via a gas-liquid interface reaction at room temperature using N2 bubbles. PdNiP NN had markedly higher activity and durability for ethanol oxidation than PdNi nanoparticle networks and PdNiP grain aggregates.

  8. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake.

    PubMed

    Ji, Ye; Zhou, Yun; Ma, Chuanxin; Feng, Yan; Hao, Yi; Rui, Yukui; Wu, Wenhao; Gui, Xin; Le, Van Nhan; Han, Yaning; Wang, Yingcai; Xing, Baoshan; Liu, Liming; Cao, Weidong

    2017-01-01

    Previous studies have reported that nanoparticles (NPs) and heavy metals are toxic to the environment. However, the jointed toxicity is not yet well understood. This study was aimed to investigate the combined toxicity of TiO 2 NPs and the heavy metal cadmium (Cd) to plants. Rice (Oryzasativa L.) was selected as the target plant. The rice seedlings were randomly separated into 12 groups and treated with CdCl 2 (0, 10 and 20 mg/L) and TiO 2 NPs (0, 10, 100 and 1000 mg/L). The plant height, biomass and root length indicated significant toxicity of Cd to the growth, but TiO 2 NPs exhibited the potential ability to alleviate the Cd toxicity. Transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) confirmed the existence of TiO 2 NPs in plants. Elemental analysis of Ti and Cd suggested that the presences of Cd significantly decreased the Ti accumulation in the rice roots in the co-exposure treatments. Interestingly, TiO 2 NPs could lower the Cd uptake and distribution in rice roots and leaves. The results of antioxidant enzyme activity, lipid peroxide as well as phytohormones varied in the different treatments. Comparing with the Cd alone treatment, the net photosynthetic rate and chlorophyll content were significantly increased in the co-exposure treatments, suggesting that TiO 2 NPs could tremendously reduce the Cd toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System.

    PubMed

    Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2015-01-15

    We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.

  10. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum.

    PubMed

    Venugopal, K; Rather, H A; Rajagopal, K; Shanthi, M P; Sheriff, K; Illiyas, M; Rather, R A; Manikandan, E; Uvarajan, S; Bhaskar, M; Maaza, M

    2017-02-01

    In the present report, silver nanoparticles were synthesized using Piper nigrum extract for in vitro cytotoxicity efficacy against MCF-7 and HEP-2 cells. The silver nanoparticles (AgNPs) were formed within 20min and after preliminarily confirmation by UV-Visible spectroscopy (strong peak observed at ~441nm), they were characterized by using FT-IR and HR-TEM. The TEM images show spherical shape of biosynthesized AgNPs with particle size in the range 5-40nm while as compositional analysis were observed by EDAX. MTT assays were carried out for cytotoxicity of various concentrations of biosynthesized silver nanoparticles and Piper nigrum extract ranging from 10 to 100μg. The biosynthesized silver nanoparticles showed a significant anticancer activity against both MCF-7 and Hep-2 cells compared to Piper nigrum extract which was dose dependent. Our study thus revealed an excellent application of greenly synthesized silver nanoparticles using Piper nigrum. The study further suggested the potential therapeutic use of these nanoparticles in cancer study. Copyright © 2016. Published by Elsevier B.V.

  11. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles

    NASA Astrophysics Data System (ADS)

    Shabbir, Mohd; Mohammad, Faqeer

    2018-02-01

    Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.

  12. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    PubMed

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  13. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  14. Selective hydrogenation of 2-methyl-3-butyn-2-ol catalyzed by embedded polymer-protected PdZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Okhlopkova, Lyudmila B.; Matus, Ekaterina V.; Prosvirin, Igor P.; Kerzhentsev, Michail A.; Ismagilov, Zinfer R.

    2015-12-01

    PdZn/TiO2 catalysts were synthesized by sol-gel method using a template Pluronic F127. PdZn nanoparticles with the size ranging from 1.7 to 2 nm were prepared by ethylene glycol reduction of ZnCl2 and Pd(CH3COO)2 in the presence of stabilizer and introduced into the matrix by addition into TiO2 sol, followed by different activation procedures. The structure, particles size, and chemical composition of nanoparticles and catalysts were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, and energy dispersive spectroscopy. The prepared catalysts have been tested in the selective hydrogenation of 2-methyl-3-butyn-2-ol, and the results have been compared with catalysts prepared by conventional impregnation. The results indicate that bimetallic PdZn nanoparticles-based catalysts show higher selectivity than corresponding monometallic Pd/TiO2. Embedded on titania, bimetallic nanoparticles stabilized with polyvinylpyrrolidone exhibit good activity (1.1-1.8 mol MBY/mol Pd/s-1) and high selectivity to 2-methyl-3-buten-2-ol (81.5-88.9 % at 95 % conversion). The influence of the nature of the stabilizer, the stabilizer/metal molar ratio, and activation conditions on the catalytic behavior of the samples was analyzed. It is shown that the particle size does not significantly affect the catalytic properties in the range of 4.4-6.5 nm. The nature and amount of stabilizer seem to be crucial to prepare efficient catalyst.

  15. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    The carbon nanotube (CNT) has unique electrical and structural properties due to it's sp2 π-conjugative structure that leads to the higher electrocatalysis. The π-conjugative structure, that allows the CNT interact with various compounds and metal nanoparticles (NPs) through π-π electronic interaction. However, the damage of π-conjugative sidewall of CNT that can be hinder the electrocatalytic activity has found. For this study, the CNT, as base material, has been prepared through a conventional acid treatment method up to 15 h; the higher degree of sidewall damage has been observed in last 5 h during treatment period. The short and long term acid treated (denoted as CNT and CNT-COOH, respectively) CNTs have been subsequently fabricated with palladium NPs (denoted as CNT/Pd and CNT-Pd, respectively) and employed as ethanol oxidation reaction (EOR) catalysts. The CNT-Pd displays a poor electrocatalytic performance towards EOR than that of CNT/Pd due to the damage of π-conjugative sidewall. The kinetic parameters including poisoning tolerance have also been hampered by the surface damage. The CNT/Pd (∼3.3 folds) and CNT-Pd (∼1.5 folds) are express higher electrocatalytic activity and poisoning tolerance than that of Pd/C while Pd mass loading remains in the same amount.

  16. Developing multifunctional nanoparticles in a 1-D coordination polymer of Cd(II)

    NASA Astrophysics Data System (ADS)

    Agarwal, Rashmi A.; Gupta, Neeraj K.

    2017-11-01

    A simple synthesis for the integration of different nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed (Cu/Fe), has been demonstrated within the nanopores of a non-activated one dimensional porous coordination polymer (PCP) of Cd(II) due to its high flexible structure. There are two different mechanisms (acid formation (HCl/HNO3) and redox activity of the framework) elucidated by electron paramagnetic resonance (EPR). Presence of -NO2 groups of the ligand act as anchoring sites for metal ions of metal precursors leading to NPs growth within the PCP explained by FTIR. High resolution transmission electron microscopy (HRTEM) images provided insight of the chemical and physical characteristics of the NPs within the framework. Ag/AgO NPs exhibit excellent antibacterial properties at extremely low concentrations. The polymer shows potential for sequestration and reduction of hexavalent Cr (highly toxic) to elemental, trivalent and tetravalent Cr (non toxic). This framework is also an excellent template for fabrication and dry storage of nanoparticles synthesized by mixed metal precursors. Ferromagnetic properties have been shown by Ag and Au NPs integrated frameworks while Cu/Fe@Cd-PCP behaves as a paramagnet material at room temperature.

  17. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andarini, Mellissa; Lazim, Azwan

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10{sup −4} g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 – 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application inmore » various areas, especially the use of hydrogel system as a responsive template.« less

  18. Aggregation-based colorimetric sensor for determination of prothioconazole fungicide using colloidal silver nanoparticles (AgNPs)

    NASA Astrophysics Data System (ADS)

    Ivrigh, Zahra Jafar-Nezhad; Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M. Reza

    2017-12-01

    There is a growing interest in developing high-performance sensors monitoring fungicides, due to their broadly usage and their adverse effects on humans and wildlife. In the present study, a colorimetric probe has been proposed for detection of prothioconazole based on aggregation of unmodified silver nanoparticles (AgNPs). Under optimized condition, linear relationships between the concentration of prothioconazole and the absorbance ratio of A500/A395 were found over the range of 0.01 μg·mL- 1 to 0.4 μg·mL- 1 with quantification limit as low as 1.7 ng·mL- 1. Furthermore, AgNPs color change from yellow to pink-orange in presence of prothioconazole, indicates highly sensitive naked-eye colorimetric assay for quantifying prothioconazole in real applications. The proposed approach was successfully used for the determination of prothioconazole in wheat flour and paddy water sample.

  19. Palladium nanoparticles functionalized graphene nanosheets for Li-O2 batteries: enhanced performance by tailoring the morphology of discharge product

    NASA Astrophysics Data System (ADS)

    Wang, Liangjun; Chen, Wei; SSL Team

    Lithium oxygen (Li-O2) batteries represent a promising candidate for the next generation electric vehicle.1-3 Despite the attractive prospect, some issues including large overpotentials, poor recyclability and unstable electrolyte4-6 limit the wide applications of Li-O2 batteries. Due to the insoluble and non-conductive nature of discharge product Li2O2, it has been widely accepted that the performance of oxygen evolution reaction (OER) process is not only determined by the catalyst itself but also close linked to morphology and electronic conductivity of Li2O2 formed during oxygen reduction reaction (ORR) process. Herein, we report a strategy to improve the battery performance by tailoring the morphology of discharge product. By using graphene nanosheets (GNSs) functionalized with Pd nanoparticles (NPs) as cathode catalyst, the growth and morphology of the discharge products of Li2O2 can be effectively tailored, thereby leading to the improved Li-O2 battery performance. Surprisingly, on bare GNSs cathode, the discharge product showed widely observed large-sized toroidal morphology. While for Pd NPs functionalized GNSs, the discharge product was homogenously distributed on the cathode in the form of small nanoparticles with an average diameter of 25 nm. As a result, Pd NPs functionalized GNSs exhibited a high discharge capacity of 7690 mAh g-1. Meanwhile, the battery with tailored morphology exhibits lower charge overpotential.

  20. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the

  1. Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol-gel method.

    PubMed

    Hernández-Gordillo, Agileo; Arroyo, Missael; Zanella, R; Rodríguez-González, V

    2014-03-15

    The photocatalytic properties of functionalized TiO2 with silver nanoparticles (AgNPs) for the conversion of 4-nitrophenol to 4-aminophenol in the presence of hydrazine were investigated. The TiO2 semiconductor synthesized by the sol-gel method was functionalized with AgNPs at different loadings, and their structural and optical properties were characterized by several techniques. The functionalized TiO2 with 1.5wt% AgNPs presented the highest photocatalytic activity for the conversion of 4-nitrophenol with appropriate hydrazine concentrations (0.5M). The photoefficiency enhancement under UV light irradiation was attributed to the electron transfer from the TiO2 semiconductor surface to the adsorbed acceptor reactant (4-nitrophenol) through the deposited AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd-TiO2

    NASA Astrophysics Data System (ADS)

    Długokęcka, Marta; Łuczak, Justyna; Polkowska, Żaneta; Zaleska-Medynska, Adriana

    2017-05-01

    A series of microemulsion (ME) system, constituted by different water to surfactant molar ratios (Wo) and oil to surfactant mass ratios (S), have been applied for Pd-TiO2 preparation. The effect of ME properties on the morphology of Pd nanoparticles formed at TiO2 surface and an effect of Pd size and distribution on the surface and photocatalytic properties of Pd-TiO2 were investigated. Microemulsion systems were characterized by means of viscosity, density, dynamic light scattering as well as surface tension measurements to find a correlation between the conditions of Pd nanoparticles formation, their morphology and photocatalyst features. The photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), UV-vis diffuse-reflectance spectroscopy (DRS), BET surface area and elemental analysis. The photocatalytic properties of Pd-modified TiO2 particles were studied in a model reaction of phenol photodegradation under Vis irradiation, as well as active species involved in the photocatalytic reaction were determined. Microemulsion composition was found to be a crucial parameter in determining the features of the TiO2-based photocatalysts covered by metallic nanoparticles. The highest photocatalytic activity under Vis radiation was observed for the Pd-TiO2 sample (average diameter 2.4 nm) obtained using 0.1 mol% Pd in the ME system containing 1.5 wt% of water and 82.8 wt% of cyclohexane with average droplet size of 2.83 ± 0.18 nm. In this regard, synthesis of such metal-semiconductor composites through the microemulsion route should always be preceded by investigation of ME properties in order to the eliminate the inhibitory effect of ME internal structure.

  3. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  4. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels.

    PubMed

    Ji, Lei; Guo, Zhankui; Yan, Tao; Ma, Hongmin; Du, Bin; Li, Yueyun; Wei, Qin

    2015-06-15

    An ultrasensitive sandwich-type electrochemical immunosensor for quantitative detection of alpha fetoprotein (AFP) was proposed based on a novel signal amplification strategy in this work. Carbon decorated Fe3O4 magnetic microspheres (Fe3O4@C) with large specific surface area and good adsorption property were used as labels to anchor palladium nanoparticles (Pd NPs) and the secondary antibodies (Ab2). Pd NPs were loaded on Fe3O4@C to obtain Fe3O4@C@Pd with core-shell structure by electrostatic attraction, which were further used to immobilize Ab2 due to the bonding of Pd-NH2. A signal amplification strategy was the noble metal nanoparticles, such as Pd NPs, exhibiting high electrocatalytic activities toward hydrogen peroxide (H2O2) reduction. This signal amplification was novel not only because of the great capacity, but also the ease of magnetic separation from the sample solution based on their magnetic property. Moreover, carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) were used for the immobilization of primary antibodies (Ab1). Therefore, high sensitivity could be realized by the designed immunosensor based on this novel signal amplification strategy. Under optimal conditions, the immunosensor exhibited a wide linear range of 0.5 pg/mL to 10 ng/mL toward AFP with a detection limit of 0.16 pg/mL (S/N=3). Moreover, it revealed good selectivity, acceptable reproducibility and stability, indicating a potential application in clinical monitoring of tumor biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  6. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    NASA Astrophysics Data System (ADS)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  7. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    NASA Astrophysics Data System (ADS)

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  9. Infrared photodetectors based on reduced graphene oxide nanoparticles and graphene oxide

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Tajdidzadeh, M.; Thambiratnam, K.; Yasin, M.

    2018-06-01

    Two photodiode (PD) designs incorporating graphene oxide (GO) and reduced graphene oxide (rGO) are proposed and fabricated. Both PDs have 50 mm thick silver electrodes deposited on the active area, and another electrode consisting of either GO or rGO nanoparticles (NPs). The GO and rGO NPs are deposited onto the p-type silicon substrate by the drop casting method. Both fabricated PDs show good sensitivity and quick responses under 974 nm laser illumination at 150 mW. The photoresponsivity values and external quantum efficiency of both photodetectors are measured to be approximately 800 µAw‑1 and 0.12% for the GO based PD and 1.6 m Aw‑1 and 0.20% for the rGO based PD. Both PDs also have response and recovery times of 114 µs and 276 µs as well as 11 µs and 678 µs for the GO and rGO based PDs respectively. The proposed PDs would have significant applications in many optoelectronic devices as well as nanoelectronics.

  10. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.

    PubMed

    Tang, Qiu-sha; Zhang, Dong-sheng; Cong, Xiao-ming; Wan, Mei-ling; Jin, Li-qiang

    2008-06-01

    One of the main advantages of gene therapy over traditional therapy is the potential to target the expression of therapeutic genes in desired cells or tissues. To achieve targeted gene expression, we developed a novel heat-inducible gene expression system in which thermal energy generated by Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) under an alternating magnetic field (AMF) was used to activate gene expression. MZF-NPs, obtained by co-precipitation method, were firstly surface modified with cation poly(ethylenimine) (PEI). Then thermodynamic test of various doses of MZF-NPs was preformed in vivo and in vitro. PEI-MZF-NPs showed good DNA binding ability and high transfection efficiency. In AMF, they could rise to a steady temperature. To analyze the heat-induced gene expression under an AMF, we combined P1730OR vector transfection with hyperthermia produced by irradiation of MZF-NPs. By using LacZ gene as a reporter gene and Hsp70 as a promoter, it was demonstrated that expression of a heterogeneous gene could be elevated to 10 to 500-fold over background by moderate hyperthermia (added 12.24 or 25.81 mg MZF-NPs to growth medium) in tissue cultured cells. When injected with 2.6 or 4.6 mg MZF-NPs, the temperature of tumor-bearing nude mice could rise to 39.5 or 42.8 degrees C, respectively, and the beta-gal concentration could increase up to 3.8 or 8.1 mU/mg proteins accordingly 1 day after hyperthermia treatment. Our results therefore supported hyperthermia produced by irradiation of MZF-NPs under an AMF as a feasible approach for targeted heat-induced gene expression. This novel system made use of the relative low Curie point of MZF-NPs to control the in vivo hyperthermia temperature and therefore acquired safe and effective heat-inducible transgene expression.

  11. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction

    NASA Astrophysics Data System (ADS)

    Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C.; Pretzer, Lori A.; Heck, Kimberly N.; Wong, Michael S.

    2013-12-01

    Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd

  12. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts.

    PubMed

    Pacardo, Dennis B; Slocik, Joseph M; Kirk, Kyle C; Naik, Rajesh R; Knecht, Marc R

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions. © The Royal Society of Chemistry 2011

  13. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis B.; Slocik, Joseph M.; Kirk, Kyle C.; Naik, Rajesh R.; Knecht, Marc R.

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions.

  14. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    PubMed

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  15. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  16. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  17. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  18. PdCo alloy nanoparticle-embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite.

    PubMed

    Liu, Dong; Guo, Qiaohui; Zhang, Xueping; Hou, Haoqing; You, Tianyan

    2015-07-15

    PdCo alloy nanoparticle-embedded carbon nanofiber (PdCo/CNF) prepared by electrospinning and thermal treatment was employed as a high-performance platform for the determination of hydrogen peroxide and nitrite. The as-obtained PdCo/CNF were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behaviors of the resultant biosensor. The proposed PdCo/CNF-based biosensor showed excellent analytical performances toward hydrogen peroxide (detection limit: 0.1 μM; linear range: 0.2 μM-23.5 mM) and nitrite (detection limit: 0.2 μM; linear range: 0.4-30 μM and 30-400 μM). The superior analytical properties could be attributed to the synergic effect and firmly embedment of well-dispersed PdCo alloy nanoparticles. These attractive electrochemical properties make this robust electrode material promising for the development of effective electrochemical sensors. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Palladium nanoparticles dispersed on the hollow aluminosilicate microsphere@hierarchical γ-AlOOH as an excellent catalyst for the hydrogenation of nitroarenes under ambient conditions

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Cui, Xueliang; Dong, Chunxu; Dong, Zhengping

    2016-12-01

    In this study, a novel catalyst has been prepared through supporting Pd nanoparticles (NPs) on the surface of boehmite (γ-AlOOH) based hollow aluminosilicate microspheres (HAM@γ-AlOOH). The prepared Pd/HAM@γ-AlOOH catalyst has high catalytic activity for the hydrogenation of nitroarenes to their corresponding amino derivatives with high yields at ambient conditions. The high catalytic efficiency is attributed to the large pore size of the flower-like hierarchical flakes structure of HAM@γ-AlOOH, that gives Pd NPs on the support surface easy accessibility. Moreover, the Pd/HAM@γ-AlOOH catalyst can also be easily recycled at least five times without obvious decrease of catalytic activity. This work may provide a useful method for the fabrication of supported noble metal NP-based catalysts on the surface of mesoporous hierarchical structure materials with easy accessibility and superior activity.

  20. High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  1. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication

    NASA Astrophysics Data System (ADS)

    Zhuang, Zechao; Wang, Feifeng; Naidu, Ravendra; Chen, Zuliang

    2015-09-01

    Bimetallic nanomaterials with enhanced activity and stability have been extensively studied as emerging catalysts for hydrogen evolution reaction (HER). Expensive and environmentally unfriendly chemical synthesis routes inhibit their large-scale applications. In this work, we developed a facile and green synthesis of Pd-Au alloy nanoparticles (NPs) dispersed on carbon fiber paper (CFP) by plant-mediated bioreduction coupled with self-assembly. Engineering the morphology and composition of bimetallic catalysts synthesized by plant extracts on complex substrate is achieved. The resulting NPs are uniform in shape and have a spherical morphology with an average diameter of ∼180 nm, in which the molar ratio of Au/Pd is near 75:25 and the catalysts loading is about 0.5 mg cm-2. The Pd-Au/CFP hybrid electrode exhibits an excellent HER performance with a Tafel slope of 47 mV dec-1 and an exchange current density of 0.256 mA cm-2. Electrochemical stability tests through long-term potential cycles and potentiostatic electrolysis further confirm the high durability of the electrode. This development offers an efficient and eco-friendly catalysts synthesis route for constructing water-splitting cells and other electrocatalytic devices.

  2. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    PubMed

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  3. Mesoporous Pd/Co3O4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Ren, Yanbiao; Zhang, Shichao; Li, Honglei; Wei, Xin; Xing, Yanlan

    2017-10-01

    In this work, two shapes of mesoporous Co3O4 nanoarrays (i.e., nanosheets, nanowires) were synthesized through a facile hydrothermal method on nickel foam (Ni foam) substrates and tested as the Li-O2 cathodes. The comparison of these two shapes of Co3O4 nanoarrays revealed that the single crystalline feature of Co3O4 nanosheets with a predominant high reactivity {112} exposed crystal plane, favorable nanostructure and high specific area displayed better catalytic performance. Furthermore, a new binder/carbon-free Pd nanoparticles (PdNPs) decorated Co3O4 nanosheets cathode was also fabricated through the chemical reduction method. The presence of PdNPs effectively promotes the uniform growth of a fluffy, porous discharge product Li2O2 layer on the surface of Pd/Co3O4 electrode. The Pd/Co3O4 electrode catalyzed Li-O2 battery exhibited a higher specific capacity (1551 mAh g-1 at 50 mA g-1), lower over-potential and longer cycle life over 72 cycles at 100 mA g-1 with the capacity limited at 300 mAh g-1. The superior catalytic performance for Li-O2 batteries is ascribed to the unique design in both component and architecture of Pd/Co3O4 electrode.

  4. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  5. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...

    2017-03-10

    Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C 3 species to C 2 species. Furthermore, a combination of the two activemore » sites (Pd and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd 1Ag 1/CNT, and Pd 1Ag 3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg 3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product

  6. Enhanced electrocatalytic activity and stability of Pd 3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE PAGES

    Liu, Sufen; Han, Lili; Zhu, Jing; ...

    2015-09-14

    In this study, carbon supported Pd 3V bimetallic alloy nanoparticles (Pd 3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H 2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd 3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd 3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd 3V/C nanoparticles. The catalytic activity and stability of the Pd 3V@Pt/C and Pt-Pd 3V/C catalystsmore » for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd 3V@Pt/C and Pt-Pd 3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd 3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  7. Bacopa monnieri Phytochemicals Mediated Synthesis of Platinum Nanoparticles and Its Neurorescue Effect on 1-Methyl 4-Phenyl 1,2,3,6 Tetrahydropyridine-Induced Experimental Parkinsonism in Zebrafish

    PubMed Central

    Nellore, Jayshree; Pauline, Cynthia; Amarnath, Kanchana

    2013-01-01

    Current discovery demonstrates the rapid formation of platinum nanoparticles using leaf extract of a neurobeneficial plant, Bacopa monnieri (BmE). The nanoparticles (BmE-PtNPs) were stabilized and then coated with varied phytochemicals present within the leaf extract. These nanoparticles demonstrated the same activity of Complex I, as that of oxidizing NADH to NAD+ using a spectrophotometric method. This suggests that BmE-PtNPs are a potential medicinal substance for oxidative stress mediated disease with suppressed mitochondrial complex I, namely, Parkinson's disease (PD). Hence, the neuroprotective potentials of the phytochemical coated nanoparticle were explored in 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine- (MPTP-)induced experimental Parkinsonism in zebrafish model. BmE-PtNPs pretreatment significantly reversed toxic effects of MPTP by increasing the levels of dopamine, its metabolites, GSH and activities of GPx, catalase, SOD and complex I, and reducing levels of MDA along with enhanced locomotor activity. Taken together, these findings suggest that BmE-PtNPs have protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via their dual functions as mitochondrial complex I and antioxidant activity. PMID:26317003

  8. Hierarchical self-assembly of nanoparticles in polymer matrix and the nature of the interparticle interaction

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chiao; Chen, Chun-Yu; Chen, Hsin-Lung; Hashimoto, Takeji; Chen, Show-An; Li, Yen-Cheng

    2015-06-01

    Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e., the hard-sphere interaction) and (ii) hard-core repulsion together with an attractive potential well (i.e., the sticky hard-sphere interaction). The corresponding theoretical scattering functions, which were used for analysing the experimental SAXS profiles, were obtained within the context of the Percus-Yevick closure and the Ornstein-Zernike equation in the fundamental liquid theory. The analyses revealed that existence of the attractive potential well is indispensable to account for the experimental SAXS profiles. Moreover, the morphology of the hybrids was found to be characterized by a hierarchical structure with three levels, where about six primary NPs with the diameter of ca. 1.8 nm (level one) formed local clusters (level two), and these clusters aggregated to build up a large-scale mass-fractal structure (level three) with the fractal dimension of ca. 2.3. The scattering function developed here is of general use for quantitatively characterizing the morphological structures of polymer/NP hybrids and, in particular, for exploring the interaction potential of the NPs on the basis of the fundamental liquid theory.

  9. Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

    PubMed Central

    Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.

    2013-01-01

    This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330

  10. Exposure to Palladium Nanoparticles Affects Serum Levels of Cytokines in Female Wistar Rats

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Corbi, Maddalena; Leso, Veruscka; Marinaccio, Alessandro; Leopold, Kerstin; Schindl, Roland; Sgambato, Alessandro

    2015-01-01

    Background Information currently available on the impact of palladium on the immune system mainly derives from studies assessing the biological effects of palladium salts. However, in the last years, there has been a notable increase in occupational and environmental levels of fine and ultrafine palladium particles released from automobile catalytic converters, which may play a role in palladium sensitization. In this context, the evaluation of the possible effects exerted by palladium nanoparticles (Pd-NPs) on the immune system is essential to comprehensively assess palladium immunotoxic potential. Aim Therefore, the aim of this study was to investigate the effects of Pd-NPs on the immune system of female Wistar rats exposed to this xenobiotic for 14 days, by assessing possible quantitative changes in a number of cytokines: IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-γ and TNF-α. Methods Twenty rats were randomly divided into four exposure groups and one of control. Animals were given a single tail vein injection of vehicle (control group) and different concentrations of Pd-NPs (0.012, 0.12, 1.2 and 12 μg/kg). A multiplex biometric enzyme linked immunosorbent assay was used to evaluate cytokine serum levels. Results The mean serum concentrations of all cytokines decreased after the administration of 0.012 μg/kg of Pd-NPs, whereas exceeded the control levels at higher exposure doses. The highest concentration of Pd-NPs (12 μg/kg) induced a significant increase of IL-1α, IL-4, IL-6, IL-10, IL-12, GM-CSF and INF-γ compared to controls. Discussion and Conclusions These results demonstrated that Pd-NP exposure can affect the immune response of rats inducing a stimulatory action that becomes significant at the highest administered dose. Our findings did not show an imbalance between cytokines produced by CD4+ T helper (Th) cells 1 and 2, thus suggesting a generalized stimulation of the immune system with a simultaneous activation and polarization of the

  11. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.

    PubMed

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2012-05-30

    Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential (<-6 mV) with average diameter> 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. RES-loaded pegylated CS NPs: for efficient ocular delivery.

    PubMed

    Pandian, Saravanakumar; Jeevanesan, Vinoth; Ponnusamy, Chandrasekar; Natesan, Subramanian

    2017-02-01

    The objective of this study is to develop resveratrol (RES) loaded polyethylene glycols (PEGs) modified chitosan (CS) nanoparticles (NPs) by ionic gelation method for the treatment of glaucoma. While increasing the concentration of PEG, the particle size and polydispersity index of the formulations increased. Entrapment efficiency and RES loading (RL) of NPs decreased while increasing PEG concentration. The in vitro release of NPs showed an initial burst release of RES (45%) followed by controlled release. Osmolality of formulations revealed that the prepared NPs were iso-osmolar with the tear. Ocular tolerance of the NPs was evaluated using hen's egg test on the chorioallantoic membrane and it showed that the NPs were non-irritant. RES-loaded PEG-modified CS NPs shows an improved corneal permeation compared with RES dispersion. Fluorescein isothiocyanate loaded CS NPs accumulated on the surface of the cornea but the PEG-modified CS NPs crossed the cornea and reached retinal choroid. RES-loaded PEG-modified CS NPs reduced the intra-ocular pressure (IOP) by 4.3 ± 0.5 mmHg up to 8 h in normotensive rabbits. These results indicate that the developed NPs have efficient delivery of RES to the ocular tissues and reduce the IOP for the treatment of glaucoma.

  13. Investigations of spherical Cu NPs in sodium lauryl sulphate with Tb{sup 3+} ions dispersed in PVA films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Brijesh; Kaur, Gagandeep, E-mail: gagandeep_bhu@yahoo.com; Rai, S.B., E-mail: sbrai49@yahoo.co.in

    2016-03-15

    Highlights: • Cu NPs were prepared in SDS using 1064 nm laser radiation at fluence 37, 64 and 88 J/cm{sup 2}. • Spherical Cu NPs with average diameter varying between 10 and 50 nm atdifferent fluence. • PL of Tb3+ ions in PVA polymer film is maximum with Cu NPS at fluence 37 J/cm{sup 2}. • PVA films of Cu NPs displayed a highly temperature-dependent electrical conductivity. • These copper NPs embedded PVA films can be used as novel, low-cost sensor materials. - Abstract: Cu nanoparticles (NPs) have been prepared in SDS solution using 1064 nm laser radiation at differentmore » fluence 37 J/cm{sup 2}, 64 J/cm{sup 2} and 88 J/cm{sup 2} and structurally characterized. The TEM measurements reveal the presence of nanoparticles of spherical shape with different size. The size of the nanoparticles and their concentration increases with the increase of fluence.The effect of these Cu nanoparticles on the emissive properties of Tb{sup 3+} ion in polymer films has been studied. It is found that emission intensity of Tb{sup 3+} first increases and then deceases both with concentration of Cu NPs as well as with sizes. The PL intensity of Tb{sup 3+} ions is minimum for Cu NPs prepared with highest fluence. It has been explained in term of local field effect. This was also verified by life time measurements. These thin PVA films of copper nanoparticles displayed a highly temperature-dependent electrical conductivity with sensitivity at least comparable to commercial materials which suggest the use of these copper NPs embedded PVA films as novel, low-cost sensor materials.« less

  14. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE PAGES

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...

    2017-06-16

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  15. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  16. MO-FG-BRA-03: A Monte-Carlo Study of Cellular Dosimetry of Radioactive Gold-Palladium Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y; Michaud, F; Fortin, M

    Purpose: Radioactive gold-palladium nanoparticles ({sup 103}Pd:Pd@Au NPs) are being developed for prostate cancer brachytherapy. Photons emitted by the radioisotope palladium (photon energy: 20.1 and 23.0 keV), interacting with gold-coating of NPs, lead to enhanced energy distribution in nucleus. Here, a simple cellular model was studied using detailed track-structure method. Methods: Geant4-DNA was used with auger electrons enabled. Biological cell was modeled as a sphere of radius r=5 µm that were immersed in a fluid containing large number of NPs at different concentrations (S=1, 2.15, 5.1, 17.2 mg-Au/g-H2O). Nucleus was modeled as a concentric sphere (r=3µm). Thickness of gold-coating on {supmore » 103}Pd core was 15nm, 20nm and 25nm, respectively. A scenario of NP diffusion was investigated, where S=5.1 mg-Au/g-H2O outside cell and S=1 mg-Au/g-H2O in cytoplasm. 10{sup 10} {sup 103}Pd decays were simulated for each combination of NP concentration and gold-coating. Results: A uniform increase in energy deposition (Edep) is observed in cell nucleus and the energy enhancement ratio (EER) is 1.16, 1.22 and 1.3 for 15nm, 20nm and 25nm of gold -coatings, respectively. Edep at the center of nucleus is increased by a factor of 1.47, 2.51 and 5.54 when the NP concentration in the cytoplasm increases from 1 mg-Au/g-H2O to 2.15, 5.10 and 17.2 mg-Au/g-H2O, respectively. When NPs diffuse into cytoplasm, the mean value of Edep in nucleus increases from 0.42 to 1.13 MeV per 10{sup 9} decays (GBq-Second) of {sup 103}Pd and the maximum value increases from 0.54 to 2.5 MeV per GBq-Second. Conclusion: These results suggest that {sup 103}Pd:Pd@Au NPs constitute a promising nanotherapeutic agent. Ongoing studies use transmission electron microscopy (TEM) images of prostate cancer.« less

  17. Transition from disordered to long-range ordered nanoparticles on Al2O3/Ni3Al(111)

    NASA Astrophysics Data System (ADS)

    Alyabyeva, N.; Ouvrard, A.; Zakaria, A.-M.; Charra, F.; Bourguignon, B.

    2018-06-01

    Application of preparation recipes of the literature failed to produce an ordered array of NPs on our particular Ni3Al sample. This has motivated a systematic survey of Pd NP nucleation as a function of experimental parameters. We have shown that the increase of oxidation temperature during the preparation of Al2O3 ultra-thin film on Ni3Al(111) leads to a transition from disordered to long-range ordered Pd nanoparticle (NP) nucleation. Alumina films were prepared at different temperatures ranging from 990 to 1140 K. Crystallinity, electronic structure of the alumina film and Pd nucleation and growth have been investigated using Low Energy Electron Diffraction and Scanning Tunnelling Microscopy. NP density and long-range order nucleation along the so-called "dot structure" of 4.2 nm periodicity, strongly increase for temperatures higher than a threshold value of 1070 ± 20 K. This transition relies on the alumina film improvement and suggests that the modulation of Pd adsorption energy at nucleation centres which is necessary to nucleate NPs at ordered sites, requires higher preparation temperature. Long-range ordered NPs with a high density were obtained 140 K above reported recipes in the literature. This optimized temperature has been tested on a fresh sample (issued from the same supplier) for which just a few cleanings were enough to obtain long-range ordered NPs. Presumably the variability of the optimal oxidation temperature for our samples with respect to the literature is related to fluctuations of the stoichiometry from sample to sample.

  18. Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles.

    PubMed

    Hao, Lanzhong; Liu, Yunjie; Du, Yongjun; Chen, Zhaoyang; Han, Zhide; Xu, Zhijie; Zhu, Jun

    2017-10-17

    A novel few-layer MoS 2 /SiO 2 /Si heterojunction is fabricated via DC magnetron sputtering technique, and Pd nanoparticles are further synthesized on the device surface. The results demonstrate that the fabricated sensor exhibits highly enhanced responses to H 2 at room temperature due to the decoration of Pd nanoparticles. For example, the Pd-decorated MoS 2 /SiO 2 /Si heterojunction shows an excellent response of 9.2 × 10 3 % to H 2 , which is much higher than the values for the Pd/SiO 2 /Si and MoS 2 /SiO 2 /Si heterojunctions. In addition, the H 2 sensing properties of the fabricated heterojunction are dependent largely on the thickness of the Pd-nanoparticle layer and there is an optimized Pd thickness for the device to achieve the best sensing characteristics. Based on the microstructure characterization and electrical measurements, the sensing mechanisms of the Pd-decorated MoS 2 /SiO 2 /Si heterojunction are proposed. These results indicate that the Pd decoration of few-layer MoS 2 /SiO 2 /Si heterojunctions presents an effective strategy for the scalable fabrication of high-performance H 2 sensors.

  19. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina.

    PubMed

    Johari, Seyed Ali; Sarkheil, Mehrdad; Behzadi Tayemeh, Mohammad; Veisi, Shakila

    2018-06-13

    This study aim to evaluate the potential toxic effects of citrate coated silver nanoparticles (AgNPs) and ionic silver (AgNO 3 ) on marine microalgae Dunaliella salina under three different salinities (35, 70, and 140 g/L). The toxicity was investigated according to modified OECD guideline (No. 201) by 72 h exposure of microalgae to various concentrations of each of the chemicals in Walne's saline media. According to the results, the growth inhibitory effects of AgNPs and AgNO 3 increased significantly coincidence with increasing time and concentration compared to control (P < 0.05). The values of median inhibitory concentrations (IC 50 ) of AgNPs and AgNO 3 based on average specific growth rate and yield for D. salina increased significantly with elevation of water salinity from 35 to 140 g/L (P < 0.05). Toxicity of AgNO 3 based on IC 50 to D. salina was significantly higher than AgNPs at all salinities (P < 0.05). In conclusion, both AgNPs and AgNO 3 inhibited the growth of D. salina at different saltwater medium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Facet-Dependent Deposition of Highly Strained Alloyed Shells on Intermetallic Nanoparticles for Enhanced Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenyu; Sang, Xiahan; Gamler, Jocelyn T. L.

    Compressive surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic (fcc) Pt- Cu random alloy shells were deposited non-epitaxially on PdCu B2 intermetallic seeds, giving rise to faceted core@shell NPs with highly strained surfaces. In fact, high resolution transmission electron microscopymore » (HRTEM) revealed orientation-dependent surface strains, where the compressive strains were minimal on Pt-Cu {111} facets but greater on {200} facets. These core@shell NPs provide higher specific and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.« less

  1. Facet-Dependent Deposition of Highly Strained Alloyed Shells on Intermetallic Nanoparticles for Enhanced Electrocatalysis

    DOE PAGES

    Wang, Chenyu; Sang, Xiahan; Gamler, Jocelyn T. L.; ...

    2017-08-25

    Compressive surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic (fcc) Pt- Cu random alloy shells were deposited non-epitaxially on PdCu B2 intermetallic seeds, giving rise to faceted core@shell NPs with highly strained surfaces. In fact, high resolution transmission electron microscopymore » (HRTEM) revealed orientation-dependent surface strains, where the compressive strains were minimal on Pt-Cu {111} facets but greater on {200} facets. These core@shell NPs provide higher specific and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.« less

  2. Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.

    PubMed

    Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong

    2018-05-18

    Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.

    PubMed

    Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal

    2011-11-15

    A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    NASA Astrophysics Data System (ADS)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  5. 2,3-diaminopyridine functionalized reduced graphene oxide-supported palladium nanoparticles with high activity for electrocatalytic oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Joo, Yuri; Jeon, Seungwon

    2017-06-01

    The electrochemical deposition of Pd nanoparticles (Pd NPs) on 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO/Pd) has been investigated for the oxygen reduction reaction (ORR) in alkaline media. First, 2,3 diaminopyridine functionalized graphene oxide (2,3 DAP-rGO) has been synthesized via simple hydrothermal method. Then, palladium is directly incorporated into the 2,3 DAP-rGO by electrochemical deposition method to generate 2,3 DAP-rGO/Pd composites. The as-prepared material 2,3 DAP-rGO/Pd has been characterized by various instrumental methods. The morphological analysis shows the cluster-like Pd nanoparticles are dispersed onto the 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO). The electrocatalytic activities have been verified using cyclic voltammetry (CV) and hydrodynamic voltammetry and chronoamperometry techniques in 0.1 M KOH electrolyte. The as-synthesized 2,3 DAP-rGO/Pd shows higher catalytic activity toward ORR with more positive onset potential and cathodic current density, superior methanol/ethanol tolerance and excellent stability in alkaline medium. It is also noteworthy that the 2,3 DAP-rGO/Pd exhibits a four-electron transfer pathway for ORR with lower H2O2 yield.

  6. Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study.

    PubMed

    Xu, Cong-Qiao; Lee, Mal-Soon; Wang, Yang-Gang; Cantu, David C; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2017-02-28

    The structure, composition, and atomic distribution of nanoalloys under operating conditions are of significant importance for their catalytic activity. In the present work, we use ab initio molecular dynamics simulations to understand the structural behavior of Au-Pd nanoalloys supported on rutile TiO 2 under different conditions. We find that the Au-Pd structure is strongly dependent on the redox properties of the support, originating from strong metal-support interactions. Under reducing conditions, Pd atoms are inclined to move toward the metal/oxide interface, as indicated by a significant increase of Pd-Ti bonds. This could be attributed to the charge localization at the interface that leads to Coulomb attractions to positively charged Pd atoms. In contrast, under oxidizing conditions, Pd atoms would rather stay inside or on the exterior of the nanoparticle. Moreover, Pd atoms on the alloy surface can be stabilized by hydrogen adsorption, forming Pd-H bonds, which are stronger than Au-H bonds. Our work offers critical insights into the structure and redox properties of Au-Pd nanoalloy catalysts under working conditions.

  7. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  8. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode.

    PubMed

    Lee, Eunhee; Kim, Daekun; You, Jung-Min; Kim, Seul Ki; Yun, Mira; Jeon, Seungwon

    2012-12-01

    Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.

  9. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  10. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena

    2017-08-01

    Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.

  11. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  12. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    PubMed

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  13. Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering

    DOE PAGES

    Wu, Liheng; Lian, Huada; Willis, Joshua J.; ...

    2018-01-03

    Synthesis of monodisperse nanoparticles (NPs) with precisely controlled size is critical for understanding their size-dependent properties. Although significant synthetic developments have been achieved, it is still challenging to synthesize well-defined NPs in a predictive way due to a lack of in-depth mechanistic understanding of reaction kinetics. Here we use synchrotron-based small-angle X-ray scattering (SAXS) to monitor in situ the formation of palladium (Pd) NPs through thermal decomposition of Pd–TOP (TOP: trioctylphosphine) complex via the “heat-up” method. We systematically study the effects of different ligands, including oleylamine, TOP, and oleic acid, on the formation kinetics of Pd NPs. Through quantitative analysismore » of the real-time SAXS data, we are able to obtain a detailed picture of the size, size distribution, and concentration of Pd NPs during the syntheses, and these results show that different ligands strongly affect the precursor reactivity. We find that oleylamine does not change the reactivity of the Pd–TOP complex but promote the formation of nuclei due to strong ligand–NP binding. On the other hand, TOP and oleic acid substantially change the precursor reactivity over more than an order of magnitude, which controls the nucleation kinetics and determines the final particle size. A theoretical model is used to demonstrate that the nucleation and growth kinetics are dependent on both precursor reactivity and ligand–NP binding affinity, thus providing a framework to explain the synthesis process and the effect of the reaction conditions. Quantitative understanding of the impacts of different ligands enables the successful synthesis of a series of monodisperse Pd NPs in the broad size range from 3 to 11 nm with nanometer-size control, which serve as a model system to study their size-dependent catalytic properties. Furthermore, the in situ SAXS probing can be readily extended to other functional NPs to greatly advance

  14. Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liheng; Lian, Huada; Willis, Joshua J.

    Synthesis of monodisperse nanoparticles (NPs) with precisely controlled size is critical for understanding their size-dependent properties. Although significant synthetic developments have been achieved, it is still challenging to synthesize well-defined NPs in a predictive way due to a lack of in-depth mechanistic understanding of reaction kinetics. Here we use synchrotron-based small-angle X-ray scattering (SAXS) to monitor in situ the formation of palladium (Pd) NPs through thermal decomposition of Pd–TOP (TOP: trioctylphosphine) complex via the “heat-up” method. We systematically study the effects of different ligands, including oleylamine, TOP, and oleic acid, on the formation kinetics of Pd NPs. Through quantitative analysismore » of the real-time SAXS data, we are able to obtain a detailed picture of the size, size distribution, and concentration of Pd NPs during the syntheses, and these results show that different ligands strongly affect the precursor reactivity. We find that oleylamine does not change the reactivity of the Pd–TOP complex but promote the formation of nuclei due to strong ligand–NP binding. On the other hand, TOP and oleic acid substantially change the precursor reactivity over more than an order of magnitude, which controls the nucleation kinetics and determines the final particle size. A theoretical model is used to demonstrate that the nucleation and growth kinetics are dependent on both precursor reactivity and ligand–NP binding affinity, thus providing a framework to explain the synthesis process and the effect of the reaction conditions. Quantitative understanding of the impacts of different ligands enables the successful synthesis of a series of monodisperse Pd NPs in the broad size range from 3 to 11 nm with nanometer-size control, which serve as a model system to study their size-dependent catalytic properties. Furthermore, the in situ SAXS probing can be readily extended to other functional NPs to greatly advance

  15. Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer

    PubMed Central

    Kong, Na; Deng, Mei; Sun, Xiu-Na; Chen, Yi-Ding; Sui, Xin-Bing

    2018-01-01

    Current limitations of cancer therapy include the lack of effective strategy for target delivery of chemotherapeutic drugs, and the difficulty of achieving significant efficacy by single treatment. Herein, we reported a synergistic chemo-photothermal strategy based on aptamer (Apt)-polydopamine (pD) functionalized CA-(PCL-ran-PLA) nanoparticles (NPs) for effective delivery of docetaxel (DTX) and enhanced therapeutic effect. The developed DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs achieved promising advantages, such as (i) improved drug loading content (LC) and encapsulation efficiency (EE) initiated by star-shaped copolymer CA-(PCL-ran-PLA); (ii) effective target delivery of drugs to tumor sites by incorporating AS1411 aptamers; (iii) significant therapeutic efficacy caused by synergistic chemo-photothermal treatment. In addition, the pD coating strategy with simple procedures could address the contradiction between targeting modification and maintaining formerly excellent bio-properties. Therefore, with excellent bio-properties and simple preparation procedures, the DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs effectively increased the local drug concentration in tumor sites, minimized side effects, and significantly eliminated tumors, indicating the promising application of these NPs for cancer therapy. PMID:29527167

  16. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    NASA Astrophysics Data System (ADS)

    Félix-Navarro, R. M.; Beltrán-Gastélum, M.; Salazar-Gastélum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Pérez-Sicairos, S.; Lin, S. W.; Paraguay-Delgado, F.; Alonso-Núñez, G.

    2013-08-01

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  17. Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications.

    PubMed

    Tian, Meng; Long, Yu; Xu, Dan; Wei, Shuoyun; Dong, Zhengping

    2018-07-01

    Nowadays, chemical catalytic methods for the treatment of organic wastes are attracting more and more research attention. In the current research, novel catalysts with palladium nanoparticles (Pd NPs) supported on the hollow mesoporous silica nanotubes (h-mSiO 2 ) were synthesized for the catalytic reduction of 4-nitrophenol (4-NP) and hydrodechlorination (HDC) of 4-chlorophenol (4-CP). The key point for the fabrication of the catalysts is that a certain thickness of the silica shell was wrapped on the multiwalled carbon nanotubes (MWNTs) or Pd/MWNTs through biphase stratification approach, and then the samples were calcined to remove the MWNTs. Thereby, h-mSiO 2 and Pd@h-mSiO 2 samples were obtained. The prepared materials have excellent pore structure and exhibit high specific surface areas. The reduction of 4-NP by the Pd/h-mSiO 2 and Pd@h-mSiO 2 catalysts showed higher TOF values than many other catalysts, and the yield of HDC of 4-CP to phenol reached 100% with a low loading of Pd in water solvent. The excellent catalytic activities of the Pd/h-mSiO 2 and Pd@h-mSiO 2 catalysts should attribute to the excellent connectivity of the h-mSiO 2 which not only can increase the accessibility of the Pd active sites but also enhance the mass transfer of the reactants. It is worth mention that, there is almost no Pd NPs aggregation or losing during the reaction process, and the prepared catalysts still showed good catalytic activity and physical stability after recycling. Moreover, the catalyst shows potential for catalytic reduction of nitroarenes in a fixed bed reactor, thus could be used for continuously treat nitroarenes polluted water. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Molecular responses of cells to 2-mercapto-1-methylimidazole gold nanoparticles (AuNPs)-mmi: investigations of histone methylation changes

    NASA Astrophysics Data System (ADS)

    Polverino, Arianna; Longo, Angela; Donizetti, Aldo; Drongitis, Denise; Frucci, Maria; Schiavo, Loredana; Carotenuto, Gianfranco; Nicolais, Luigi; Piscopo, Marina; Vitale, Emilia; Fucci, Laura

    2014-07-01

    While nanomedicine has an enormous potential to improve the precision of specific therapy, the ability to efficiently deliver these materials to regions of disease in vivo remains limited. In this study, we describe analyses of (AuNPs)-mmi cellular intake via fluorescence microscopy and its effects on H3K4 and H3K9 histone dimethylation. Specifically, we studied the level of H3K4 dimethylation in serving the role of an epigenetic marker of euchromatin, and of H3K9 dimethylation as a marker of transcriptional repression in four different cell lines. We analyzed histone di-methyl-H3K4 and di-methyl-H3K9 using either variable concentrations of nanoparticles or variable time points after cellular uptake. The observed methylation effects decreased consistently with decreasing (AuNPs)-mmi concentrations. Fluorescent microscopy and a binarization algorithm based on a thresholding process with RGB input images demonstrated the continued presence of (AuNPs)-mmi in cells at the lowest concentration used. Furthermore, our results show that the treated cell line used is able to rescue the untreated cell phenotype.

  19. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    NASA Astrophysics Data System (ADS)

    Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting

    2017-05-01

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles ( 90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  20. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green.

    PubMed

    Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-02-25

    This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Min, Yuanzeng; Roche, Kyle C.; Tian, Shaomin; Eblan, Michael J.; McKinnon, Karen P.; Caster, Joseph M.; Chai, Shengjie; Herring, Laura E.; Zhang, Longzhen; Zhang, Tian; Desimone, Joseph M.; Tepper, Joel E.; Vincent, Benjamin G.; Serody, Jonathan S.; Wang, Andrew Z.

    2017-09-01

    Immunotherapy holds tremendous promise for improving cancer treatment. To administer radiotherapy with immunotherapy has been shown to improve immune responses and can elicit the 'abscopal effect'. Unfortunately, response rates for this strategy remain low. Herein we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NP formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent on the NP surface properties. We showed that AC-NPs deliver tumour-specific proteins to antigen-presenting cells (APCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment using the B16F10 melanoma model, generating up to a 20% cure rate compared with 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+T/Treg and CD8+T/Treg ratios (Treg, regulatory T cells). Our work presents a novel strategy to improve cancer immunotherapy with nanotechnology.

  2. Pd nanoparticles Supported on Cellulose as a catalyst for vanillin conversion in aqueous media.

    PubMed

    Li, Dan-Dan; Zhang, Jia-Wei; Cai, Chun

    2018-05-17

    Palladium nanoparticles were firstly anchored on modified biopolymer as an efficient catalyst for biofuel upgradation. Fluorinated compounds was grafted onto cellulose to obtain amphiphilic supports for on water reactions. Pd catalyst was prepared by straightforward deposition of metal nanoparticles on modified cellulose. The catalyst exhibited excellent catalytic activity and selectivity in hydrodeoxygenation of vanillin (a typical model compound of lignin) to 2-methoxy-4-methylphenol under atmospheric hydrogen pressure in neat water without any other additives under mild conditions.

  3. Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Ren, Shoutian; Fan, Guanghua; Qu, Shiliang; Wang, Qiang

    2011-10-01

    For sensitive detection of H2, ZnO nanowires networks decorated with photo-decomposed Pd nanoparticles were fabricated between femtosecond laser-writing interdigitated electrodes by chemical vapor deposition method. When H2 concentration is increased from 20 to 4000 ppm at room temperature, sensitivity of the sample is increased from 3.7% to 1017.9%. The high sensitivity can be explained by considering the reaction between the adsorbed O2- and the disassociated H atoms facilitated by Pd nanoparticles. This mechanism is further supported by the H2 response results under UV light illumination, which can reduce the amount of O2- on the ZnO surface, leading to depressed sensitivity. The sensor also shows high selectivity, long-term stability, and ultra-low power consumption of nanowatt level, due to the novel fabrication process.

  4. Nanoparticle fouling and its combination with organic fouling during forward osmosis process for silver nanoparticles removal from simulated wastewater

    NASA Astrophysics Data System (ADS)

    Zhao, Yanxiao; Wang, Xinhua; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-05-01

    The increasing and wide application of silver nanoparticles (Ag NPs) has resulted in their appearance in wastewater. In consideration of their potential toxicity and environmental impacts, it is necessary to find effective technology for their removal from wastewater. Here, forward osmosis (FO) membrane was applied for Ag NPs removal from wastewater, and single and combined fouling of nanoparticles and organic macromolecules were further investigated during the FO process. The findings demonstrated that FO membrane can effectively remove Ag NPs from wastewater due to its high rejection performance. Fouling tests indicated that water flux declined appreciably even at the beginning of the single Ag NPs fouling test, and more remarkable flux decline and larger amounts of deposited Ag NPs were observed with an increase of Ag NPs concentration. However, the addition of bovine serum albumin (BSA) could effectively alleviate the FO membrane fouling induced by Ag NPs. The interaction between Ag NPs and BSA was responsible for this phenomenon. BSA can easily form a nanoparticle-protein corona surrounded nanoparticles, which prevented nanoparticles from aggregation due to the steric stabilization mechanism. Furthermore, the interaction between BSA and Ag NPs occurred not only in wastewater but also on FO membrane surface.

  5. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds

    PubMed Central

    El-Zawawy, Nessma Ahmed; Fareed, Mervat F; Bedaiwy, Mohamed Yaser

    2017-01-01

    Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO2-NPs) were synthesized using the co-precipitation method. Synthesized ZnO2-NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO2-NPs having sizes in the range of 15–25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO2-NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO2-NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO2-NPs until 200 µg/mL. ZnO2-NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO2-NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO2-NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the ZnO2-NPs are

  6. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds.

    PubMed

    Ali, Sameh Samir; Morsy, Reda; El-Zawawy, Nessma Ahmed; Fareed, Mervat F; Bedaiwy, Mohamed Yaser

    2017-01-01

    Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO 2 -NPs) were synthesized using the co-precipitation method. Synthesized ZnO 2 -NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO 2 -NPs having sizes in the range of 15-25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO 2 -NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO 2 -NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO 2 -NPs until 200 µg/mL. ZnO 2 -NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO 2 -NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO 2 -NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the

  7. Optimized hydrogen sensing characteristic of Pd/ZnO nanoparticles based Schottky diode on glass substrate

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H  +  H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.

  8. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  9. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  10. Synthesis of gold and silver nanoparticles using purified URAK.

    PubMed

    Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi

    2011-09-01

    This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  12. Preparation of metallic Pd nanoparticles using supercritical CO2 deposition: An efficient catalyst for Suzuki cross-coupling reaction

    NASA Astrophysics Data System (ADS)

    Tezcan, Burcu; Ulusal, Fatma; Egitmen, Asım; Guzel, Bilgehan

    2018-05-01

    Ligand-free palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNT) were prepared by the supercritical carbon dioxide (scCO2) deposition method using a novel scCO2-soluble Pd organometallic complex as a precursor. The precursor with the perfluoroalkyl chain group was synthesized and identified by microanalytic methods. The deposition was carried out at the temperature of 363.15 K and pressure of 27.6 MPa CO2. The prepared metallic nanoparticles were obtained with an average size of 2 nm. Pd/MWCNT was utilized as a heterogeneous catalyst in Suzuki cross-coupling reaction. The nanocatalyst was found very effective in Suzuki reaction and it could also be recovered easily from the reaction media and reused over several cycles without significant loss of catalytic activity under mild conditions. [Figure not available: see fulltext.

  13. Electro-oxidation of methanol in alkaline conditions using Pd-Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    NASA Astrophysics Data System (ADS)

    Manzo-Robledo, A.; Costa, Natália J. S.; Philippot, K.; Rossi, Liane M.; Ramírez-Meneses, E.; Guerrero-Ortega, L. P. A.; Ezquerra-Quiroga, S.

    2015-12-01

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i- E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i- E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions' interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  14. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  15. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage.

    PubMed

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-12-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  16. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-03-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  17. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    PubMed

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

  18. Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions.

    PubMed

    Yang, Hongyu; Tang, Zhenghua; Wang, Kai; Wu, Wen; Chen, Yinghuan; Ding, Zhaoqing; Liu, Zhen; Chen, Shaowei

    2018-05-21

    Developing efficient bi-functional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for producing hydrogen and utilizing hydrogen effectively to promote electrochemical energy storage in proton membrane exchange fuel cells (PEMFCs). Herein, we report Co@Pd core-shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 (ZIF-67) for both ORR and HER. The controlled pyrolysis of ZIF-67 can lead to the formation of Co nanoparticles encapsulated in nitrogen-doped porous carbon (Co NC), which subsequently underwent galvanic replacement with Na 2 PdCl 4 to form Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon (Co@Pd NC). The Co@Pd NC exhibited outperformance in ORR and HER than commercial Pd/C, as manifested by more positive onset potential and larger diffusion-limited current density in ORR tests, as well as a small overpotential to drive a current density of 10 mA cm -2 , and much lower Tafel slope in HER tests. It also demonstrated more robust long-term stability than commercial Pd/C for both ORR and HER. Multiple techniques inter-confirmed that the Pd loading in the sample was very low. The findings can pave a path for fabricating a core-shell structured nanocomposite with ultralow noble metal usage as a bifunctional catalyst for electrochemical energy storage and conversion with high-efficiency and remarkable longevity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles.

    PubMed

    Chen, Xi; Yao, Xiaoyan; Yu, Chunna; Su, Xiaomei; Shen, Chaofeng; Chen, Chen; Huang, Ronglang; Xu, Xinhua

    2014-04-01

    Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2',4,4',5,5'-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.

  20. Number of Nanoparticles per Cell through a Spectrophotometric Method - A key parameter to Assess Nanoparticle-based Cellular Assays.

    PubMed

    Unciti-Broceta, Juan D; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Sánchez-Martín, Rosario M

    2015-05-15

    Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection.

  1. Localized Plasmon resonance in metal nanoparticles using Mie theory

    NASA Astrophysics Data System (ADS)

    Duque, J. S.; Blandón, J. S.; Riascos, H.

    2017-06-01

    In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.

  2. Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au-Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels.

    PubMed

    Sharma, Mukesh Kumar; Narayanan, J; Pardasani, Deepak; Srivastava, Divesh N; Upadhyay, Sanjay; Goel, Ajay Kumar

    2016-06-15

    Bacillus anthracis, the causative agent of anthrax, is a well known bioterrorism agent. The determination of surface array protein (Sap), a unique biomarker for B. anthracis can offer an opportunity for specific detection of B. anthracis in culture broth. In this study, we designed a new catalytic bionanolabel and fabricated a novel electrochemical immunosensor for ultrasensitive detection of B. anthracis Sap antigen. Bimetallic gold-palladium nanoparticles were in-situ grown on poly (diallyldimethylammonium chloride) functionalized boron nitride nanosheets (Au-Pd NPs@BNNSs) and conjugated with the mouse anti-B. anthracis Sap antibodies (Ab2); named Au-Pd NPs@BNNSs/Ab2. The resulting Au-Pd NPs@BNNSs/Ab2 bionanolabel demonstrated high catalytic activity towards reduction of 4-nitrophenol. The sensitivity of the electrochemical immunosensor along with redox cycling of 4-aminophenol to 4-quinoneimine was improved to a great extent. Under optimal conditions, the proposed immunosensor exhibited a wide working range from 5 pg/mL to 100 ng/mL with a minimum detection limit of 1 pg/mL B. anthracis Sap antigen. The practical applicability of the immunosensor was demonstrated by specific detection of Sap secreted by the B. anthracis in culture broth just after 1h of growth. These labels open a new direction for the ultrasensitive detection of different biological warfare agents and their markers in different matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Green synthesis of Pt and Ag nanoparticles and their use towards nitric oxide abatement

    NASA Astrophysics Data System (ADS)

    Castegnaro, Marcus V.; Alexandre, Jéssica; Baibich, Ione M.; Alves, Maria C. M.; Morais, Jonder

    2014-12-01

    Pt and Ag nanoparticles (NPs) were synthesized by eco-friendly room-temperature chemical reduction routes based on trisodium citrate and L-ascorbic acid (for Pt NPs) and on gelatin and trisodium citrate (for Ag NPs). The as-prepared NPs were characterized by UV-visible absorption spectroscopy and transmission electron microscopy analyses, which confirmed the formation of sub-10 nm metal particles. Then, the colloidal solutions were used to obtain activated carbon-supported catalysts (metal/AC) for direct NO decomposition. X-ray photoelectron spectroscopy and x-ray diffraction measurements proved that the NPs hosted on the support surface were present in the metallic chemical state. In situ infrared absorption spectroscopy investigations during NO reduction catalytic reactions showed that the Pt/AC and Ag/AC catalysts were highly active at 373 K. At 573 K, we observed different behaviors for each catalyst. While Ag/AC performed similarly to the reaction at 373 K, Pt/AC was found to participate in a redox mechanism, where the catalyst’s active sites were oxidized by NO and reduced by carbon, thus emitting CO2 and enhancing its catalytic activity, an effect that we have also observed in carbon-supported Pd NPs.

  4. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    PubMed

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  5. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  6. Optimal level of Au nanoparticles on Pd nanostructures providing remarkable electro-catalysis in direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Broekmann, Peter; Datta, Jayati

    2017-09-01

    The designing and fabrication of economically viable electro-catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cell (DEFC) has been one of the challenging issues over the decades. The present work deals with controlled synthesis of Pd coupled Au nano structure, as the non Pt group of catalysts for DEFC. The catalytic proficiency of bimetallic NPs (2-10 nm) are found to be strongly dependent on the Pd:Au ratio. The over voltage of EOR is considerably reduced by ∼260 mV with 33% of Au content in PdAu composition compared to Pd alone, demonstrating the beneficial role of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pd. The catalysts are further subjected to electrochemical analysis through voltammetry along with the temperature study on activation parameters. The quantitative determination of EOR products during the electrolysis is carried out by ion chromatographic analysis; vis-a-vis the coulombic efficiency of the product yield were derived from each of the compositions. Furthermore, a strong correlation among catalytic performances and bimetallic composition is established by screening the catalysts in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC. The performance testing demonstrates outstanding increase of peak power density (∼40 mWcm-2, 93%) for the best accomplishment Au (33%) covered Pd (67%) catalyst in comparison with the monometallic Pd.

  7. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers.

    PubMed

    Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav

    2017-02-08

    We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).

  8. Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis

    2017-07-01

    Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.

  9. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  10. Customizable radiotherapy enhancement (CuRE) for prostate cancer using platinum based nanoparticles

    NASA Astrophysics Data System (ADS)

    Cifter, Gizem

    New approach to prostate cancer (PCa) therapy titled "Customizable Radiotherapy Enhancement (CuRE)" employs cisplatin (C), carboplatin (Ca) and oxaliplatin (O) nanoparticles (CNPs, CaNPs and ONPs) as adjuvants to brachytherapy and external beam radiation therapy (EBRT), with the CNPs/CaNPs/ONPs released in situ from either brachytherapy spacers or fudicials loaded with the nanoparticles. The chemotherapy dose from the nanoparticles released in situ from within the prostate capsule, is enhanced by the physical dose due to photon interactions with the nanoparticles. The physical dose enhancement is due to low energy photons from the brachytherapy and EBRT sources interacting with the high-Z platinum component of the nanoparticles, causing emission of short-range photoelectrons to boost dose to the tumor. By varying the nanoparticle parameters, such as size, initial concentration, functionalization, location of spacer or fiducial, and intra-tumor biodistribution, the dose enhancement can be customized to maximize dose to tumor cells while minimizing toxicity to healthy cells. The hypothesis is that the CuRE approach will be a more efficacious method for concomitant cisplatin/carboplatin/oxaliplatin and radiotherapy treatment of localized prostate cancer due to significant dose boost to the PCa cells with minimal toxicity to healthy tissue. To investigate this hypothesis, microdosimetry calculations employing the energy loss formula of Cole were used to calculate the dose enhancement to the PCa cells from the CNPs/CaNPs/OPNs. The dose enhancement ratio (DEF) representing the ratio of the overall dose in the presence of CNPs/CaNPs/ONPs to the dose without CNPs/CaNPs/ONPs was determined for a range of CNP/CaNP/OPN concentrations up to their FDA approved limits. The dose enhancement to endothelial cells with (EDEF) with single concentration of cisplatin (42.8 mg/g) was found 2.6 with Pd-103. When EBRT source was used with single concentration of cisplatin, with 10cm x 10

  11. In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Shenghuan; Gai, Shili; He, Fei; Ding, Shujiang; Li, Lei; Yang, Piaoping

    2014-09-01

    The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni/SNTs makes it easy to recycle for reuse.The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni

  12. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.

    PubMed

    Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe

    2007-09-01

    In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic

  13. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    NASA Astrophysics Data System (ADS)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  14. Bio-nano complexes of ZVFeNPs/Fe-s-M13 and Cd (II)/Cd-s-M13 accelerate Cd (II) reduction by FeNPs through dual dispersing and separate deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Nakano, Kazuhiko; Yu, Huimin; Shen, Zhongyao

    2014-03-01

    Reduction of Cd (II) in liquor by solid zero valent Fe nanoparticles (ZVFeNPs) is a liquid-solid biphasic reaction in which the reduction efficiency was often lowered by either aggregation of ZVFeNPs or coating of the generated ZVCd. In light of the filamentous nanostructure of bacteriophage M13 with ˜2700 copies of pVIII protein in delicate distribution at the coat, a novel dual dispersing reduction route was designed by introducing two different kinds of M13 with Fe-binding specificity (Fe-s-M13) and Cd-binding specificity (Cd-s-M13) to disperse ZVFeNPs and Cd (II) ions, respectively. The Fe-s-M13 was used for synthesis of the ZVFeNPs/Fe-s-M13 complex, where ZVFeNPs were uniformly dispersed into small nanoparticles (5-10 nm) on Fe-s-M13. The engineered Cd-s-M13, constructed by genetic recombination of pVIII through inserting the gene of a biopanned 7-mer Cd-specific peptide (SCPICPG) into the N-terminus of pVIII gene, was used for Cd (II) dispersion before reduction. The dispersed complex of Cd(II)/Cd-s-M13 was rapidly reduced by complex of ZVFeNPs/Fe-s-M13. Kinetics results showed that the initial reduction rate and final reduction ratio of Cd (II) increased by 35.7% and 16.4%, respectively, through dispersion of ZVFeNPs by Fe-s-M13; they improved again by 53.6% and 37.0%, respectively, through further dispersion of Cd (II) by Cd-s-M13. TEM and EDS results revealed that the acceleration effect of the dual dispersing reduction was arising from uniform dispersion of the small ZVFeNPs and separate deposition of the reduced ZVCd on the two different M13 phages.

  15. Green Nanoparticles for Mosquito Control

    PubMed Central

    Soni, Namita; Prakash, Soam

    2014-01-01

    Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito. PMID:25243210

  16. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  17. Improved reactive nanoparticles to treat dentin hypersensitivity.

    PubMed

    Toledano-Osorio, Manuel; Osorio, Estrella; Aguilera, Fátima S; Luis Medina-Castillo, Antonio; Toledano, Manuel; Osorio, Raquel

    2018-05-01

    The aim of this study was to evaluate the effectiveness of different nanoparticles-based solutions for dentin permeability reduction and to determine the viscoelastic performance of cervical dentin after their application. Four experimental nanoparticle solutions based on zinc, calcium or doxycycline-loaded polymeric nanoparticles (NPs) were applied on citric acid etched dentin, to facilitate the occlusion and the reduction of the fluid flow at the dentinal tubules. After 24 h and 7 d of storage, cervical dentin was evaluated for fluid filtration. Field emission scanning electron microscopy, energy dispersive analysis, AFM and Nano-DMA analysis were also performed. Complex, storage, loss modulus and tan delta (δ) were assessed. Doxycycline-loaded NPs impaired tubule occlusion and fluid flow reduction trough dentin. Tubules were 100% occluded in dentin treated with calcium-loaded NPs or zinc-loaded NPs, analyzed at 7 d. Dentin treated with both zinc-NPs and calcium-NPs attained the highest reduction of dentinal fluid flow. Moreover, when treating dentin with zinc-NPs, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying calcium-NPs. Zinc-NPs are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanoparticles are then proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanoparticles is encouraged. Erosion from acids provokes dentin hypersensitivity (DH) which presents with intense pain of short duration. Open dentinal tubules and demineralization favor DH. Nanogels based on Ca-nanoparticles and Zn-nanoparticles produced an efficient reduction of fluid flow. Dentinal tubules were filled by precipitation of induced calcium-phosphate deposits. When treating dentin with Zn-nanoparticles, complex modulus

  18. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  19. Comparison of nickel oxide and palladium nanoparticle loaded on activated carbon for efficient removal of methylene blue: kinetic and isotherm studies of removal process.

    PubMed

    Arabzadeh, S; Ghaedi, M; Ansari, A; Taghizadeh, F; Rajabi, M

    2015-02-01

    Palladium nanoparticles (Pd-NPs) and nickel oxide nanoparticles (NiO-NPs) were synthesized and loaded on activated carbon (AC). This novel material successfully used for the removal of methylene blue (MB) dye from aqueous medium. Full characterization of both material using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Brunauer-Emmet-Teller analyses for Pd-NP show their high surface area (>1340 m(2)/g) and low pore size (<20 Å) and average particle size lower than 45 Å and for NiO-NP show their high surface area (>1316.1554 m(2)/g) and low pore size (<20 Å) and average particle size lower than 46 Å in addition to high reactive atom and presence of various functional groups. These unique properties make them possible for efficient removal of MB. In batch experimental set-up, optimum conditions for maximum removal of MB by both adsorbents were attained following searching effect of variables such as central composite design. The Langmuir isotherm was found to be highly recommended for fitting the experimental equilibrium data. The kinetic of adsorption of MB on both adsorbents strongly can be fitted by a combination of pseudo-second order and intraparticle diffusion pathway. The experimental result achieved in this article shows the superiority of Pd-NP-AC for MB removal than NiO-NP-AC, so the maximum adsorption capacities of Pd-NP-AC and NiO-NP-AC were 555.5 mg/g and 588.2 mg/g, respectively. © The Author(s) 2015.

  20. Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: Role of mitochondria and innate immunity in developmental toxicity.

    PubMed

    Amiri, Shayan; Yousefi-Ahmadipour, Aliakbar; Hosseini, Mir-Jamal; Haj-Mirzaian, Arya; Momeny, Majid; Hosseini-Chegeni, Heshmat; Mokhtari, Tahmineh; Kharrazi, Sharmin; Hassanzadeh, Gholamreza; Amini, Seyed Mohammad; Jafarinejad, Somayeh; Ghazi-Khansari, Mahmoud

    2018-05-01

    Silver nanoparticles (Ag-NPs) are currently used in a wide range of consumer products. Considering the small size of Ag-NPs, they are able to pass through variety of biological barriers and exert their effects. In this regard, the unique physicochemical properties of Ag-NPs along with its high application in the industry have raised concerns about their negative effects on human health. Therefore, it investigated whether prenatal exposure to low doses of Ag-NPs is able to induce any abnormality in the cognitive and behavioral performance of adult offspring. We gavaged pregnant NMRI mice with, 1) Deionized water as vehicle, 2) Ag-NPs 10 nm (0.26 mg/kg/day), 3) Ag-NPs 30 nm (0.26 mg/kg/day), and 4) AgNO 3 (0.26 mg/kg/day) from gestational day (GD) 0 until delivery day. At the postnatal day (PD) 1, our results showed that high concentration of silver is present in the brain of pups. Further, we observed mitochondrial dysfunction and upregulation of the genes relevant to innate immune system in the brain. At PD 60, results revealed that prenatal exposure to Ag-NPs provoked severe cognitive and behavioral abnormalities in male offspring. In addition, we found that prenatal exposure to Ag-NPs was associated with abnormal mitochondrial function and significant up-regulation of the genes relevant to innate immunity in the brain. Although the Ag-NPs have been considered as safe compounds at low doses, our results indicate that prenatal exposure to low doses of Ag-NPs is able to induce behavioral and cognitive abnormalities in adulthood. Also, we found that these effects are at least partly associated with hippocampal mitochondrial dysfunction and the activation of sterile inflammation during early stages of life. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  2. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  3. The functional dissection of the plasma corona of SiO₂-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages.

    PubMed

    Fedeli, Chiara; Segat, Daniela; Tavano, Regina; Bubacco, Luigi; De Franceschi, Giorgia; de Laureto, Patrizia Polverino; Lubian, Elisa; Selvestrel, Francesco; Mancin, Fabrizio; Papini, Emanuele

    2015-11-14

    A coat of strongly-bound host proteins, or hard corona, may influence the biological and pharmacological features of nanotheranostics by altering their cell-interaction selectivity and macrophage clearance. With the goal of identifying specific corona-effectors, we investigated how the capture of amorphous silica nanoparticles (SiO2-NPs; Ø = 26 nm; zeta potential = -18.3 mV) by human lymphocytes, monocytes and macrophages is modulated by the prominent proteins of their plasma corona. LC MS/MS analysis, western blotting and quantitative SDS-PAGE densitometry show that Histidine Rich Glycoprotein (HRG) is the most abundant component of the SiO2-NP hard corona in excess plasma from humans (HP) and mice (MP), together with minor amounts of the homologous Kininogen-1 (Kin-1), while it is remarkably absent in their Foetal Calf Serum (FCS)-derived corona. HRG binds with high affinity to SiO2-NPs (HRG Kd ∼2 nM) and competes with other plasma proteins for the NP surface, so forming a stable and quite homogeneous corona inhibiting nanoparticles binding to the macrophage membrane and their subsequent uptake. Conversely, in the case of lymphocytes and monocytes not only HRG but also several common plasma proteins can interchange in this inhibitory activity. The depletion of HRG and Kin-1 from HP or their plasma exhaustion by increasing NP concentration (>40 μg ml(-1) in 10% HP) lead to a heterogeneous hard corona, mostly formed by fibrinogen (Fibr), HDLs, LDLs, IgGs, Kallikrein and several minor components, allowing nanoparticle binding to macrophages. Consistently, the FCS-derived SiO2-NP hard corona, mainly formed by hemoglobin, α2 macroglobulin and HDLs but lacking HRG, permits nanoparticle uptake by macrophages. Moreover, purified HRG competes with FCS proteins for the NP surface, inhibiting their recruitment in the corona and blocking NP macrophage capture. HRG, the main component of the plasma-derived SiO2-NPs' hard corona, has antiopsonin characteristics and

  4. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    NASA Astrophysics Data System (ADS)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-11-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  5. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  6. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  7. Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol

    NASA Astrophysics Data System (ADS)

    Shah, Muhammad Tariq; Balouch, Aamna; Panah, Pirah; Rajar, Kausar; Mahar, Ali Muhammad; Khan, Abdullah; Jagirani, Muhammad Saqaf; Khan, Humaira

    2018-06-01

    In this study, magnetite (Fe3O4) nanoparticles were synthesized by a simple and facile chemical co-precipitation method at ambient laboratory conditions. The synthesized Fe3O4 nanostructures were characterized for their morphology, size, crystalline structure and component analysis using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and electron dispersive x-ray spectroscopy. The Fe3O4 nanoparticles showed semi-spherical geometry with an average particle diameter up to 14 nm. The catalytic properties of Fe3O4 nanoparticles were evaluated for electrochemical oxidation of methanol. For this purpose, the magnetite NPs were coated on the surface of an indium tin oxide (ITO) electrode and used as a working electrode in the electrochemical oxidation of methanol. The effect of potential scan rate, the concentration of methanol, the volume of electrolyte and catalyst (Fe3O4 NPs) deposition volume was studied to get high peak current densities for methanol oxidation. The stability and selectivity of the fabricated electrode (Fe3O4/ITO) were also assessed during the electrochemical process. This study revealed that the Fe3O4/ITO electrode was highly stable and selective towards methanol electrochemical oxidation in basic (KOH) media. Bare ITO and Fe3O4 NPs modified glassy (Fe3O4/GCE) electrodes were also tested in the electro-oxidation study of methanol, but their peak current density responses were very low as compared to the Fe3O4/ITO electrode, which showed high electrocatalytic activity towards methanol oxidation under similar conditions. We hope that Fe3O4 nanoparticles (NPs) will be an alternative for methanol oxidation as compared to the expensive noble metals (Pt, Au, and Pd) for energy generation processes.

  8. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    PubMed

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  9. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  10. Speciation of nanoscale objects by nanoparticle imprinted matrices

    NASA Astrophysics Data System (ADS)

    Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel

    2016-07-01

    The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The

  11. Metal-organic-framework-derived carbons: Applications as solid-base catalyst and support for Pd nanoparticles in tandem catalysis

    DOE PAGES

    Li, Xinle; Zhang, Biying; Fang, Yuhui; ...

    2017-02-11

    Here, the facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.

  12. Biosynthesis of Gold and Silver Nanoparticles Using Extracts of Callus Cultures of Pumpkin (Cucurbita maxima).

    PubMed

    Iyer, R Indira; Panda, Tapobrata

    2018-08-01

    The potential of callus cultures and field-grown organs of pumpkin (Cucurbita maxima) for the biosynthesis of nanoparticles of the noble metals gold and silver has been investigated. Biosynthesis of AuNPs (gold nanoparticles) and AgNPs (silver nanoparticles) was obtained with flowers of C. maxima but not with pulp and seeds. With callus cultures established in MS-based medium the biogenesis of both AuNPs and AgNPs could be obtained. At 65 °C the biogenesis of AuNPs and AgNPs by callus extracts was enhanced. The AuNPs and AgNPs have been characterized by UV-visible spectroscopy, TEM, DLS and XRD. Well-dispersed nanoparticles, which exhibited a remarkable diversity in size and shape, could be visualized by TEM. Gold nanoparticles were found to be of various shapes, viz., rods, triangles, star-shaped particles, spheres, hexagons, bipyramids, discoid particles, nanotrapezoids, prisms, cuboids. Silver nanoparticles were also of diverse shapes, viz., discoid, spherical, elliptical, triangle-like, belt-like, rod-shaped forms and cuboids. EDX analysis indicated that the AuNPs and AgNPs had a high degree of purity. The surface charges of the generated AuNPs and AgNPs were highly negative as indicated by zeta potential measurements. The AuNPs and AgNPs exhibited remarkable stability in solution for more than four months. FTIR studies indicated that biomolecules in the callus extracts were associated with the biosynthesis and stabilisation of the nanoparticles. The synthesized AgNPs could catalyse degradation of methylene blue and exhibited anti-bacterial activity against E. coli DH5α. There is no earlier report of the biosynthesis of nanoparticles by this plant species. Callus cultures of Cucurbita maxima are effective alternative resources of biomass for synthesis of nanoparticles.

  13. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts

    PubMed Central

    Park, Ji Su; Ahn, Eun-Young; Park, Youmie

    2017-01-01

    Mangosteen (Garcinia mangostana) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (−18.92 to −34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung

  14. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts.

    PubMed

    Park, Ji Su; Ahn, Eun-Young; Park, Youmie

    2017-01-01

    Mangosteen ( Garcinia mangostana ) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (-18.92 to -34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung

  15. Antimicrobial Effect of Biocompatible Silicon Nanoparticles Activated Using Therapeutic Ultrasound.

    PubMed

    Shevchenko, Svetlana N; Burkhardt, Markus; Sheval, Eugene V; Natashina, Ulyana A; Grosse, Christina; Nikolaev, Alexander L; Gopin, Alexander V; Neugebauer, Ute; Kudryavtsev, Andrew A; Sivakov, Vladimir; Osminkina, Liubov A

    2017-03-14

    In this study, we report a method for the suppression of Escherichia coli (E. coli) vitality by means of therapeutic ultrasound irradiation (USI) using biocompatible silicon nanoparticles as cavitation sensitizers. Silicon nanoparticles without (SiNPs) and with polysaccharide (dextran) coating (DSiNPs) were used. Both types of nanoparticles were nontoxic to Hep 2 cells up to a concentration of 2 mg/mL. The treatment of bacteria with nanoparticles and application of 1 W/cm 2 USI resulted in the reduction of their viabilities up to 35 and 72% for SiNPs and DSiNPs, respectively. The higher bacterial viability reduction for DSiNPs as compared with SiNPs can be explained by the fact that the biopolymer shell of the polysaccharide provides a stronger adhesion of nanoparticles to the bacterial surface. Transmission electron microscopy (TEM) studies showed that the bacterial lipid shell was partially perforated after the combined treatment of DSiNPs and USI, which can be explained by the lysis of bacterial membrane due to the cavitation sensitized by the SiNPs. Furthermore, we have shown that 100% inhibition of E. coli bacterial colony growth is possible by coupling the treatments of DSiNPs and USI with an increased intensity of up to 3 W/cm 2 . The observed results reveal the application of SiNPs as promising antimicrobial agents.

  16. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  17. Peptide-biphenyl hybrid-capped AuNPs: stability and biocompatibility under cell culture conditions

    NASA Astrophysics Data System (ADS)

    Connolly, Mona; Pérez, Yolanda; Mann, Enrique; Herradón, Bernardo; Fernández-Cruz, María L.; Navas, José M.

    2013-07-01

    In this study, we explored the biocompatibility of Au nanoparticles (NPs) capped with peptide-biphenyl hybrid (PBH) ligands containing glycine (Gly), cysteine (Cys), tyrosine (Tyr), tryptophan (Trp) and methionine (Met) amino acids in the human hepatocellular carcinoma cell line Hep G2. Five AuNPs, Au[(Gly-Tyr-Met)2B], Au[(Gly-Trp-Met)2B], Au[(Met)2B], Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B], were synthesised. Physico-chemical and cytotoxic properties were thoroughly studied. Transmission electron micrographs showed isolated near-spherical nanoparticles with diameters of 1.5, 1.6, 2.3, 1.8 and 2.3 nm, respectively. Dynamic light scattering evidenced the high stability of suspensions in Milli-Q water and culture medium, particularly when supplemented with serum, showing in all cases a tendency to form agglomerates with diameters approximately 200 nm. In the cytotoxicity studies, interference caused by AuNPs with some typical cytotoxicity assays was demonstrated; thus, only data obtained from the resazurin based assay were used. After 48-h incubation, only concentrations ≥50 μg/ml exhibited cytotoxicity. Such doses were also responsible for an increase in reactive oxygen species (ROS). Some differences were observed among the studied NPs. Of particular importance is the AuNPs capped with the PBH ligand (Gly-Tyr-TrCys)2B showing remarkable stability in culture medium, even in the absence of serum. Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity. The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs. Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.

  18. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.

    PubMed

    Glover, Richard D; Miller, John M; Hutchison, James E

    2011-11-22

    The use of silver nanoparticles (AgNPs) in antimicrobial applications, including a wide range of consumer goods and apparel, has attracted attention because of the unknown health and environmental risks associated with these emerging materials. Of particular concern is whether there are new risks that are a direct consequence of their nanoscale size. Identifying those risks associated with nanoscale structure has been difficult due to the fundamental challenge of detecting and monitoring nanoparticles in products or the environment. Here, we introduce a new strategy to directly monitor nanoparticles and their transformations under a variety of environmental conditions. These studies reveal unprecedented dynamic behavior of AgNPs on surfaces. Most notably, under ambient conditions at relative humidities greater than 50%, new silver nanoparticles form in the vicinity of the parent particles. This humidity-dependent formation of new particles was broadly observed for a variety of AgNPs and substrate surface coatings. We hypothesize that nanoparticle production occurs through a process involving three stages: (i) oxidation and dissolution of silver from the surface of the particle, (ii) diffusion of silver ion across the surface in an adsorbed water layer, and (iii) formation of new, smaller particles by chemical and/or photoreduction. Guided by these findings, we investigated non-nanoscale sources of silver such as wire, jewelry, and eating utensils that are placed in contact with surfaces and found that they also formed new nanoparticles. Copper objects display similar reactivity, suggesting that this phenomenon may be more general. These findings challenge conventional thinking about nanoparticle reactivity and imply that the production of new nanoparticles is an intrinsic property of the material that is not strongly size dependent. The discovery that AgNPs and CuNPs are generated spontaneously from manmade objects implies that humans have long been in direct

  19. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation.

    PubMed

    Niu, Zhuyu; Jia, Yating; Chen, Yuancai; Hu, Yongyou; Chen, Junfeng; Lv, Yuancai

    2018-06-08

    This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h -1 ), μ m (0.035 h -1 ) and K i (714.29 mg/L) and the lowest apparent K s (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Synthesis of vanadium-doped palladium nanoparticles for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuki; Miyachi, Mariko; Yamanoi, Yoshinori; Minoda, Ai; Maekawa, Shunsuke; Oshima, Shinji; Kobori, Yoshihiro; Nishihara, Hiroshi

    2011-12-01

    Palladium-vanadium (Pd/V) alloy nanoparticles stabilized with n-pentyl isocyanide were prepared as new hydrogen storage materials by a facile polyol-based synthetic route with tetraethylene glycol and NaOH at 250 °C. The size distribution of the nanoparticles thus obtained featured two peaks at 4.0 ± 1.1 and 1.4 ± 0.3 nm in diameter, which were the mixture of Pd/V alloy and Pd nanoparticles. The ratio between the number of Pd/V and that of Pd nanoparticles was 51:49, and the Pd:V ratio of the overall product was 9:1 in wt%, indicating that the 4.0 nm Pd/V nanoparticles were composed of 81% Pd and 19% V. The inclusion of vanadium caused the increase in the d-spacing and thus expansion of lattice constant. A rapid increase in hydrogen content at low H2 pressures was observed for the Pd/V nanoparticles, and a 0.47 wt% H2 adsorption capacity was achieved under a H2 pressure of 10 MPa at 303 K. Hydrogen storage performances of Pd/V alloy nanoparticles was superior compared with Pd nanoparticles.

  1. Enhanced wound healing activity of Ag-ZnO composite NPs in Wistar Albino rats.

    PubMed

    Kantipudi, Sravani; Sunkara, Jhansi Rani; Rallabhandi, Muralikrishna; Thonangi, Chandi Vishala; Cholla, Raga Deepthi; Kollu, Pratap; Parvathaneni, Madhu Kiran; Pammi, Sri Venkata Narayana

    2018-06-01

    In the present study, silver (Ag) and Ag-zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound-healing efficacy on rat model. Ultraviolet-visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X-ray diffraction analysis Ag-ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face-centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag-ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi-hexagonal NPs with distribution of particle size of 20-40 nm. Furthermore, the authors investigated the wound-healing properties of Ag-ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.

  2. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  3. Green Synthesis of Fe and Fe/Pd Bimetallic Nanoparticles in Membranes for Reductive Degradation of Chlorinated Organics

    EPA Science Inventory

    Membranes containing reactive nanoparticles (Fe and Fe/Pd) immobilized in a polymer film (polyacrylic acid, PAA-coated polyvinylidene fluoride, PVDF membrane) are prepared by a new method. In the present work a biodegradable, non-toxic -“green” reducing agent, green tea extract ...

  4. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications.

    PubMed

    Singh, Richa; Shedbalkar, Utkarsha U; Wadhwani, Sweety A; Chopade, Balu A

    2015-06-01

    Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.

  5. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  6. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles.

    PubMed

    Patil, Maheshkumar Prakash; Kim, Gun-Do

    2017-01-01

    This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.

  7. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells

    PubMed Central

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Background Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. Methods The formation of AuNPs was characterized by UV–visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. Results The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV–visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20–40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2–2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. Conclusion In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and

  8. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells.

    PubMed

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. The formation of AuNPs was characterized by UV-visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV-visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20-40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2-2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water

  9. Amplified detection of streptomycin using aptamer-conjugated palladium nanoparticles decorated on chitosan-carbon nanotube.

    PubMed

    Aghajari, Rozita; Azadbakht, Azadeh

    2018-04-15

    A streptomycin-specific aptamer was used as a receptor molecule for ultrasensitive quantitation of streptomycin. The glassy carbon (GC) electrode was modified with palladium nanoparticles decorated on chitosan-carbon nanotube (PdNPs/CNT/Chi) and aminated aptamer against streptomycin. Modification of the sensing interface was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), wavelength-dispersive X-ray spectroscopy (WDX), cyclic voltammetry (CVs), and electrochemical impedance spectroscopy (EIS). The methodologies applied for designing the proposed biosensor are based on target-induced conformational changes of streptomycin-specific aptamer, leading to detectable signal change. Sensing experiments were performed in the streptomycin concentration range from 0.1 to 1500 nM in order to evaluate the sensor response as a function of streptomycin concentration. Based on the results, the charge transfer resistance (R ct ) values increased proportionally to enhanced streptomycin content. The limit of detection was found to be as low as 18 pM. The superior selectivity and affinity of aptamer/PdNPs/CNT/Chi modified electrode for streptomycin recognition made it favorable for versatile applications such as streptomycin analysis in real samples. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Preparation of Bioactive Polysaccharide Nanoparticles with Enhanced Radical Scavenging Activity and Antimicrobial Activity.

    PubMed

    Qin, Yang; Xiong, Liu; Li, Man; Liu, Jing; Wu, Hao; Qiu, Hongwei; Mu, Hongyan; Xu, Xingfeng; Sun, Qingjie

    2018-05-02

    Because of their biocompatibility and biodegradability in vivo, natural polysaccharides are effective nanocarriers for delivery of active ingredients or drugs. Moreover, bioactive polysaccharides, such as tea, Ganoderma lucidum, and Momordica charantia polysaccharides (TP, GLP, and MCP), have antibacterial, antioxidant, antitumor, and antiviral properties. In this study, tea, Ganoderma lucidum, and Momordica charantia polysaccharide nanoparticles (TP-NPs, GLP-NPs, and MCP-NPs) were prepared via the nanoprecipitation approach. When the ethanol to water ratio was 10:1, the diameter of the spherical polysaccharide nanoparticles was the smallest, and the mean particle size of the TP-NPs, GLP-NPs, and MCP-NPs was 99 ± 15, 95 ± 7, and 141 ± 9 nm, respectively. When exposed to heat, increased ionic strength and pH levels, the nanoparticles exhibited superior stability and higher activity than the corresponding polysaccharides. In physiological conditions (pH 7.4), the nanoparticles underwent different protein adsorption capacities in the following order: MCP-NPs> TP-NPs> GLP-NPs. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, and superoxide anion radical scavenging rates of the nanoparticles were increased by 9-25% as compared to the corresponding polysaccharides. Compared to the bioactive polysaccharides, the nanoparticles enhanced antimicrobial efficacy markedly and exhibited long-acting antibacterial activity.

  11. Molecular Control of TiO2-NPs Toxicity Formation at Predicted Environmental Relevant Concentrations by Mn-SODs Proteins

    PubMed Central

    Wu, Qiuli; Li, Yiping; Tang, Meng; Ye, Boping; Wang, Dayong

    2012-01-01

    With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes. PMID:22973466

  12. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Science Inventory

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  13. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.

    PubMed

    Li, Xiaoling; Wang, Zi; Li, Yanji; Bian, Kexin; Yin, Tian; Gao, Dawei

    2018-01-01

    As the widely use of gold nanoparticles (AuNPs) in drug delivery, the precise control on the size and morphology of the AuNPs is urgently required. In this scenario, traditional synthesis methods cannot meet current requirement because of their inherent defects. We have depicted here a novel method for fabricating monodispersed large size gold nanoparticles, based on the self-assembly of bacitracin. The AuNPs could be facilely, low-cost, and green synthesized with repeatability and controllability in this method. The Bac gold nanoparticles (Bac-AuNPs), composed by bacitracin core and gold shell, exhibited a spherical morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The mean diameter of the Bac-AuNPs was 89nm. The nanoparticles were mono-dispersed and the zeta potential of the nanoparticles was 4.1±0.64mV. Notably, in cell viability assay, the Bac-AuNPs showed less toxicity to HepG2 cells and HEK293 cells compared to small size AuNPs. Collectively, the size, rheological characteristic and the biocompatibility supported the use of the gold nanoparticles as intracellular delivery vehicles for drug delivery, especially for tumor therapy. And this study could provide a maneuverable, controllable and green strategy for the synthesis of AuNPs, which would be applied in disease diagnosis and therapy with biosafety. Copyright © 2017. Published by Elsevier B.V.

  14. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts

    DOE PAGES

    Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...

    2016-05-23

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less

  15. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  16. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin.

    PubMed

    Dubey, Kriti; Anand, Bibin G; Badhwar, Rahul; Bagler, Ganesh; Navya, P N; Daima, Hemant Kumar; Kar, Karunakar

    2015-12-01

    Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.

  17. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  18. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    PubMed

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry

  20. Effect of AgCl NPs: Physical, thermal, absorption and luminescence properties

    NASA Astrophysics Data System (ADS)

    Nurhafizah, H.; Rohani, M. S.

    2017-06-01

    Silver nanoparticles (AgCl NPs) are embedded in Er3+/Nd3+ co-doped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1,2 and 3 mol% via conventional melt-quenching technique. The physical properties such as density, ionic packing density, refractive index and electronic polarizability are computed utilizing the usual method. The existence of AgCl NPs with an average size of 3.7 nm is confirmed using TEM analysis. Moreover, the thermal stability and Hruby criterion of the glass decreases as the AgCl NPs content increases. The direct optical band gap are found decrease as the AgCl NPs content increase, but both indirect optical band gap and Urbach energy are found increases as AgCl NPs content increases. The luminescence spectra shows two strong emission which is the purple emission at 436 nm and red emission at 724 nm which also been observed has strong quenching due to the AgCl NPs, Er3+/Nd3+ dopant and modifier, lithium niobate which possessed magnetic penetration. These glass compositions may be potential for various applications such as solid state devices including laser.

  1. The effect of initial pressure on growth of FeNPs in amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, S. Ali; Darabi, Elham

    2018-04-01

    Iron nanoparticles in amorphous hydrogenated carbon films (FeNPs@a-C:H) were prepared with RF-sputtering and RFPECVD methods by acetylene gas and Fe target. In this paper, deposition and sputtering process were carried out under influence of different initial pressure gas. The morphology and roughness of surface of samples were studied by AFM technique and also TEM images show the exact size of FeNPs and encapsulated FeNPs@a-C:H. The localized surface plasmon resonance peak (LSPR) of FeNPs was studied using UV-vis absorption spectrum. The results show that the intensity and position of LSPR peak are increased by increasing initial pressure. Also, direct energy gap of samples obtained by Tauc law is decreased with respect to increasing initial pressure.

  2. Flexible porous coordination polymer of Ni(II) for developing nanoparticles through acid formation and redox activity of the framework

    NASA Astrophysics Data System (ADS)

    Agarwal, Rashmi A.

    2017-10-01

    Immobilization of the nanoparticles (NPs) in a two dimensional porous coordination polymer (PCP) is currently an emerging field for a number of applications. But still it is a great challenge to fabricate any specified metal NPs in a single network. Herein the synthesis of Au, Pd, Mn, Fe, Cu, Zn, Mg, Li, Fe/Cu, Zn/Mg etc, NPs in a highly flexible PCP of Ni(II); {[Ni3(TBIB)2(BTC)2(H2O)6]·5C2H5OH·9H2O}n [TBIB = 1,3,5-tri(1H-benzo[d]imidazol-1-yl)benzene, H3BTC = 1,3,5-benzenetricarboxylic acid] have been reported. This universal host is able to grow mixed metal NPs from mixed metal precursors. Monodentate carboxylate groups of BTC linker act as anchoring sites for the metal ions of the metal precursors. This is the main driving force to grow NPs within the cavities along with the high flexibility of this polymer at room temperature. Mechanism involves acid formation followed by redox reaction to synthesize metal NPs explained by EPR and FTIR. Paramagnetic properties have been shown by as-synthesized Fe NPs integrated framework at room temperature under applied magnetic field up to 17,500 Oe.

  3. Fungicidal activity of silver nanoparticles against Alternaria brassicicola

    NASA Astrophysics Data System (ADS)

    Gupta, Deepika; Chauhan, Pratima

    2016-04-01

    This work highlighted the fungicidal properties of silver nanoparticles against Alternaria brassicicola. Alternaria brassicicola causes Black spot of Cauliflower, radish, cabbage, kale which results in sever agricultural loss. We treat the synthesised silver nanoparticles (AgNPs) of 10, 25, 50, 100 and 110 ppm concentrations against Alternaria brassicicola on PDA containing Petri dish. We calculated inhibitory rate (%) in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. Treatment with 100ppm AgNPs resulted in maximum inhibition of Alternaria brassicicola i.e.92.2%. 110ppm of AgNPS also shows the same result, therefore 100ppm AgNPs was treated as optimize concentration. AgNPs effectively inhibited the growth of a Alternaria brassicicola, which suggests that AgNPs could be used as fungicide in plant disease management. Further research and development are necessary to translate this technology into plant disease management strategies.

  4. The role of lipid nanoparticles and its surface modification in reaching the brain: an approach for neurodegenerative diseases treatment.

    PubMed

    Pedraz, Jose Luis; Igartua, Manoli; Maria, Rosa; Hernando, Sara

    2018-05-09

    Nanomedicine is a field of science that employs materials in the nanometer scale. Specifically, the use of nanoparticles (NPs) has some medical applications due to their structure, for example, the ability to cross the biological barriers, and their effectiveness avoiding some drug delivery problems. Because of that, in the last years, the use of NPs has been raised as a workable solution for neurodegenerative diseases (ND) treatment [1,2]. NDs are characterized by a continuous structural and functional neuronal loss, usually correlated with neuronal death. Between NDs, Alzheimer disease (AD) and Parkinson's disease (PD) are the most common disorders worldwide, becoming a serious economic burden and public health problem [3]. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    PubMed

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  6. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Tomonaga, Hiroyuki; Yamamoto, Tomokazu; Matsumura, Syo; Zulkifli, Nor Diana Binti; Ishimoto, Takayoshi; Koyama, Michihisa; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Nagaoka, Katsutoshi

    2016-06-01

    Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd-Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

  7. Self-Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy.

    PubMed

    Dai, Yunlu; Guo, Junling; Wang, Ting-Yi; Ju, Yi; Mitchell, Andrew J; Bonnard, Thomas; Cui, Jiwei; Richardson, Joseph J; Hagemeyer, Christoph E; Alt, Karen; Caruso, Frank

    2017-08-01

    Therapeutic nanoparticles hold clinical promise for cancer treatment by avoiding limitations of conventional pharmaceuticals. Herein, a facile and rapid method is introduced to assemble poly(ethylene glycol) (PEG)-modified Pt prodrug nanocomplexes through metal-polyphenol complexation and combined with emulsification, which results in ≈100 nm diameter nanoparticles (PtP NPs) that exhibit high drug loading (0.15 fg Pt per nanoparticle) and low fouling properties. The PtP NPs are characterized for potential use as cancer therapeutics. Mass cytometry is used to quantify uptake of the nanoparticles and the drug concentration in individual cells in vitro. The PtP NPs have long circulation times, with an elimination half-life of ≈18 h in healthy mice. The in vivo antitumor activity of the PtP NPs is systematically investigated in a human prostate cancer xenograft mouse model. Mice treated with the PtP NPs demonstrate four times better inhibition of tumor growth than either free prodrug or cisplatin. This study presents a promising strategy to prepare therapeutic nanoparticles for biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and Catalytic Properties of Au Pd Nanoflowers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jianguang; Wilson, Adria; Howe, Jane Y

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 0.1 nm) shell of Pd. UV visible spectra also indicate Pd clusters formedmore » in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.« less

  9. Synthesis of Au-Pd Nanoflowers Through Nanocluster Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jianguang; Howe, Jane Y; Chi, Miaofang

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 {+-} 0.1 nm) shell of Pd. UV-visible spectra also indicate Pd clusters formedmore » in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core-shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core-shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.« less

  10. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution.

    PubMed

    Wang, Ting; Su, Jin; Jin, Xiaoying; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2013-11-15

    Bentonite supported Fe/Pd nanoparticles (B/nZVI/Pd) were synthesized as composites that exhibit functionalities assisting in the removal of methyl orange (MO) from aqueous solution. The results showed that 91.87% of MO was removed using B/nZVI/Pd, while only 85% and 1.41% of MO were removed using nZVI/Pd and bentonite after 10 min, respectively. The new findings include that the presence of bentonite decreased the aggregation of nZVI/Pd and nZVI in the composite played its role as a reductant, while Pd(0) acted as the catalyst to enhance the degradation of MO, which were confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis analysis and the batch experiments. The increase in B/nZVI/Pd loading led to greater removal efficiency, while decolorization efficiency declined in the presence of anions such as nitrate, sulfite and carbonate, especially nitrate, which decreased the apparent rate constant k(obs) almost 17.06-fold. The kinetics study indicated that the degradation of MO fitted well to the pseudo-first-order model, where the k(obs) was 0.0721 min(-1). Finally, the reactivity of aged B/nZVI/Pd was investigated, and the application of B/nZVI/Pd in wastewater indicated a removal efficiency higher than 93.75%. This provided a new environmental pollution management option for dyes-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Palladium Nanoparticles Induce Disturbances in Cell Cycle Entry and Progression of Peripheral Blood Mononuclear Cells: Paramount Role of Ions

    PubMed Central

    Clemente, Emanuela; Di Giampaolo, Luca; Mariani-Costantini, Renato; Leopold, Kerstin; Schindl, Roland; Lotti, Lavinia V.; Sabbioni, Enrico; Niu, Qiao; Di Gioacchino, Mario

    2014-01-01

    There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are released in the environment through many applications. We previously studied the toxicity of Pd-NP at high concentrations; here we address the possible toxicity of Pd-NP at low, subtoxic doses. In particular, we have exposed normal human PBMC entering into the first in vitro mitotic division to Pd-NP and to Pd(IV) ions to evaluate ROS generation and cell cycle progression. We have measured a statistically significant increase of intracellular ROS in Pd(IV) exposed cells, but not in Pd-NP exposed cells. TEM revealed accumulation of lipid droplets and autophagic and mitophagic vacuoles, which appeared more conspicuous in cells exposed to Pd(IV) ions than to Pd-NP. Pd-NP were visible in the cytoplasm of Pd-NP exposed cells. Pd-NP addition was associated with a significant increase of cells within the G0/G1-phase and a significant reduction in GS- and G2/M-phases. Cells exposed to Pd(IV) ions showed a significant amplification of these cell cycle alterations. These results suggest that ions, per se or released by NPs, are the true inducers of Pd toxicity. It will be essential to verify whether the observed disturbance represents a temporary response or might result in permanent alterations. PMID:25105151

  12. Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion.

    PubMed

    Zhang, Hongbo; Gu, Xiang-Kui; Canlas, Christian; Kropf, A Jeremy; Aich, Payoli; Greeley, Jeffrey P; Elam, Jeffrey W; Meyers, Randall J; Dumesic, James A; Stair, Peter C; Marshall, Christopher L

    2014-11-03

    The terraces, edges, and facets of nanoparticles are all active sites for heterogeneous catalysis. These different active sites may cause the formation of various products during the catalytic reaction. Here we report that the step sites of Pd nanoparticles (NPs) can be covered precisely by the atomic layer deposition (ALD) method, whereas the terrace sites remain as active component for the hydrogenation of furfural. Increasing the thickness of the ALD-generated overcoats restricts the adsorption of furfural onto the step sites of Pd NPs and increases the selectivity to furan. Furan selectivities and furfural conversions are linearly correlated for samples with or without an overcoating, though the slopes differ. The ALD technique can tune the selectivity of furfural hydrogenation over Pd NPs and has improved our understanding of the reaction mechanism. The above conclusions are further supported by density functional theory (DFT) calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst

    NASA Astrophysics Data System (ADS)

    Yao, Fang; Li, Xiao; Wan, Chao; Xu, Lixin; An, Yue; Ye, Mingfu; Lei, Zhao

    2017-12-01

    Bimetallic AgPd nanoparticles with various molar ratios immobilized on graphitic carbon nitride (g-C3N4) were successfully synthesized via a facile co-reduction approach. The powder XRD, XPS, TEM, EDX, ICP-AES and BET were employed to characterize the structure, size, composition and loading metal electronic states of the AgPd/g-C3N4 catalysts. The catalytic property of as-prepared catalysts for the dehydrogenation of formic acid (FA) with sodium formate (SF) as the additive was investigated. The performance of these catalysts, as indicated by the turnover frequency (TOF), depended on the composition of the prepared catalysts. Among all the AgPd/g-C3N4 catalysts tested, Ag9Pd91/g-C3N4 was found to be an exceedingly high activity for decomposing FA into H2 with TOF up to 480 h-1 at 323 K. The prepared catalyst is thus a potential candidate for triggering the widespread use of FA for H2 storage.

  14. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    NASA Astrophysics Data System (ADS)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  15. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles.

    PubMed

    Yan, Jun; Liu, Shi; Zhang, Zhenqin; He, Guangwu; Zhou, Ping; Liang, Haiying; Tian, Lulu; Zhou, Xuemin; Jiang, Huijun

    2013-11-01

    Pd-Pt bimetallic nanoparticles anchored on functionalized reduced graphene oxide (RGO) nanomaterials were synthesized via a one-step in situ reduction process, in which Pt and Pd ions were first attached to poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene oxide (GO) sheets, and then the encased metal ions and GO were subjected to simultaneous reduction by ethylene glycol. The as-prepared Pd3Pt1/PDDA-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical methods. In addition, an electrochemical sensor based on the graphene nanocomposites was fabricated for the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in their ternary mixture. Three well-separated voltammetric peaks along with remarkable increasing electro-oxidation currents were obtained in differential pulse voltammetry (DPV) measurements. Under the optimized conditions, there were linear relationships between the peak currents and the concentrations in the range of 40-1200 μM for AA, 4-200 μM for DA and 4-400 μM for UA, with the limit of detection (LOD) (based on S/N=3) of 0.61, 0.04 and 0.10 μM for AA, DA and UA, respectively. This improved electrochemical performance can be attributed to the synergistic effect of metallic nanoparticles and RGO and the combination of the bimetallic nanoparticles. Furthermore, the practical electroanalytical utility of the sensor was demonstrated by the determination of AA, DA and together with UA in human urine and blood serum samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Fungal synthesis of size-defined nanoparticles

    NASA Astrophysics Data System (ADS)

    Zielonka, Aleksandra; Klimek-Ochab, Magdalena

    2017-12-01

    Fungi with metabolic capacities can efficiently synthesize a wide range of nanoparticles (NPs). This biotransformation process and its product have extensive applications especially for industry, agriculture and medicine, where NPs size and shape is essential and can be defined by specific analytical methods. Fungi cultivation and further bioconversion can be fully controlled to obtain the desired nanoparticles. Additionally, this review provides information about the fungus F. oxysporum, which is able to synthesize the largest amount of different types of NPs.

  17. Biogenesis of Selenium Nanoparticles Using Green Chemistry.

    PubMed

    Shoeibi, Sara; Mozdziak, Paul; Golkar-Narenji, Afsaneh

    2017-11-09

    Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se 2- ) to SeNPs without charge (Se 0 ). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

  18. Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.

    2016-12-01

    In this research work, extracellular biosynthesis of gold nanoparticles (AuNPs) using marine bacterial isolates (Streptomyces sp.) as a reducing/capping/stabilizing bio-agent and chlolauric acid (HAuCl4) as a precursor has been investigated. Surface modification of cotton and viscose knitted fabrics using O2-plasma followed by subsequent treatment with bio-synthesized AuNPs alone and in combination with TiO2NPs or ZnONPs to impart new functional properties namely antibacterial and UV-blocking were studied. The results show that loading of nominated nanomaterials onto the activated fabric samples results in a significant improvement in antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) along with a remarkable enhancement in the UV-protection functionality of the treated fabrics. The highest antibacterial and anti-UV values were obtained when O2-plasma treated fabrics were loaded with AuNPs/ZnONPs combination, irrespective of the used substrate. The imparted functional properties demonstrated remarkable retention even after 15 washings.

  19. Evaluating toxicity of copper(II) oxide nanoparticles (CuO-NPs) through waterborne exposure to tilapia (Oreochromis mossambicus) by tissue accumulation, oxidative stress, histopathology, and genotoxicity.

    PubMed

    Shahzad, Khurram; Khan, Muhammad Naeem; Jabeen, Farhat; Kosour, Nasreen; Chaudhry, Abdul Shakoor; Sohail, Muhammad

    2018-06-01

    Metal oxide nanoparticles are widely used in industries, and peak level can be confirmed in their surroundings. In the present study, the sub-lethal effects of CuO-NPs from low to high concentration as 0.5 to 1.5 mg/L were observed in tilapia (Oreochromis mossambicus). Accumulation of copper from CuO-NPs was increased with the increase in doses, and maximum accumulation was found in the gill than liver and muscles. The increased lipid peroxidation level was observed in the gill as compared to liver, and the similar results were obtained in catalase and glutathione while superoxide dismutase level was higher in the liver than gills. In histological alterations, gill edema, curved tips, fusion of gill lamellae, and thickening of primary and secondary gill lamellae were observed. Necrosis and apoptosis with condensed nuclear bodies and pyknotic nuclei were observed in the liver at the highest dose concentration. In a genotoxic study, the highest value of % tail DNA and olive tail movement was observed with increasing concentrations. Copper oxide nanoparticles has greater potential to accumulate in the soft tissues, which may cause respiratory distress such as oxidative stress, induction of antioxidant defense by raising glutathione, organ pathology, and genotoxicity.

  20. Effects of Functionalization of TiO2 Nanotube Array Sensors with Pd Nanoparticles on Their Selectivity

    PubMed Central

    Park, Sunghoon; Kim, Soohyun; Park, Suyoung; Lee, Wan In; Lee, Chongmu

    2014-01-01

    This study compared the responses of Pd-functionalized and pristine titanate (TiO2) nanotube arrays to ethanol with those to acetone to determine the effects of functionalization of TiO2 nanotubes with Pd nanoparticles on the sensitivity and selectivity. The responses of pristine and Pd-functionalized TiO2 nanotube arrays to ethanol gas at 200 °C were ∼2877% and ∼21,253%, respectively. On the other hand, the responses of pristine and Pd-functionalized TiO2 nanotube arrays to acetone gas at 250 °C were ∼1636% and 8746% respectively. In the case of ethanol sensing, the response and recovery times of Pd-functionalized TiO2 nanotubes (10.2 and 7.1 s) were obviously shorter than those of pristine TiO2 nanotubes (14.3 and 8.8 s), respectively. In contrast, in the case of acetone sensing the response and recovery times of Pd-functionalized TiO2 nanotubes (42.5 and 19.7 s) were almost the same as those of pristine TiO2 nanotubes (47.2 and 17.9 s). TiO2 nanotube arrays showed the strongest response to ethanol and Pd functionalization was the most effective in improving the response of TiO2 nanotubes to ethanol among six different types of gases: ethanol, acetone, CO, H2, NH3 and NO2. The origin of the superior sensing properties of Pd-functionalized TiO2 nanotubes toward ethanol to acetone is also discussed. PMID:25166499

  1. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract.

    PubMed

    Rashid, Md Mamun Or; Ferdous, Jannatul; Banik, Sujan; Islam, Md Rabiul; Uddin, A H M Mazbah; Robel, Fataha Nur

    2016-07-26

    Present study has been conducted to know the anthelmintic activity of polyaniline coated silver nanoparticles (AgNPs) synthesized from Momordica charantia fruit extract. By reduction of AgNO3 in presence of NaBH4, silver nanoparticles were prepared. After mixing silver nanoparticles and extracts, coating was given on nanoparticles using polyaniline. Prepared nanoparticles were characterized by Visual, UV, FTIR spectroscopy, SEM techniques, and TEM analysis. The FTIR results implied that AgNPs were successfully synthesized and capped with bio-compounds present in the extract. The result showed that death times of worm were 35.12 ± 0.5 and 59.3 ± 0.3 minutes for M. charantia extract and Ag-nanoparticles individually. But when these two combined together, paralysis and death time fall drastically which were only 6.16 ± 0.6 and 9.1 ± 0.4 minutes respectively. Albendazole tablet was used as standard, which made worms death in 3.66 ± 0.1 minutes. Ag-Extract NPs showed strong anthelmintic activity against worm. This study has paved the way for further research to design new anthelmintic drug from the combination of M. charantia and AgNPs.

  2. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    NASA Astrophysics Data System (ADS)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  3. Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles

    NASA Astrophysics Data System (ADS)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    In-situ detection and characterization of nanoparticles in biological media as well as in food or other complex samples is still a big challenge for existing analytical methods. Here we describe a label-free and cost-effective analytical method for detection of nanoparticles in the concentration range 106 -1010 NPs/ml. The proposed method is based on the surface plasmon resonance microscopy (SPRM) with a large field of view ( 1.3mm2 ). It is able to detect and count adsorbing nanoparticles individually, totally up to the hundreds of thousands of NPs on the sensor surface. At constant diffusion conditions the detection rate is proportional to the number concentration of NPs, this provides an approach to determine the NPs concentration. The adsorption of nanoparticle can be manipulated by the surface functionalization, pH and electrolyte concentration of suspensions. Images of detected nanoparticles can be quantified in order to characterize them individually. The image intensity grows quasi-linearly with nanoparticle size for the given material. However, the size and material of nanoparticle cannot be resolved directly from the image. For determination of chemical composition, SPRM can be assisted by electrochemical analysis. In this case, the gold sensor surface is used both as a resonant media for plasmon microscopy and as a working electrode. Under potential sweep, the adsorbed NPs can be subjected to electrochemical dissolution, which is detected optically. The potential of this conversion characterizes the material of NPs.

  4. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Pálmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltán; Nagy, Lívia Naszályi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dextran Nanoparticle Synthesis and Properties

    PubMed Central

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A.; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W.; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier. PMID:26752182

  6. Dextran Nanoparticle Synthesis and Properties.

    PubMed

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.

  7. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  8. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  9. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE PAGES

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...

    2017-10-06

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  10. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    PubMed Central

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-01-01

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications. PMID:28629179

  11. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    PubMed

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  12. Phytofabrication of bioinduced silver nanoparticles for biomedical applications.

    PubMed

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60-80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs.

  13. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    PubMed Central

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  14. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition

    PubMed Central

    Singh, Priyanka; Pandit, Santosh; Garnæs, Jørgen; Tunjic, Sanja; Mokkapati, Venkata RSS; Sultan, Abida; Thygesen, Anders; Mackevica, Aiga; Mateiu, Ramona Valentina; Daugaard, Anders Egede; Baun, Anders; Mijakovic, Ivan

    2018-01-01

    Background Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). Methods and results The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV–visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. Conclusion The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20–40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to

  15. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.

    PubMed

    Nasiriboroumand, Majid; Montazer, Majid; Barani, Hossein

    2018-02-01

    The potential application of any nanoparticles, including silver nanoparticles (AgNPs), strongly depends on their stability against aggregation. In the current study, an aqueous extract of pomegranate peel was used as a stabilizer during synthesis of AgNPs. Nanoparticles have been prepared by the chemical reduction method from an aqueous solution of silver nitrate in the presence of sodium borohydride as a reducing agent. The AgNPs were characterized by dynamic light scattering (DLS), zeta-potential measurements, UV-Vis spectroscopy and transmission electron microscopy (TEM). The antibacterial efficiency of AgNPs against Escherichia coli was investigated. The size, polydispersity index, FWHM, and colloidal stability of nanoparticles in dispersion depends on the extract concentrations. In the presence of pomegranate peel extract, the nanoparticles suspension shows colloidal stability at least for a week. Our studies show that synthesized AgNPs with the above described procedure were stable at pH = 3-12 and in the temperature range of 25-85 °C. Additionally, AgNPs exhibit antibacterial properties, especially at the lowest amount of extract to silver ratio (K Extract/Ag ). Copyright © 2018. Published by Elsevier B.V.

  16. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Chattopadhyay, Saptarshi; Kim, Jae Jin; Kim, Sang-Joon; Tuller, Harry L.; Rutledge, Gregory C.; Kim, Il-Doo

    2016-04-01

    Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition, catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, i.e., apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO3 NTs. The resulting Pd functionalized macroporous WO3 NTs were demonstrated to be high performance hydrogen (H2) sensors. In particular, Pd-functionalized macroporous WO3 NTs exhibited a very high H2 response (Rair/Rgas) of 17.6 at 500 ppm with a short response time. Furthermore, the NTs were shown to be highly selective for H2 compared to other gases such as carbon monoxide (CO), ammonia (NH3), and methane (CH4). The results demonstrate a new synthetic method to prepare highly porous nanotubular structures with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing.Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition

  17. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    NASA Astrophysics Data System (ADS)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-03-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.

  18. Laser synthesis of hybrid nanoparticles for biomedicine

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Lalayan, A. A.

    2018-04-01

    The extraordinary properties of size-tunable nanoparticles (NPs) have given rise to their widespread applications in Nanophotonics, Biomedicine, Plasmonics etc. Semiconductor and metal NPs have found a number of significant applications in the modern biomedicine due to ultrasmall sizes (1-10 nm) and the size-dependent flexibility of their optical properties. In the present work passive Q-switched Nd:YAG pulsed laser was used to synthesize NPs by method of laser ablation in different liquids. For cases of hybrid metal NPs we have demonstrated that plasmon resonance can be modified and tuned from the plasmon resonances of pure metal NPs. The shifted plasmon resonance frequency at 437 nm for Au-Ag hybrid NPs, and 545 nm for Au-Cu hybrid NPs have been observed. Effectiveness of biotissue ablation in the case of the tissue sample that colored with metal NPs was approximately on 4-5 times larger than for the sample with non-colored area. Laser welding for deep-located biotissue layers colored by metal NPs has been realized. The luminescence properties of the colloidal hybrid Si-Ni nanoparticles' system fabricated by pulsed laser ablation are also considered. The red-shifted photoluminescence of this system has been registered in the blue range of the spectrum because of the Stark effect in the Coulomb field of the charged Ni nanoparticles. Summarizing, the knowledge of peculiarities of optical properties of hybrid NPs is very important for biomedical applications. More complex nanoassemblies can be easily constructed by the presented technique of laser synthesis of colloidal QDs including complexes of NPs of different materials.

  19. Substrates coated with silver nanoparticles as a neuronal regenerative material

    PubMed Central

    Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit

    2014-01-01

    Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701

  20. Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3–Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes

    EPA Science Inventory

    A nanocatalyst comprising ultra-small Pd/PdO nanoparticles (<5 nm) supported on maghemite was prepared by a co-precipitation protocol using inexpensive raw materials and was deployed successfully in various significant synthetic transformations, namely the Heck–Mizoroki olefinati...

  1. Palladium nanoparticle deposition via precipitation: a new method to functionalize macroporous silicon

    PubMed Central

    Scheen, Gilles; Bassu, Margherita; Douchamps, Antoine; Zhang, Chao; Debliquy, Marc; Francis, Laurent A

    2014-01-01

    We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl2/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated. This method is compared to electroless plating, which is a standard method for the deposition of Pd nanoparticles. Scanning electron microscopy and computerized image processing are used to evaluate size, shape, surface density and deposition homogeneity of the Pd nanoparticles on the pore walls. Energy-dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the composition of the deposited nanoparticles. In contrast to electroless plating, the proposed method leads to homogeneously distributed Pd nanoparticles along the macropores depth with a surface density that increases proportionally with the PdCl2 concentration. Moreover EDX and XPS analysis showed that the nanoparticles are composed of Pd in its metallic state, while nanoparticles deposited by electroless plating are composed of both metallic Pd and PdOx. PMID:27877732

  2. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles.

    PubMed

    Hyder, Fahmeed; Manjura Hoque, S

    2017-01-01

    Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pH e ) is a cancer hallmark, pH e imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pH e from paramagnetically shifted signals and the pH e accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.

  3. Determination of size and mass-and number-based concentration of biogenic SeNPs synthesized by lactic acid bacteria by using a multimethod approach.

    PubMed

    Moreno-Martin, Gustavo; Pescuma, Micaela; Pérez-Corona, Teresa; Mozzi, Fernanda; Madrid, Yolanda

    2017-11-01

    Selenium nanoparticles (SeNPs) were synthesized by a green technology using lactic acid bacteria (LAB, Lactobacillus acidophilus, L. delbrueckii subsp. bulgaricus and L. reuteri). The exposure of aqueous sodium selenite to LAB led to the synthesis of SeNPs. Characterization of SeNPs by transmission electron microscopy with energy dispersive X-ray spectrum (EDXS) analysis revealed the presence of stable, predominantly monodispersed and spherical SeNPs of an average size of 146 ± 71 nm. Additionally, SeNPs hydrodynamic size was determined by dispersive light scattering (DLS) and nanoparticle tracking analysis (NTA). For this purpose, a methodology based on the use of surfactants in basic medium was developed for isolating SeNPs from the bacterial pellet. The hydrodynamic size values provided by DLS and NTA were 258 ± 4 and 187 ± 56 nm, respectively. NTA measurements of number-based concentration reported values of (4.67±0.30)x10 9 SeNPs mL -1 with a relative standard deviation lower than 5% (n = 3). The quantitative results obtained by NTA were supported by theoretical calculations. Asymmetrical flow field flow fractionation (AF 4 ) on line coupled to the inductively couple plasma mass spectrometry (ICP-MS) and off-line coupled to DLS was further employed to characterize biogenic SeNPs. The distribution of the particle size for the Se-containing peak provide an average size of (247 ± 14) nm. The data obtained by independent techniques were in good agreement and the developed methodology could be implemented for characterizing NPs in complex matrices such as biogenic nanoparticles embedded inside microbial material. Copyright © 2017. Published by Elsevier B.V.

  4. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  6. Nitric oxide-releasing porous silicon nanoparticles.

    PubMed

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J; McInnes, Steven Jp; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  7. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  8. Novel method for synthesis of silver nanoparticles and their application on wool

    NASA Astrophysics Data System (ADS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-08-01

    In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.

  9. Si-based Nanoparticles: a biocompatibility study

    NASA Astrophysics Data System (ADS)

    Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.

    2010-10-01

    Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.

  10. Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition

    NASA Astrophysics Data System (ADS)

    Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy

    2017-01-01

    In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.

  11. Antimicrobial kinetics of Alstonia scholaris bark extract-mediated AgNPs

    NASA Astrophysics Data System (ADS)

    Supraja, N.; Prasad, T. N. V. K. V.; David, E.; Giridhara Krishna, T.

    2016-06-01

    Nanobiotechnology is considered as one of the important branches of nanotechnology, and research on synthesis of nanoscale materials, silver in particular, using plant and plant parts has been progressing rapidly. Herein, we used bark extract of Alstonia scholaris one of the most important medicinal plants to synthesize silver nanoparticles (AgNPs) which exhibited excellent antimicrobial properties against biofilm formed in drinking water PVC pipes. The biosynthesis of silver nanoparticles was done by treating 90 mL of 1 mM AgNO3 aqueous solution with 10 mL of 5 % bark extract. As-prepared silver nanoparticles were characterized using the biophysical techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, and dynamic light scattering for the measurement of hydrodynamic diameter and zeta potential. The kinetics of the antimicrobial activity against PVC biofilm of prepared silver nanoparticles were done using comparative solution suspension time-killing assessments and which are evidenced in Epi-fluorescent microscopic observations.

  12. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs

  13. Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation

    PubMed Central

    Żuk, Maciej; Tupikowska, Martyna

    2018-01-01

    By coating plasmonic nanoparticles (NPs) with thermally responsive liquid crystals (LCs) it is possible to prepare reversibly reconfigurable plasmonic nanomaterials with prospective applications in optoelectronic devices. However, simple and versatile methods to precisely tailor properties of liquid-crystalline nanoparticles (LC NPs) are still required. Here, we report a new method for tuning structural properties of assemblies of nanoparticles grafted with a mixture of promesogenic and alkyl thiols, by varying design of the latter. As a model system, we used Ag and Au nanoparticles that were coated with three-ring promesogenic molecules and dodecanethiol ligand. These LC NPs self-assemble into switchable lamellar (Ag NPs) or tetragonal (Au NPs) aggregates, as determined with small angle X-ray diffraction and transmission electron microscopy. Reconfigurable assemblies of Au NPs with different unit cell symmetry (orthorombic) are formed if hexadecanethiol and 1H,1H,2H,2H-perfluorodecanethiol were used in the place of dodecanethiol; in the case of Ag NPs the use of 11-hydroxyundecanethiol promotes formation of a lamellar structure as in the reference system, although with substantially broader range of thermal stability (140 vs. 90 °C). Our results underline the importance of alkyl ligand functionalities in determining structural properties of liquid-crystalline nanoparticles, and, more generally, broaden the scope of synthetic tools available for tailoring properties of reversibly reconfigurable plasmonic nanomaterials. PMID:29518916

  14. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Wu, Yiting; Di, Junwei

    2017-02-01

    We have coupled gold nanoparticles (AuNPs) with silver nanoparticles (AgNPs) to assemble a plasmonic sensing platform for colorimetric detection of glucose. In this system, small AuNPs ( 4 nm) can act as glucose oxidase (GOD) mimic enzyme to catalytically oxidize glucose in the presence of oxygen, producing hydrogen peroxide, which dissolves AgNPs to lead the color changes. Glucose can be detected not only by naked eyes (from yellow to red) but also by spectrophotometer in the concentration range of 5-70 μM, with detection limit of 3 μM. More importantly, we found that L-cysteine added in the system can markedly improve the selectivity for the detection of glucose. The proposed method was used to application for the detection of glucose in human serum with satisfactory results. This system is simple and low cost without using any enzymes and organic chromogenic agents.

  15. Direct Observation of the Growth of Au-Pd Core-Shell Nanoparticles Using in situ Low-Dose Liquid Cell STEM imaging

    DOE PAGES

    Bhattarai, Nabraj; Prozorov, Tanya

    2016-07-25

    Bimetallic core-shell nanoparticles are widely used as catalysts in several industrial reactions, with core-shell structures permitting facile surface modification and allowing increased stability and durability, and cost-effectiveness of the catalysts. We report, for the first time, on observing the early stages of the formation of Au-Pd core-shell bimetallic nanoparticles via the seed-mediated growth in the presence of reducing agent, while employing the low-dose scanning transmission electron microscopy imaging with the fluid cell in situ. Use of the continuous flow in situ fluid cell platform allows for delivery of reagent solutions and generation of near-native reaction environment in the reaction chamber,more » and permits direct visualization of the early stages of formation of Au-Pd core-shell structures at low dose rate (0.1 e -/(Å 2s)) in the presence of ascorbic acid. No core-shell structures were detected in the absence of reducing agent at the electron dose of 32.6 e -/Å 2. While the core-shell structures formed in situ under the low-dose imaging closely resemble those obtained in solution synthesis, the reaction kinetics in the fluid cell is affected by the radiolysis of liquid reagents induced by electron beam, altering the rate-determining reaction steps. The enhanced reduction of Pd ions leads to initial rapid growth of the nascent Pd shell along the <111> direction at the Au interface, followed by a slower rearrangement of the outer Pd layer. The latter becomes the rate-determining step in the in situ reaction and appears to follow the oriented attachment-like movement to yield a remodeled, compact and stable Au-Pd core-shell nanostructure. Our findings highlight the differences between the two reaction pathways and aid in understanding the mechanism of formation of the core-shell nanostructure in situ.« less

  16. The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Khattabi, Areen M.; Alqdeimat, Diala A.

    2018-02-01

    One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

  17. Structural characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukundan, Vineetha

    Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10 chemical ordering. The mass transport involved in sintering is attributed to grain boundary diffusion and its corresponding activation energy is estimated from the data analysis. Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles were also investigated in real time with in situ synchrotron based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. PdCu nanoparticles are interesting because they are found to be more efficient as catalysts in ethanol oxidation reaction (EOR) than monometallic Pd catalysts. The combination of metal support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. The composition of the as prepared Pd:Cu mixture in this study was 34% Pd and 66% Cu. At 300°C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (>450°C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals

  18. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.

    PubMed

    Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai

    2018-02-01

    A novel ratiometric fluorescence nanosensor for superoxide anion (O 2 •- ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb 3+ and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O 2 •- . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O 2 •- demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.

  19. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    NASA Astrophysics Data System (ADS)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against

  20. Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers

    NASA Astrophysics Data System (ADS)

    Du, Xin; He, Junhui

    2012-01-01

    Our previously fabricated amino-functionalized silica nanoparticles (NPs) with center-radially hierarchical mesopores (NH2-HMSNs) were purified by a filtration membrane and used as catalyst carriers in the current article. Noble metal NPs (Au, Pd, Pt and Au & Pt) with small sizes (3-8 nm) were successfully immobilized into the NH2-HMSNs via the deposition-precipitation method. These noble metal NPs with readily adjusted small sizes have high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Among them, Au-NH2-HMSNs were investigated as the composite catalyst in the catalytic reduction of 2-nitroaniline (2-NA) as a model reaction and exhibited excellent catalytic activity and stability. The presence of center-radially large mesopores in the NH2-HMSNs may favor the loading of noble metal NPs with high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Metal-NH2-HMSNs may be more promising composite catalysts due to their superstructure of center-radially hierarchical mesopores that maybe significantly enhance and harmonize the diffusion of guest molecules of different sizes through the porous matrices.Our previously fabricated amino-functionalized silica nanoparticles (NPs) with center-radially hierarchical mesopores (NH2-HMSNs) were purified by a filtration membrane and used as catalyst carriers in the current article. Noble metal NPs (Au, Pd, Pt and Au & Pt) with small sizes (3-8 nm) were successfully immobilized into the NH2-HMSNs via the deposition-precipitation method. These noble metal NPs with readily adjusted small sizes have high density and well-dispersed distribution on the surface of large mesopores of NH2-HMSNs. Among them, Au-NH2-HMSNs were investigated as the composite catalyst in the catalytic reduction of 2-nitroaniline (2-NA) as a model reaction and exhibited excellent catalytic activity and stability. The presence of center-radially large mesopores in the NH2-HMSNs may favor

  1. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  2. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  3. Metallic nanoparticles reduce the migration of human fibroblasts in vitro.

    PubMed

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; Dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma Dos Santos

    2017-12-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α 2 β 1 integrin (VLA-2) and the laminin receptor very late antigen 6, α 6 β 1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  4. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    NASA Astrophysics Data System (ADS)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  5. Evaluation of Pd Nanoparticle-Decorated CeO2-MWCNT Nanocomposite as an Electrocatalyst for Formic Acid Fuel Cells

    NASA Astrophysics Data System (ADS)

    Saleem, Junaid; Safdar Hossain, SK.; Al-Ahmed, Amir; Rahman, Ateequr; McKay, Gordon; Hossain, Mohammed M.

    2018-04-01

    In this work, CeO2-modified Pd/CeO2-carbon nanotube (CNT) electrocatalyst for the electro-oxidation of formic acid has been investigated. The support CNT was first modified with different amounts (5-30 wt.%) of CeO2 using a precipitation-deposition method. The electrocatalysts were developed by dispersing Pd on the CeO2-CNT supports using the borohydride reduction method. The synthesized electrocatalysts were analyzed for composition, morphology and electronic structure using x-ray diffraction (XRD), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) techniques. The formation of Pd nanoparticles on the CeO2-CNT support was confirmed using TEM. The activity of Pd/CeO2-CNT and of Pd-CNT samples upon oxidation of formic acid was evaluated by using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry. The addition of moderate amounts of cerium oxide (up to 10 wt.%) significantly improved the activity of Pd/CeO2-CNT compared to the unmodified Pd-CNT. Pd/10 wt.% CeO2-CNT showed a current density of 2 A mg-1, which is ten times higher than that of the unmodified Pd-CNT (0.2 A mg-1). Similarly, the power density obtained for Pd/10 wt.% CeO2-CNT in an air-breathing formic acid fuel cell was 6.8 mW/cm2 which is two times higher than Pd-CNT (3.2 mW/cm2), thus exhibiting the promotional effects of CeO2 to Pd/CeO2-CNT. A plausible justification for the improved catalytic performance and stability is provided in the light of the physical characterization results.

  6. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Corte, S.; Fitts, J.; Hennebel, T.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenacmore » after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.« less

  7. Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications.

    PubMed

    Lozoya-Rodríguez, Denisse A; de Lima, Renata; Fraceto, Leonardo F; Ledezma Pérez, Antonio; Bazaldua Domínguez, Mercedes; Gómez Batres, Roberto; Reyes Rojas, Armando; Orozco Carmona, Víctor

    2017-08-08

    In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray (APS) on a Ti6Al4V substrate. Following this, its antimicrobial efficiency was evaluated against the following bacterial strains: Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . This was conducted according to the Japanese Industrial Standard (JIS) Z2801:2000 "Antimicrobial Product-Test for Antimicrobial Activity and Efficacy". Scanning electron microscopy (SEM) showed that the silver nanoparticles (Ag-NPs) were evenly distributed on the coating surface. Energy dispersive X-ray spectroscopy (EDX) shows that apatite deposition occurs on a daily basis, maintaining a Ca/P rate between 2.12 and 1.45. Biocompatibility properties were evaluated with osteoblast-like cells (MC3T3-E1) by single-cell gel electrophoresis assay and Tali image cytometry.

  8. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    PubMed

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  9. Effects of TiO2 NPs on Silkworm Growth and Feed Efficiency.

    PubMed

    Li, YangYang; Ni, Min; Li, FanChi; Zhang, Hua; Xu, KaiZun; Zhao, XiaoMing; Tian, JiangHai; Hu, JingSheng; Wang, BinBin; Shen, WeiDe; Li, Bing

    2016-02-01

    Silkworm (Bombyx mori) (B. mori) is an economically important insect and a model species for Lepidoptera. It has been reported that feeding of low concentrations of titanium dioxide nanoparticles (TiO2 NPs) can improve feed efficiency and increase cocoon mass, cocoon shell mass, and the ratio of cocoon shell. However, high concentrations of TiO2 NPs are toxic. In this study, we fed B. mori with different concentrations of TiO2 NPs (5, 10, 20, 40, 80, and 160 mg/L) and investigated B. mori growth, feed efficiency, and cocoon quality. We found that low concentrations of TiO2 NPs (5 and 10 mg/L) were more effective for weight gains, with significant weight gain being obtained at 72 h (P < 0.05). TiO2 NPs at 20 mg/L or higher had certain inhibitory effects, with significant inhibition to B. mori growth being observed at 48 h. The feed efficiency was significantly improved at low concentrations of 5 and 10 mg/L for 14.6 and 13.1 %, respectively (P < 0.05). All B. mori fed with TiO2 NPs showed increased cocoon mass and cocoon shell mass; at 5 and 10 mg/L TiO2 NPs, cocoon mass was significantly increased by 8.29 and 9.39 %, respectively (P < 0.05). We also found that low concentrations (5 and 10 mg/L) of TiO2 NPs promoted B. mori growth and development, improved feed efficiency, and increased cocoon production, while high concentrations (20 mg/L or higher) of TiO2 NPs showed inhibitory effect to the B. mori. Consecutive feeding of high concentrations of TiO2 NPs led to some degrees of adaptability. This study provides a reference for the research on TiO2 NPs toxicity and the basis for the development of TiO2 NPs as a feed additive for B. mori.

  10. Synergistic Use of Gold Nanoparticles (AuNPs) and “Capillary Enzyme-Linked Immunosorbent Assay (ELISA)” for High Sensitivity and Fast Assays

    PubMed Central

    Kim, Wan-Joong; Cho, Hyo Young; Jeong, Bongjin; Byun, Sangwon; Huh, JaeDoo; Kim, Young Jun

    2017-01-01

    Using gold nanoparticles (AuNPs) on “capillary enzyme-linked immunosorbent assay (ELISA)”, we produced highly sensitive and rapid assays, which are the major attributes for point-of-care applications. First, in order to understand the size effect of AuNPs, AuNPs of varying diameters (5 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 50 nm) conjugated with Horseradish Peroxidase (HRP)-labeled anti-C reactive protein (antiCRP) (AuNP•antiCRP-HRP) were used for well-plate ELISA. AuNP of 10 nm produced the largest optical density, enabling detection of 0.1 ng/mL of CRP with only 30 s of incubation, in contrast to 10 ng/mL for the ELISA run in the absence of AuNP. Then, AuNP of 10 nm conjugated with antiCRP-HRP (AuNP•antiCRP-HRP) was used for “capillary ELISA” to detect as low as 0.1 ng/mL of CRP. Also, kinetic study on both 96-well plates and in a capillary tube using antiCRP-HRP or AuNP•antiCRP-HRP showed a synergistic effect between AuNP and the capillary system, in which the fastest assay was observed from the “AuNP capillary ELISA”, with its maximum absorbance reaching 2.5 min, while the slowest was the typical well-plate ELISA with its maximum absorbance reaching in 13.5 min. PMID:29278402

  11. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells

    PubMed Central

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242

  12. Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis.

    PubMed

    Tidke, Pritish R; Gupta, Indarchand; Gade, Aniket K; Rai, Mahendra

    2014-12-01

    We report the extracellular biosynthesis of gold nanoparticles (AuNPs) using a fungus Fusarium acuminatum. Mycosynthesis of Au-NPs was carried out by challenging the fungal cells filtrate with HAuCl 4 solution (1 mM), as nanoparticles synthesizing enzyme secrete extracellularly by the fungi. The AuNPs were characterized with the help of UV-Visible spectrophotometer, Fourier Transform Infrared spectroscopy, Zeta Potential, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). We observed absorbance peak in between 520 nm-550 nm corresponding to the surface plasmon absorbance of the gold nanoparticles. The nanoparticles synthesized in the present investigation were found to be capped by proteins. XRD results showed that the distinctive formation of crystalline gold nanoparticles in the solution. The spherical and polydispersed AuNPs in the range 8 to 28 nm with average size of 17 nm were observed by TEM analysis. We also standardized the parameters like the effect of pH, temperature and salt concentration on the biosynthesis of gold nanoparticles. It was found that acidic pH, 1 mM salt concentration and 37 (°)C temperature were found to be optimum for the synthesis of Au-NPs. Therefore, the present study introduces the easy, better and cheaper method for biosynthesis of AuNPs.

  13. Magnetic Pd nanocatalyst Fe3O4@Pd for C-C bond formation and hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Biglione, Catalina; Cappelletti, Ariel L.; Strumia, Miriam C.; Martín, Sandra E.; Uberman, Paula M.

    2018-05-01

    Small core-shell Fe3O4@Pd superparamagnetic nanoparticles (MNPs) were obtained with good control in size and shape distribution by metal-complex thermal decomposition in organic media. The role of the stabilizer in the synthesis of MNPs was studied, employing oleylamine (OA), triphenylphosphine (TPP) and triphenylamine (TPA). The results revealed that, among the stabilizer investigated, the presence of oleylamine in the reaction media is crucial in order to obtain an uniform shell of Pd(0) in Fe3O4@Pd MNPs of 7 ± 1 nm. The synthesized core-shell MNPs were tested in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions and p-chloronitrobenzene hydrogenation. High conversion, good reaction yields, and good TOF values were achieved in the three reaction systems with this nanocatalyst. The core-shell nanoparticle was easily recovered by a simple magnetic separation using a neodymium commercial magnet, which allowed performing up to four cycles of reuse. [Figure not available: see fulltext.

  14. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  16. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Chung, Ill-Min; Park, Inmyoung; Seung-Hyun, Kim; Thiruvengadam, Muthu; Rajakumar, Govindasamy

    2016-01-01

    Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

  17. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  19. Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood-Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease.

    PubMed

    Kundu, Paromita; Das, Manasi; Tripathy, Kalpalata; Sahoo, Sanjeeb K

    2016-12-21

    Parkinson's disease (PD) is the most widespread form of dementia where there is an age related degeneration of dopaminergic neurons in the substantia nigra region of the brain. Accumulation of α-synuclein (αS) protein aggregate, mitochondrial dysfunction, oxidative stress, and neuronal cell death are the pathological hallmarks of PD. In this context, amalgamation of curcumin and piperine having profound cognitive properties, and antioxidant activity seems beneficial. However, the blood-brain barrier (BBB) is the major impediment for delivery of neurotherapeutics to the brain. The present study involves formulation of curcumin and piperine coloaded glyceryl monooleate (GMO) nanoparticles coated with various surfactants with a view to enhance the bioavailability of curcumin and penetration of both drugs to the brain tissue crossing the BBB and to enhance the anti-parkinsonism effect of both drugs in a single platform. In vitro results demonstrated augmented inhibition of αS protein into oligomers and fibrils, reduced rotenone induced toxicity, oxidative stress, and apoptosis, and activation of autophagic pathway by dual drug loaded NPs compared to native counterpart. Further, in vivo studies revealed that our formulated dual drug loaded NPs were able to cross BBB, rescued the rotenone induced motor coordination impairment, and restrained dopaminergic neuronal degeneration in a PD mouse model.

  20. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.

    PubMed

    Sharma, Virender K; Filip, Jan; Zboril, Radek; Varma, Rajender S

    2015-12-07

    The synthesis, stability, and toxicity of engineered metal nanoparticles (ENPs) have been extensively studied during the past two decades. In contrast, research on the formation, fate, and ecological effects of naturally-occurring nanoparticles (NNPs) has become a focus of attention only recently. The natural existence of metal nanoparticles and their oxides/sulfides in waters, wastewaters, ore deposits, mining regions, and hydrothermal vents, as exemplified by the formation of nanoparticles containing silver and gold (AgNPs and AuNPs), Fe, Mn, pyrite (FeS2), Ag2S, CuS, CdS, and ZnS, is dictated largely by environmental conditions (temperature, pH, oxic/anoxic, light, and concentration and characteristics of natural organic matter (NOM)). Examples include the formation of nanoparticles containing pyrite, Cu and Zn-containing pyrite, and iron in hydrothermal vent black smoker emissions. Metal sulfide nanoparticles can be formed directly from their precursor ions or indirectly by sulfide ion-assisted transformation of the corresponding metal oxides under anaerobic conditions. This tutorial focuses on the formation mechanisms, fate, and toxicity of natural metal nanoparticles. Natural waters containing Ag(I) and Au(III) ions in the presence of NOM generate AgNPs and AuNPs under thermal, non-thermal, and photochemical conditions. These processes are significantly accelerated by existing redox species of iron (Fe(II)/Fe(III)). NOM, metal-NOM complexes, and reactive oxygen species (ROS) such as O2˙(-), ˙OH, and H2O2 are largely responsible for the natural occurrence of nanoparticles. AgNPs and AuNPs emanating from Ag(I)/Au(III)-NOM reactions are stable for several months, thus indicating their potential to be transported over long distances from their point of origin. However, endogenous cations present in natural waters can destabilize the nanoparticles, with divalent cations (e.g., Ca(2+), Mg(2+)) being more influential than their monovalent equivalents (e.g., Na

  1. Palladium modified porous silicon as multi-functional MALDI chip for serum peptide detection.

    PubMed

    Li, Xiao; Chen, Xiaoming; Tan, Jie; Liang, Xiao; Wu, Jianmin

    2017-02-14

    Interest in using mesoporous materials for peptidomic research has increased recently. The present study reports a new type of matrix assisted laser desorption/ionization (MALDI) plate derived from electrochemically etched porous silicon (PSi) whose surface was modified with palladium nanoparticles (PdNPs). Owing to the well-tailored pore size and the molecular filtration effect of the PSi, peptides in serum samples can be selectively captured and enriched in the pore channel, thereby eliminating the interference from large proteins in subsequent MALDI-MS detection. On the other hand, the PdNPs with localized surface plasmon resonance (LSPR) effect can help to enhance the efficiency of energy absorption in the UV region. Meanwhile, the charge separation effect between the PSi semiconductor and PdNPs also can be applied to promote the accumulation of positive charges on PdNPs, resulting in an improvement in laser desorption/ionization (LDI) efficiency under positive linear detection mode. The interplay among these unique properties of PSi and PdNPs can synergistically increase the overall sensitivity in serum peptide detection. Using this technology, serum sample can be directly detected on the PSi-PdNPs chip without complicated pretreatment process. Therefore, a high fidelity serum peptide fingerprint can be acquired in a high throughput way. With the assistance of statistical analysis, colorectal cancer patients and healthy people can be accurately distinguished based on the serum peptide fingerprints.

  2. Antibacterial activity of nitric oxide releasing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Seabra, Amedea B.; Manosalva, Nixson; de Araujo Lima, Bruna; Pelegrino, Milena T.; Brocchi, Marcelo; Rubilar, Olga; Duran, Nelson

    2017-06-01

    Silver nanoparticles (AgNPs) are well known potent antimicrobial agents. Similarly, the free radical nitric oxide (NO) has important antibacterial activity, and due to its instability, the combination of NO and nanomaterials has been applied in several biomedical applications. The aim of this work was to synthesize, characterize and evaluate the antibacterial activity of a new NO-releasing AgNPs. Herein, AgNPs were synthesized by the reduction of silver ions (Ag+) by catechin, a natural polyphenol and potent antioxidant agent, derived from green tea extract. Catechin acts as a reducing agent and as a capping molecule on the surface of AgNPs, minimizing particle agglomeration. The as-synthesized nanoparticles were characterized by different techniques. The results showed the formation of AgNPs with average hydrodynamic size of 44 nm, polydispersity index of 0.21, and zeta potential of -35.9 mV. X-ray diffraction and Fourier transform infrared spectroscopy revealed the presence of the AgNP core and cathecin as capping agent. The low molecular weight mercaptosuccinic acid (MSA), which contain free thiol group, was added on the surface of catechin-AgNPs, leading to the formation of MSA-catechin-AgNPs (the NO precursor nanoparticle). Free thiol groups of MSA-catechin-AgNPs were nitrosated leading to the formation of S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), the NO donor. The amount of 342 ± 16 µmol of NO was released per gram of S-nitroso-MSA-catechin-AgNPs. The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs, and S-nitroso-MSA-catechin-AgNPs were evaluated towards different resistant bacterial strains. The results demonstrated an enhanced antibacterial activity of the NO-releasing AgNP. For instance, the minimal inhibitory concentration values for Pseudomonas aeruginosa (ATCC 27853) incubated with AgNPs-catechin, AgNPs-catechin-MSA, and AgNPs-catechin-S-nitroso-MSA were found to be 62, 125 and 3 µg/mL, respectively. While in the case of

  3. The Impact of Nanoparticle Surface Chemistry on Biological Systems

    NASA Astrophysics Data System (ADS)

    Thorn, Angie Sue Morris

    The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials

  4. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

  5. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  6. Size control and catalytic activity of bio-supported palladium nanoparticles.

    PubMed

    Søbjerg, Lina Sveidal; Lindhardt, Anders T; Skrydstrup, Troels; Finster, Kai; Meyer, Rikke Louise

    2011-07-01

    The development of nanoparticles has greatly improved the catalytic properties of metals due to the higher surface to volume ratio of smaller particles. The production of nanoparticles is most commonly based on abiotic processes, but in the search for alternative protocols, bacterial cells have been identified as excellent scaffolds of nanoparticle nucleation, and bacteria have been successfully employed to recover and regenerate platinum group metals from industrial waste. We report on the formation of bio-supported palladium (Pd) nanoparticles on the surface of two bacterial species with distinctly different surfaces: the gram positive Staphylococcus sciuri and the gram negative Cupriavidus necator. We investigated how the type of bacterium and the amount of biomass affected the size and catalytic properties of the nanoparticles formed. By increasing the biomass:Pd ratio, we could produce bio-supported Pd nanoparticles smaller than 10nm in diameter, whereas lower biomass:Pd ratios resulted in particles ranging from few to hundreds of nm. The bio-supported Pd nanoparticle catalytic properties were investigated towards the Suzuki-Miyaura cross coupling reaction and hydrogenation reactions. Surprisingly, the smallest nanoparticles obtained at the highest biomass:Pd ratio showed no reactivity towards the test reactions. The lack of reactivity appears to be caused by thiol groups, which poison the catalyst by binding strongly to Pd. Different treatments intended to liberate particles from the biomass, such as burning or rinsing in acetone, did not re-establish their catalytic activity. Sulphur-free biomaterials should therefore be explored as more suitable scaffolds for Pd(0) nanoparticle formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities.

    PubMed

    Kokila, T; Ramesh, P S; Geetha, D

    2016-12-01

    Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT S+ assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer.

    PubMed

    Luo, Xin; Peng, Xia; Hou, Jingying; Wu, Shuyun; Shen, Jun; Wang, Lingyun

    2017-01-01

    Programmed death ligand-1 (PD-L1), which is highly expressed in gastric cancers, interacts with programmed death-1 (PD-1) on T cells and is involved in T-cell immune resistance. To increase the therapeutic safety and accuracy of PD-1/PD-L1 blockade, RNA interference through targeted gene delivery was performed in our study. We developed folic acid (FA)- and disulfide (SS)-polyethylene glycol (PEG)-conjugated polyethylenimine (PEI) complexed with superparamagnetic iron oxide Fe 3 O 4 nanoparticles (SPIONs) as a siRNA-delivery system for PD-L1 knockdown. The characterization, binding ability, cytotoxicity, transfection efficiency, and cellular internalization of the polyplex were determined. At nitrogen:phosphate (N:P) ratios of 10 or above, the FA-PEG-SS-PEI-SPIONs bound to PD-L1 siRNA to form a polyplex with a diameter of approximately 120 nm. Cell-viability assays showed that the polyplex had minimal cytotoxicity at low N:P ratios. The FA-conjugated polyplex showed higher transfection efficiency and cellular internalization in the folate receptor-overexpressing gastric cancer cell line SGC-7901 than a non-FA-conjugated polyplex. Subsequently, we adopted the targeted FA-PEG-SS-PEI-SPION/siRNA polyplexes at an N:P ratio of 10 for function studies. Cellular magnetic resonance imaging (MRI) showed that the polyplex could also act as a T 2 -weighted contrast agent for cancer MRI. Furthermore, one of four PD-L1 siRNAs exhibited effective PD-L1 knockdown in PD-L1-overexpressing SGC-7901. To determine the effects of the functionalized polyplex on T-cell function, we established a coculture model of activated T cells and SGC-7901 cells and demonstrated changes in secreted cytokines. Our findings highlight the potential of this class of multifunctional theranostic nanoparticles for effective targeted PD-L1-knockdown therapy and MRI diagnosis in gastric cancers.

  9. Seed-mediated photodeposition route to Ag-decorated SiO2@TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jianqi; Guo, Xiaohua; Ge, Hongguang; Tian, Guanghui; Zhang, Qiang

    2018-03-01

    Ag-decorated SiO2@TiO2 microspheres (SiO2@TiO2-Ag) with ideal core-shell structure and enhanced photocatalytic activity were successfully fabricated by combining both coating anatase TiO2 on the surface of SiO2 spheres and subsequent depositing face-centered cubic Ag nanoparticles (NPs) on the coated TiO2 surface via novel sol-gel method and Ag-seed-mediated photodeposition (PD) route, respectively. The morphology, structure, composition and optical properties of the resulting composites were characterized in detail. The results reveal that the monodisperse SiO2 spheres of ∼260 nm were covered uniformly and perfectly by the TiO2 nanoparticle coating layer with the thickness of ca. 55 nm by the novel sol-gel method. Further, homogeneously and highly dispersed Ag NPs with an average size of 8 ± 1.5 nm were strongly anchored onto the TiO2 surface in SiO2@TiO2 core-shell spheres by the modified PD process (Ag-seed-mediated PD route), whereas polydispersed Ag aggregates and detached Ag NPs were irregularly deposited over the TiO2 surface in previous works, which is the inherent problem and has not been effectively solved for depositing noble metal NPs such as Au, Ag, Pt, Pd on TiO2 surface by conventional PD method. The formation mechanism of small and uniformly dispersed Ag NPs with narrow size distribution via the modified PD method is tentatively explained by both nucleation kinetics and growth kinetics. The key reason is that the pre-deposited seeds firmly tethered on SiO2@TiO2 spheres served as nucleation sites and anchoring points for the further nucleation and subsequent growth of Ag via photoreduction of Ag+.

  10. Flower-like NiCo2S4 Hollow Sub-microspheres with Mesoporous Nanoshells Support Pd Nanoparticles for Enhanced Hydrogen Evolution Reaction Electrocatalysis in Both Acidic and Alkaline Conditions.

    PubMed

    Sheng, Guoqing; Chen, Jiahui; Li, Yunming; Ye, Huangqing; Hu, Zhixiong; Fu, Xian-Zhu; Sun, Rong; Huang, Weixin; Wong, Ching-Ping

    2018-06-14

    Flower-like NiCo2S4 hollow sub-microspheres are synthesized through Cu2O templates to support Pd nanoparticles as high-efficiency catalysts for HER. The diameter and shells size of NiCo2S4 hollow sub-microspheres are about 400 nm and 16 nm, respectively. In addition, the surface of shells is constructed by petal-like nanosheets. About 3 nm Pd particles uniformly incorporate with the flower-like NiCo2S4 hollow sub-microsphere to form NiCo2S4/Pd heterostructure. The NiCo2S4/Pd catalysts exhibit significantly lower overpotential of only 87 mV and 83 mV at 10 mA/cm2 for HER in both acidic and alkaline conditions, respectively, relative to NiCo2S4 (247 mV, 226 mV) and Pd (175 mV, 385mV) catalysts. Besides, the NiCo2S4/Pd catalysts also exhibit excellent stability of HER in these two conditions. The superior HER performance of NiCo2S4/Pd might be resulted from the unique architecture of metal nanoparticles anchored on the bimetallic sulfides flower-like hollow sub-microspheres which could provide high surface area, lots of active sites, strong synergetic effect and stable structure.

  11. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-10-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated.

  13. Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.

    PubMed

    Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A

    2015-03-05

    Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Laminin Receptor-Avid Nanotherapeutic EGCg-AuNPs as a Potential Alternative Therapeutic Approach to Prevent Restenosis

    PubMed Central

    Khoobchandani, Menka; Katti, Kavita; Maxwell, Adam; Fay, William P.; Katti, Kattesh V.

    2016-01-01

    In our efforts to develop new approaches to treat and prevent human vascular diseases, we report herein our results on the proliferation and migration of human smooth muscles cells (SMCs) and endothelial cells (ECs) using epigallocatechin-3-gallate conjugated gold nanoparticles (EGCg-AuNPs) as possible alternatives to drug coated stents. Detailed in vitro stability studies of EGCg-AuNPs in various biological fluids, affinity and selectivity towards SMCs and ECs have been investigated. The EGCg-AuNPs showed selective inhibitory efficacy toward the migration of SMCs. However, the endothelial cells remained unaffected under similar experimental conditions. The cellular internalization studies have indicated that EGCg-AuNPs internalize into the SMCs and ECs within short periods of time through laminin receptor mediated endocytosis mode. Favorable toxicity profiles and selective affinity toward SMCs and ECs suggest that EGCg-AuNPs may provide attractive alternatives to drug coated stents and therefore offer new therapeutic approaches in treating cardiovascular diseases. PMID:26938531

  15. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications.

    PubMed

    Sabir, Sidra; Arshad, Muhammad; Chaudhari, Sunbal Khalil

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.

  16. Asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for sizing SeNPs for packaging applications

    NASA Astrophysics Data System (ADS)

    Palomo-Siguero, María; Vera, Paula; Echegoyen, Yolanda; Nerin, Cristina; Cámara, Carmen; Madrid, Yolanda

    2017-06-01

    This paper describes the application of Asymmetrical Flow Field-Flow Fractionation (AF4) coupled to diode array detector (DAD) and inductively coupled plasma mass spectrometry (AF4-UV-ICP-MS) to characterize selenium nanoparticles (SeNPs) in an aqueous acrylic adhesive to be used in a multilayer food packaging material. SeNPs were synthesized using a solution-phase approach based on the reduction of selenite with ascorbic acid in presence of different stabilizers compatible with food industry such as polysaccharides (chitosan (poly(D-glucosamine) and hydroxyethylcellulose (HEC)) and non-ionic surfactants (Triton X-100 (t-octylphenoxypolyethoxyethanol), 2,4,7,9-tetramethyl 5decyne-4,7-diol ethoxylate, and isotridecanol ethoxylate). Several parameters such as pH, ascorbic acid and stabilizers concentration, and compatibility of the stabilizer with the adhesive were evaluated. SeNPs suspensions with spherical morphology were obtained except when isotridecanol ethoxylate was employed which provides SeNPs with a nanorod morphology. AF4-DAD-ICP-MS was further applied for sizing the different SeNPs preparations. DAD was used as detector for selecting the best AF4 separation conditions before coupling to ICP-MS to ensure unequivocal identification of NPs. AF4 calibration with polystyrene latex (PSL) beads of known sizes allowed size determination of the different SeNPs. The following estimated hydrodynamic sizes (expressed as the mean ± standard deviation, n = 6 replicates) were found: chitosan-SeNPs- (26 ± 3 nm), TritonX100-SeNPs (22 ± 10 nm) HEC- SeNPs (91 ± 8 nm) and 2,4,7,9-tetramethyl 5decyne-4,7-diol ethoxylate- SeNPs (59 ± 4 nm). The proposed methodology was successfully applied to the characterization in terms of size of aqueous acrylic adhesives containing SeNPs Results from AF4-ICP-MS and TEM shown that only those SeNPs obtained with non-ionic surfactants and HEC were compatible with the adhesive. The results reported here evidence the usefulness of AF4-ICP

  17. Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1-Butyl-3-Methylimidazolium Ionic Liquids and Propylene Carbonate.

    PubMed

    Schütte, Kai; Barthel, Juri; Endres, Manuel; Siebels, Marvin; Smarsly, Bernd M; Yue, Junpei; Janiak, Christoph

    2017-02-01

    Decomposition of transition-metal amidinates [M{MeC(N i Pr) 2 } n ] [M(AMD) n ; M=Mn II , Fe II , Co II , Ni II , n= 2; Cu I , n= 1) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF 6 ]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1-butyl-3-methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition-metal nanoparticles (M-NPs) in non-fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF 2 -NPs) for M=Mn, Fe, and Co in [BMIm][BF 4 ]. FeF 2 -NPs can be prepared upon Fe(AMD) 2 decomposition in [BMIm][BF 4 ], [BMIm][PF 6 ], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF 4 ] were identified by powder X-ray diffraction (PXRD) to exclusively Ni- and Cu-NPs or to solely MF 2 -NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M-NPs, except for the Cu-NPs in PC, which were 51(±8) nm. The MF 2 -NPs from [BMIm][BF 4 ] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy-dispersive X-ray spectroscopy (EDX). Electrochemical investigations of the CoF 2 -NPs as cathode materials for lithium-ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF 2 -NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles.

  18. Amorphous iron–chromium oxide nanoparticles with long-term stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less

  19. Label-Free LSPR Detection of Trace Lead(II) Ions in Drinking Water by Synthetic Poly(mPD-co-ASA) Nanoparticles on Gold Nanoislands.

    PubMed

    Qiu, Guangyu; Ng, Siu Pang; Liang, Xiongyi; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2017-02-07

    Using self-assembly gold nanoislands (SAM-AuNIs) functionalized by poly(m-phenylenediamine-co-aniline-2-sulfonic acid) (poly(mPD-co-ASA)) copolymer nanoparticles as specific receptors, a highly sensitive localized surface plasmon resonance (LSPR) optochemical sensor is demonstrated for detection of trace lead cation (Pb(II)) in drinking water. The copolymer receptor is optimized in three aspects: (1) mole ratio of mPD:ASA monomers, (2) size of copolymer nanoparticles, and (3) surface density of the copolymer. It is shown that the 95:5 (mPD:ASA mole ratio) copolymer with size less than 100 nm exhibits the best Pb(II)-sensing performance, and the 200 times diluted standard copolymer solution contributes to the most effective functionalization protocol. The resulting poly(mPD-co-ASA)-functionalized LSPR sensor attains the detection limit to 0.011 ppb toward Pb(II) in drinking water, and the linear dynamic range covers 0.011 to 5000 ppb (i.e., 6 orders of magnitude). In addition, the sensing system exhibits robust selectivity to Pb(II) in the presence of other metallic cations as well as common anions. The proposed functional copolymer functionalized on AuNIs is found to provide excellent Pb(II)-sensing performance using simple LSPR instrumentation for rapid drinking-water inspection.

  20. UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles.

    PubMed

    Baldock, Brandi L; Hutchison, James E

    2016-12-20

    DNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents. We report a UV-visible-based method to conveniently and inexpensively determine the number of DNA strands attached to AuNPs of different core sizes. When this method is used in tandem with a fluorescence dye assay, it is possible to determine the ratio of two unlabeled sequences of different lengths bound to AuNPs. Two sizes of citrate-stabilized AuNPs (5 and 12 nm) were functionalized with mixtures of short (5 base) and long (32 base) disulfide-terminated DNA sequences, and the ratios of sequences bound to the AuNPs were determined using the new method. The long DNA sequence was present as a lower proportion of the ligand shell than in the ligand exchange mixture, suggesting it had a lower propensity to bind the AuNPs than the short DNA sequence. The ratio of DNA sequences bound to the AuNPs was not the same for the large and small AuNPs, which suggests that the radius of curvature had a significant influence on the assembly of DNA strands onto the AuNPs.

  1. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  2. Green synthesis of silver nanoparticles as antibacterial agent using Rhodomyrtus tomentosa acetone extract

    NASA Astrophysics Data System (ADS)

    Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv

    2013-12-01

    The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 μgmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.

  3. A wireless and sensitive detection of octachlorostyrene using modified AuNPs as signal-amplifying tags.

    PubMed

    Chen, Lan; Li, Jiezhen; ThanhThuy, T Tran; Zhou, Liping; Huang, Chen'an; Yuan, Lijuan; Cai, Qingyun

    2014-02-15

    A wireless, remote query octachlorostyrene (OCS) biosensor was fabricated by coating a mass-sensitive magnetoelastic ribbon with anti-OCS antibody. In response to a time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic resonance frequency which inversely depends on the sensor mass loading. As the magnetoelastic film is magnetostrictive itself, the vibrations launch magnetic flux that can be remotely detected using a pickup coil. Au nanoparticles (NPs) were used to amplify the mass loading. In a sample solution containing OCS target and OCS-modified AuNPs (OCS-AuNPs), both OCS and OCS-AuNPs react with the anti-OCS antibody immobilized on the sensor surface in a competition mode. The bound OCS-AuNPs amount is inversely proportional to the OCS target concentration. The reduction of bound OCS-AuNPs induced by free OCS results in significant change in mass loading, which amplifies the responses. The biosensor demonstrates a linear shift in resonance frequency with OCS concentration between 7.4 μM and 9 nM, with a detection limit of 2.8 nM. © 2013 Published by Elsevier B.V.

  4. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    PubMed Central

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-01-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated. PMID:24126604

  5. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    PubMed

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  6. Calix[4]arene-Functionalised Silver Nanoparticles as Hosts for Pyridinium-Loaded Gold Nanoparticles as Guests.

    PubMed

    Vita, Francesco; Boccia, Alice; Marrani, Andrea G; Zanoni, Robertino; Rossi, Francesca; Arduini, Arturo; Secchi, Andrea

    2015-10-19

    A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1-dodecanethiol and 1-(11-mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω-alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X-ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au-AgNPs aggregation, shown through the low-energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol-capped AuNPs and the Ag calix[4]arene-functionalised NPs was also promoted by the action of a simple N-octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol-capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?

    PubMed

    Zou, Xiaoyan; Shi, Junpeng; Zhang, Hongwu

    2014-09-01

    Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The

  8. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  9. Iron oxide nanoparticles with controlled morphology for advanced hyperthermia

    NASA Astrophysics Data System (ADS)

    Nemati Porshokouh, Zohreh; Khurshid, Hafsa; Alonso Messa, Javier; Phan, Manh-Huong; Srikanth, Hariharan

    2015-03-01

    Magnetic nanoparticles (NPs) are interesting for a wide range of applications. In biomedicine, they have been exploited for use in drug delivery, magnetic resonance imaging, and magnetic hyperthermia. While magnetic hyperthermia, using NPs to convert electromagnetic energy into heat to destroy the cancer cells, represents a novel cancer treatment technique, a poor heating conversion efficiency of the existing NPs restricts its practical use. Different strategies have been proposed to overcome this limitation, mainly by tuning the size, saturation magnetization and effective anisotropy of the NPs. Here we report a magnetic hyperthermia study on Fe3O4 NPs, where the effective anisotropy was tuned by varying particle morphology from the spherical to octopod shape. The Fe3O4 NPs were synthesized using a thermal decomposition method. Transmission electron microscopy (TEM) and high-resolution TEM images show high crystalline monodisperse nanoparticles. X-ray diffraction patterns confirm the presence of Fe3O4 phase. Hyperthermia experiments indicate that the octopods possess a higher SAR as compared to their spherical counterpart. Our findings provide an effective approach to improve the SAR of NPs by manipulating the shape anisotropy of the nanoparticles. Research was supported by USAMRMC through Grant Numbers W81XWH-07-1-0708 and W81XWH1020101/3349.

  10. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2014-07-01

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

  11. Succinic acid functionalized silver nanoparticles (Suc-Ag NPs) for colorimetric sensing of melamine

    NASA Astrophysics Data System (ADS)

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Shah, Muhammad Tariq; Shaikh, Tayyaba; Siddiqui, Samia

    2018-03-01

    In this study, a quantitative colorimetric sensing strategy is developed for the rapid, sensitive and selective determination of melamine. The sensing system relies on the application of succinic acid as a selective recognition probe functionalized over Ag NPs. The synthesized Ag NPs were modified with cysteamine to induce positively charged atmosphere which allowed easy and favorable functionalization of succinic acid. The di-carboxyl nature of succinic acid enabled its binding to both cysteamine and melamine. The strong and favorable linkage between succinic acids carbonyl and amine moieties of melamine triggered aggregation of silver NPs producing a significant shift in the measured absorption excitation. This change in the excitation along with the colorimetric response was found linearly proportional to the melamine concentration in the range of 0.1-1.2 μM. The developed sensor system is simple and unlike electrostatic attraction based sensor system utilize selective linkage for the recognition of melamine. In addition to this, the developed optical probe can efficiently be used for the determination of melamine in milk samples.

  12. On the origin of an unusual dependence of (bio)chemical reactivity of ferric hydroxides on nanoparticle size.

    PubMed

    Chernyshova, I V; Ponnurangam, S; Somasundaran, P

    2010-11-14

    Application of in situ UV-Vis absorption spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) makes it possible to resolve the controversies about the electronic properties of hematite (α-Fe(2)O(3)) nanoparticles (NPs) and, on this basis, to rationalize the unusual dependence of aquatic (bio)chemistry of these NPs on NP size. 2-Line ferrihydrite (FH) is also included in the study as the end polymorph of the size-driven phase transformation of hematite NPs in aqueous media. It is shown that the absorption edge of all NPs studied is due to the direct O 2p-Fe 3d charge transfer (CT) process, while a manifold of weak bands superimposed onto two main p-d CT bands is attributed to the d-d ligand field transitions. The band gap decreases from 2.95 to 2.18 eV with increasing NP size from 7 nm to 120 nm. This effect is attributed to restoration of hematite lattice structure, which ultimately results in an increase in the O 2p-Fe 3d hybridization, stabilization of the valence band, and delocalization of valence electrons, as confirmed by XPS. Finally, we show that the optical effects such as the Mie resonance significantly distort absorption spectra of hematite NPs larger than ∼120 nm. Possible impacts of these findings on (photo)catalytic and biochemical properties of ferric (hydr)oxide NPs are discussed.

  13. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  14. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    PubMed

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  15. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches.

    PubMed

    Zhang, Xi-Feng; Liu, Zhi-Guo; Shen, Wei; Gurunathan, Sangiliyandi

    2016-09-13

    Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.

  16. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches

    PubMed Central

    Zhang, Xi-Feng; Liu, Zhi-Guo; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs. PMID:27649147

  17. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin

    NASA Astrophysics Data System (ADS)

    Sadeghi, R.; Moosavi-Movahedi, A. A.; Emam-jomeh, Z.; Kalbasi, A.; Razavi, S. H.; Karimi, M.; Kokini, J.

    2014-09-01

    The desolvation method was successfully used to prepare nanoparticles from bovine serum albumin (BSA) using ethanol, acetone, and their mixtures (70:30 and 50:50, respectively). Ethanol and mixtures of ethanol and acetone led to the most spherical nanoparticles, while using pure acetone resulted in a mixture of spherical and rod shape nanoparticle. Acetone was the solvent with higher encapsulation efficiency equal to 99.2 ± 0.36 %. The polydispersity values of BSA NPs in this study were 0.045 ± 0.007, 0.065 ± 0.013, 0.091 ± 0.012, and 0.120 ± 0.016 for ethanol (100) 4×, Et:Ac (70:30) 4×, Et:Ac (50:50) 4×, and acetone (100) 3×, respectively. Encapsulation efficiencies of curcumin inside BSA NPs were 19.4 ± 2.2 and 19.8 ± 1.6 % for 1.0 and 1.5 molar ratios of curcumin to BSA, respectively. Crosslinking using glutaraldehyde improved the stability of BSA NPs and curcumin-loaded BSA NPs and both groups of nanoparticles were stable for 1 month; the lyophilized curcumin-loaded BSA NPs were able to redisperse in water. The particle size and polydispersity index of redispersed NPs were higher than the original NPs before lyophilization. The size distribution study shows that after 10 s of sonication most nanoparticles were well dispersed; however, a small but significant fraction formed aggregates. Sonication for 10 s decreased the effective diameter and polydispersity of the redispersed nanoparticles, while increasing the sonication time to 20 s did not show significant changes. In vitro release study of curcumin from BSA NPs showed that these biocompatible nanoparticles have the ability to be used as a carrier to improve controlled release of curcumin.

  18. Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants.

    PubMed

    Kokina, Inese; Gerbreders, Vjačeslavs; Sledevskis, Eriks; Bulanovs, Andrejs

    2013-05-20

    We demonstrate a method for direct delivery of metal nanoparticles to flax calli and regenerant cells by vacuum deposition of metal nanolayers on powdered hormone followed by dispersal of the combined hormone-metal in medium. The penetration and location of the gold (AuNPs) and silver (AgNPs) nanoparticles in calli and in plant regenerants were confirmed by optical absorption spectroscopy and scanning electron microscopy. We detected a significant effect of the AuNPs and AgNPs on the regeneration type of flax calli. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.

    PubMed

    Singh, Sneha; Vidyarthi, Ambarish Sharan; Nigam, Vinod Kumar; Dev, Abhimanyu

    2014-02-01

    The development of a reliable, eco-friendly process for synthesis of gold nanoparticles (AuNPs) has gained impetus in recent years to counter the drawbacks of chemical and physical methods. This study illustrates simple, green synthesis of AuNPs in vitro using cell lysate supernatant (CLS) of non-pathogenic bacteria and to investigate its potential antimicrobial activity. Gold nanoparticles were synthesized by the reduction of precursor AuCl4- ions using the CLS of Bacillus licheniformis at 37°C upon 24 h of incubation. The nanoparticles were characterized for their morphology, particle size, optical absorption, zeta potential, and stability. Further the antimicrobial activity was assayed using cup-plate method. The process of biosynthesis was extracellular and the gold ions were reduced to stable nanogold of average size 38 nm. However, upon storage of AuNPs for longer duration at room temperature stability was influenced in terms of increase in particle size and decrease in zeta potential with respect to as synthesized nanoparticles. SEM micrographs revealed the spherical shape of AuNPs and EDX analysis confirmed the presence of gold in the sample. Also clear zone of inhibition was observed against Bacilllus subtilis MTCC 8364, Pseudomonas aeruginosa MTCC 7925, and Escherichia coli MTCC 1698 confirming the antimicrobial activity of AuNPs. The bioprocess under study was simple and less time consuming as compared to other methods as the need for harvesting AuNPs from within the microbial cells via downstream process will be eliminated. Nanoparticles exhibited good stability even in absence of external stabilizing agents. AuNPs showed good antimicrobial activity against several Gram-negative and Gram-positive pathogenic bacteria. The extracellular biosynthesis from CLS may serve as a suitable alternative for large scale synthesis of gold nanoparticles in vitro. The synthesis from lysed bacterial cell strongly suggests that exposure of microbial whole cells to the

  20. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent.

    PubMed

    Ansari, Asma; Pervez, Sidra; Javed, Urooj; Abro, Muhammad Ishaque; Nawaz, Muhammad Asif; Qader, Shah Ali Ul; Aman, Afsheen

    2018-04-22

    Metallic nanoparticles have a substantial scientific interest because of their distinctive physicochemical and antimicrobial properties and the emergence of multidrug resistant pathogens could unlock the potential of nanoparticles to combat infectious diseases. The aim of the current study is to enhance the antibacterial potential of purified bacteriocin by combining bacteriocin and antibacterial silver nanoparticles (AgNPs). Hence, the interaction of natural antimicrobial compounds and antibacterial nanoparticles can be used as a potential tool for combating infectious diseases. In this study, a green, simple and effective approach is used to synthesize antibacterial AgNPs using fungal exopolysaccharide as both a reducing and stabilizing agent. The AgNPs were characterized by spectroscopic analysis, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Dynamic Light Scattering (DLS). Furthermore, the synergistic effect of bacteriocin-AgNPs was determined against pathogenic strains. The histogram of AgNPs indicated well-dispersed, stabilized and negatively charged particles with variable size distribution. The combination of bacteriocin with nanoparticles found to be more effective due to broad antibacterial potential with possibly lower doses. The current study is imperative to provide an alternative for the chemical synthesis of silver nanoparticles. It showed environmental friendly and cost effective green synthesis of antibacterial nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms.

    PubMed

    Jing, Hengye; Mezgebe, Bineyam; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A; Bennett-Stamper, Christina

    2014-06-01

    This study focuses on the interaction of ceria nanoparticles (CeO2-NPs) with Pseudomonas fluorescens and Mycobacterium smegmatis biofilms. Confocal laser microscopy and transmission electron microscopy determined the distribution of NPs in the complex structures of biofilm at molecular levels. Visual data showed that most of the adsorption takes place on the bacterial cell walls and spores. The interaction of nanoparticles (NPs) with biofilms reached equilibrium after the initial high adsorption rate regardless of biofilm heterogeneity and different nanoparticle concentrations in the bulk liquid. Physical processes may dominate this sorption phenomenon. Pseudo first order sorption kinetics was used to estimate adsorption and desorption rate of CeO2-NPs onto biofilms. When biofilms got exposed to CeO2-NPs, a self-protecting mechanism was observed. Cells moved away from the bulk solution in the biofilm matrix, and portions of biofilm outer layer were detached, hence releasing some CeO2-NPs back to the bulk phase. Published by Elsevier Ltd.

  3. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology.

    PubMed

    Srinivasan, Sumithra Y; Paknikar, Kishore M; Bodas, Dhananjay; Gajbhiye, Virendra

    2018-05-01

    Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe 2 O 4 ) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe 2 O 4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe 2 O 4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.

  4. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  5. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE PAGES

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico; ...

    2017-12-11

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  6. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  7. A facile route to synthesize nanogels doped with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  8. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  9. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-11-01

    Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

  10. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes.

    PubMed

    Rónavári, Andrea; Igaz, Nóra; Gopisetty, Mohana Krishna; Szerencsés, Bettina; Kovács, Dávid; Papp, Csaba; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2018-01-01

    Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nano-sized structures with unique antimicrobial properties. In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles on cutaneous mycosis causing fungi and on human keratinocytes. Cell-free extract of the red yeast Phaffia rhodozyma proved to be suitable for nanoparticle preparation and the generated AgNPs and AuNPs were characterized by transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. Antifungal studies demonstrated that the biosynthesized silver particles were able to inhibit the growth of several opportunistic Candida or Cryptococcus species and were highly potent against filamentous Microsporum and Trichophyton dermatophytes. Among the tested species only Cryptococcus neoformans was susceptible to both AgNPs and AuNPs. Neither AgNPs nor AuNPs exerted toxicity on human keratinocytes. Our results emphasize the therapeutic potential of such biosynthesized nanoparticles, since their biocompatibility to skin cells and their outstanding antifungal performance can be exploited for topical treatment and prophylaxis of superficial cutaneous mycosis.

  11. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications

    PubMed Central

    Sabir, Sidra; Arshad, Muhammad

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles. PMID:25436235

  12. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water.

    PubMed

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.

  13. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract

    NASA Astrophysics Data System (ADS)

    Dauthal, Preeti; Mukhopadhyay, Mausumi

    2013-01-01

    In-vitro free radical scavenging activity of biosynthesized gold (Au-NPs) and silver (Ag-NPs) nanoparticles was investigated in the present study. Natural precursor Prunus armeniaca (apricot) fruit extract was used as a reducing agent for the nanoparticle synthesis. The free radical scavenging activity of the nanoparticles were observed by modified 1,1'-diphynyl-2-picrylhydrazyl, DPPH and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS assay. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy, and fourier transform infrared spectroscopy (FTIR). Appearance of optical absorption peak at 537 nm (2.20 keV) and 435 nm (3 keV) within 0.08 and 0.5 h of reaction time was confirmed the presence of metallic Au and Ag nanoclusters, respectively. Nearly spherical nanoparticles with majority of particle below 20 nm (TEM) for both Au-NPs and Ag-NPs were synthesized. XRD pattern confirmed the existence of pure nanocrystalline Au-NPs while few additional peaks in the vicinity of fcc silver-speculated crystallization of metalloproteins of fruit extract on the surface of the Ag-NPs and vice versa. FTIR spectra was supported the role of amino acids of protein/enzymes of fruit extract for synthesis and stabilization of nanoparticles. Dose-dependent scavenging activity was observed for Au-NPs and Ag-NPs in both DPPH and ABTS in-vitro assay. 50 % scavenging activity for DPPH were 11.27 and 16.18 mg and for ABTS 3.40 and 7.12 mg with Au-NPs and Ag-NPs, respectively.

  15. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.

    PubMed

    Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke

    2017-01-18

    Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.

  16. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  17. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    PubMed

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst

    NASA Astrophysics Data System (ADS)

    Hosseini-Sarvari, Mona; Razmi, Zahra

    2015-01-01

    A novel Pd supported on ZnO nanoparticles was readily synthesized and characterized. The amount of palladium on ZnO is 9.84 wt% which was determined by ICP analysis and atomic absorption spectroscopy (AAS). Percentage of accessible Pd as active catalyst is also estimated to 2.72% based on the thermogravimetric (TG) analysis. This nano-sized Pd/ZnO with an average particle size of 20-25 nm and specific surface area 40.61 m2 g-1 was used as a new reusable heterogeneous catalyst for direct hydrogenation and one-pot reductive amidation of nitro compounds without the use of any ligands under atmospheric pressure. The catalyst can be recovered and recycled several times without marked loss of activity.

  19. Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1‐Butyl‐3‐Methylimidazolium Ionic Liquids and Propylene Carbonate

    PubMed Central

    Schütte, Kai; Barthel, Juri; Endres, Manuel; Siebels, Marvin; Smarsly, Bernd M.; Yue, Junpei

    2016-01-01

    Abstract Decomposition of transition‐metal amidinates [M{MeC(NiPr)2}n] [M(AMD)n; M=MnII, FeII, CoII, NiII, n=2; CuI, n=1) induced by microwave heating in the ionic liquids (ILs) 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIm][PF6]), 1‐butyl‐3‐methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1‐butyl‐3‐methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition‐metal nanoparticles (M‐NPs) in non‐fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF2‐NPs) for M=Mn, Fe, and Co in [BMIm][BF4]. FeF2‐NPs can be prepared upon Fe(AMD)2 decomposition in [BMIm][BF4], [BMIm][PF6], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF4] were identified by powder X‐ray diffraction (PXRD) to exclusively Ni‐ and Cu‐NPs or to solely MF2‐NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M‐NPs, except for the Cu‐NPs in PC, which were 51(±8) nm. The MF2‐NPs from [BMIm][BF4] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy‐dispersive X‐ray spectroscopy (EDX). Electrochemical investigations of the CoF2‐NPs as cathode materials for lithium‐ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF2‐NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles. PMID:28168159

  20. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Min; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002; Zhang, De-Xiang

    2016-05-15

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB). - Graphical abstract: An amine-functionalized neutral Cd(II) boron imidazolate framework can load Ag NPs and show excellent photocatalytic degradation behavious for MB. - Highlights: • Amine-functionalization. • Neutral boron imidazolate framework. • Loading Ag nanoparticles (NPs). • Photocatalytic degradation of methylene blue.